PHRM (PHRM)

PHRM 301. Undergraduate Research. 1 - 18 Units.

PHRM 309. Principles of Pharmacology. 3 Units.
Principles of Pharmacology introduces the basic principles that underlie all of Pharmacology. The first half of the course introduces, both conceptually and quantitatively, drug absorption, distribution, elimination and metabolism (pharmacokinetics) and general drug receptor theory and mechanism of action (pharmacodynamics). Genetic variation in response to drugs (pharmacogenetics) is integrated into these basic principles. The second half of the course covers selected drug classes chosen to illustrate these principles. Small group/recitation sessions use case histories to reinforce presentation of principles and to discuss public perceptions of therapeutic drug use. Graduate students will be expected to critically evaluate articles from the literature and participate in a separate weekly discussion session. Recommended preparation for PHRM 409: Undergraduate degree in science or permission of instructor. Offered as PHRM 309 and PHRM 409. (CHEM 223 and CHEM 224), or (CHEM 323 and CHEM 324), or (EBME 201 and EBME 202), or (BIOL 116 and BIOL 117).

PHRM 315. Nuclear Receptors in Health and Disease. 3 Units.
This course focuses on hormone-gene interactions mediated by the ligand-inducible transcription factors termed nuclear hormone receptors. The class will address the mechanisms of action, regulatory features, and biological activities of several nuclear receptors. The usage of nuclear receptors as therapeutic targets in disease states such as cancer, inflammation, and diabetes will also be discussed. The course aims to teach students to critically evaluate primary literature relevant to nuclear hormone receptors biology, and to reinforce presentation/discussion skills. Grades for undergraduates will be based on midterm, final exam; grades for graduates will be based on midterm, final exam, and presentation of a recently published research article related to the role of nuclear receptors in health and disease. Offered as PHRM 315, BIOL 315, PHRM 415 and BIOL 415.

PHRM 340. Science and Society Through Literature. 3 Units.
This course will examine the interaction of scientific investigation and discovery with the society it occurred in. What is the effect of science on society and, as importantly, what is the effect of society on science? An introduction will consider the heliocentric controversy with focus on Galileo. Two broad areas, tuberculosis and the Frankenstein myth, will then be discussed covering the period 1800-present. With tuberculosis, fiction, art and music will be examined to understand the changing views of society towards the disease, how society's perception of tuberculosis victims changed, and how this influenced their treatments and research. With Frankenstein, the original novel in its historical context will be examined. Using fiction and film, the transformation of the original story into myth with different connotations and implications will be discussed. Most classes will be extensive discussions coupled with student presentations of assigned materials. Offered as PHRM 340, BETH 440, PHRM 440, and HSTY 440.

PHRM 400. Research Experience in Pharmacology. 0 - 1 Units.
Research rotation in pharmacology.

PHRM 401. Principles of Pharmacology I: The Molecular Basis of Therapeutics. 3 Units.
This core course focuses on the chemical and biochemical properties of therapeutic agents and molecular mechanisms of therapeutic action, including kinetic and thermodynamic principles of enzyme catalysis and drug-receptor interactions. Moreover, emphasis is placed on fundamental principles of pharmacokinetics, including the absorption, distribution, metabolism, and excretion of drugs. Mathematical concepts needed to understand appropriate administration of drugs and maintaining therapeutic concentrations of drugs in the body are discussed. A second broad area of emphasis is on fundamental principles of pharmacodynamics, including drug-receptor theory, log dose-response relationships, therapeutic index, receptor turnover, and signal transduction mechanisms. The primary learning objective is to develop a self-directed, critical approach to the evaluation and design of experimental research in the broad context of receptor interactions with endogenous ligands and therapeutic agents in the context of disease models. This is a team-coordinated course involving session organized by faculty to facilitate student-directed learning experiences including discussion of study questions, problem solving applications, and primary literature presentations. A two-part laboratory exercise introduces experimental methodologies widely applied during the study of molecular interactions between therapeutic agents and receptor targets to reinforce fundamental principles of drug action. This 3-credit hour course meets 3 hr per week during the spring semester of year 1.

PHRM 402. Principles of Pharmacology II: The Physiological Basis of Therapeutics. 3 Units.
This course focuses on human physiology of organ systems including the central nervous system, cardiovascular system, and those systems (gastrointestinal, hepatic, and renal) that are involved in determining the pharmacokinetics or time course of drug action in vivo. A second major emphasis is placed on disease-based sessions where normal physiology, pathophysiology, and key drug classes to treat pathophysiologies are discussed. The students learn key concepts in endocrine pathologies, inflammatory disorders, pulmonary diseases, infectious diseases, and cancer. The main learning objectives are for the student to gain an understanding of basic principles of modern pharmacology and physiology and to build self-directed learning skills. This is a highly interactive course in which faculty lectures are minimized. A heavy emphasis is placed on student-directed learning experiences including presentation and discussion of primary literature, problem solving applications, small group discussion and team-based learning. This 3-credit hour course meets 3 hr per week during the fall semester of year 2.

PHRM 403. Public and Professional Views of Modern Therapeutics. 3 Units.
This course will present the students with headline news stories from the popular press along with pertinent published articles from the scientific literature. The object is to engage the students in critical evaluation of the scientific literature and news reports to discern the scientific basis for decisions such as removal of drugs from the market. The course will focus on topics such as Cox-2 Inhibitors and Heart Disease, Antidepressant Use for Adolescents, and Parkinson's Disease and Stem Cell Therapy, among others. Evaluation will be based on participation in student-led discussion sessions, weekly topical quizzes, and on written critiques of the primary literature.
PHRM 406. Basic Cancer Biology and the Interface with Clinical Oncology. 3 Units.
This is a graduate-level introductory course in cancer biology taught through the Departments of Pharmacology and Pathology. This course will give students a broad overview of current basic cancer biology, highlight recent advances in cancer therapeutics, and provide a clinical perspective of the pathogenesis and treatment of common cancers. Classes will be of lecture and discussion format, and will also include student discussion of journal research articles to develop critical thinking in cancer research and experimental design as well as presentation/communication skills. About 1 to 3 students per class will be scheduled to lead the presentation and discussion of the selected journal articles. However, all students will be required to read the material in advance and be ready for discussion. Topics will cover growth factor action and signal transduction, oncogenes, tumor suppressor genes, DNA damage, apoptosis, cancer immunology, cancer stem cells, metastasis, angiogenesis, chemotheraphy, radiation therapy, targeted therapeutics, photodynamic therapy, targeting cancer stem cells, chemoprevention, and clinical aspects of cancers of the breast, prostate, lymphatic tissue, and colon. Course grades for PHRM/PATH 520 (Ph.D. track): will be determined by class participation/presentation (40%), an original research grant proposal (35%) and written and oral critiques of two research proposals (25%). Course grades for PHRM/PATH 406 (M.S. and non-degree track): will be determined by class participation/presentation (40%), a literature review term paper (35%) and oral defense of term paper with course directors (25%). Presentations/Participation: Instructors will complete a standardized evaluation form to provide you uniform feedback in a timely manner. Required Reading: Assigned reviews, original articles (in blackboard) Recommended Reading: The Biology of Cancer (2nd Edition), by Robert A. Weinberg Garland Science, copyright 2014 Recommended Preparation: A course in Cell Biology. A course in Molecular Biology. Offered as PATH 406, PATH 520, PHRM 406 and PHRM 520.

PHRM 409. Principles of Pharmacology. 3 Units.
Principles of Pharmacology introduces the basic principles that underlie all of Pharmacology. The first half of the course introduces, both conceptually and quantitatively, drug absorption, distribution, elimination and metabolism (pharmacokinetics) and general drug receptor theory and mechanism of action (pharmacodynamics). Genetic variation in response to drugs (pharmacogenetics) is integrated into these basic principles. The second half of the course covers selected drug classes chosen to illustrate these principles. Small group/recitation sessions use case histories to reinforce presentation of principles and to discuss public perceptions of therapeutic drug use. Graduate students will be expected to critically evaluate articles from the literature and participate in a separate weekly discussion session. Recommended preparation for PHRM 409: Undergraduate degree in science or permission of instructor. Offered as PHRM 309 and PHRM 409.

PHRM 412. Membrane Transport Processes. 3 Units.
Membranes and membrane transporters are absolutely required for all cells to take up nutrient, maintain membrane potential and efflux toxins. This course will consider the classification and structure of membrane transport proteins and channels, examine the common mechanistic features of all systems and the specific features of different classes of transporter. Understanding the physiological integration of transport processes into cell homeostasis and consideration of transporters and channels as drug targets will be a goal. Course format is minimal lecture, primarily student presentations of primary literature papers. Offered as PHOL 412 and PHRM 412. Prereq: CBIO 453 and CBIO 455.

PHRM 415. Nuclear Receptors in Health and Disease. 3 Units.
This course focuses on hormone-gene interactions mediated by the ligand-inducible transcription factors termed nuclear hormone receptors. The class will address the mechanisms of action, regulatory features, and biological activities of several nuclear receptors. The usage of nuclear receptors as therapeutic targets in disease states such as cancer, inflammation, and diabetes will also be discussed. The course aims to teach students to critically evaluate primary literature relevant to nuclear hormone receptors biology, and to reinforce presentation/discussion skills. Grades for undergraduates will be based on midterm, final exam; grades for graduates will be based on midterm, final exam, and presentation of a recently published research article related to the role of nuclear receptors in health and disease. Offered as PHRM 315, BIOC 315, PHRM 415 and BIOC 415.

PHRM 420. Current Topics in Cancer. 3 Units.
The concept of cancer hallmarks has provided a useful guiding principle in our understanding of the complexity of cancer. The hallmarks include sustaining proliferative signaling, evading growth suppressors, enabling replicative immortality, activating invasion and metastasis, inducing angiogenesis, resisting cell death, deregulating cellular energetics, avoiding immune destruction, tumor-promoting inflammation, and genome instability and mutation. The objectives of this course are to (1) examine the principles of some of these hallmarks, and (2) explore potential therapies developed based on these hallmarks of cancer. This is a student-driven and discussion-based graduate course. Students should have had some background on the related subjects and have read scientific papers in their prior coursework. Students will be called on to present and discuss experimental design, data and conclusions from assigned publications. There will be no exams or comprehensive papers but students will submit a one-page critique (strengths and weaknesses) of one of the assigned papers prior to each class meeting. The course will end with a full-day student-run symposium on topics to be decided jointly by students and the course director. Grades will be based on class participation, written critiques, and symposium presentations. Offered as BIOC 420, MBIOS 420, PATH 422, and PHRM 420. Prereq: CBIO 453 and CBIO 455.

PHRM 430. Advanced Methods in Structural Biology. 1 - 6 Units.
The course is designed for graduate students who will be focusing on one or more methods of structural biology in their thesis project. This course is divided into 3-6 sections (depending on demand). The topics offered will include X-ray crystallography, nuclear magnetic resonance spectroscopy, optical spectroscopy, mass spectrometry, cryo-electron microscopy, and computational and design methods. Students can select one or more modules. Modules will be scheduled so that students can take all the offered modules in one semester. Each section is given in 5 weeks and is worth 1 credit. Each section covers one area of structural biology at an advanced level such that the student is prepared for graduate level research in that topic. Offered as BIOC 430, CHEM 430, PHOL 430, and PHRM 430.
PHRM 432. Current Topics in Vision Research. 3 Units.
Vision research is an exciting and multidisciplinary area that draws on the disciplines of biochemistry, genetics, molecular biology, structural biology, neuroscience, and pathology. This graduate level course will provide the student with broad exposure to the most recent and relevant research currently being conducted in the field. Topics will cover a variety of diseases and fundamental biological processes occurring in the eye. Regions of the eye that will be discussed include the cornea, lens, and retina. Vision disorders discussed include age-related macular degeneration, retinal ciliopathies, and diabetic retinopathy. Instructors in the course are experts in their field and are members of the multidisciplinary visual sciences research community here at Case Western Reserve University. Students will be exposed to the experimental approaches and instrumentation currently being used in the laboratory and in clinical settings. Topics will be covered by traditional lectures, demonstrations in the laboratory and the clinic, and journal club presentations. Students will be graded on their performance in journal club presentations (40%), research proposal (40%), and class participation (20%). Offered as NEUR 432, PATH 432, PHRM 432 and BIOC 432.

PHRM 440. Science and Society Through Literature. 3 Units.
This course will examine the interaction of scientific investigation and discovery with the society it occurred in. What is the effect of science on society and, as importantly, what is the effect of society on science? An introduction will consider the heliocentric controversy with focus on Galileo. Two broad areas, tuberculosis and the Frankenstein myth, will then be discussed covering the period 1800-present. With tuberculosis, fiction, art and music will be examined to understand the changing views of society towards the disease, how society’s perception of tuberculosis victims changed, and how this influenced their treatments and research. With Frankenstein, the original novel in its historical context will be examined. Using fiction and film, the transformation of the original story into myth with different connotations and implications will be discussed. Most classes will be extensive discussions coupled with student presentations of assigned materials. Offered as PHRM 340, BETH 440, PHRM 440, and HSTY 440.

PHRM 466. Cell Signaling. 3 Units.
This is an advanced lecture/journal/discussion format course that covers cell signaling mechanisms. Included are discussions of neurotransmitter-gated ion channels, growth factor receptor kinases, cytokine receptors, G protein-coupled receptors, steroid receptors, heterotrimeric G proteins, ras family GTPases, second messenger cascades, protein kinase cascades, second messenger regulation of transcription factors, microtubule-based motility; actin/myosin-based motility, signals for regulation of cell cycle, signals for regulation of apoptosis. Offered as CLBY 466, PHOL 466 and PHRM 466.

PHRM 475. Protein Biophysics. 3 Units.
This course focuses on in-depth understanding of the molecular biophysics of proteins. Structural, thermodynamic and kinetic aspects of protein function and structure-function relationships will be considered at the advanced conceptual level. The application of these theoretical frameworks will be illustrated with examples from the literature and integration of biophysical knowledge with description at the cellular and systems level. The format consists of lectures, problem sets, and student presentations. A special emphasis will be placed on discussion of original publications. Offered as BIOC 475, CHEM 475, PHOL 475, PHRM 475, and NEUR 475.

PHRM 511. Pharmacology Seminar Series. 0 - 1 Units.
Current topics of interest in the pharmacologist sciences.

PHRM 513. Structural Journal Club. 1 Unit.
Current topics of interest in structural biology, and protein biophysics. Offered as PHOL 513 and PHRM 513.

PHRM 520. Basic Cancer Biology and the Interface with Clinical Oncology. 3 Units.
This is a graduate-level introductory course in cancer biology taught through the Departments of Pharmacology and Pathology. This course will give students a broad overview of current basic cancer biology, highlight recent advances in cancer therapeutics, and provide a clinical perspective of the pathogenesis and treatment of common cancers. Classes will be of lecture and discussion format, and will also include student discussion of journal research articles to develop critical thinking in cancer research and experimental design as well as presentation/communication skills. About 1 to 3 students per class will be scheduled to lead the presentation and discussion of the selected journal articles. However, all students will be required to read the material in advance and be ready for discussion. Topics will cover growth factor action and signal transduction, oncogenes, tumor suppressor genes, DNA damage, apoptosis, cancer immunology, cancer stem cells, metastasis, angiogenesis, chemotherapy, radiation therapy, targeted therapeutics, photodynamic therapy, targeting cancer stem cells, chemoprevention, and clinical aspects of cancers of the breast, prostate, lymphatic tissue, and colon. Course grades for PHRM/PATH 520 (Ph.D. track): will be determined by class participation/presentation (40%), an original research grant proposal (35%) and written and oral critiques of two research proposals (25%). Course grades for PHRM/PATH 406 (M.S. and non-degree track): will be determined by class participation/presentation (40%), a literature review term paper (35%) and oral defense of term paper with course directors (25%). Presentations/Participation: Instructors will complete a standardized evaluation form to provide you uniform feedback in a timely manner. Required Reading: Assigned reviews, original articles (in blackboard) Recommended Reading: The Biology of Cancer (2nd Edition), by Robert A. Weinberg Garland Science, copyright 2014 Recommended Preparation: A course in Cell Biology. A course in Molecular Biology. Offered as PATH 406, PATH 520, PHRM 406 and PHRM 520.

PHRM 521. Special Topics in Cancer Biology and Clinical Oncology. 1 Unit.
This one credit hour course in Cancer Biology is intended to give students an opportunity to do independent literature research while enrolled in PHRM 520/PATH 520. Students must attend weekly Hematology/Oncology seminar series and write a brief summary of each of the lectures attended. In addition, students must select one of the seminar topics to write a term paper which fully reviews the background related to the topic and scientific and clinical advances in that field. This term paper must also focus of Clinical Oncology, have a translational research component, and integrate with concepts learned in PHRM 520/PATH 520. Pharmacology students must provide a strong discussion on Therapeutics, while Pathology students must provide a strong component on Pathophysiology of the disease. Recommended preparation: CBIO 453 and CBIO 455, or concurrent enrollment in PHRM 520 or PATH 520. Offered as PATH 521 and PHRM 521.

PHRM 525. Topics in Cell and Molecular Pharmacology. 0 - 18 Units.
Individual library research project under the guidance of a pharmacology sponsor. Projects will reflect the research interest of the faculty sponsor, including molecular endocrinology, neuropharmacology, receptor activation and signal transduction, molecular mechanisms of enzyme action and metabolic regulation.
PHRM 526. Grant Writing Tutorial. 1 - 3 Units.
Students will be expected to provide critiques of a grant proposal to bring to a workshop. At the workshop, a faculty review panel will discuss the grant proposal and provide critiques to illustrate the key components that are necessary for any grant proposal, and the specific items that enhance the quality of the proposal or detract from it. The students will be able to compare what they emphasized in their critiques to what the expert panel focused on. After completing the workshop, each student will prepare a proposal based on their thesis topic; this document will be scored, and the student will also be evaluated for an oral defense of the proposal.

PHRM 527. Pathways to Personalized Medicine. 3 Units.
This is a course of independent study designed to take the student from the bedside to the bench and back again. Students will select a problem from a list of important therapeutic issues related to variability in drug responsiveness and design a research program to elucidate its molecular, biochemical, genetic and pathophysiological basis. The resulting research proposal is expected to be multidimensional and include molecular, cellular, whole animal and clinical investigations. To guide the process students will assemble a mentoring group including at least one member of the Translational Therapeutics Track Faculty, a clinician working in the clinical realm in which the problem originates and a basic scientist with relevant experience. The written proposal will be defended orally. Recommended preparation: 1st year Pharm Graduate required courses.

PHRM 528. Contemporary Approaches to Drug Discovery. 3 Units.
This course is designed to teach the students how lead compounds are discovered, optimized, and processed through clinical trials for FDA approval. Topics will include: medicinal chemistry, parallel synthesis, drug delivery and devices, drug administration and pharmacokinetics, and clinical trials. A special emphasis will be placed on describing how structural biology is used for in silico screening and lead optimization. This component will include hands-on experience in using sophisticated drug discovery software to conduct in silico screening and the development of drug libraries. Each student will conduct a course project involving in silico screening and lead optimization against known drug targets, followed by the drafting of an inventory disclosure. Another important aspect of this course will be inclusion of guest lectures by industrial leaders who describe examples of success stories of drug development. Offered as BIOC 528, PHOL 528, PHRM 528, and SYBB 528.

PHRM 555. Current Proteomics. 3 Units.
This course is designed for graduate students across the university who wish to acquire a better understanding of fundamental concepts of proteomics and hands-on experience with techniques used in current proteomics. Lectures will cover protein/peptide separation techniques, protein mass spectrometry, bioinformatics tools, and biological applications which include quantitative proteomics, protein modification proteomics, interaction proteomics, structural genomics and structural proteomics. Laboratory portion will involve practice on the separation of proteins by two-dimensional gel electrophoresis, molecular weight measurement of proteins by mass spectrometry, peptide structural characterization by tandem mass spectrometry and protein identification using computational tools. The instructors’ research topics will also be discussed. Recommended preparation: CBIO 453 and CBIO 455. Offered as PHRM 555 and SYBB 555.

PHRM 600. Preparation for Qualifying Exam. 1 Unit.
Students pursuing the M.S. or Ph.D. degrees in Pharmacology are required to prepare systematically for the comprehensive qualifying exam by reviewing the concepts of cellular and molecular biology and pharmacology. The qualifier is comprised of a two-part written exam administered simultaneously to all eligible students. It is designed to evaluate their understanding of concepts presented in the various core courses. It also assesses their skills in critical reading of research articles and design of experiments. The division into two parts allows each student to receive feedback on deficient areas and work toward improvement on the second segment. Eligibility: Students may register for the exam when they have fulfilled two criteria: (a) Successful completion (grade B or better) in all of the Core Courses, and an overall GPA of 3.0 or better. (b) Satisfactory performance in all research rotations and consistent research effort in the thesis laboratory as documented formally by the Ph.D. mentor. No student on probation may sit for the Qualifying Exam (Prelim I). Prereq: CBIO 453, CBIO 455, PHRM 401 and PHRM 402.

PHRM 601. Independent Study and Research. 1 - 18 Units.

PHRM 651. Thesis M.S.. 1 - 18 Units.

PHRM 701. Dissertation Ph.D.. 1 - 9 Units.
Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.