2017-2018 CWRU SCHOOL OF MEDICINE BULLETIN

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Medicine</td>
<td>2</td>
</tr>
<tr>
<td>Doctor of Medicine (MD)</td>
<td>14</td>
</tr>
<tr>
<td>MD Dual Degree Programs</td>
<td>26</td>
</tr>
<tr>
<td>Certificate Programs</td>
<td>66</td>
</tr>
<tr>
<td>Graduate Programs</td>
<td>31</td>
</tr>
<tr>
<td>Anatomy</td>
<td>34</td>
</tr>
<tr>
<td>Anesthesiologist Assistant Program</td>
<td>38</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>41</td>
</tr>
<tr>
<td>Bioethics</td>
<td>50</td>
</tr>
<tr>
<td>Clinical Research</td>
<td>64</td>
</tr>
<tr>
<td>Environmental Health Sciences</td>
<td>61</td>
</tr>
<tr>
<td>General Medical Sciences</td>
<td>61</td>
</tr>
<tr>
<td>Genetics & Genome Sciences</td>
<td>85</td>
</tr>
<tr>
<td>Molecular Biology and Microbiology</td>
<td>91</td>
</tr>
<tr>
<td>Molecular Medicine</td>
<td>95</td>
</tr>
<tr>
<td>Neurosciences</td>
<td>98</td>
</tr>
<tr>
<td>Nutrition</td>
<td>101</td>
</tr>
<tr>
<td>Pathology</td>
<td>112</td>
</tr>
<tr>
<td>Pharmacology</td>
<td>123</td>
</tr>
<tr>
<td>Physician Assistant Program</td>
<td>130</td>
</tr>
<tr>
<td>Physiology and Biophysics</td>
<td>135</td>
</tr>
<tr>
<td>Population and Quantitative Health Sciences</td>
<td>145</td>
</tr>
<tr>
<td>Systems Biology/Bioinformatics</td>
<td>68</td>
</tr>
<tr>
<td>Faculty</td>
<td>161</td>
</tr>
<tr>
<td>Index</td>
<td>262</td>
</tr>
</tbody>
</table>
SCHOOL OF MEDICINE

The mission of the Case Western Reserve University School of Medicine (http://casemed.case.edu) is to advance the health of humankind through the four interrelated components of Education, Research, Clinical Care and Public Service.

The School of Medicine provides three programs leading to the MD degree: the School of Medicine program, known as the University program; the Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, known as the College program, which first admitted students in 2004; and the Medical Scientist Training Program, or MSTP, the oldest existing MD-PhD program (since 1956) with NIH MSTP support since 1975. The School of Medicine also partners with the School of Graduate Studies to offer programs leading to PhD and MS degrees, as well as certificates in disciplines in the School of Medicine.

As a research institution, the School of Medicine has a tradition of national leadership. The School of Medicine consistently ranks in the top tier of the nation's medical schools for federal research funding from the National Institutes of Health, and is proud of its Clinical Translational Service Award in partnership with its affiliates. In addition, a 2015 Academic Medicine study ranked the School of Medicine in the top 15 schools based on the achievements of its graduates. Faculty and trainee research is routinely reported in the nation's top journals, leading to biomedical discoveries and improved health.

The School of Medicine engages the community in public service in many ways. The School of Medicine's commitment links researchers and medical students to the community. The school's faculty provide 90 percent of the indigent health care in Cuyahoga County and a majority of the care for indigent patients in Ohio. A major economic influence on the northern Ohio area, the School of Medicine and its affiliated hospitals are among the largest employers of personnel in the area and further stimulate the economy by providing concepts for technology transfer to the business sector. On the international level, the School of Medicine has a global health and diseases program focusing on AIDS, tuberculosis, malaria and other diseases that directly threaten world health.

The school is very proud of the contributions made by its educators and graduates but doesn't rest on its laurels. The curriculum constantly responds to the latest findings in education and medicine and sets the pace for other schools with input from gifted and committed scholars.

At least eleven Nobel Prize holders have ties to the School of Medicine:

• John J.R. Macleod, MB, CHB, DPH, physiology professor at Case from 1903 to 1918, shared the 1923 Nobel Prize in Physiology or Medicine for the discovery of insulin. Dr. Macleod completed much of his groundwork on diabetes in Cleveland.
• Corneille J.F. Heymans, MD, who was a visiting scientist in the Department of Physiology in 1927 and 1928, received the Nobel Prize in Physiology or Medicine in 1938 for work on carotid sinus reflexes.
• Frederick C. Robbins, MD, shared the 1954 Nobel Prize in Physiology or Medicine for his work on the polio virus, which led to the development of polio vaccines. He received the award two years after joining the medical school. Dr. Robbins was active at the school until his death in 2003, at which time he held the titles of medical school dean emeritus, University Professor emeritus, and emeritus director of the Center for Adolescent Health.
• Earl W. Sutherland Jr., MD, who had been professor and director of pharmacology from 1953 to 1963, won the 1971 Nobel Prize in Physiology or Medicine for establishing the identity and importance of cyclic adenosine monophosphate (AMP) in the regulation of cell metabolism.
• Paul Berg, PhD, who earned his biochemistry degree at the university in 1952, received the 1980 Nobel Prize in Chemistry for pioneering research in recombinant DNA technology.
• H. Jack Geiger, MD, a 1958 alumnus of the medical school, is a founding member and past president of Physicians for Social Responsibility, which shared the 1985 Nobel Peace Prize as part of International Physicians for the Prevention of Nuclear War, and Physicians for Human Rights (PHR), which shared the 1997 Nobel Peace Prize as part of the International Campaign to Ban Landmines.
• George H. Hitchings, PhD, who had been a biochemistry instructor from 1939 to 1942, shared the 1988 Nobel Prize in Physiology or Medicine for research leading to the development of drugs to treat leukemia, organ transplant rejection, gout, the herpes virus and AIDS-related bacterial and pulmonary infections.
• Alfred G. Gilman, MD, PhD, a 1969 graduate of the medical school, shared the 1994 Nobel Prize for Physiology or Medicine for identifying the role of G proteins in cell communication.
• Ferid Murad, MD, PhD, a 1965 graduate of the medical school, shared the 1998 Nobel Prize in Physiology or Medicine for discoveries concerning nitric oxide as a signaling molecule in the cardiovascular system.
• Paul C. Lauterbur, PhD, a 1951 graduate of the engineering school and a visiting professor of radiology at Case in 1993, shared the 2003 Nobel Prize in Physiology or Medicine for pioneering work in the development of magnetic resonance imaging.
• Peter C. Agre, MD, who completed a fellowship in hematology at Case while a medical student at Johns Hopkins, shared the 2003 Nobel Prize in Chemistry for discoveries that have clarified how salts and water are transported out of and into the cells of the body, leading to a better understanding of many diseases of the kidneys, heart, muscles and nervous system.

Two other distinguished alumni have served as U.S. surgeon general: Jesse Steinfeld, MD, a 1949 graduate, was surgeon general from 1969 to 1973, and David Satcher, MD, PhD, who graduated in 1970 and was surgeon general from 1998 to 2002.

Dr. Satcher also served as director of the Centers for Disease Control and Prevention from 1993 to 1998, and another medical school graduate, Julie Gerberding, MD, MPH, followed in his footsteps, in 2002 becoming the first woman to be named CDC director.

History

Since its founding in 1843, the Case Western Reserve University School of Medicine has been an innovator in medical education and a leader in pioneering research. Beginning as the Medical Department of Western Reserve College (and popularly known then as the Cleveland Medical College), the school moved into its first permanent home, in downtown Cleveland, in 1846. In 1915, a 20-acre site was secured for a medical center in University Circle, the current home of Case Western Reserve University, its School of Medicine, and two of the school's affiliated hospitals, University Hospitals of Cleveland and the Louis Stokes Cleveland Department of Veterans Affairs Medical Center. University Circle also is home to many of the country's outstanding cultural and educational institutions.

The school was one of the first medical schools in the country to employ instructors devoted to full-time teaching and research. Six of the first
seven women to receive medical degrees from accredited American medical schools graduated from Western Reserve College (as it was called then) between 1850 and 1856.

Already a leading educational institution for more than a century, in 1952 the School of Medicine initiated the most advanced medical curriculum in the country, pioneering integrated education, a focus on organ systems and team teaching in the preclinical curriculum. This curriculum instituted a pass/fail grading system for the first two years of medical school to promote cooperation among students instead of competitiveness, introduced students to clinical work and patients almost as soon as they arrived on campus, and provided free, unscheduled time in an era when doing so seemed unthinkable. Many other medical schools followed suit, and these components remain at the core of the medical school’s curriculum today.

In 1924, the School of Medicine moved into the most modern and best-equipped preclinical science building in the country at that time. That building, donated by Cleveland industrialist Samuel Mather, remains an integral part of the medical school complex. It was named the Harland Goff Wood Building in 1993 in honor of the late chair and professor of biochemistry and former provost of the university.

In 1971, the Health Sciences Center was completed to house the university’s medical, dental and nursing schools, as well as the Health Center Library. In 1994, the health sciences complex was named for now-retired U.S. Congressman Louis Stokes. The proximity of these excellent research and educational centers to other prestigious university departments, including science, engineering and social sciences, stimulates uniquely creative interaction among researchers and educators.

Another giant leap in research capabilities came in the early 1990s, when the Richard F. Celeste Biomedical Research Building, named for the former Ohio governor, was opened. The $70 million building, attached to the Wood Building, added 154,000 square feet of research space and includes conference spaces, a lecture hall, public spaces and a cafeteria.

The School of Medicine was the first medical school to provide laptop computers to all its students. Today, students use their laptops to access the entire syllabus as well as numerous electronic resources deemed essential by faculty. Students have access to the WiFi network at the medical school and across campus. Technology is used to enhance, not replace, the faculty-student interaction that occurs in the classroom, the laboratory and small group discussions.

In 2002, the School of Medicine became only the third institution in history to receive the best review possible from the body that grants accreditation to U.S. and Canadian medical degree programs, the Liaison Committee on Medical Education. Also in 2002, the school built on its tradition of innovation in education when the university and the Cleveland Clinic entered into an agreement to form the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, with the first students matriculating in 2004. The “College Program” is a program within the Case Western Reserve University School of Medicine. Cleveland Clinic serves as an outstanding teaching site for all medical students in the School of Medicine, in addition to being the site for pre-clerkship education in the College Program.

Cleveland Clinic was founded in 1921 by four Case Western Reserve faculty members, three of whom are counted among the alumni of the Case School of Medicine. Cleveland Clinic’s main campus, where much of the activity associated with the program occurs, is located on 180 acres near the Case Western Reserve campus.

Occupying 44 buildings on 167 acres, Cleveland Clinic main campus includes a hospital, an outpatient clinic, a children’s hospital, specific buildings for cancer, eye, heart and urologic care, a research institute with supporting labs and facilities, and an education institute. To better serve the Cleveland suburbs with quality healthcare, Cleveland Clinic operates 18 family health centers, three health and wellness centers, 10 regional hospitals and numerous urgent care and medical offices. State-of-the-art imaging services are available, and several locations contain pharmacies and outpatient surgery centers.

Cleveland Clinic also has locations in Florida, Nevada, Canada, Abu Dhabi and, beginning in 2020, London.

In 2016, Cleveland Clinic recorded more than 7.14 million outpatient visits and 220,000 hospital admissions. Among them were patients from all 50 states and 185 countries. More than 3,500 physicians and scientists, 11,800 nurses and nearly 2,000 residents and fellows provide high quality care for patients.

Cleveland Clinic is consistently named as one of the nation’s top hospitals by U.S. News & World Report, and its heart and heart surgery program has been ranked No. 1 by U.S. News since 1995. Learn more about Cleveland Clinic (http://www.clevelandclinic.org).
The MetroHealth System (http://metrohealth.org)

The MetroHealth System is one of the largest, most comprehensive health care providers in Northeast Ohio, caring for people in and around Greater Cleveland for more than 170 years. This academic health care system is committed to the communities it serves by saving lives, restoring health, promoting wellness, and providing outstanding, lifelong care that is accessible to all.

Affiliated with Case Western Reserve University School of Medicine since 1914, MetroHealth is a center for medical research and education, with all active staff physicians holding CWRU faculty appointments. More than 400 primary care and specialty care physicians practice within The MetroHealth System. At the core of the MetroHealth system, is the MetroHealth Medical Center. The system's main health care provider, research facility and teaching hospital is also home to the region's only Level 1 trauma and burn center. However, MetroHealth System also serves Greater Cleveland with more than a dozen urban and suburban primary and specialty healthcare centers in Cleveland, Strongsville, Westlake, Lakewood, Pepper Pike and Beachwood.

MetroHealth has received many accolades for its high level of care and the innovation of its physicians. Surgeons at MetroHealth are pioneering new techniques in minimally-invasive surgery for faster recoveries, while its primary care physicians are developing cutting-edge ways to manage common and chronic diseases through the use of electronic medical records and a patient-centered medical home model called Partners in Care. Its maternal-fetal medicine specialists are successfully managing the riskiest of pregnancies and saving the tiniest of lives. In addition, MetroHealth is nationally recognized by the American Heart Association for cardiac and stroke care and the cancer center has earned outstanding achievement awards for the treatment of cancer patients. Every year, MetroHealth provides care to more than 28,000 inpatients and delivers approximately 3,000 newborns. More than 790,000 visits are recorded each year in the medical center’s outpatient centers, and patient visits to the emergency department exceed 99,000. To learn more about MetroHealth and its locations and services, go here (http://metrohealth.org).

The Louis Stokes Cleveland Department of Veterans Affairs Medical Center (http://www.cleveland.va.gov)

The Louis Stokes Cleveland Department of Veterans Affairs Medical Center (VAMC) is a major teaching hospital of the School of Medicine and is an important site for the education of medical students. The Cleveland VAMC also supports more than 100 residency and fellowship training positions in medicine, surgery, and psychiatry and their subspecialties. Most VAMC physicians hold faculty appointments within the School of Medicine. The affiliation is overseen by the Deans Committee, consisting of the dean, department chairpersons from the School of Medicine, and key VAMC officials. The Cleveland VAMC is a part of the VA Healthcare System of Ohio, linking VA health care facilities in Ohio in an integrated service network. Inpatient care is provided at the Wade Park location and includes medicine, surgery, psychiatry, spinal cord injury, neurology and rehabilitation medicine as well as a nursing home and a domiciliary. Outpatient care is delivered in primary and specialty care clinics located at Wade Park, Akron, Canton, Cleveland, East Liverpool, Lorain, Mansfield, New Philadelphia, Painesville, Ravenna, Sandusky, Warren and Youngstown. The medical center serves more than 100,000 individual veterans annually through approximately 11,600 hospital admissions and 1,884,000 outpatient visits.

An active research program includes activities funded through the Department of Veterans Affairs and other governmental and private funding sources. Total funding of approximately $21.5 million annually (from all sources) supports more than 50 principal investigators in a broad range of research endeavors. For more information, go here (http://www.cleveland.va.gov).

Advanced Platform Technology Research Center of Excellence

216.791.3800 x6003
Ronald J. Triolo, PhD, Executive Director
Gilles Pinault, MD, Medical Director

The Advanced Platform Technology (APT) Center (https://www.aptcenter.research.va.gov) at the Louis Stokes Cleveland Veterans Affairs Medical Center (LSCVAMC) is one of 13 designated Centers in the Rehabilitation Research and Development Service. The APT Center focuses on serving veterans with sensorimotor dysfunction, cognitive impairment, or limb-loss using cutting edge technologies and rehabilitation techniques, translating them from proof of concept to viable clinical options. Advances in material science, microfabrication and microsystem design, neural engineering, mechanics, and communications are captured and integrated for applications in prosthetics/orthotics, neural interfacing, wireless health monitoring and maintenance and all forms of enabling and emerging technologies. The APT Center is able to provide or facilitate access to the following resources:

- Neural modeling and analysis of interface designs
- Polymer and bioactive material development
- Microelectromechanical (MEMS) systems design and fabrication
- 3-D and laser printing/prototyping, mechanical testing and dynamic simulation
- Pre-clinical in vitro and in vivo verification of device performance
- Circuit, sensor and software design and fabrication
- System validation and design control documentation
- Professional engineering support and project management
- Administrative support for intellectual property protection, regulatory affairs, and quality systems.

The APT Center was established in 2005 as a collaboration between the LSCVAMC and Case Western Reserve University (CWRU). Over 50 Engineers and Clinician Scientists at the LSCVAMC, CWRU, Cleveland Clinic, University Hospitals, Cleveland State University, Kent State University, University of Michigan, and Cornell University are affiliated with the APT Center and contribute to its mission.

Case Comprehensive Cancer Center

216.844.8797
http://cancer.case.edu
Stanton L. Gerson, MD, Director, Case Comprehensive Cancer Center

The Case Comprehensive Cancer Center (Case CCC) is one of only 41 National Cancer Institute-designated Comprehensive Cancer Centers in the country. The Case CCC integrates the cancer research activities of the
largest medical collaborative in Ohio, Case Western Reserve University (CWRU), University Hospitals Case Medical Center and Cleveland Clinic - under a single leadership structure. Our researchers dedicate themselves to improving cancer outcomes through basic studies into signaling pathways giving rise to cancer and its genetic and epigenetic causes, pursuing novel therapeutic targets, and analyzing lifestyle interventions to prevent cancer and detect it earlier.

The Case CCC has over 360 collaborating scientists and physicians who have successfully competed for over $119 million in annual funding. These investigators are organized into eight interdisciplinary scientific programs and have access to 15 Scientific Core Facilities. A unified clinical research effort consisting of 12 multidisciplinary clinical disease teams develop and prioritize clinical trials among the partner institutions.

Located in Cleveland, Ohio, the Case CCC serves a population with higher than average cancer rates. Research programs extend to CWRU affiliates MetroHealth Medical Center (the region’s county hospital) and Louis Stokes Veterans Affairs Hospital and to 13 community medical centers operated by University Hospitals and Cleveland Clinic.

As a consortium cancer center, Case CCC has become a powerful example of the potential generated by complementary institutions coming together for the benefit of research and discovery, patient treatments and community impact. Through its partners, Cancer Center programs extend throughout Northeast Ohio to offer residents access to cancer care through participation in community outreach, cancer prevention, cancer survivorship initiatives and a robust clinical trials operational effort coordinated across academic medical centers and community sites.

Case Cardiovascular Center

216.368.3391

Mukesh K. Jain, MD, Director; Case Cardiovascular Research Institute
Daniel I. Simon, MD, Director, University Hospitals Harrington-McLaughlin Heart & Vascular Institute Director, Case Cardiovascular Center

The Case Cardiovascular Center (http://www.case.edu/cvri) was established in 2006 with the central mission to develop premier clinical, research, and education programs in heart and vascular disease. The structure of the Center includes clinical (University Hospitals Harrington-McLaughlin Heart & Vascular Institute—UH-HMHVI) and research (Case Cardiovascular Research Institute—CVRI) arms.

The UH-HMHVI (http://www.uhospitals.org/services/heart-and-vascular/institute) is a multi-disciplinary team of nearly 60 full-time faculty members dedicated to (a) the prevention, diagnosis, and treatment of heart and vascular disease to both local and regional patient populations in Northeast Ohio, (b) the education and training of medical students, residents and fellows, and (c) the development of breakthrough medical advancements and practices to deliver superior clinical outcomes. These clinical services range from primary to quaternary levels of expertise and are provided at all the health are facilities within the University Hospitals healthcare system. The clinical programs are organized into 11 program centers that comprise the Institute.

The research activities of the CCC are focused on the development of premier research programs that span the full spectrum of activities from basic bench-side research to translational research (“first-in-man”) and clinical trials. The CVRI is focused on basic and translational studies. The Research & Innovation Center (RIC) of the UH-HMHVI is dedicated to innovative clinical trials and applied technology. The major areas of research focus in the CVRI include cardiovascular biology, mechanisms of gene regulation, innate immunity & inflammation, and stem cell & regenerative medicine. Investigators in the CVRI have full access to two laboratories for in vivo research in small and large animals. The RIC oversees all clinical research activities within cardiovascular medicine and surgery and is supported by a lead administrator along with nurse coordinators and staff to facilitate patient enrollment as well as regulatory/grant activities. Active areas of clinical research include interventional cardiology, vascular medicine, heart failure, electrophysiology, preventive cardiology& rehabilitative medicine, and cardiovascular imaging.

Case Center for Imaging Research (CCIR)

216.844.8076

James Basilion, PhD, Director - CCIR
Chris Flask, PhD, Director - Imaging Research Core

The CCIR (http://case.edu/medicine/ccir) is a joint venture between Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center. The CCIR, through its 50 faculty members and state-of-the-art clinical and preclinical imaging capabilities, promotes interdisciplinary and translational imaging research. As the imaging research program at CWRU continues to grow, we strive to make the CCIR imaging capabilities available to the broader research community. This overriding goal has led to a strong collaborative relationship between the CCIR imaging faculty and basic and clinical researchers in many disciplines.

Within the CCIR, the Imaging Research Core provides facilities for both preclinical and clinical imaging studies. The Imaging Research Core serves as a shared resource for CWRU’s Cystic Fibrosis Center, the Case Comprehensive Cancer Center, the Clinical and Translational Science Collaborative (CTSC), and the Cleveland Digestive Diseases Research Cores Center. The preclinical facility includes two high resolution MRI scanners, a microPET/CT scanner, an X-ray scanner, and three bioluminescence/fluorescence systems. Magnetic relaxometers are also available for high throughput screening of developmental MRI contrast agents. In addition, a novel cryofluorescence imaging system provides high resolution, 3D optical imaging capabilities. The Core also provides support for quantitative analysis of all imaging data. A human 3T MRI scanner is also available through the Core for clinical research studies. Other clinical imaging options are also available within the Department of Radiology. The creation of a new radiopharmaceutical facility within the CCIR, together with our existing cyclotron and radioisotope delivery system, now provide the capacity to conduct a variety of molecular PET imaging studies from preclinical animal studies all the way to routine clinical studies.

The Center for AIDS Research

216.368.0271

Jonathan Karn, PhD, Director
Michael Lederman, MD, Associate Director

Since its founding in 1994, the Case Western Reserve University/University Hospitals Center for AIDS Research (CWRU CFAR (http://casemed.case.edu/cfar)) has been a center of excellence for both clinical and basic science AIDS research. Investigators participating in the CWRU CFAR draw on resources from the Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, MetroHealth Medical Center, the Cleveland Clinic Foundation and the Joint Clinical Research Center in Kampala Uganda. As one of only
The Bio-Nano Center was established in 2017 with a central mission of revolutionizing medicine and biotechnology by facilitating communication and providing key resources to faculty to accelerate discovery and development of bio-nanotechnologies across the Case Western Reserve University School of Medicine and the Cleveland research community.

The Bio-Nano Center provides a platform for interdisciplinary collaboration, bringing together scientists, engineers and clinicians studying and developing bio-nanotechnologies in diverse disciplines and from across the CWRU campus and the Cleveland area and beyond. In a boundary-free setting of modern science and engineering, where diverse scientific fields merge and new ones are born, team science is an essential requirement to make new discoveries and breakthroughs. The Bio-Nano Center’s mission includes the training and education of tomorrow’s researchers in an interdisciplinary and collaborative environment, bridging nanosciences, biomedical engineering, polymer science and engineering, imaging research, cardiovascular medicine, cancer biology and oncology.

The Bio-Nano Center focuses on 4 research thrusts: 1) immunotherapy and vaccines, 2) Novel therapeutics and drug delivery, 3) Molecular contrast agents and imaging, and 4) Advanced Materials. (Bio-)Nanomaterials have unique properties and abilities to navigate interactions with cells and the circulatory system (blood and lymph); these nanoscale objects can be engineered and programmed to selectively interact with specific molecular targets, cells, and tissues – molecular zip codes of the body – to deliver payloads. Targeted to the immune system, these bio-nanotechnologies can mobilize antigen-specific humoral and cellular immune responses to eliminate and prevent onset of cancer, infection and chronic disease. Engineered to carry contrast agents and/or therapeutic molecules, bio-nanotechnologies open the door for molecular diagnosis, longitudinal imaging of disease progression or response to therapy, while enabling disease-targeted treatment strategies thus overcoming systemic toxicities. Lastly, bio-nanotechnologies enable the manufacture of novel materials for tissue engineering and regenerative medicine. Applications of bio-nanotechnology are not limited to human medicine, having possible impacts on such fields as veterinary medicine, pesticide delivery, agriculture, and beyond.

The Center for Antimicrobial Resistance and Epidemiology
216.791.3800, ext. 4788
Louis Stokes Cleveland Department of Veterans Affairs Medical Center (VAMC)
Robert A. Bonomo (robert.bonomo@va.gov), MD Chief, Medical Service

As antibiotic resistance has become a national and global public-health problem, top academic centers are preparing to launch ambitious programs addressing research on the basic, translational and clinical aspects of antibiotic resistance. The CWRU-Veterans Administration Antimicrobial Resistance and Epidemiology (Case VA CARES) aims to translate research findings into clinically useful tools for the diagnosis and treatment of patients infected with multidrug-resistant (MOR) Gram negative organisms and mycobacteria. The center’s long term goals are: 1) to continue and expand this dynamic research program directed at understanding the mechanistic bases of resistance in order to develop innovative clinical and therapeutic approaches to deal with MOR organisms; 2) to develop a strong clinical research program of translational medicine on antibiotic resistance; 3) to incorporate drug discovery, whole genomic sequencing and other rapid diagnostic technologies into the management of patients infected with MOR organisms and mycobacterial pathogens, including tracking of outbreaks and molecular epidemiology of these organisms; 4) to enhance educational activities of trainees in aspects related with antibiotic resistance; and 5) work with existing services available at the School of Medicine, University Hospitals, and the Clinical and Translational Science Collaborative to disseminate research and educational activities both nationally and internationally.

The Center for Child Health and Policy at Rainbow Babies & Children's Hospital
216.844.6253
Ann Nevar, MPA, Manager

Established in 2007, the Center for Child Health and Policy at Rainbow (http://www.uhhospitals.org/rainbow/for-clinicians/child-health-policy) focuses on major health policy issues that are central to the well-being of children and youth. The Center recognizes that health policy forms a framework for all health care delivery, and that health policy is therefore essential to improving children’s health. In this way, the Center focuses on the nexus between policy and practice of pediatric medicine.

The Center fills the need to amalgamate expertise in pediatric medicine and research with expertise in health policy. Operating as a think tank, the Center brings together experts in child health, health finance, law and policy to perform policy analyses, consultations, research, educational programming, and community outreach to advance child health through policy. Work is focused on several areas including: Maternal/Fetal/ Newborn Health; Chronic Illness; Quality; and Care Delivery Systems. The
Center is the only program devoted to child health policy in Cleveland and one of few nationwide.

To date, the Center has accrued many products and achievements including: Ohio Health Policy Researcher of the Year in 2006; Ohio Health Policy Researcher of the Year for Independent Research in 2009; programs designated Centers of Excellence; multiple white papers, reports, and peer-reviewed publications; grants and awards from the National Institutes of Health, The Centers for Disease Control and Prevention, the Ohio Department of Health, the Ohio Department of Job and Family Services, and numerous foundations; and invited/elected memberships in state and national policy committees.

Center for Clinical Investigation
216.368.3286
http://cci.case.edu/cc/index.php/Main_Page
James Spilsbury, PhD, Academic Development Core Director

The Center for Clinical Investigation (CCI) was founded in 2007 and is part of Case Western Reserve University School of Medicine's Division of General Medical Sciences. The CCI serves as the academic home of Cleveland's Clinical & Translational Science Collaborative, a partnership of 4 local institutions (Case Western Reserve University, the Cleveland Clinic Foundation, the MetroHealth System, and University Hospitals) and member of a national consortium of approximately 66 institutions funded by the National Institutes of Health to increase the efficiency and speed of clinical and translational research across the country.

The CCI’s mission is to enhance clinical and translational research efforts across the Cleveland area by: (1) spurring advances in knowledge of risk factors, outcomes and treatment effectiveness in the population; (2) facilitating the transfer of scientific advances to the community; and (3) developing a new generation of clinical researchers equipped with the skills needed to efficiently design, implement and interpret novel studies that address important public health questions. To accomplish its mission, the CCI provides computer systems and applications support for basic science and clinical research activities and works closely with basic science and clinical investigators in the CWRU Schools of Medicine, Nursing, and Dental Medicine, as well as the University Hospitals Case Medical Center, Cleveland Clinic, and MetroHealth System. The CCI has supported hundreds of clinical research and epidemiology projects, including local and national multicenter, longitudinal studies. The CCI has two cores that provide research support to all investigators: the Academic Development Core and Statistical Sciences Core.

The Academic Development Core manages the newly created PhD Program in Clinical Translational Science, the Master's Degree Program in Clinical Research (Clinical Research Scholars Program - see "Clinical Research MS" tab above), and the Graduate Certificate Program in Clinical Research. The Academic Development Core also delivers seminars and short courses in clinical research and works to coordinate educational activities in interdisciplinary clinical research across the CTSC’s institutional members. The programs target investigators and other key members of the research team, including data managers and study coordinators. Training efforts in research design, research data management, statistical sciences, statistical software, and scientific communication are emphasized.

The Statistical Sciences Core provides data management and statistical support on study design and data analysis. Members who provide data management consist of skilled data managers and programmers who consult and collaborate with investigators on data collection instrument development and coding, database development and administration, data cleaning and quality assurance, statistical programming, and dataset preparation. Members providing statistical support collaborate and consult with clinical investigators on proposal development, study design, study monitoring, and data analysis. The Statistical Sciences Core currently consists of 1 PhD biostatistician and 1 MS biostatistician. Statistical software packages that are supported by the CCI Statistical Sciences Core include SAS, SPSS, R/S-Plus, NCSS PASS and Minitab. In addition, the Statistical Science core serves as a gateway for connecting investigators with the broad expertise available through the biostatistics faculty in the Department of Population and Quantitative Health Sciences.

Center for Global Health and Diseases
216.368.6321
http://www.case.edu/orgs/cghd/
James W. Kazura, MD, Director

The Center for Global Health and Diseases links the numerous international health resources of the University, its affiliated institutions, and the northern Ohio community in transdisciplinary programs of research and education related to global health. The scope of the Center’s activities also includes education and service as these are related to molecular, clinical and population studies of human health and disease.

The Center is currently a national leader in National Institutes of Health-supported studies of the major infectious diseases of developing countries. Cutting-edge approaches are implemented in order to examine the molecular, genetic and immunologic basis of susceptibility to infectious diseases of public health significance - malaria, river blindness, lymphatic filariasis, schistosomiasis, HIV and other viral diseases such as Rift Valley fever. Clinical research in endemic countries is concerned with testing and implementing cost-effective public health interventions that are aimed at the control of malaria and Neglected Tropical Diseases (worm infections of children, elimination of lymphatic filariasis). The Center has ongoing research and educational collaborations with academic and governmental institutions in Papua New Guinea, Brazil, Kenya, Uganda, and several other countries in Sub-Saharan Africa. Educational programs sponsored by the Center include electives in international health, population biology, and genetics of infectious diseases (available to undergraduate, graduate and professional school students), a weekly World Health Interest Group (WHIG) seminar series, overseas rotations for graduate and professional school students, and training programs at the university and abroad for scholars from developing countries (with support from the Fogarty International Center at NIH).

A certificate in Global Health is available (see Certificates).

Center for Health Care Research & Policy
216.778.3902
Randall D. Cebul, MD, Director

The mission of the Center for Health Care Research & Policy (http://www.chrp.org) is to: 1) improve the health of the public by conducting research that improves access to health care, increases the quality and value of health care services, and informs health policy and practice; and 2) lead education and training programs that promote these goals. Formally established in 1994, the Center's mission is carried out by a cross-disciplinary faculty who both lead and collaborate with other scholars in Northeast Ohio and beyond. A core faculty of 17 is extended by affiliated Senior Scholars throughout the university, assisted by an able staff and over 30 grant-supported research associates. The Center's home at MetroHealth's Rammelkamp Research and Education Building is
an outstanding venue for collaborative research, mentoring of students and junior faculty, and cross-disciplinary seminars.

The Center’s research and training focuses in programmatic areas that reflect national health care priorities as well as high impact problems in adults. Center Programs pertain to chronic conditions, especially stroke, obesity and diabetes, and kidney disease. Programs are supported by methods units, including biostatistics and evaluation, health care decision making, and health economics and health policy. Research using clinical informatics capitalizes on growing institutional capacities in electronic medical records (EMR) and clinical decision support. Center faculty view Northeast Ohio as a laboratory for research, recognizing the national relevance of regional challenges and opportunities. For over four years, the Center has served as the administrative home for Better Health Greater Cleveland, an EMR-catalyzed initiative to measure, publicly report, and improve health outcomes for the region’s residents with chronic medical problems. Center faculty also assume leadership roles in federally-supported degree programs in Health Services Research and Clinical Investigation and teach in the core curriculum of the School of Medicine.

Center for Medical Education
216.368.1948
Patricia A. Thomas, MD, FACP, Director
Klara Papp, PhD, Director, CAML

The Center for Medical Education, established in 2010, provides an organizational home for teaching and learning programs in the School of Medicine and a supportive environment for those who want to develop special skills in medical education. The Center also sponsors faculty appointments, both full- and part-time, for faculty whose roles are predominantly focused on teaching medical students and physician assistant students. These include community clinicians who welcome medical students into their clinics and practices.

The Center for the Advancement of Medical Learning ("CAML") operates its programs under the auspices of the CMEd. CAML supports and promotes the development of teaching and lifelong-learning skills among students, faculty, staff, residents, and alumni. CAML pursues research into educational innovations to advance our knowledge of medical learning and teaching. The Center offers workshops to faculty locally, regionally, and nationally to enhance faculty teaching, research and evaluation skills.

Center for Proteomics and Bioinformatics
216.368.0291
http://proteomics.case.edu/index.html
Biomedical Research Building, Ninth Floor
Mark R. Chance, PhD, Director

The Case Center for Proteomics and Bioinformatics was created, in part, to strengthen Cleveland’s presence in modern proteomics and bioinformatics research to make the region a leader in the field. The vision for the Center has been shaped over the past several years by the leadership of the Center’s Director, Mark Chance, PhD, with over $120 million in grants awarded to the Center and its collaborators since its inception in February 2006. One of the primary goals of the CPB is to develop an infrastructure of sophisticated equipment that facilitates and maximizes shared equipment usage, as well as to offer a wide array of proteomics and bioinformatics services including mass spectrometry, protein expression/interactions, systems biology, and biostatistical analyses.

The CPB has expanded its vision to include education of graduate students in systems biology and bioinformatics. The Center for Proteomics and Bioinformatics developed a graduate program in Systems Biology and Bioinformatics in collaboration with Schools and Departments across the campus. For more information regarding the SYBB graduate program please see "Systems/Bioinformatics" tab above. You may also visit http://bioinformatics.case.edu/.

Proteomics entails the in depth structural analysis of individual proteins in human and animal cells. In studying proteins and their changes, bioinformatics enables researchers to take an integrated -omics approach for discovering networks involved in human disease. The School of Medicine has established the Center for Proteomics and Bioinformatics to perform research to better understand the genetic and environmental bases of disease as well as provide new technologies to diagnose diseases such as cancer, heart disease, and diabetes.

New technologies in mass spectrometry are also allowing protein expression, localization, structure, post-translational modifications, and interactions to be studied in increasing detail and on a genome wide scale. The Center is also developing and applying state-of-the-art-structural proteomics technologies to understand the function and interactions of macromolecular complexes.

The CPB has three divisions: Proteomics and Genomics, Bioinformatics, and Macromolecular Structure.

Proteomics and Genomics Division
The mission of the Division of Proteomics and Genomics is to support research in protein and gene expression analysis, protein and gene modifications, and protein interactions in a wide variety of biological contexts. The division also develops new tools in Proteomics and Genomics research. This includes multiple Proteomics Cores to support these activities.

Bioinformatics Division
The mission of the Division of Bioinformatics is to support interdisciplinary research and training in many areas of bioinformatics including analysis of DNA and protein sequences, protein interaction networks, linkage and association studies for simple and complex traits, and gene and protein expression profiles. This includes a Bioinformatics Core that provides research support for these activities.

Macromolecular Structure Division
The mission of the Division of Macromolecular Structure is to support interdisciplinary research in new methods of structure determination, the combination of computational and experimental structural biology approaches, and developing and maintaining infrastructure for macromolecular structure determination. The Division will work closely and coordinate their activities with faculty and Departments in the University who use structural information to understand function as well as other Centers that provide leadership in Structural Biology and Biophysics.

The CPB also offers a wide range of seminars, workshops, and possibilities for individual training. These activities are posted on the CPB Web site. For a list of services and to explore opportunities to
collaborate, please visit the Web site: http://proteomics.case.edu or e-mail: proteomics@case.edu //proteomics@case.edu).

Center for Psychoanalytic Child Development
Kimberly Bell, PhD; John A. Hadden Jr. Assistant Professor of Psychoanalytic Child Development
Email: kmb207@case.edu
216.991.4472

The Center for Psychoanalytic Child Development was established in 2001 in memorial to John A. Hadden Jr., past President of the Board of Trustees of the Cleveland Center for Research in Child Development and of the Hanna Perkins School. The mission of the center is to advance the science of psychoanalytic child development at the School of Medicine.

The Center offers medical students and residents who are interested in working with children the opportunity for observational learning in the Hanna Perkins school. In addition, didactic courses, case conferences and supervision are available to deepen students’ understanding of the relationship between physical and psychological development in the first 5 years of life.

The Center for RNA Science and Therapeutics
216.368.0299
http://www.case.edu/med/rnacenter/home.htm
Jeffery M. Coller, PhD, Director

The Center for RNA Science and Therapeutics is a free standing academic unit in the basic sciences within the School of Medicine at Case Western Reserve University. The RNA Center was established in the mid-nineties as a core entity in recognition of the strong cadre of research laboratories devoted to studying post-transcriptional mechanisms of gene expression focusing on various aspects of RNA Biology. The current mission of the RNA Center is to parlay the strengths of RNA Center scientists towards the development of unique therapeutic initiatives. The RNA Center is combining the usage of nanoparticle technology with RNA science to develop new classes of drugs, leading towards the amelioration of a variety of diseases. Current efforts are focused on metabolic disorders, cancer immunotherapies, immunity, and protein replacement. In addition, we are developing new technologies that promise to improve diagnostics, allowing for earlier detection of a variety of human diseases, especially cancer.

The RNA Center contains one of the largest concentrations of RNA scientists in the nation. The faculty of the RNA Center cover nearly every aspect of RNA research. Current research in the Center focuses on several problems ranging from extremely basic questions such as the mechanism of RNA catalysis and how proteins interact with RNA to the roles of RNA processing in disease. Specific research interests include splicing and its regulation, RNA editing, tRNA maturation, mechanisms of translation regulation, RNA degradation, RNA trafficking, RNA interference and regulation of gene expression by microRNAs and non-coding RNAs.

Collectively, the RNA Center provides a valuable resource for collaborative efforts within the University and its affiliated institutions: the Cleveland Clinic Foundation, MetroHealth Medical Center, the Cleveland VA Medical Center, and University Hospitals Cleveland Medical Center. In addition, the official journal of the RNA Society “RNA” was founded and continues to be housed in the RNA Center. The members of the RNA Center have an excellent funding record and the research performed is regularly published in highly visible journals such as Science, Nature, Molecular Cell, NSMB, Molecular Cell, etc.

Center for Science, Health and Society
216.368.2059
http://casemed.case.edu/cshs/
Nathan A. Berger, MD, Director

Recognizing that the successful futures of Case Western Reserve University, the City of Cleveland, and Cuyahoga County are integrally related, the Center for Science, Health and Society (CSHS) was created in 2002 to focus the efforts of the University and the community in a significant new collaboration to impact the areas of health and healthcare delivery systems through community outreach, education, and health policy. The Center, based in the School of Medicine, with university wide associations, is engaging the many strengths of the University and the community to improve the health of the community.

The Center has engaged the community at the level of the individual and the neighborhood, in public and private schools, at civic and faith-based organizations, and at the level of governmental agencies and community leadership to identify community problems, perceptions, assets and resources; advise the community of faculty skills, assets and expertise; and, catalyze that community service based scholarship that benefits community interests and promotes mutual enhancement. The Center coordinates the Scientific Enrichment Opportunity outreach program that brings Cleveland high school students on to the medical school campus in the summer to work along with our distinguished faculty in their research labs, to introduce and stimulate the students and help prepare them to enter careers in the health career professions and biomedical workforce. The Center also coordinates the Mini Medical School Program presented every Spring and Fall to educate the community in the latest developments in healthcare, particularly those developed at CWRU. The overall goal of these programs is to educate and empower the community to become better consumers of healthcare and more informed and stronger advocates for healthcare policy and legislation in their own interests.

Center for the Study of Kidney Biology and Disease
216.444.8415
John R. Sedor, MD, Director
Thomas H. Hostetter, MD, Co-director
Jeffrey Garvin, MD, PhD, Co-director
Jeffrey Schelling, MD, Co-director

Chronic Kidney Disease (CKD) is a growing public health problem in the United States. More than seventeen percent of US adults—more than 30 million Americans—have CKD. CKD generally progresses over time, and can cause cardiovascular disease, anemia, bone disease, fluid overload, and eventually end-stage kidney disease (ESKD). Patients with ESKD need renal replacement therapy, either from dialysis or a kidney transplant, to live. The risk of death for patients receiving dialysis is nearly eight times higher than the non-ESRD population, leading to a 20% annual probability of death. Kidney disease disproportionately affects minorities and vulnerable populations. Kidney disease treatment is expensive and uniquely tied to federal expenditures through the Medicare entitlement program. The cost of care for ~ 550,000 ESKD patients is nearly $34 billion annually, exceeding the total NIH budget. Treating all
health conditions of CKD and ESRD patients consumes nearly 25% of the Medicare’s budget.

The Center’s mission is to accelerate discovery and its translation for treatment and cure of kidney diseases in an interdisciplinary environment within the rich, research environment of the CWRU School of Medicine. The faculty is an accomplished and highly interactive group of investigators, based in the adult or pediatric Divisions of Nephrology in CWRU-affiliated hospitals as well as other clinical and basic science departments. Research interests of the faculty include digital pathology image analysis, glomerular diseases, diabetic and other chronic kidney diseases, epithelial cell biology and ion transport, tubular physiology, genetic epidemiology, health services research, renal transplantation, health disparities research and clinical trials. Center faculty are members of the NIDDK-funded Kidney Precision Medicine Project. Research projects use cellular, molecular biological, computational, genetic, genomic and epidemiological methods to study in vitro and animal models and/or patients. Many projects by Center investigators use health data, culled from electronic health records, and biological samples from patients with kidney diseases in order to generate novel hypotheses, which can then tested with animal models and cell lines. Training opportunities are available for undergraduate, pre- and post-doctoral students.

The Center for Translational Neuroscience
216.368.6116
David M. Katz, PhD, Director

The goals of the Center for Translational Neuroscience are to develop scientific interactions that promote understanding of the pathology of neurological diseases and to develop novel therapeutic strategies for the treatment of those diseases. The Center pursues these goals through Translational Interest Group meetings and events, and through the Neurological Institute, in the University Hospitals Case Medical Center, where clinicians and investigators have a direct conduit between research and developing treatments.

Cleveland Functional Electrical Stimulation (FES) Center
216.231.3257
Robert F. Kirsch, PhD, Executive Director
Robert Ruff, MD, PhD, Medical Director

The Cleveland Functional Electrical Stimulation (FES) Center (http://fescenter.org) is a consortium of three nationally recognized institutions: Department of Veterans Affairs, MetroHealth Medical Center and Case Western Reserve University. Through the support of these partners, the Cleveland FES Center is able to provide a continuum of advancement. Created in 1991 with a grant from the Department of Veterans Affairs, the FES Center currently has research funding at the federal, state and local levels and additional industry and foundation funding in excess of $17M in order to achieve its mission.

The Center focuses on the application of electrical currents to either generate or suppress activity in the nervous system. This technique is known as functional electrical stimulation (FES). FES can produce and control the movement of otherwise paralyzed limbs for standing and hand grasp, activate visceral bodily functions such as bladder control or respiration, create perceptions such as skin sensibility, arrest undesired activity such as pain or spasm, and facilitate natural recovery and accelerate motor relearning.

Founded to introduce FES into clinical practice, the Center provides innovative options for restoring neurological health and function by developing advanced technologies and integrating them into clinical care.

Institute for Transformative Molecular Medicine
216.368.5725
Jonathan S. Stamler, MD, Director

The Institute for Transformative Molecular Medicine (ITMM), which operates under the combined aegis of Case Western Reserve University and University Hospitals, is composed of physician-scientists and basic discovery researchers who work to acquire fundamental scientific knowledge within the field of molecular medicine. Founded in 2010, the ITMM provides physician-scientists with the opportunity for professional advancement based on their contributions to life sciences, protected from demanding clinical schedules or administrative responsibilities. The mission of the ITMM is to foster the unrestricted pursuit of new knowledge that can be cultivated as the basis for therapeutic innovation, and to inspire new generations of physician-scientists.

The operation of the ITMM is based on a new model that unites academic medical centers, physician- and discovery-scientists and commercial partners to maximize the conversion of basic science discoveries into novel, high-value therapeutics. Thus, the ITMM facilitates connectivity between medical disciplines and the basic research community in order to catalyze fundamental discovery and its transformation into therapies that benefit humankind. Creativity and innovation are highly valued in the culture fostered by the ITMM. Expertise in interdisciplinary science is prioritized, including signal transduction, receptor biology, regenerative medicine, RNA biology and chemical biology, in the pursuit of cutting-edge advances that can impact human disease.

The Mt. Sinai Skills and Simulation Center
216.368.0064
Mark I. Aeder, MD, Medical Director

The Mt. Sinai Skills and Simulation Center (MSSSC) (http://casemed.case.edu/simcenter) was initially conceived in response to common concerns over the nationwide increased incidence of medical errors, the rising costs of health care, and the need for improved patient-caregiver communication. Since its founding in 2006, the MSSSC continues to work with an ever expanding list of health care partners to become an integral resource for the education of health care students and professionals in the Northeastern Ohio region and throughout Ohio. The MSSSC and The Institute for Surgical Innovation (ISI) combine to form the Case Western Reserve University Center for Skills and Simulation (CWRU-CSS).

Simulation develops confident practitioners who can significantly contribute to the goal of improved patient outcomes. By providing a variety of simulation tools, such as life-like computerized manikins and standardized professionals performing within carefully crafted scenarios, we can replicate the complex environment of the clinical setting. Participation in these specially designed scenarios allows learners to practice the critical skills needed to provide safe, quality care to patients, including communication, technique development, decision making and data analysis. These models have allowed us to have ongoing research projects in education development and intervention and advanced our partnership for the development of new techniques and materials.
The MSSSC has all the tools available for simulation training, including Standardized patients – individuals trained to portray situations or conditions; Task trainers – devices used to teach individual techniques; High fidelity trainers – manikins with programming capabilities; Virtual reality – real-life interactive trainers for surgery, cardiology, and other disciplines; Second life – avatar interactions in a computerized world; and Hybrid combinations of the above.

The CWRU-CSS is an American College of Surgeons Level 1 Accredited Educational Institute. During the past five years, the Center has provided educational opportunities and course for learners at all levels from high school students, medical, dental and nursing students at Case Western Reserve University and The Lerner College of Medicine, residents and fellows from training programs at University Hospitals Case Medical Center, The Cleveland Clinic and MetroHealth Medical Center, graduate education for practicing physicians and surgeons, nursing and other health care providers at all levels, first responders including EMS and fire/rescue, flight nurse training and military reserve medical units.

National Center for Regenerative Medicine

216.368.3614
http://ncrm.us
Stanton L. Gerson, MD, Director
Jeremy Rich, MD, PhD, Co-Director
Mariesa Malinowski, Executive Director

The Center for Regenerative Medicine (http://ncrm.us) is a multi-institutional center composed of investigators from Case Western Reserve University, University Hospitals Case Medical Center, the Cleveland Clinic, Athyrsys, Inc., and The Ohio State University. Building on over 30 years of experience in adult stem cell research in northeast Ohio, the Center was created in 2003 with a $19.4 million award from the State of Ohio as a Wright Center of Innovation. An additional $8M award in 2006 from the State of Ohio’s Biomedical Research and Commercialization Program (BRCP) was successfully completed and enabled 3 new clinical trials to enroll patients. In 2009, $5M was awarded by the Ohio Third Frontier (OTF) Research Commercialization Program (RCP) which further validated the Center’s ability to achieve its mission to utilize human stem cell and tissue engineering technologies to treat human disease. In 2010, $1M was awarded to the NCRM by the OTF Biomedical Program (OTFBP) to advance the clinical treatment of spinal cord injury, and a $2.1M OTF Wright Program Project (WPP) award was made to create a consortium of quantitative analysis imaging systems for stem cells.

Neural Engineering Center

216.368.3978
Dominique M. Durand, PhD, Director
Kenneth Gustafson, PhD, Associate Director

The Neural Engineering Center (NEC) (http://www.case.edu/cse/nec) is a coordinated group of scientists and engineers dedicated to research and education in an area at the interface between neuroscience and engineering. They share the common goal of analyzing the function of the nervous system, developing methods to restore damaged neurological function, and creating artificial neuronal systems by integrating physical, chemical, mathematical, biological and engineering tools.

The center was started in 2001 and replaced the Applied Neural Control Laboratory (ANCL) started in 1972. The center offers breadth and depth in Neural Engineering research and education in a highly ranked biomedical engineering department and medical school. The center is located on the campus of Case Western Reserve University and its members collaborate with four major hospitals in the Cleveland area.

The center provides core facilities in tissue culture, microscopy and histology. The center facilities also include an electrode fabrication laboratory, surgical suite for acute and sterile surgery, staffed by two full-time animal technicians. The center also holds several laboratories in neural regeneration, neural interfacing, neural prosthetics, materials for neural interfacing computer modeling and in-vitro electrophysiology. The students, research associates and faculty can carry out research at many levels starting from cellular and molecular to animal experimentation and into the clinic. Many other facilities such as electronic design, microfabrication and rapid prototyping are also available in collaboration with other closely related centers, the Functional Stimulation Center (FES) and the Advanced Platform development Laboratory (APT). Center members work closely with the partner hospitals and the technology transfer office of CWRU for translation and clinical implementation of solutions restore neural function such as development of electrodes for communication with the nervous system, regenerating neural tissue, restoring function in paralyzed patients, preventing seizures, motor disorders, incontinence aspiration or obstructive sleep apnea.

The center provides financial support for students through research and training grants. The graduates of this program have made significant contributions to the development and the growth of this fast growing area of neural engineering in academic, industrial and federal institutions.

Prevention Research Center for Healthy Neighborhoods

216.368.1918
Elaine A. Borawski, PhD, Director

The Prevention Research Center for Healthy Neighborhoods (PRCHN) (http://casemed.case.edu/ctsc/community/prevention.cfm) at Case Western Reserve University was established in 2009 with funding from the Centers for Disease Control and Prevention (CDC). Built upon the foundation of two previous centers that merged to become the PRCHN - the Center for Health Promotion Research and the Center for Adolescent Health - the PRCHN seeks to foster partnerships within Cleveland’s neighborhoods for developing, testing, and implementing research strategies to prevent and reduce the burden of chronic disease. The PRCHN, midway into its second 5-year cycle of CDC funding, is a highly responsive and collaborative community-based research center that partners with public health agencies, community organizations, neighborhood leaders and residents to address significant environmental and lifestyle issues strongly linked to chronic disease and influenced by the conditions, disparities and resources of the neighborhood itself.

Its faculty and staff have also served as an active partner and leader in the transformative process occurring in Cleveland around the concepts of health equity, collective action, and the understanding of multiple determinants of health.

The PRCHN supports a comprehensive research agenda that centers around food access and community nutrition, tobacco prevention and cessation, environments supporting healthy eating and active living, place-based health and health behavior surveillance, and community-clinical linkages and chronic disease management research. This includes core research project, Freshlink, that aims to increase nutritional food access (NFA) in low income neighborhoods throughout Cleveland. A goal of the PRCHN is to build capacity for community-based research among University and community partners by offering formal training programs (i.e., PEER Program, PRCHN Student Internship Program).
monthly seminars, workshops and webinars, and by providing technical assistance, evaluation services and subject matter expertise to its community partners.

The PRCHN partners include experienced community based researchers, heads of local boards of health, more than 50 community and health organizations, neighborhood leaders and residents, and Affiliated Faculty from five schools within the University (College of Arts and Sciences, the Frances Payne Bolton School of Nursing, the Mandel School of Applied Social Sciences, and the School of Dental Medicine), to support the mission of the Center. Representatives from these local agencies and organizations serve on the PRCHN's Network of Community Advisors (NOCA), offering guidance to identifying emerging issues, set research and programmatic priorities, and ensure that the community's voice informs our work.

Skin Cancer Research Institute
216.368.0324
Kevin D. Cooper, MD, Director

The Skin Cancer Research Institute (http://mediswww.case.edu/dept/dermatology/Centers/SCRI.html) engages the foremost experts in dermatology and oncology to work collaboratively across disciplines to identify new ways to treat and prevent skin cancers. The Skin Cancer Research Institute (SCRI) at Case Western Reserve University exists to discover causes of skin cancers, prevent skin cancers more effectively, and to develop new therapies for skin cancer treatment.

The Department of Dermatology is poised to create a research institute unique in scope on a national scale. Its efforts are validated by generous grant funding from the National Institutes of Health as well as through its continuous stream of groundbreaking discoveries over the past decade. What exists now within this rich infrastructure is an opportunity to transform discovery in skin cancer research. CWRU plans four new centers exclusively dedicated to the study of skin cancer, which will complement existing centers of excellence in the Department. The emerging centers will include a melanoma center, a basal/squamous cell carcinoma center, a photo medicine center, and an environmental agent center.

The Skin Cancer Research Institute has an opportunity to be unique in the nation in its capacity to bring new therapies "from lab to life" by aligning specialized skills and catalyzing new knowledge through these centers.

The Stem Cell Ethics Center
216.368.0881
Insoo Hyun, PhD, Director

The CWRU Stem Cell Ethics Center (https://case.edu/medicine/bioethics) serves as a focal point for campus-wide and international interdisciplinary scholarship and education. House in the Department of Bioethics, the Stem Cell Ethics Center provides an avenue to educate policy makers, regulators, and the general public about stem cell research of all forms and their translation to clinical practice. The Stem Cell Ethics Center bridges ethics and biotechnology by providing ethical and technical support, as well as a forum for directed application of stem cell ethics in the complex array of cultural, social, political, and economic issues.

The Swetland Center for Environmental Health
216.368.5437
http://casemed.case.edu/swetland/
Li Li (li.li@case.edu), MD, PhD, Director

The mission of the Mary Ann Swetland Center for Environmental Health is to study the complex interplay between the environment and health. The center places special emphasis on investigating the environmental determinants of health disparity, and translating the findings into practices and programs that promote community and population health.

The environments in which we live, work and play have a great impact on our health. Environmental health embraces all the physical, psychosocial, and biological factors that affect health. Today, the Swetland Center continues Mary Ann Swetland's legacy, promoting awareness of the environment's disparate impact on disadvantaged populations.

The strategic vision of the Swetland Center is:

- Promoting translational environmental health research
- Integrating environmental health science into medical education
- Engaging the community in environmental health sciences

The Visual Sciences Research Center
216.368.4752
Irina Pikuleva, PhD, Director
Nancy Vitale, Administrative Manager

The Visual Sciences Research Center (VSRC) was founded at Case Western Reserve University in 1996 and its mission is to promote the study of basic and clinical problems of the eye and visual system, expectantly leading to improvements in the prevention and treatment of major blinding disorders. The VSRC now comprises a multidisciplinary and comprehensive research program in vision and ophthalmology, with 30 members in different departments including Ophthalmology and Visual Sciences (http://case.edu/med/ophthalmology), Pharmacology (http://pharmacology.case.edu), Chemistry (http://chemistry.case.edu), Medicine (http://medicine.case.edu), Molecular Biology (http://case.edu/med/microbio), Population and Quantitative Health Sciences (http://epibwww.case.edu) formerly Epidemiology & Biostatistics), Neurosciences (http://case.edu/medicine/neurosciences), Pathology (http://case.edu/med/pathology), Pediatrics (http://casemed.case.edu/pediatrics), and Proteomics (http://proteomics.case.edu). VSRC scientists study basic and clinical aspects of the eye and focus on Retinal Degeneration, Aging and Diabetes, Biochemistry of Aging Lens, as well Glaucoma. Also, through multidisciplinary and comprehensive research involving both basic and clinical departments, the VSRC seeks to advance the visual sciences at the University and to promote its efforts to the scientific community.

The VSRC is supported by a National Eye Institute (NEI) (https://www.nei.nih.gov) funded P30 Core Grant (EY11373) (http://case.edu/med/ophthalmology/VisualSciencesResearchCenter.html/TheCOREModules.html) and an NEI T32 Training Grant (EY007157), as well as generous contributions from both the university and University Hospitals.

The P30 grant supports four Core Modules, which enhance research quality in the most efficient and economical manner. The Core Modules are: Molecular Biology (http://case.edu/...
The Cystic Fibrosis Research Center is a translational center composed of investigators from Case Western Reserve University and University Hospitals of Cleveland. The Center’s research is funded by over $4 million in grants from the National Institutes of Health, the Cystic Fibrosis Foundation and other sources. The Center provides core facilities and services for investigators carrying out research related to cystic fibrosis, including a Clinical Studies core that provides clinical data for research studies and aids in IRB generation and study design, an Animal Models core that maintains the world’s largest assortment of CF mouse models, a Bioanalyte core that measures a range of biomolecules (proteins, lipids, mRNA) from blood, tissues or cell culture, an Animal Imaging core that uses such technologies as MRI, PET and SECT to generate high resolution images of rodents, a Biostatistical core to carry out complex statistical analyses of CF related studies, a Histology core that generates slide-mounted and stained sections of tissues from animal or human samples and a Cell Culture core that provides facilities and media for cultured cells. These cores facilitate translational, or "bench to bedside" projects that take very mechanistic, basic research on CF-related biochemistry and cell biology to in vivo studies in animal models and on to humans. Center members have access to all the cores as well as involvement in the weekly seminar series focused on CF or pediatric pulmonary research.

Willard A. Bernbaum Cystic Fibrosis Research Center

216.368.6896

Mitchell Drumm, PhD and Michael Konstan, MD, Co-Directors

Constance May, Administrative Assistant

The Cystic Fibrosis Research Center is a translational center composed of investigators from Case Western Reserve University and University Hospitals of Cleveland. The Center’s research is funded by over $4 million in grants from the National Institutes of Health, the Cystic Fibrosis Foundation and other sources. The Center provides core facilities and services for investigators carrying out research related to cystic fibrosis, including a Clinical Studies core that provides clinical data for research studies and aids in IRB generation and study design, an Animal Models core that maintains the world's largest assortment of CF mouse models,
Today, applicants can choose from three programs to obtain a medical degree at Case Western Reserve University: the University Program, the College Program (Cleveland Clinic Lerner College of Medicine), and the Medical Scientist Training Program (http://mstp.case.edu/default.asp). Students in all three programs:

• are introduced to clinical work and patients almost as soon as they arrive on campus.
• learn medicine using an integrated, system-based approach.
• are treated as junior colleagues by faculty members.
• are taught the science of medicine infused with the skills of communication and compassion.
• learn how to learn—a skill they will call on throughout their careers in the quickly changing field of medicine.

Educational Authority

Governance of the educational programs leading to the medical degree resides in the Faculty of Medicine. Each class of students selects representatives who become voting members of the Faculty of Medicine. The faculty of the School of Medicine is responsible for the content, implementation and evaluation of the curriculum. The Dean of the School of Medicine serves as its chief academic officer, with overall responsibility to the university for the entire academic program. The Vice Dean for Medical Education carries the Dean’s academic and
Expectations for Personal and Professional Characteristics

Students are evaluated on knowledge base, clinical skills and professional behavior and attitudes. The following characteristics are evaluated throughout the medical curriculum, and students are expected to adhere to these standards in both their academic and personal pursuits:

Interpersonal relationships: Provide supportive, educational and empathetic interactions with patients and families, and is able to interact effectively with "difficult" patients. Demonstrates respect for and complements roles of other professionals, and is cooperative, easy to work with, commanding respect of the health care team.

Initiative: Independently identify tasks to be performed and makes sure that tasks are completed. Performs duties promptly and efficiently, and is willing to spend additional time, assume new responsibilities, and able to recognize the need for help and ask for guidance when appropriate.

Dependability: Complete tasks promptly and well. Present on time and actively participates in clinical and didactic activities. Always follows through and is exceptionally reliable.

Attitude: Are actively concerned for others. Maintain a positive outlook toward assigned tasks. Recognizes and admits mistakes. Seeks and accepts criticism, using it to improve performance.

Integrity and honesty: Demonstrate integrity. Is honest in professional encounters. Adheres to professional ethical standards.

Tolerance: Demonstrate exceptional ability to accept people and situations. Acknowledges her or his biases and does not allow them to affect patient care.

Function under stress: Consistently maintain professional composure and exhibits good clinical judgment in stressful situations.

Appearance: Always display an appropriate professional appearance.

Graduation Requirement

To graduate from CWRU School of Medicine with the MD degree (or the MD degree with Special Qualifications in Biomedical Research for students in the Cleveland Clinic Lerner College of Medicine program), students must:

1. Satisfactorily complete all Program Specific Requirements and Educational Program Objectives of the School of Medicine
2. Pass the USMLE Step 1 and USMLE Step 2 CK and CS
3. Pass or remediate the School of Medicine's Clinical Skills Exam
4. Satisfactorily complete the MD Thesis
5. Meet financial obligations to the University
6. Be approved to graduate by the Committee on Students

Licensure

Licensure to practice medicine in the United States and its territories is a privilege granted by the individual licensing boards of the states and territories. Each licensing board of the individual jurisdictions establishes its policies, eligibility and requirements for the practice of medicine within its boundaries pursuant to statutory and regulatory provisions. The degree of doctor of medicine awarded by Case Western Reserve University is an academic degree and does not provide a legal basis for the practice of medicine.

Learning Management System

The School of Medicine uses an integrated Learning Management System for all years of the medical education program that conveniently organizes courses, associated learning expectations, and resources to support learning in the curriculum. The learning resources include references to traditional textbooks and journal articles, as well as PowerPoint presentations, illustrations, animations, videos, audio files, and links to Internet-based learning tools.

University Program students have access to the Internet and their curricular material via gigabit Ethernet connections to the CWRU network and via an extensive campus-wide wireless access as well as access from any other Internet connection. Cleveland Clinic Lerner College of Medicine students have access to the Internet and the College Program curriculum via wireless access at the Cleveland Clinic or anywhere else they have an Internet connection.

Medical Student Organizations

The list of organizations and activities available to medical students continually evolves to reflect the interests of current students. Visit here for the most up-to-date list of student organizations (http://www.casemed.org/student-groups1.html). (http://casemed.case.edu/admissions/studentlife/organizations.cfm)

Admission

There are three paths to a medical degree at Case Western Reserve University School of Medicine: the University Program (4 yr. MD), the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University (College Program - 5 yr. MD), and the Medical Scientist Training
Program (MSTP). Inquiries about admission and application should be addressed to the appropriate office:

Office of Admissions-University Program
School of Medicine, T-308
10900 Euclid Avenue
Cleveland, Ohio 44106-4920
Phone: 216.368.3450 or casemed-admissions@case.edu

Office for Admissions and Student Affairs-College Program
Cleveland Clinic Lerner College of Medicine of Case Western Reserve University
9500 Euclid Avenue NA21
Cleveland, Ohio 44195
Phone: 216.445.7170 or 866.735.1912 or cclcm@ccf.org (http://cclcm@ccf.org)

Medical Scientist Training Program
School of Medicine
Case Western Reserve University
10900 Euclid Avenue
Cleveland, Ohio 44106-4936
Phone: 216.368.3404 or mstp@case.edu

Getting Started
Students wishing to apply to any MD program at the School of Medicine must initiate this electronic process through the American Medical Colleges Application Service (AMCAS). Visit AMCAS (https://www.aamc.org/students/applying/amcas) to learn more about the medical school application process.

Admissions Process
After the American Medical College Application Service (https://students-residents.aamc.org/applying-medical-school/applying-medical-school-process/applying-medical-school-amcas) (AMCAS) is completed the applicant receives an e-mail directing him or her to the CWRU School of Medicine online secondary (final) application where the applicant can designate to which MD program(s) they wish to apply. Applicants can apply to both MD programs and/or the MSTP. It is possible for an applicant to be interviewed by and receive an admission offer from all three programs.

Applicants should complete this secondary application as instructed. After the applicant has submitted the secondary application and all supporting materials, the appropriate admissions subcommittee will review the information and decide whether to invite the applicant for an interview. After the interview, the Admissions Committee of the CWRU SOM will discuss each applicant and decide whether to extend an offer of admission.

Admissions Criteria
Although academic credentials are important in the admissions process, high grades and a high score on the MCAT are not the only criteria for admission. Just as important are interpersonal skills, exposures to medicine, well-roundedness and qualities such as professionalism, empathy and leadership ability. The School of Medicine includes a widely diverse student body.

Academic Requirements
Given the variability in the way undergraduate institutions structure various courses, there is some flexibility with some of our pre-requisite courses. Please closely review the pre-requisite charts (http://case.edu/medicine/admissions/application-process/requirements) for each program.

If these pre-requisites were not fulfilled at an accredited, four-year, degree-granting American or Canadian college or university, the applicant should be prepared to take at least 1 year of challenging, upper-level sciences at one of these institutions prior to application.

If all science pre-requisites were taken at a community college, the committee strongly recommends that the applicant take at least one year of upper-level sciences from an accredited four-year degree granting university within the United States or Canada. If a few science pre-requisite courses were taken at a community college, the committee will evaluate them on a case-by-case basis.

Undergraduate students should pursue a major in a subject of their own choosing; they should not structure their undergraduate experiences in an attempt to sway the medical school admissions committee but instead, base it on their own personal interests and goals.

Financial Aid
About 70 percent of the University Program’s medical students receive some financial aid based strictly on financial need. It’s impossible to provide precise figures on financial aid before each specific situation is completely analyzed, but here is a description of the general aspects of the process:

The School of Medicine adheres to the unit loan concept used by most private medical schools. Under this concept, if a student qualifies for financial aid, he or she is expected to obtain a specific portion of his or her support from outside sources such as a Federal Direct Loan, savings and family. Once the student obtains this amount, the remaining aid would be provided through School of Medicine resources, up to the amount determined to be his or her reasonable need. The school’s contribution would be a combination of loan and scholarship, with the exact ratio determined by the student’s particular circumstances.

All students within the College Program receive full scholarship covering tuition and fees. Additionally, the Medical Scientist Training Program offers financial support for participants. For more information, see other entries in this publication and contact the specific program.

The University Program each year offers a number of merit scholarships to each class through its Dean’s Scholars program. These scholarships, which vary in annual amounts, are awarded for up to four years for selected students. Application for the scholarships is by invitation of the Admissions Committee. Recipients are students with records of exceptional academic and personal achievement.

Overview of the University Program
The School of Medicine curriculum always has reflected the most current educational principles, practices, and knowledge. In the 1950s the School of Medicine was the first to introduce the organ systems approach to teaching the basic sciences. In July 2006, the University Program launched the Western Reserve2 Curriculum (WR2) to develop a learner-centered and self-directed curriculum framework and implement dynamic
small group learning teams. Students learn in an environment that fosters scientific inquiry and excitement.

The University Program in Detail

The WR2 Curriculum has high expectations for self-directed learning, and seeks to train physician scholars who are prepared to treat disease, promote health and examine the social and behavioral context of illness. It interweaves four themes - 1) research and scholarship, 2) clinical mastery, 3) teamwork and leadership, and 4) civic professionalism and health advocacy to prepare students for the ongoing practice of evidence-based medicine in the rapidly changing healthcare environment of the 21st century.

Scholarship and clinical relevance are the benchmarks for learning, and clinical experiences and biomedical and population sciences education are integrated across the four years of the curriculum. The WR2 Curriculum also creates an independent, educational environment where learning is self-directed and where student education primarily occurs through:

1. facilitated, small-group student-centered discussions
2. large group interactive sessions such as Team-Based Learning or didactic sessions that offer a framework or synthesis
3. interactive anatomy sessions
4. clinical skills training
5. patient-based activities

Clinical experiences begin in the first week of the University Program when students participate in community-based health care field experiences. In January of the first year, the Community Patient Care Preceptorship (CPCP) rotations begin. Each student works with a community physician one afternoon a week for 3 months.

Research and Scholarship begin early in the curriculum with special sessions led by faculty engaged in cutting edge research. In the summer following year one, the majority of students engage in summer research opportunities. All students participate in a mentored 16-week experience in research and scholarship and complete an MD thesis prior to graduation.

Electronic resources make the most of classroom time while improving opportunities for self-directed learning and capitalizing on the innovative technology available at Case Western Reserve University.

A key component of the University Program is the unscheduled time on Thursday mornings and some weekday afternoons. Students use this time for self-directed learning as well as to pursue a joint degree, take electives, participate in interest groups, shadow a practicing physician, or become active in student organizations.

Each student in the University Program is a member of one of the following advising societies: Blackwell-McKinley Society, Robbins Society, Satcher Society, or Wearn Society. Each society is headed by an advising dean, who helps the students navigate the curriculum, advises them on residency and career planning, and writes their dean’s letters. The society deans hold regularly scheduled small group and individual meetings with the students. The society deans are all members of the faculty of the School of Medicine and participate actively in the educational programs of the school. Some aspects of the curriculum are coordinated through the societies.

Education throughout the Four Years is Centered on:
1. Fostering experiential and interactive learning in a clinical context;
2. Stimulating educational spiraling by revisiting concepts in progressively more meaningful depth and increasingly sophisticated contexts;
3. Promoting integration of the biomedical and population sciences with clinical experience;
4. Transferring concepts and principles learned in one context to other contexts;
5. Enhancing learning through deliberate practice, or providing learners with direct observation, feedback, and the opportunity to practice in both the clinical environment and in the Case Western Reserve University (CWRU) School of Medicine’s Mt. Sinai Skills and Simulation Center.

The Western Reserve2 Curriculum has 10 Guiding Principles:
1. The core concepts of health and disease prevention are fully integrated into the curriculum.
2. Medical education is experiential and emphasizes the skills for scholarship, critical thinking, and lifelong learning.
3. Educational methods stimulate an active interchange of ideas among students and faculty.
4. Students and faculty are mutually respectful partners in learning.
5. Students are immersed in a graduate school educational environment characterized by flexibility and high expectations for independent study and self-directed learning.
6. Learning is fostered by weaving the scientific foundations of medicine and health with clinical experiences throughout the curriculum. These scientific foundations include basic science, clinical science, population-based science, and social and behavioral sciences.
7. Every student has an in-depth mentored experience in research and scholarship.
8. Recognizing the obligations of physicians to society, the central themes of public health, civic professionalism and teamwork & leadership are woven through the curriculum.
9. The systems issues of patient safety, quality medical care, and health care delivery are emphasized and integrated throughout the curriculum.
10. Students acquire a core set of competencies in the knowledge, mastery of clinical skills and attitudes that are pre-requisite to graduate medical education. These competencies are defined, learned and assessed and serve as a mechanism of assessment of the school’s success.

Curricular Composition

The four years of the WR2 Curriculum are divided into four major components, each of which focuses on health as well as disease.

Foundations of Medicine and Health

This component is made up of six curricular blocks.

The first block, Becoming a Doctor, is five weeks in duration, and gives students an understanding of population health and the doctor’s role in society. Typically students begin their medical education by studying basic science at the molecular level, and are often not fully aware of the relevance that this knowledge has in their future education as physicians or how it relates to the actual practice of medicine. This curricular block focuses on how physicians can act as advocates for their patients in the health care system; how social and environmental factors impact health;
and the importance of population health. Medical students participate in an Extensive Care Unit, an experiential, longitudinal, service learning project intended to introduce them to key population health concepts including epidemiology, biostatistics, community assessment, health risk behavior, and social-environmental determinants of health.

The next five blocks in the Foundations of Medicine and Health are comprised of basic science education complemented by clinical immersion experiences, early contact with patients in clinical preceptorships and simulated clinical experiences. Subject matter is integrated across entire biological systems, which permits faculty in the different disciplines to leverage teaching time to convey content and concepts common to their disciplines. Content is divided into the following blocks:

- **The Human Blueprint**: Comprised of endocrine, reproductive development, genetics, molecular biology, and cancer biology.
- **Food to Fuel**: Encompasses gastro-intestinal system, nutrition, energy, metabolism and biochemistry.
- **Homeostasis**: Includes cardiovascular system, pulmonary system, renal system, cell regulation, and pharmacology.
- **Host Defense and Host Response**: Focuses on host defense, microbiology, blood, skin, and the auto-immune system.
- **Cognition, Sensation and Movement**: Comprised of neurosciences, mind, and the musculoskeletal system.

Several concepts and themes stretch longitudinally across these blocks, including Structure (anatomy, histopathology and radiology) and clinical mastery. Teamwork, interprofessional collaboration and bioethics are likewise incorporated longitudinally.

Blocks 2-6 follow a common pattern. Each block has a Clinical Immersion Week and each has a Reflection and Integration Week. During the Clinical Immersion Week, students leave the classroom and enter the clinical setting to see the relevance of the basic science they have been studying as the concepts are used in the setting of patient care.

The Reflection and Integration week is the final week of blocks 2-6. During this week, no new material is introduced. Learning activities are planned to help students spiral back to concepts introduced earlier in the block by presenting these concepts again, sometimes in new contexts, and now integrated with other concepts previously learned. End of block assessment takes place during the reflection and integration week.

Research and Scholarship

The WR2 Curriculum is in concert with CWRU’s emphasis on research and scholarship to encourage student career development in the areas of clinical investigation and population research. The practice of medicine is becoming increasingly evidence and science-based, and research teaches students a way of framing questions and developing an approach to answering them. The focus on research and scholarship provides medical students with opportunities to pursue individualized areas of interest in great depth. Through this 16-week, mentored experience in research and scholarship (which can be taken at any point from March of the second year onward), students acquire the intellectual tools needed to formulate research questions, critically assess scientific literature and continue the life-long pursuit of learning that is a critical aspect in the careers of all physicians and physician/scientists. The research project culminates in a thesis, which is written in the format of a manuscript of the leading journal in the particular area of interest.

Clinical Experiences

The clinical curriculum cuts across all four years of the medical school curriculum, and can be divided into three areas of involvement:

1. **Foundations of Clinical Medicine**

 This segment of the clinical curriculum runs longitudinally through the Foundations of Medicine and Health and seeks to develop a broad range of clinical and professional capabilities. FCM develops the necessary skill sets through 4 separate, but integrated, programs:

 - **Tuesday Seminars**: Course continues the theme of “doctoring” begun in Block 1 through the Year 1 and Year 2 curriculum. Topics examined include the relationship between the physician and the patient, the family and the community; professionalism; healthcare disparities; cultural competence, quality improvement; law and medicine; medical error/patient safety, development of mindful practitioners and end of life issues.
 - **Communications in Medicine**: Course is comprised of seven workshops running through Year 1 and Year 2 that focus on the range of skills needed for effectively talking with patients including the basic medical interview, educating patients about a disease, counseling patients for health behavior change, and presenting difficult news and diagnosis.
 - **Physical Diagnosis**: Course runs throughout Year 1 and Year 2 and includes: Physical Diagnosis 1 introducing the basic adult exam to Year 1 students for one session per week for eight weeks, Physical Diagnosis 2 in depth regional exams in various formats during Year 1 and Year 2, and Physical Diagnosis 3 in Year 2 where students spend five session doing complete histories, physicals and write ups on patients they see in an in-patient setting.
 - **Patient-based Programs**: Community Patient Care Preceptorship (CPCP) during either Year 1 or Year 2 students spend 10 afternoons in a community physician’s office developing and reinforcing medical interviewing, physical exam and presentation skills (written and oral) with ongoing mentorship from a preceptor.

2. **Core Clinical Rotations**

 The Core Clinical Rotations are designed to provide students from both the University and College programs of the Medical School with both breadth and depth in clinical care. Experiences are developmental, with opportunities to reinforce, build upon, and transfer knowledge and skills from all parts of the curriculum. Clinical learning is integrated across disciplines whenever possible through a unique block structure, and important themes related to scholarship, humanism, and science are supported through specially designed weekly small group programs. A unified approach to addressing and assessing a core clinical curriculum is utilized at all teaching sites with the flexibility to take advantage of the unique strengths of each clinical setting.

Core Rotations: Beginning in March of their second year, students have the opportunity to begin their core clinical rotations. These rotations are organized in blocks of that integrate core specialties in at one site for 8 or 12 weeks. Core 1 combines Internal Medicine, Family Medicine, and Geriatrics for 12 weeks, Core II combines Pediatrics and OB/Gyn for 12 weeks, Core 3 combines Neuroscience and Psychiatry for 8 weeks, and Core 4 combines Surgery and Emergent Care for 8 weeks. Each of these clinical rotations is offered at all of the School of Medicine's hospital
affiliates including University Hospitals of Cleveland, MetroHealth Medical Center and the Louis Stokes VA Medical Center.

Longitudinal Clerkship: Beginning in July 2018, students will have the option of completing their core clinical rotations as part of a 12-month longitudinal clerkship experience at the Cleveland Clinic. The educational learning objectives remain the same for all Case Western Reserve University students on their core rotations, however the structure of this experience will offer some unique features aimed at increased learning, longitudinal experiences with faculty, and creation of a learning community. Students will complete all 40 weeks of their core rotations within the Cleveland Clinic Health System and have 8 weeks of electives that can be taken at other core hospitals in Cleveland or as a visiting student at another institution. The structure of the core rotations will differ from other sites in order to integrate a longitudinal ambulatory block. The rotation structure will be as follows:

Longitudinal Ambulatory Block (LAB) – 12 weeks
Team-Based Care 1 – Inpatient Internal Medicine/Surgery – 12 weeks
Team-Based Care 2 – OB, Inpatient Gynecology, Inpatient Pediatrics – 8 weeks
Team-Based Care 3 – Neurology/Psychiatry – 8 weeks
Electives (any site) – 8 weeks
Vacation – 4 weeks

The LAB will include outpatient components of Family Medicine, Internal Medicine, Ob/Gyn, Pediatrics, Emergency Medicine, Palliative Medicine and Geriatrics. LAB will also provide exciting opportunities for students to explore disciplines and possible areas of career interest and establish longitudinal experiences by working a half day a week with the same preceptor over 12 weeks. The longitudinal clerkship will also allow students to create a community of learning by participating in Longitudinal Learning Groups over the year. Topics such as quality/safety, high value care and palliative medicine will be covered as part of a year-long curriculum.

3. Advanced Clinical and Scientific Studies

Advanced clinical and scientific studies provide students with flexible learning opportunities that support ongoing professional development and residency preparation and planning:

- Two Acting Internships are required: one in Internal Medicine, Surgery, Pediatrics, or Inpatient Family Medicine, and one in an area of student choice.
- One Acting Internship and all electives can potentially be done outside of the CWRU system.
- Students are encouraged to augment their interest in scholarship through rotations and activities that focus on sciences basic to medicine as well as clinical rotations.

Pathways

In addition to our innovative curriculum, students in the University Program have the option of specializing in several longitudinal pathways:

Urban Health Pathway:

The Urban Health Pathway is designed to provide selected students with the opportunity to expand their knowledge and skills in caring for patients in an urban setting, and to foster a better understanding of medicine and health in urban communities by aligning students’ engagement, clinical and research goals with the community’s health care needs.

The Jack, Joseph, and Morton Mandel Wellness and Preventative Care Pathway:

The mission of this pathway is to provide participants with insight and skills in wellness and health promotion as it relates to the domain of the mind, body, and spirit, social interactions and the community. The vision is to incorporate and advance the promotion of health and wellness at the individual, family, institutional, professional and community levels.

Humanities Pathway:

The vision of the Humanities Pathway is to use arts and humanities-based courses and experiences to promote the development of health care professionals who will explore the fundamental questions of what it is to be human and to be a healthcare professional. Students will think critically about the complex interplay among patients, health care professionals and culture. They will develop innovative and informed approaches to health, well-being and quality of life for the patients and communities they serve, while developing resilience and passion to improve the culture of medicine.

Evaluation and Assessment

Student assessment in the WR2 Curriculum is designed to accomplish three goals:

1. drive the types of conceptual learning and scientific inquiry that are goals for the WR2 Curriculum
2. assess whether students have attained the level of mastery set for each phase of the curriculum
3. prepare students for medical licensure

These three goals are accomplished through multiple assessment methods.

Independent study and inquiry are hallmarks of WR2 through assessment strategies that are formative, focus on the synthesis of concepts, and promote student responsibility for the mastery of skills and material. The following assessments are used in Foundations of Medicine and Health:

1. Assessment of students’ participation in weekly Case Inquiry (IQ) groups by faculty facilitators, utilizing observable behavior anchors and focusing on contributions to team process and content, critical appraisal skills, and professional behaviors.
2. Synthesis Essay Questions (SEQs). Weekly, formative, open book concept reasoning exercises in which students are given a brief written clinical scenario and asked to explain a clinical phenomenon and its basic science underpinnings. Throughout a teaching block, students complete SEQs at the end of each week. They compare their own answers to an ‘ideal’ answer and receive feedback from their IQ group facilitator.
3. Summative Synthesis Essay Questions (SSEQs), or exercises that measure what students know at specific points in their education, are closed book exercises with approximately 5 clinical vignettes that take an estimated 3-4 hours to complete. These SSEQs are based on the synthesis essays students have been assigned throughout the block. In the final week of the block SSEQs present concepts from previous exercises in new contexts and require concept integration. These summative exercises are scheduled at the end of each large teaching module (every 3-4 months) and are graded by faculty.
4. Structure Practical Exercises. These assessments occur in the final week of blocks 2-6 and assess anatomy, histo-pathology and radiology through clinical scenarios and questions that require anatomic localization and histo-pathologic identification.

5. Self-Assessment Multiple Choice Questions (MCQs). Throughout the block students are required to complete MCQs. These are drawn from the School of Medicine’s extensive bank of questions which are mapped to learning objectives for the block. Students use these MCQs throughout the block as a study aid and method of self-assessment.

6. Cumulative Achievement Tests (CAT). At the end of each block, students complete a secure formative MCQ achievement test, based on content covered in the current teaching block as well as on content from each previous block. These exams are designed utilizing test question resources available through the National Board of Medical Examiners (NBME). Tests will become progressively longer throughout the Foundations of Medicine and Health. The final CAT reflects material across all curriculum blocks. These formative tests enable students to gain perspectives on their overall progress and preparedness for the USMLE Step 1.

7. Student progress in Foundations of Clinical Medicine is measured by small group facilitator assessment in the Seminars of Clinical Practice, direct observation of skills, preceptor evaluation of patient-based activities, and OSCE examinations.

8. Professional Learning Plan. During the Block, students review learning objectives and reflect on their learning, identifying their strengths and areas for further study. A reflective essay is completed that links to pieces of evidence, accumulated throughout the block, to support areas of strength and areas for further growth that have been identified. Students, working with their Society Deans develop a plan for further learning.

The WR2 Curriculum provides students with a focused education that is faculty directed and student centered. Classroom hours are limited. The content of WR2, organized across biological systems, provides students with an integrated view of medicine and health and an understanding of how the basic sciences and clinical practice relate to one another. The flexibility of WR2 permits students to explore in depth an area of interest to them alongside a mentor. The curriculum places great emphasis on the social and behavioral context of health and disease as well as on population medicine which will prepare students to face the emerging challenges of today’s health care system.

Assessment for Promotion and Graduation

The faculty of the School of Medicine is charged with assessing student performance, including knowledge, skills and personal characteristics that are important qualities of a responsible, competent and humane physician. This responsibility is delegated by the faculty to the Committee on Students, a standing committee of the faculty of medicine, with a majority of its members faculty-elected.

The Committee on Students reviews the performance of every medical student in the University Program during each of the four years, determines each student’s continuing status as a student in the school, and recommends candidates for graduation. The committee reviews a medical student’s total performance, which includes the usual indices such as formal grades and assessments, as well as the professional attitudes and behavior manifested by the student. Medical education entails the mastery of didactic, theoretical, and technical matters as well as the demonstration of appropriate professional and interpersonal behavior, sensitivity, sense of responsibility and ethics, and the ability to comport oneself suitably with patients, colleagues and co-workers.

To be eligible for promotion and graduation, students must complete the requirements and perform satisfactorily in all components of the curriculum. Medical students in the University Program are graded “meets expectations” or “does not meet expectations” in the first two years and as “honors,” “commendable,” “satisfactory,” “unsatisfactory,” or “achieves or exceeds expectations” in the clerkships of the third and fourth years. There is no class ranking.

Graduation Requirements

To graduate from CWRU School of Medicine with the MD degree (or the MD degree with Special Qualifications in Biomedical Research for students in the Cleveland Clinic Lerner College of Medicine program), students must:

1. Satisfactorily complete all Program Specific Requirements and Educational Program Objectives of the School of Medicine
2. Pass the USMLE Step 1 and USMLE Step 2 CK and CS
3. Pass or remediate the School of Medicine’s Clinical Skills Exam
4. Satisfactorily complete the MD Thesis
5. Meet financial obligations to the University
6. Be approved to graduate by the Committee on Students

Overview of the College Program

The Cleveland Clinic Lerner College of Medicine (CCLCM or College Program) is a distinct 5-year program within the School of Medicine. In 2002, Cleveland Clinic and CWRU formed a historic partnership to collaborate in education and research through creation of the CCLCM. As stated in the affiliation agreement between the two institutions, “the principal purpose and educational mission of the College shall be to attract and educate, in specially designed programs, a limited number of highly qualified persons who seek to become physician investigators and scientists who will advance biomedical research and practice.” To achieve this mission, the CCLCM selects students with a desire to pursue careers as physicians and researchers, educates them to be excellent doctors, nurtures their curiosity about science and medicine, provides them with substantive research experience and core research skills, and offers financial support to ensure that excess debt does not preclude their ability to follow careers in research and medicine.

The College Program in Detail

Training the Physician Investigators of Tomorrow: A Synopsis of the Program

Recognizing the critical shortage of physicians engaged in research, the College Program offers an educational program that provides medical students with the necessary skills and knowledge to enter academic residencies and pursue successful careers as basic, translational or clinical investigators and expert doctors – without requiring them to complete an advanced degree in addition to the MD. Graduates are expected to be scientifically inquisitive, to be life-long learners, to be independent thinkers with excellent teamwork skills, to have broad-based research knowledge as well as strong clinical acumen, and to be reflective practitioners of medicine and science who take a critical approach to self-assessment and self-improvement. All three components of the curriculum – basic science, clinical and research – in addition to the advising and assessment processes have been created to support the development of these attributes in our medical students.
The **basic science curriculum** applies adult learning principles, building on problem-based learning (PBL) to create an early link between clinical problems and basic science learning and to help students develop their skills in hypothesis generation, critical thinking, self-identification of learning objectives, oral presentation and teamwork. Almost all faculty-student contact time involves some form of active learning – graduate school-style seminars and problem sets rather than lectures, case-based anatomy sessions using prosections and cross-sectional images rather than full cadaver dissections, interactive lab sessions rather than demonstrations, and journal clubs. To support this educational model, curriculum schedules provide extensive time for independent study. The basic science curriculum is organ-system based, with the disciplines of anatomy/embryology, biostatistics/epidemiology, cell biology, histology, imaging, immunology, pathology, pharmacology, physiology, infectious disease, oncology, genetics, evidence-based medicine, bioinformatics and ethics designated as curricular threads woven through every organ-based basic science course and extending into the year 3-5 clinical curriculum. Learning objectives for the thread disciplines are used to determine the organ system curriculum structure in the first two years, with the goal of providing a logical, coherent two-year curriculum in each of these topics basic to medicine. Courses in Year 1 focus on normal human structure and function; in Year 2, courses focus on pathophysiology of disease. Later, in Years 3 through 5, students revisit advanced basic science concepts in their core clinical rotations, clinical electives, and College Program specific pullout sessions.

The **clinical curriculum** begins in the fall of the first year contiguous with the first basic science course in Year 1. At its foundation is a continuity teaching and learning experience with a primary care preceptor and his/her patients throughout the first two years. Students spend one half-day every week in Year 1 and one half-day every week in Year 2 with the same preceptor. During Year 1, students learn core clinical skills in doctor-patient communications and physical diagnosis in sessions linked whenever possible to the basic science courses (e.g., learning the cardiac and lung exams during the Cardiovascular and Respiratory Sciences course and the basic neurological exam during the Neurological and Behavioral Sciences course) and then practice those skills with real patients in their preceptors' offices on alternate weeks. Once they have mastered the basics of the history and physical, they begin to apply their skills to more complete evaluations of ambulatory patients with direct observation and feedback from their preceptors. By the end of Year 2, students are capable of performing a complete history and physical and confidently evaluating adults with common outpatient problems.

In Year 2, students spend a second half-day each week in sessions focused on building advanced clinical skills or clinical activities designed to complement concomitant basic science systems topics (e.g., a session in the Diabetes Clinic during the week devoted to learning about diabetes). The other key component of the clinical curriculum in Years 1 and 2 is the weekly Art and Practice of Medicine Seminar series. This course focuses on principles of leadership and their application to medical practice, professionalism and ethics, health care systems, population medicine, and provides a setting for students to reflect on their experiences and observations of the health care system. In Years 3 through 5, students in CCLCM participate in the same core clinical experiences as students in CWRU’s University Program. Friday afternoon sessions in Years 3-5 bring CCLCM students together regardless of clinical location and focus on program-specific topics in research and human values.

During all five years, there are close **mentoring** and **advising** relationships between students and faculty. To ensure this happens, at the beginning of medical school each student is assigned a physician advisor who serves as the student’s partner and guide in navigating and mastering the curriculum throughout all five years. In addition, during the first summer, each student is assigned to an experienced basic or translational research preceptor who integrates the student into all activities in his/her lab and provides guidance and feedback to the student in areas as working effectively with the lab team, research design, data analysis, and oral and written presentations of research. During the second, each student develops a similar relationship with an experienced clinical researcher who includes the student as an active participant in one or more ongoing research projects. Students are exposed to a broad range of basic, translational and clinical researchers during the first two years – during the summer research blocks, during weekly research seminars (Advanced Research in Medicine series), and in class during basic science and clinical courses. Students then select a research advisor for the master's level research project on which they will spend 12 to 15 months during the last three years of medical school.

The College uses a unique approach to student assessment designed to enhance student learning and to promote self-directed learning. There are no grades for any course or rotation, and no class ranking. Instead, each student is expected to attain a defined level of achievement in each of the 9 CWRU School of Medicompetencies. Seven of these defined competencies encompass the 6 core competencies defined for all U.S. graduate medical education programs accredited by the ACGME (Accreditation Council for Graduate Medical Education) as well as research and personal development. Starting on the first day of medical school, students begin collecting evidence from faculty and peers of their progress in achieving the standards in each of the 9 competencies and reflecting on how the evidence demonstrates their development as doctors and researchers – the two interrelated professional roles for which they are preparing.

One of the principles of the College is that assessment drives learning – that a curriculum designed to foster self-directed learning and achievement of competencies is ineffective if assessment focuses on what the "teacher" said in class and factual recall. Therefore, the College uses a student-centered, student-driven approach to assessment with strong support from the physician advisors who know the students well and guide them as they develop skills and self-confidence as self-directed learners.

Students gather a broad range of types of evidence over their five years of study and work as partners with their physician advisors to review the evidence and their reflections, to create individual learning plans to address areas of relative weakness, and to tailor the curriculum to build on their areas of particular strength. Evidence of achievement and reflections on progress in their professional development are collected in electronic Student Portfolios and used to document readiness for promotion and graduation from the program. By training students in accurate self-assessment and developing their reflective ability, we intend to send them out of medical school already skilled in the kind of independent, self-directed learning habits that will be required of them as residents and throughout the rest of their professional lives.

CCLCM’s Foundation: A Comprehensive Research Curriculum

The **research curriculum** begins on the first day of medical school with the basic and translational research block and is integrated throughout all five years of the College Program. Every student participates actively in a "bench" project in the first summer, prepares an oral presentation describing the project in the format used at most scientific meetings, and develops a mock research proposal that extends the summer research
The second summer is devoted to clinical research. Coursework focuses on applied medical biostatistics, clinical epidemiology, including appropriate design and analysis of various kinds of clinical research protocols, and ethical issues such as human subjects protection. Each student participates actively in an ongoing clinical research project and writes an original clinical research protocol to extend the summer research project to the next research question, prepares an oral presentation describing the proposed research protocol, and formally presents this proposal at the end of the summer.

During the remainder of Years 1 and 2, students participate in Advanced Research in Medicine (ARM), a weekly series of highly interactive research seminars linked to the content of the basic molecular science courses. In Year 1, ARM is designed to provide students opportunities for interaction with a wide range of successful investigators to help them understand the sequence of problem identification, exploring prior work in the area, hypothesis development, experimentation, successes and failures that lead to new research findings. ARM 1 also helps students appreciate the interaction between basic and clinical research — how basic science discoveries translate into changes in the clinical care of patients and how clinical observations or research findings result in new directions in basic science research. In ARM 2, the presentations are linked to the basic clinical science content each week but are more focused on current research projects and development of well-constructed research questions and reinforcement of epidemiology and biostatistics principles learned in the Year 2 summer. The sessions take on the format of a formal research presentation at a scientific meeting.

Deans’ chats are held 4-6 times a year separately for all CCLCM students that provides a forum for students to meet and interact with Cleveland Clinic health care leaders and learn the complexity of managing health care and health care systems through the eyes of senior leaders.

By the end of Year 2, each student has experienced basic and clinical research first-hand, has met a large number of investigators with different research interests, has developed essential research skills, and is ready to choose an advisor to supervise and support his/her research project. Students must submit a research proposal with the thesis advisor and thesis committee members listed at least 6 months prior to the start date of the research. A Thesis Committee made up of the research advisor and two or more additional faculty supervise and approve the student’s research proposal, progress, and final master’s level thesis that must be completed by February 15 of Year 5.

The last three years of the curriculum are specifically designed to provide flexibility to students in scheduling their research and clinical rotations. Working together, the student, research advisor and physician advisor tailor the curriculum to the student. Students complete their research projects in one 12- to 15-month block of time, usually during the fourth year. Every student regardless of the overall schedule will continue to engage in clinical experiences at least one half-day per week during blocks devoted primarily to research — to ensure that students maintain clinical skills and contact with patients, develop a deeper appreciation of the connection between advances in biomedical research and patient care, and have the opportunity to reflect on their ongoing development as both physicians and researchers.

Curriculum Timeline: Years 1 and 2

Students begin Year 1 with a one week-long Orientation in which they are formally welcomed to the profession of medicine by the Deans and their physician advisors. The week includes individual meetings with the student’s summer research preceptor and physician advisor, an introduction to the unique assessment system and the Student Portfolio, and an introduction to the summer curriculum and its expectations. A White Coat Ceremony that commemorates the entry of all students in both the College and University programs into the CWRU School of Medicine highlights the week.

The Basic and Translational Research Block occupies the first 10 weeks of Year 1 and includes a course reviewing core concepts in cell biology, molecular biology and biochemistry. Scheduled classes and meetings occur 5 days a week for 2 hours, with the remainder of each day devoted to independent study and hands-on experience in the lab of the student’s summer research preceptor. This block sets the stage for active learning in the rest of the curriculum. Throughout the core basic science course and all the basic science courses, each week has a conceptual “theme” within which more detailed learning objectives fall. All assignments and scheduled activities are designed to help students master the core concepts for the week. Mastery is defined as being able to explain the concepts and to apply them to new or different problems or situations, rather than simply “listing” all the factual details. Sessions for the core basic science course are held on Monday, Wednesday and Friday mornings and students are expected to study background material before class and self-assess their understanding of the readings. They then work together in class to solve complex problems related to what they have studied. Tuesday mornings are devoted to focused discussions and presentations related to the science topics discussed that week or introduce students to key concepts in areas such as genetics, oncology, and bioinformatics.

Students meet each Friday for a Journal Club aimed at enhancing skills in critically assessing the basic science research literature. Each week, two students present an article; the other students are expected to read the articles carefully and come prepared with questions. Each presenter works with a faculty facilitator to review the paper and presentation before Journal Club. Using feedback from faculty and other students on their presentations and on the questions they ask of others, students begin to hone their communication skills and develop confidence participating as speakers in this setting.

The primary focus of the Year 1 Basic and Translational Research Block is the summer research project. Students are assigned to a summer research preceptor with attention to individual preferences for specific research areas. They are expected to engage fully in all activities in the preceptor’s research group, such as special lab meetings or journal clubs, in addition to working on their defined project. At the end of week 2, they submit a draft plan for their summer research project and review it with their preceptor to set the expectations for the summer. During the summer, students also develop a brief research proposal that extends their research project. At the end of week 5, they submit a draft outline of their brief research proposal. The final document is due in week 9. During week 10, students present their projects orally in the format used at many scientific meetings — a 10-minute presentation with audiovisuals followed by 5 minutes for questions. Thus, in addition to actually working on a bench project, students are guided by their preceptors in developing a number of other key skills. Students receive
feedback from their preceptors, other members of the lab team, and peers on their contributions in the lab and their written and oral presentations.

During the summer, students schedule their first formal meeting with their physician advisors to review the evidence in their Student Portfolios, to discuss their reflections on their development in their new professional roles, and to review their learning plans to address any specific weaknesses or gaps they have identified. They review feedback on their activities in small group and journal club, lab work, mock grant proposal, oral presentations and scientific writing. This evidence is provided by their summer preceptors, peers, and self-assessments of their mastery of the core basic science concepts. Just as the interactive learning in class sets the stage for research and the rest of the curriculum, the first summer sets the stage for student success in the unique assessment process used in College Program.

Each week of the Year 1 and 2 basic science courses is organized around a theme that provides a focus of learning for the students and an opportunity to integrate when possible the basic science, clinical, and research curriculum components. For example, the theme of one of the weeks of the Gastrointestinal System 1 course is “Liver, Gallbladder and Pancreas.” The Problem-Based Learning (PBL) case focuses on a patient who takes an overdose of acetaminophen and alcohol and subsequently develops liver failure. Students learn normal liver function as they explore this case. (All PBL cases used in the curriculum are based on real cases at the Cleveland Clinic.) The case provides the framework for the anatomy and other seminar sessions that focus on liver, gallbladder and pancreas anatomy, histology, drug elimination, and genetics. Friday Advanced Research in Medicine session is a meeting of the Liver Transplant Selection Committee attended by all the students where research, bioethics, and clinical care are integrated in the discussion of liver transplant candidates. During Years 1 and 2, the topics of the 2 Deans’ Dinners for each class are also coordinated with the basic science course and weekly theme.

The first basic science course in Year 1, Cardiovascular and Respiratory Sciences 1 (CRS1), is a 7-week course in which students learn basic concepts of the normal structure and function of these systems. There are 14 hours of scheduled curricular time each week in the basic science courses, including 6 hours devoted to PBL cases and 8 hours devoted to other activities such as labs, seminars and problem sets.

Throughout Year 1, anatomy, imaging and embryology are integrated into the basic science courses with information presented in two ways — self-directed learning modules that cover basic anatomical information (and are available online), and Case Directed Anatomy Sessions on Monday mornings for which students study clinical cases designed to introduce anatomical concepts and facts before coming to the lab. In the lab, students rotate among a number of stations using cadaver prosections to demonstrate anatomy relevant to the cases and radiological images such as 3-dimensional CT scans. For example, a case of a patient who has suffered a penetrating injury to the chest may be used to focus students on the anatomical structures that might be injured and their relationship to one another.

Histology is also integrated into the basic science courses, with students using a computer-based virtual microscopy system rather than a mechanical microscope to look at slides. This allows students not only to scan slides but also to see slide annotations and related gross and radiographic images. Specific learning objectives for histology are included in PBL cases in addition to seminars devoted to histology. The goal is for students to understand the gross and histological structures of each organ system in relation to its function, rather than as isolated anatomical facts. For example, during the week in CRS1 devoted to the theme of how the heart functions as a pump, students learn the structure and anatomical relationships of the four chambers of the heart and heart valves and the histological appearance of myocardial cells while they are studying the physiological concepts of preload, afterload and contractility.

In addition to anatomy/embryology, imaging, and histology, the other “threads” in Year 1 include cell biology, pharmacology, physiology, bioinformatics, evidence-based medicine, genetics, nutrition, health care systems, ethics and humanities, building on the core concepts from the summer in specific relation to each organ system. In CRS1, students learn not only the molecular structures and functions of α- and β-receptors but also the pharmacology of endogenous and exogenous agonists and antagonists of these receptors as they study myocardial contractility and physiological regulation of blood pressure. They learn the biochemical pathways involved in aerobic and anaerobic production of ATP as they study determinants of oxygen delivery to myocardial cells, concepts they will revisit and build upon during subsequent courses when they study skeletal muscle metabolism during exercise and the role of the liver in maintenance of normal blood glucose levels. They study physiology of the heart, lungs, red blood cells and plasma as an integrated system providing oxygen and removing carbon dioxide, supporting metabolic needs of the entire body. During each course, students return to the core concepts they mastered in previous courses, using those concepts as a framework for building their understanding of the human organism as a whole. The basic science curriculum continues with Gastrointestinal System (4.5 weeks), Endocrinology and Reproductive Biology (4 weeks), Renal Biology (3 weeks), Musculoskeletal Sciences (3 weeks), Neurosciences (5 weeks), and Hematology, Immunology and Microbiology (7 weeks). Each basic science course focuses on normal structure and function, relating back to previous courses and preparing students for concepts in future courses.

Starting in the fall of Year 1, the Basic and Translational Research Summer Block’s Friday journal clubs are replaced by Advanced Research in Medicine 1, a weekly series of research seminars in which students are exposed to a wide range of basic and clinical research topics in interactive discussions with accomplished investigators. Presentations are linked closely with the basic science curriculum in order to reinforce core basic science concepts, help students feel confident in questioning the investigators based on what they are learning at the time, and illustrate the process whereby new biomedical discoveries change clinical practice.

Foundations of Clinical Medicine begins at the same time as the first basic science course and continues throughout Years 1 and 2. The guiding principle is that early exposure to patients, with direct observation and feedback by experienced faculty physicians, is optimal for real time assessment and feedback of student clinical skills. Foundations of Clinical Medicine has 3 interrelated components – clinical skills training, patient care experiences, and Art and Practice of Medicine seminar series. The Art and Practice of Medicine seminar series is a two-year continuum addressing professionalism, ethics, leadership and its application to the care of patients and the practice of medicine, evidence-based medicine, health care systems and patient safety introduced to students primarily through the humanities.

Core clinical skills training occurs every other week from September through May and is coordinated with the organ systems under study. On alternate weeks, students practice the basic skills they just learned with standardized patients in the classroom by conducting histories and physical exams with real patients and writing chart notes on the
previous week under the supervision of their longitudinal preceptors. Starting in February, students are exposed to special aspects of the history and physical for geriatric and pediatric patients, while continuing to work on basic skills every other week with their preceptors. They also begin to take on more patient care responsibility in preparation for their weekly clinics with the same preceptor in Year 2. An Objective Structured Clinical Examination (OSCE) with feedback from preceptors is used to help students chart their progress in mastering core skills.

Year 2 begins with the 9-week Clinical Research Block. Students work with a preceptor in an active clinical research environment on an ongoing project, continuing to develop their skills in building relationships with members of a research team. They also write a mock clinical research proposal that extends the research question on which the student is working during the summer. Scheduled coursework occupies 2 hours each weekday and includes a rigorous immersion in biostatistics with students using statistical software to analyze real data sets and a clinical epidemiology course focusing on formulation of scientific questions, study design, clinical trials, and legal and ethical issues in research including human subjects’ protection. The coursework requires significant class preparation for students, thus students must balance their time and effort between the classwork and research project in the Year 2 summer. Journal Club sessions on Fridays focus on articles from the clinical research literature, with students using knowledge gained from biostatistics and epidemiology to help them analyze the papers. Feedback from peers and faculty facilitators help students enhance their presentation skills and ability to critically read and present scientific papers. Students complete the second summer with a comprehensive range of clinical research skills and knowledge, complementing their basic research experience in the first summer and preparing them to engage in basic, translational or clinically oriented research for their thesis.

For the remainder of Year 2, students return to the same organ-system based basic science curriculum they studied in Year 1, this time focusing on learning the pathophysiology of common diseases. Immunology, Pathology, Oncology, Infectious Disease/Microbiology, and Biostatistics/Epidemiology are now integrated as threads throughout the Year 2 basic science curriculum. The first basic science course is Musculoskeletal Sciences (2 weeks), followed by Neurosciences (3 weeks) and Behavioral Sciences (3 weeks), Endocrinology and Reproductive Biology (4.5 weeks), Cardiovascular and Respiratory Sciences (7 weeks), Hematology (4 weeks), Gastrointestinal System (4 weeks), and Renal Biology (4 weeks). Anatomy and embryology seminars are conducted less often during Year 2, usually 1-3 sessions per course. The clinical curriculum continues to be closely linked to the basic science courses. Students spend one half-day every week in their primary care longitudinal preceptor’s office. An additional clinical half-day is added and students see patients who demonstrate the pathophysiology being studied that week. Some of the additional half-days are devoted to learning advanced clinical skills (the gynecologic and urologic exams, evaluation of geriatric and pediatric patients with common problems) and an exposure near the end of Year 2 to the acute care setting helps to prepare students for Year 3. The Art and Practice of Medicine seminar series begin in September of Year 1 and ends in April of Year 2. Students also participate in two OSCEs, one at the beginning of Year 2 to help students identify skills to address over the year and the second at the end of Year 2 to help students document their skills for their portfolio. After classes end in mid-May, students have 6 weeks available to study for and take the USMLE Step 1 Examination.

By the end of Year 2, students have engaged actively in both basic and clinical research, learned and practiced a wide range of research skills. They have extensive experience in self-directed learning both independently and in teams and have mastered core basic science concepts related to human health and disease. They are comfortable “doctoring” adult outpatients and competent in the complete history, physical examination, oral and written presentations, and basic clinical skills such as reading EKGs. Perhaps most important, they have learned to accurately assess their own strengths and weaknesses and create learning plans for themselves – preparing them to succeed in the next three years of the curriculum and a lifetime of professional practice.

Curriculum Timeline: Years 3 through 5

After Year 2, the clinical curriculum for the College Program is the same as the University Program. In all Core Clinical Rotations, students experience both breadth and depth in clinical care, and clinical experiences are developmental, with opportunities to reinforce, build upon, and transfer knowledge and skills. Clinical learning is also integrated across disciplines whenever possible, and the roles of basic science, civic professionalism, scholarship, and population health in clinical care are evident throughout the clinical curriculum. Students likewise have patient care responsibilities that are progressive in sophistication and increasing in amount as their level of clinical skill and knowledge increases, and all core clinical competencies are addressed and assessed using common methods applied at the clinical sites at which rotations occur.

Core Rotations: Beginning in July of their third year, students have the opportunity to begin their core clinical rotations. These rotations are organized in blocks that integrate core specialties at one site for 8 or 12 weeks. Core 1 combines Family Medicine, Internal Medicine and Geriatrics for 12 weeks, Core 2 combines Pediatrics and OB/Gyn for 12 weeks, Core 3 combines Neurology and Psychiatry for 8 weeks, and Core 4 combines Surgery and Undifferentiated Care for 8 weeks. Each of these clinical rotations is offered at all of the School of Medicine’s hospital affiliates (including University Hospitals of Cleveland, the Cleveland Clinic, MetroHealth Medical Center and the Louis Stokes VA Medical Center).

These Core Clinical Rotations, launched in July 2006 and modified in 2009 and 2012, represent an integrated approach to clinical education that is shared by students from both the University and College programs of the School of Medicine. Students engage in clinical learning with basic science correlation through patient-based experiences that are developmental and provide opportunities to acquire, reinforce, build upon, and transfer knowledge and skills.

Advanced Clinical and Scientific Studies

Advanced clinical and scientific studies provide students with flexible learning opportunities that support ongoing professional development and residency preparation and planning:

- Two Acting Internships are required: one in Internal Medicine, Surgery, Pediatrics, or Inpatient Family Medicine, and one in an area of student choice.
- One Acting Internship and all electives can potentially be done outside of the CWRU system.
- Students are encouraged to augment their interest in scholarship through rotations and activities that focus on sciences basic to medicine as well as clinical rotations.

The last three years are purposely designed as a flexible continuum of core clinical rotations, clinical and other electives, and research – to allow each student to individualize the curriculum to address his/her own career goals, learning needs and research interests. Each student plans
Every CWRU student must pass the CWRU Clinical Skills Examination and USMLE Step 2 CK (Clinical Knowledge) and CS (Clinical Skills) Examinations to graduate from the CWRU School of Medicine. Students take OSCEs similar in format and content to the USMLE Step 2 CS Examination as part of routine assessments of their clinical skills beginning in Year 1 and are well prepared for the CWRU Clinical Skills Examination and USMLE Step 2 CS Examination by the time they have completed the required clinical rotations. Students must take the USMLE Step 2 CK and CS Examinations by October 31 of their 5th year.

Students spend 12 to 15 months during the last three years on their mentored research project, including preparation and defense of a masters’ level thesis. Students are expected to complete their research in one block of time. During time devoted primarily to research, students spend one half-day each week in related clinical activities. Students must complete all required research rotations by December 31 of Year 5 and defend the Research Thesis within 3 months of research completion, but no later than February 15 of Year 5. Within these guidelines, students and their advisors are encouraged to be as creative as possible in designing the final 3-year continuum. Research may be conducted with faculty research advisors at any CWRU campus, or in some instances, with advisors at a limited number of other institutions (e.g., the NIH), with advanced approval from the Research Education Committee. Student research may focus on clinical, translational or basic research. Some students may wish to engage in health services research, research in biomedical ethics, or other areas relevant to the advancement of biomedical science and the care of patients in addition to the more “traditional” research areas.

The Student Portfolio: Competency-Based Assessment and Reflective Practice

The College's approach to student assessment is based on two key educational concepts — “competency-based assessment” and “reflective practice.” Competency-based assessment emphasizes the need for every student to achieve the broad range of required learning outcomes by providing an appropriate curriculum, learning resources, and regular formative assessments. No grades are assigned in the College Program during the 5 year program; when a student achieves the standards for all competencies, they are assigned a “Achieves Expectations” (“AE”) for each course on their transcript. Assessment of student performance is criterion-referenced, not norm-referenced; students are not compared to one another but to faculty-defined standards of achievement. A full range of assessment methods are used to profile learning outcomes. Reflective practice emphasizes that learning is dependent upon the integration of reflection and experience. Professionals learn by reflecting on their experiences both during the experiences (“reflection-in-action”) and after the experiences (“reflection-on-action”) and by using these reflections to develop new knowledge and skills. The assessment process helps our students develop their reflective practice skills — the ability to accurately describe, analyze and evaluate their performance and to identify and follow through on effective learning plans. We are committed to helping every student achieve our competency standards and develop reflective practice skills through frequent formative assessments and close advising.

Evidence of achievement for each of the Case Western Reserve University School of Medicine’s Program’s 9 competencies is collected and managed in an electronic portfolio. Students and their advisors share access to the e-Portfolio database of evidence and thus can track and document student progress in meeting our nine competencies. A broad range of types of evidence is collected from the learning experiences in the research, basic science, and clinical curriculum.

During research blocks, research preceptors, journal club facilitators, problem solving session facilitators, and student peers provide written assessments of both individual work and teamwork in the lab, written and oral presentations, and critical thinking and reasoning skills. Written research proposals and reports and the final thesis are also included in the e-Portfolio.

During the basic science courses, students complete weekly online quizzes called Self-Assessment Questions (SAQs) that cover the breadth of knowledge for each week’s theme at the level of factual recall and simple application of the facts. Faculty design the SAQs so that students who are actively participating and studying should expect to know at least 80% of the answers; the individual results of the SAQs are available only to the students, but students are encouraged to contact the course director for help with any difficulties they are having. Students have continued access to the SAQs to assess their retention of this basic science knowledge. At the end of each week, students complete 1-2 open book Concept Appraisals (CAPPs) designed to determine if they have mastered the concepts for that week well enough to apply them to new or different problems or situations in brief, well-organized, clearly written essay(s). CAPPs are designed to assess depth of knowledge in key concept areas. Other evidence is provided by PBL facilitators and peers who provide assessments of performance in PBL sessions.

Assessments in the clinical curriculum include written feedback on performance from longitudinal preceptors and other faculty physicians and residents, results of OSCEs, patient logs documenting breadth of clinical exposure, patient journals in which students record their reflections on specific patients and their problems, self-assessments of videotaped interviews with patients (both standardized and real), and feedback from patients and other health care providers.

Students are expected to meet regularly with their physician advisor to discuss their progress. Several times each year, they are required to review their assessment evidence in relation to expected levels of achievement in the 9 competencies and write Formative Portfolios composed of structured reflective essays on how the evidence demonstrates their development as doctors and researchers. Based on this analysis, they develop learning plans to address areas needing improvement. The essays also include judgments on whether previously established learning goals have been achieved and reflections on the process of achieving these goals. Students discuss these materials with their physician advisors during Formative Assessment meetings. During the last three years, students submit learning plans on a bi-annual basis, and meet with their physician advisor to review their progress. Students are expected to assume more and more responsibility and independence in accurate self-assessment, in developing learning plans and following through on addressing their own learning needs, and in recognizing and building on their own strengths.

At the end of Years 1, 2 and 4, students assemble a Summative Portfolio for review by the Medical Student Promotions and Review Committee that determines if the evidence presented by the student indicates a level of achievement sufficient for promotion to the next year of the program (or graduation). Students are expected to choose not only their best examples of their work, but more importantly evidence demonstrating their growth across the year in specific competencies. We want to graduate students who recognize areas needing improvement, identify an approach to addressing them, and can show that they have now achieved
that skill as well as those students who excel in specific areas throughout the year. Graduates of CCLCM will have not only achieved a defined level of achievement of each of the 9 competencies, they will also have developed their reflective ability to accurately assess their own strengths and areas needing improvement. The assessment process is designed to enhance student learning and the student portfolio enables students to document their progress in the achievement of defined competencies.

Graduation Requirements
To graduate from CWRU School of Medicine with the MD degree (or the MD degree with Special Qualifications in Biomedical Research for students in the Cleveland Clinic Lerner College of Medicine program), students must:
1. Satisfactorily complete all Program Specific Requirements and Educational Program Objectives of the School of Medicine
2. Pass the USMLE Step 1 and USMLE Step 2 CK and CS
3. Pass or remediate the School of Medicine's Clinical Skills Exam
4. Satisfactorily complete the MD Thesis
5. Meet financial obligations to the University
6. Be approved to graduate by the Committee on Students

Dual Degree Programs

Dual Degree Programs with the MD
The degree programs listed in this section may require admission to another school at the university in addition to or instead of the School of Medicine. Each school may have different deadlines and requirements for admissions. Please contact the other schools separately using information provided under that school's listing in this publication. Additional dual degree programs not including the MD are also offered through the medical school's departments. Several certificate programs are also offered in General Medical Sciences.

MD/PhD (MSTP)
The Medical Scientist Training Program (http://mstp.case.edu/default.asp) leading to the MD/PhD in various biomedical programs is listed in above grey tab.

Doctor of Medicine- MD/JD
This program, offered in conjunction with Case Western Reserve University School of Law, may be completed in six years. The JD portion requires the completion of 88 credit hours of study. Admission is through the School of Medicine and the School of Law. For more information about the JD portion of the program, visit the Law School section (http://bulletin.case.edu/schooloflaw/dualdegreeprograms), call the law school admissions office at 216.368.3600 or 800.756.0036, or e-mail lawadmissions@case.edu (/lawadmissions@case.edu).

Master of Science in Applied Anatomy- MD/MS
The program, offered in conjunction with the Cleveland Clinic Lerner College of Medicine (CCLCM) may apply to the master's program through the Department of Anatomy. Students must document their progress in the achievement of defined competencies. Additional dual degree programs not including the MD are also offered through the medical school's departments. Several certificate programs are also offered in General Medical Sciences.

Master of Arts in Biostatistics- MS/Biostatistics
The 27-credit-hour Master's degree program, including a 12-hour foundations course taken during the first year of medical school, provides advanced training in biostatistics while emphasizing the interdisciplinary and interprofessional nature of the field. In this program, medical students will participate in and contribute to the critical analysis of moral issues related to health, health care, and health policy at local, national, and international levels. The program is excellent preparation for those preparing for biomedical careers or those planning to pursue a PhD. Additional details and a sample course of study are described in the Anatomy section.

Master of Public Health - MD/MPH
Graduates of this 5-year, 36-hour master's degree program are qualified to work in local and state health departments, universities and colleges, hospitals, ambulatory medical centers, non-profit organizations and the insurance and pharmaceutical industries. Areas of concentration include adolescent health, health promotion and disease prevention, epidemiology, public health research, health management and policy, clinical research, international health, human sexuality and reproductive health, and urban health. For more information about the MPH requirements, visit the Master of Public Health website (http://mph.case.edu), call 216.368.3128, or email info@casemph.org.

Master of Science in Biomedical Engineering- MD/MS
Medicine is undergoing a transformation based on the rapid advances in science and technology that are combining to produce more accurate diagnoses, more effective treatments with fewer side effects, and improved ability to prevent disease. The goal of the MD/MS in Biomedical Engineering is to prepare medical graduates to be leaders in the development and clinical deployment of this technology and to partner with others in technology based translational research teams. Current CWRU medical students in either the University Program (UP) or the Cleveland Clinic Lerner College of Medicine (CCLCM) may apply to the MD/MS in Engineering program.

Students must complete the normal requirements in either MD program. Portions of the medical school curriculum earn graded credit toward the MD/MS degree. Six credit hours can be applied to the MS component of the joint degree. The balance of 12 credit hours (4 courses) must be graduate level engineering concentration courses that provide rigor and depth in a field of engineering relevant to the area of research. All students attend monthly seminars focusing on the integration of engineering and medicine, with the opportunity to present their own research and to hear and interact with other presenters. Students...
must also complete training in the responsible conduct of research. The thesis serves a key integration role for the joint degree, with both medical and engineering components. The thesis also fulfills the research requirement of the UP or CCLCM programs. Students should apply through the BME department admissions office. For more information about the MS requirements, visit the Biomedical Engineering website (http://engineering.case.edu/ebme), call 216.368.4063, or email bmedept@case.edu.

Master of Science in Biomedical Investigation- MD/MS

This five-year dual degree program is designed for students who wish to prepare for careers in basic or clinical research at academic medical centers. The core components of this degree are three to six graduate courses in a specific track chosen by the student based on his or her interest, six graded credits of medical school coursework, a common seminar series, training in scientific integrity, and a full-year research project culminating in a written report and examination by faculty. Tracks include biochemistry, clinical investigation, epidemiology, health services research, nutrition, pathology, and physiology and biotechnology. Each track has specific course requirements. There is no tuition charge for the research year, and a stipend is provided. For more information visit the Biomedical Investigation website (https://case.edu/medicine/admissions/programs/dual-degree-biomedical-investigation), or contact the College Program Advisor, Dr. Chris Moravec (MORAVEC@ccf.org) or the University Program Advisor, Dr. William Merrick (william.c.merrick@case.edu).

Master of Business Administration- MD/MBA

There is a growing need for physicians with business skills to manage organizations such as corporate practices, hospitals, etc. Those who complete this 5-year program will be able to apply learned management principles and take leadership roles as they navigate through varying and increasingly complex healthcare environments. For more information about the MBA requirements, visit the Weatherhead School of Management website (https://weatherhead.case.edu/degrees/masters/dual-degree/md-mba), call 216.368.2030, or email casemed-admissions@case.edu.

Master of Anthropology- MD/MA

This 4-year dual degree program is an organized course of study for students with a range of medical anthropological interests, from ethnomedicine to international health, urban health, psychiatric anthropology, psychological anthropology, cross-cultural aging, human adaptation and disease, nutritional anthropology, etc. The program is designed for students who wish to pursue anthropology beyond the baccalaureate level and to become acquainted with professional work in anthropology and to meet the challenges of our increasingly globalized world. For more information about the MA requirements, visit the Department of (http://mph.case.edu) Anthropology (http://anthropology.case.edu/graduate-programs/joint-programs/mdma-or-mdphd) website (http://mph.case.edu), call 216.368.2264, or email the Department Administrator, L (info@casemph.org) linda Rinella (linda.rinella@case.edu).

Medical Scientist Training Program (MSTP)

A combined MD/PhD program in biomedical sciences, the Medical Scientist Training Program (MSTP) is available for students desiring research careers in medicine and related biosciences. This program takes seven to eight years to complete, depending on the time needed to complete the PhD dissertation research. Financial support includes a stipend and full tuition support.

Candidates must meet established prerequisites for admission to both the School of Medicine and the School of Graduate Studies. Criteria include demonstrated capabilities in research and superior undergraduate academic credentials. Applicants must have either U.S. citizenship or permanent residency status to be considered for admission to the MSTP. Information can be obtained by contacting the MSTP program (mstp@case.edu) or from the program website (http://mstp.case.edu). Admissions are coordinated via the School of Medicine admissions program and the AMCAS application.

The first two years of the MSTP are centered on the University Program pre-clinical core medical school curriculum, which occupies five mornings each week. Afternoons include time for graduate courses and/or research rotations, as well as clinical training, thus integrating the medical school and graduate school experiences. The next three to four years are devoted to completion of graduate courses and PhD thesis research in one of the multiple MSTP-affiliated graduate programs. During the PhD phase, MSTP students participate in the MSTP Clinical Tutorial, a program designed to enhance clinical skills and allow students to develop connections between their research and clinical interests (this further addresses the goal of integrating medicine and science). After completion of the PhD program, students return to medical school for two years to complete clinical clerkships and finish the MD curriculum.

The program is administered by the MSTP Steering Committee, which consists of faculty from both basic science and clinical departments. Its functions include selecting candidates for admission, designing and administering the program curriculum, advising students and evaluating student progress.

Please see the Doctor of Medicine (MD) (p. 14) page for information about the MD curriculum.

MSTP Program by Year

Year 1

• University Program MD curriculum
• Summer Intro to MSTP course
• One graduate course or research rotation each semester (fall and spring)

Year 2

• University Program MD curriculum
• Summer research rotations (1 or 2)
• Graduate course or research rotation in the fall semester

Year 3
Dual Degree Programs

- PhD program

Year 4
- PhD program
- MSTP Clinical Tutorial

Year 5
- PhD program
- Optional MSTP Clinical Tutorial

Year 6 (If Needed)
- PhD program
- Optional MSTP Clinical Tutorial
- All PhD work, including dissertation defense and publications, to be completed before starting the 3rd year medical curriculum

Year 7
- Third year MD curriculum (core clinical clerkships)

Year 8
- Fourth year MD curriculum (completion of core clinical clerkships if necessary, clinical and research electives)

The Medical Scientist Training Program in detail

General Description
The Case Medical Scientist Training Program (MSTP) provides training for future physician-scientists by integrating well-developed curricula in science and medicine. Unique aspects of the program include the integration of graduate school and medical school in many phases of the program to optimize dual-degree training, and a high degree of student involvement in running the program.

The MSTP includes three major phases of training.

First phase: During the first two years, each student completes the first two years of the University Program medical school curriculum, including early clinical experiences, completes at least three research rotations, takes graduate courses, and chooses his or her PhD graduate program and thesis lab. During the summer between the first two years of medical school, students complete one or two research rotations. During the fall and spring semesters of year one and the fall semester of year two, students take a graduate course or complete a research rotation.

Second phase: During the PhD phase, students complete all requirements of their PhD program. They also participate in the MSTP Clinical Tutorial for at least one year in a patient-based clinical specialty. A second year of MSTP Clinical Tutorial is optional.

Third phase: In the final phase, students complete years three and four of the University Program medical school curriculum. The focus is clinical training, but research electives can be taken for part of year four.

Although each of these three phases has a different focus, opportunities exist for students to pursue both research and clinical training in each phase. The philosophy of the Case MSTP is to integrate medicine and science throughout the program as much as possible.

The Case MSTP is run by faculty, students and staff. The MSTP Council is a body of students that plans and runs certain aspects of the program. The administrative director, program coordinator, and program assistant have many important roles and run the day-to-day management of the program. The co-director is involved in decisions at all levels of the program and is the primary advisor for students in the first two years of the program. The director is responsible for all aspects of the program and is available to students for advice at any stage. The MSTP Steering Committee makes decisions on MSTP policy, curriculum planning, student admissions, approval of mentors and evaluation of students.

Incoming MSTP students are expected to enter the program on July 1. The MSTP summer retreat, usually held in early July, provides an important orientation to the program and includes sessions and workshops for program and professional development.

Advising System
The program director provides advising to students in all phases of the program. The MSTP co-director advises students in the first two years on research rotations and course work. Students may also meet with an MSTP Steering Committee member representing an area of research interest or with the MSTP director. During the PhD training period, mentoring is provided by the thesis advisor and thesis committee, which includes a member of the MSTP Steering Committee and a member with an MD. MSTP students are full members of the medical school class and enter one of the four societies of the University Program when they matriculate in the program. The society dean provides important advice for matters concerning the MD curriculum.

Classes and Research Rotations in Years One and Two

During years one and two of the University Program, MSTP students register for 9 credit hours of graduate course work each semester.

Plan of Study

First Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Biological Sciences I (IBIS 401)</td>
<td>1 - 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Science I (IBIS 411)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Rotation in Medical Scientist Training Program (MSTP 400)*</td>
<td>0 - 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated Biological Sciences II (IBIS 402)</td>
<td>1 - 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Science II (IBIS 412)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Rotation in Medical Scientist Training Program (MSTP 400)*</td>
<td>0 - 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to MSTP (MSTP 401)</td>
<td>3-20</td>
<td>3-20</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>3-20</td>
<td>3-20</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Biological Sciences III (IBIS 403)</td>
<td>1 - 9</td>
<td></td>
</tr>
<tr>
<td>Clinical Science III (IBIS 413)</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
independent PhD program, the program through which it is offered is affiliated with the MSTP. If the training program is not itself an independent PhD program, the MSTP 400 Research Rotation in Medical Scientist Training Program or an appropriate graduate school course. If a 4-credit graduate course is taken, registration in IBIS 401 Integrated Biological Sciences I, IBIS 402 Integrated Biological Sciences II or IBIS 403 Integrated Biological Sciences III is reduced to 3 units.

IBIS 401 Integrated Biological Sciences I, IBIS 402 Integrated Biological Sciences II and IBIS 403 Integrated Biological Sciences III are 3-4 credits each. IBIS 411 Clinical Science I, IBIS 412 Clinical Science II, and IBIS 413 Clinical Science III are 2 credit hours each. In contrast to their fellow medical students, MSTP students are graded during years one and two of the medical school curriculum for these graduate courses, which provide graduate school credit for the medical school curriculum. These grades are for graduate school purposes and do not affect standing in the medical school.

In addition to the medical curriculum, students take MSTP 400 Research Rotation in Medical Scientist Training Program or one 3-4 credit graduate school course per semester in the first two years. Graduate courses are scheduled in the afternoon in the fall and spring semesters to avoid conflict with the medical school curriculum. MSTP students will be registered for MSTP 400 during the summer terms before each of the first two years of medical school. Students also may complete a research rotation instead of a graduate school course during the fall or spring semester.

The PhD Phase

After completion of the second year of medical school, each student chooses a PhD thesis mentor, joins a specific PhD program, and completes any remaining graduate school course work and other requirements for the PhD degree. The following training programs are affiliated with the MSTP. (If the training program is not itself an independent PhD program, the program through which it is offered is indicated in parentheses.)

- Biochemistry
- Biomedical Engineering
- Cancer Biology (Pathology)
- Cell Biology
- Clinical Translational Science
- Epidemiology and Biostatistics
- Genetics and Genome Sciences
- Immunology (Pathology)
- Molecular Biology and Microbiology
- Molecular Virology
- Neurosciences
- Nutrition
- Pathology (Molecular and Cellular Basis of Disease)
- Pharmacology
- Physiology and Biophysics
- Structural Biology and Biophysics
- Systems Biology and Bioinformatics

All MSTP students are required to take a one-week responsible conduct of research (RCR) course (IBMS 500 On Being a Professional Scientist: The Responsible Conduct of Research) during the spring semester of their second year in the program.

Clinical Tutorial, Clinical Refresher Course and Years Three and Four of Medical School

During the PhD thesis phase, MSTP students take the MSTP Clinical Tutorial, which provides a unique longitudinal part-time clinical experience. The MSTP Clinical Tutorial is a year-long course that enhances clinical skills for year three of medical school. It also serves a special career development objective by allowing students to balance medical and scientific interests and explore the connections between these areas. The MSTP Clinical Tutorial, offered during the PhD phase, is an example of the integration of science and medicine in the Case MSTP. An optional MSTP Clinical Refresher course may be taken before the start of year three. After completion of the PhD, MSTP students are enrolled in medical school to complete the requirements for the MD (see description provided for the University Program (p. 16)).

MSTP Activities

The MSTP supports several activities that enhance the scientific and professional development of students. These activities also foster a vibrant and collegial MSTP community with a strong sense of mission in the training of physician scientists.

Summer retreat: The annual MSTP summer retreat is a two-day event focusing on scientific presentations, professional development and program planning for the upcoming academic year.

Winter retreat: This is a one-day retreat on campus, usually early March. Students in their research years present their thesis work through an oral or poster presentation.

MSTP Council coordinates many activities of the Case MSTP. The Council meets once each month to discuss activities that are run by different student committees. The overall goals of the MSTP Council are to identify objectives for the program, to allow students to initiate programs to enhance the MSTP, to encourage increased student involvement in the operation of the MSTP, and to enhance development of leadership skills of MSTP students. The president, vice president and secretary are all elected for a one-year period. Committees are led by 1-3 committee chairs who take charge of committee activities and coordinate the involvement of other students in the committee activities. All students are welcome and encouraged to participate in the various committees and to attend the council meetings. Recent Council committees and other program activities have included the following:

1. Monthly Dinner Meeting Committee

This committee is responsible for planning monthly dinner meetings, selecting topics, speakers, and menus. The series is organized by students and is attended by students, Steering Committee members and research mentors. Invited speakers (students, faculty, alumni and outside speakers) address issues pertinent to research, professional issues, career development or other topics of interest. The informal environment at these gatherings promotes social and professional interactions.

2. Communications and Webpage Committee
This committee organizes communications and the Case MSTP website content.

3. **Summer Retreat Committee**
This committee plans the summer retreat.

4. **Intro to MSTP**
This committee organizes events for first year MSTP students, to integrate them into the program and the community.

5. **Community Service Committee**
Plans events for involvement of MSTP students in community service.

6. **Social Committee**
This important committee plans fun events throughout the year!

7. **Student Representative to Faculty Council**
One student is selected to represent the MSTP on Faculty Council.

8. **Student Representative to the Committee on Medical Education**

9. **Representative to the Graduate Student Senate**

10. **MSTP Women’s Committee**
Women in the MSTP organize luncheons or other meetings to discuss issues that face women pursuing careers in science. Students may invite a successful woman scientist who provides a role model as a physician scientist.

Scientific meetings: The program strongly encourages students to present their research at national or international meetings and provides financial support to pay for part of meeting travel expenses (other funding is obtained from the research mentor). In addition to the general meeting support for all students, each year two students are offered the opportunity to attend the annual MD/PhD national student conference in Colorado or the American Physician Scientist Association annual meeting in Chicago, with all expenses paid by the MSTP.

Research symposia: MSTP students are encouraged to present their research at Case student symposia, including the annual graduate student symposium and the Irwin H. Lepow Student Research Day. These symposia feature a nationally recognized keynote speaker, and students have the opportunity to interact extensively with the noted scientist. A committee awards prizes for outstanding student presentations.

Assessment of MSTP Students

Students in the MSTP are assessed for the medical school component of the program in the same manner as students in the University Program, with the exception that grades are awarded for those courses in the MD curriculum in years one and two that receive graduate school credit and are used to satisfy requirements for the PhD degree. Students must satisfactorily complete all requirements for both the MD and the PhD.

IBIS Courses

IBIS 401. Integrated Biological Sciences I. 1 - 9 Units.
A four-semester sequence encompassing anatomy, biochemistry, physiology, pharmacology, pathology, and microbiology.

IBIS 402. Integrated Biological Sciences II. 1 - 9 Units.
A continuation of IBIS 401.
MSTP 401. Introduction to MSTP. 0 Unit.

Focus and Scope of Course: The course examines the unique challenges that MSTP students face as they navigate a dual degree program. The course will explore strategies that successful MSTP students employ, including mentor choice, time management, strategy and networking. The course will also offer exposure to the various resources available at CWRU for medical and graduate students. Lastly, through journal clubs and formal lecturing, the critical thinking required of an MSTP student will be explored. Objectives: Students will be able to - Employ successful strategies for research rotation set-up and mentor choice - Enunciate strategies for the reconciliation of dual career training with an emphasis on networking, granting and timing - Employ the critical thinking required for manuscript critique and employ successful strategies in both oral and written presentation. Required Texts: None, however, manuscripts may be assigned and will be provided in pdf format. Format and Expectations: As the class is meant to be in dialogue format, meaningful class participation is expected and required. An individual cannot participate if he or she is absent, therefore, attendance is required. If there is a conflict with a required medical school assignment or activity, the medical school activity takes precedence, and attendance in the MSTP course will be waived for that session. Individual students will at times be assigned responsibility for leading the discussion relevant to specified readings. It is expected that all students will complete the readings and assignments prior to the start of the class at which the reading was assigned. Grading: Grading will be Pass/Fail. If students are present at all sessions (excepting when required for an alternative activity at the medical school and excepting excused absences with permission from the instructor), and if the student makes an attempt at a meaningful contribution to the discussion, it is anticipated that all students will pass.

Graduate Programs in the Biomedical Sciences

Graduate Education Office, School of Medicine, RM TG-1 casemed.case.edu/gradprog
Phone: 216.368.5655; Fax: 216.368.0795
Paul N. MacDonald, PhD, Associate Dean for Graduate Education
paul.macdonald@case.edu

Malana Bey (malana.bey@case.edu), Administrator
216.368.5655

The School of Medicine is proud to administer doctoral, master’s, professional and certificate graduate programs in the biomedical sciences, described fully in this bulletin under their departmental or center affiliations. The Graduate Education Office provides support and information on the graduate and postdoctoral training programs in the School of Medicine, as well as professional skill development and training grant proposal support. Resources for proposal development as well as current training information are available at the SOM Graduate Education (http://casemed.case.edu/gradprog) website.

Case Western Reserve University School of Medicine has a strong commitment to the importance of diversity in its research and educational programs. The CWRU community celebrates how our individual diversity in race, ethnicity, gender, country of origin, sexual orientation or gender identity enhances our work together. CWRU programs welcome diverse individuals, including those individuals of racial and ethnic groups underrepresented in biomedical science, those with physical disabilities, and those with disadvantaged backgrounds.

Common Academic Requirements

Each graduate program follows the overall regulations established and described in Graduate Studies Academic Requirements pages (http://bulletin.case.edu/schoolofgraduatestudies/academicrequirements) and documented to the Regents of the State of Ohio. In particular, students and faculty are directed to sections regarding Academic Requirements for Master’s and Doctoral Degrees regarding total and graded course requirements, dissertation advisory committees, maintenance of quality-point average, and other general aspects of graduate study at CWRU. Within those overall expectations, a specific course of study for each graduate program is required and described in each degree plan of study.

Guiding Principles for Graduate Education in the School of Medicine

Training and educating graduate students in the biomedical sciences is a complex process that continually evolves based on the rapid progression of scientific discovery and ever expanding technological landscape. Graduate programs must continually modify their approaches to meet these modern-day needs. Students are expected to master their overall discipline, become experts in their field of research, as well as gain expertise in a diverse, but interrelated professional skill set. That skill set should be clearly defined, widely communicated and integrated across all PhD disciplines at CWRU SOM. Moreover, a set of common principles or goals for educating all graduate students in the SOM helps to guide our programs in course or curriculum development. The School of Medicine Graduate Education Office, in collaboration with the graduate program directors, developed a formal set of Guiding Principles (http://bulletin.case.edu/schoolofmedicine/graduatergrams/Guiding_Principles.pdf) for the education and training of all Ph.D. students in order to help accomplish these important goals.

Graduate Admissions to School of Medicine Programs

Graduate students are admitted to our programs through several streams, including the Biomedical Sciences Training Program (http://www.case.edu/med/BSTP), the Medical Scientist Training Program (http://mstp.cwrui.edu), dual-degree initiatives, and direct admission to specific programs (please see individual program entries under their affiliated department pages). Postdoctoral Fellows and Postdoctoral Scholars are appointed through the Office of Postdoctoral Affairs (http://postdoc.case.edu).

Student Affinity Groups

Graduate students interact in vibrant groups in the School of Medicine including the Biomedical Graduate Student Organization (http://casemed.case.edu/gradprog/bgso.cfm) and the Minority Graduate Student Organization (http://casemed.case.edu/gradprog/mgso.cfm), as well as university-wide student organizations such as the Graduate Student Council (http://gsc.case.edu). In addition, doctoral students in the School of Medicine organize the annual Biomedical Graduate Student Symposium.

Professional Development

The Graduate Education Office provides professional development opportunities for trainees including the monthly Career Opportunities for Trainees & Professional Enrichment for Trainees Series (http://casemed.case.edu/gradprog/gradprodev.cfm), Pre-Professional Health Program Series, Enhancing Research and Industry Career Horizons (EnRICH) internship and career exposure program (http://casemed.case.edu/gradprog/EnRICH.php), and the Expanding
Teaching Experiences for Doctoral Students (ExTeND) program (http://gradstudies.case.edu/gradprog/prodevteaching.cfm).

Biomedical Sciences Training Program (BSTP)

Phone: 216.368.3347
http://www.case.edu/med/BSTP/
George Dubyak, PhD (gxd3@case.edu), Director
Debbie Noureddine (drn2@case.edu), Coordinator

The Biomedical Sciences Training Program (BSTP) offers a common admission portal to most biomedical PhD degree programs at CWRU School of Medicine. The BSTP includes eleven doctoral programs in the School of Medicine with more than 200 faculty based in both basic science and clinical departments, giving BSTP students a tremendous range of research opportunities in many disciplines. It also provides a distinct advantage over traditional programs, which restrict choices of research area and faculty advisors.

Admissions

Students usually apply in the fall or winter and begin their studies the following summer. The application deadline is January 15th. Priority will be given to applications received by December 1. Applications will be considered by the Admissions Committee as soon as they are complete. In general a year of biology, organic chemistry and mathematics through calculus are required, and biochemistry and molecular biology are strongly recommended. We also seek students with strong backgrounds in physics or math who may be interested in our Structural Biology track (http://sbb-tp.case.edu) or Systems Biology and Bioinformatics (http://bioinformatics.case.edu) programs. Depending on preparation, we may suggest additional biology coursework once graduate training begins. This background prepares most students for success in our programs.

Research Experience and Recommendations

Experience performing original research is essential. This might include an undergraduate honors thesis, summer research internships, or a technical position after graduation. Letters of recommendation from research mentors that describe creativity, hardwork, and promise in science are very important.

Exams

The GRE general test is required. Recent classes have earned an average of 70th percentile in each area. A GRE subject test is desirable, but is not required. The Test of English as a Foreign Language (TOEFL) is required for foreign students unless they are from an English-speaking country or have a degree from a university where the instruction is primarily in English. Students may be eligible to apply for the transfer of some graduate credit from their previous institution. Please go here (http://gradstudies.case.edu) for more information. Transfer credit must be requested prior to beginning coursework at CWRU.

The First Year

Coursework

Students take integrated courses in Cell and Molecular Biology (CBIO 453 Cell Biology I, CBIO 455 Molecular Biology I). These two courses, offered in the fall semester, emphasize the molecular approaches that form the basis of modern biology. We also seek students with strong quantitative training who may have majored in physics or math, and offer alternative courses for these students to acquire foundations in biology. Qualified students also may take more specialized elective courses. All students take IBMS 500: On Being a Professional Scientist: The Responsible Conduct of Research.

Research Rotations

The research rotations allow students to explore research areas and become familiar with faculty members and their laboratories. The main purpose of these rotations is to aid students in selecting a laboratory for their thesis work. Students are encouraged to begin their rotations in July. Doing so gives them the opportunity to complete rotations during the summer before classes begin at the end of August. Students must complete at least three rotations.

Choosing a Thesis Advisor

During the first year, students select an advisor for their dissertation research. Each student also joins the PhD program with which their advisor is affiliated. Once a student chooses a PhD program, the requirements of that program are followed to obtain the PhD. The emphasis of the PhD work is on research, culminating in the completion of an original, independent research thesis and publishing the results in the scientific literature. PhD programs also focus on educating students to work as professional scientists.

Participating Training Programs

- Biochemistry (p. 47)
- Cell Biology (p. 91)
- Genetics and Genome Sciences (p. 88)
- Molecular Biology and Microbiology (p. 91)
- Molecular Virology (p. 91)
- Neurosciences (p. 98)
- Nutrition (p. 107)
- Pathology (http://bulletin.case.edu/schoolofmedicine/pathology)
- Pharmacology (p. 125)
- Physiology and Biophysics (p. 136)
- Systems Biology and Bioinformatics (p. 68)

These programs have tracks that allow specialization in the following areas: Cancer Biology; Cancer Therapeutics; Cell and Molecular Physiology; Developmental Biology; Experimental Pathology; Immunology; Membrane Structural Biology; Molecular and Cellular Biophysics; Molecular Pharmacology and Cell Regulation; Molecular Pharmacology and Cell Regulation; Organ Systems Physiology; RNA Biology; Structural Biology & Biophysics; Translational Therapeutics.

Training faculty, course offerings, and individual degree requirements are described in detail in the separate listings for each of these programs. All PhD programs have similar requirements, including an original thesis, coursework, examinations, publications in scientific journals with lead authorship, seminars, journal clubs, and other activities.

BSTP Course

BSTP 400. Research Rotation in Biomedical Sciences Training Program.
0 - 9 Units.
CBIO Courses

CBIO 453. Cell Biology I. 3 Units.
Part of the first semester curriculum for first year graduate students along with CBIO 455. This course is designed to give students an intensive introduction to prokaryotic and eukaryotic cell structure and function. Topics include membrane structure and function, mechanisms of protein localization in cells, secretion and endocytosis, the cytoskeleton, cell adhesion, cell signaling and the regulation of cell growth. Important methods in cell biology are also presented. This course is suitable for graduate students entering most areas of basic biomedical research. Undergraduate courses in biochemistry, cell, and molecular biology are excellent preparation for this course. Recommended preparation: Undergraduate biochemistry or molecular biology.

CBIO 455. Molecular Biology I. 3 Units.
Part of the first semester curriculum for first year graduate students along with CBIO 453. This course is designed to give students an intensive introduction to prokaryotic and eukaryotic molecular biology. Topics include protein structure and function, DNA and chromosome structure, DNA replication, RNA transcription and its regulation, RNA processing, and protein synthesis. Important methods in molecular biology are also presented. This course is suitable for graduate students entering most areas of basic biomedical research. Undergraduate courses in biochemistry, cell and molecular biology are excellent preparation for this course. Recommended preparation: Undergraduate biochemistry or molecular biology.

CBIO 456A. Since You Were Born: Nobel Prize Biomedical Research in the Last 21 Years- Section A. 1 Unit.
This course is one of four sections that will cover major advances in biomedical research by review of Nobel Prize-winning topics from the past 21 years. Each section will cover 8 Nobel prize topics (1 topic/2 hour session/week for 8 weeks). Students will read critical research papers of the Nobel prize scientist(s) in preparation for guided in-class discussion led by the faculty mentor. The CBIO456A section will cover Nobel Prizes related to the areas of Genetics & Genome Science, Systems Biology & Bioinformatics, and RNA Biology. These include: 1) 2012 Prize, J. Gurdon and S. Yamanaka: Mechanisms of pluripotent stem cell development and reprogramming; 2) 2010 Prize, R. Edwards: Development of in vitro fertilization; 3) 2009 Prize, E. Blackburn, C. Greider, and J Szostack: Mechanisms of chromosome protection by telomeres and telomerase; 4) 2009 Prize, Y. Ramakrishnan, T. Steitz, and A. Yonath: Structure/function analysis of ribosomes; 5) 2007 Prize, M. Capecchi, M. Evans, and O. Smithies: Discovery/development of transgenic and gene-deletion methods in mice; 6) 2006 Prize, A. Fire and C. Mello: Discovery/development of RNA interference-gene silencing methods; 7) 2006 Prize, R. Kornberg: Mechanisms of eukaryotic transcription; 8) 1995 Prize, E. Lewis, C. Nusslein-Volhard, and W. Wieschaus: Mechanisms of genetic control in early embryonic development.

CBIO 456B. Since You Were Born: Nobel Prize Biomedical Research in the Last 21 Years- Section B. 1 Unit.

CBIO 456C. Since You Were Born: Nobel Prize Biomedical Research in the Last 21 Years- Section C. 1 Unit.
This course is one of four sections that will cover major advances in biomedical research by review of Nobel Prize-winning topics from the past 21 years. Each section will cover 8 Nobel prize topics (1 topic/2 hour session/week for 8 weeks). Students will read critical research papers of the Nobel prize scientist(s) in preparation for guided in-class discussion led by the faculty mentor. The CBIO456C section will cover Nobel Prizes related to the areas of Molecular Biology & Microbiology, Molecular Virology, Pathology-Immunology, and Cell Biology. These include: 1) 2016 Prize, Y. Ohsumi: Mechanisms of Autophagy; 2) 2015 Prize, W. Campbell, S. Omura, and Y. Tu: Therapies against roundworms & malaria; 3) 2011 Prize, B. Beutler, J. Hoffman, and R. Steinman: Mechanisms underlying innate immunity and adaptive immunity; 4) 2008 Prize, H. zur Hausen, F. Barre-Sinoussi, and L. Montagnier: Discovery of human immunodeficiency virus and oncogenic papilloma viruses; 5) 2008 Prize, O. Shimomura, M. Chalfie, and R. Tsien: Discovery/development of green fluorescent protein for biological applications; 6) 2005 Prize, B. Marshall and J. Warren: Discovery of Helicobacter pyloris as pathogenic mechanism in peptic ulcers/gastritis; 7) 1999 Prize, G. Blobel: Mechanisms of protein sorting and subcellular trafficking; 8) 1996 Prize, P. Doherty and R. Zinkernagel: Mechanisms of cell-mediated immune defense.
CBIO 456D. Since You Were Born: Nobel Prize Biomedical Research in the Last 21 Years- Section D. 1 Unit.

This course is one of four sections that will cover major advances in biomedical research by review of Nobel Prize-winning topics from the past 21 years. Each section will cover 8 Nobel prize topics (1 topic/2 hour session/week for 8 weeks). Students will read critical research papers of the Nobel prize scientist(s) in preparation for guided in-class discussion led by the faculty mentor. The CBIO456D section will cover Nobel Prizes related to the areas of Neuroscience, Physiology & Biophysics, and Pathology-Molecular Basis of Disease. These include: 1) 2014 Prize, J. O'Keefe, M-B. Moser, and E. Moser: Mechanisms of nerve cell spatial positioning in the brain; 2) 2013 Prize, J. Rothman, R. Scheckman, and T. Sudhof: Mechanisms of intracellular vesicle trafficking and biomolecule secretion; 3) 2004 Prize, R. Axel and L. Buck: Structure/function of odorant receptors and organization of olfactory system; 4) 2003 Prize: P. Agre and R. MacKinnon: Structure/function analysis of channel proteins in cell membranes; 5) 2000 Prize, A. Carlsson, P. Greengard, and E. Kandel: Mechanisms of signal transduction in the nervous system; 6) 1998 Prize, R. Furchgott, L. Ignarro, and F. Murad: Discovery/mechanisms of nitric oxide as signaling molecule in cardiovascular system; 7) 1997 Prize, S. Prusiner: Discovery/prions as new biological principle of infection in neurological disease; 8) 1997 Prize, P. Boyer, J. Walker, and J. Skou: Mechanisms of mitochondrial ATP synthesis and Na, K-ATPase pump function.

IBMS Courses

IBMS 450. Fundamental Biostatistics to Enhance Research Rigor & Reproducibility. 1 Unit.

This is a required graduate level course for all first year PhD students in the School of Medicine biomedical PhD programs excluding Biomedical Engineering, Population and Quantitative Health Sciences, Molecular Medicine and Clinical Translation Science. This course focuses on providing students with a basic working knowledge and understanding of best practices in biostatistics that can be applied to common biomedical research activities in numerous fields. Weekly sessions involve a combination of basic programming activities, lectures, exercises, hands-on data manipulation and presentation. Topics include experimental design and power analysis, hypothesis testing, descriptive statistics, linear regression, and others with an emphasis on when and in which experimental design a particular test is properly used. The overall goal of the course is to empower students to use these biostatistics to enhance the rigor of their experimental design and reproducibility of their primary data. The major focus is not on theory, but on a practical acquisition of a working knowledge of basic data processing analysis, interpretation, and presentation skills.

IBMS 500. On Being a Professional Scientist: The Responsible Conduct of Research. 1 Unit.

The goal of this course is to provide graduate students with an opportunity to think through their professional ethical commitments before they are tested, on the basis of the scientific community’s accumulated experience with the issues. Students will be brought up to date on the current state of professional policy and federal regulation in this area, and, through case studies, will discuss practical strategies for preventing and resolving ethical problems in their own work. The course is designed to meet the requirements for “instruction about responsible conduct in research” for BSTP and MSTP students supported through NIH/ADAMHA institutional training grant programs at Case. Attendance is required.

Department of Anatomy

Room WG-46, School of Medicine
http://www.case.edu/med/anatomy/
Phone: 216.368.2433
Clifford V. Harding, MD, PhD, Interim Chair
clifford.harding@case.edu
Christine Marshall (christine.marshall@case.edu), Department Administrator

The Department of Anatomy is to provide individuals with the skills and experiences that will allow them to develop and maintain successful careers as researchers and teachers. The strengths of both the faculty and students of the department help lead to the achievement of this goal. Graduate studies in the Department of Anatomy can lead to the master of science degree in applied anatomy. The master’s degree may be obtained as part of a joint degree program for qualified individuals participating in other programs at the university, such as the joint MD/MS degree. Every MS graduate student in the Department of Anatomy must successfully complete 19 credits in the core curriculum of anatomical sciences, human gross anatomy, histology, neuroanatomy and embryology. Elective course work and, for the thesis MS students, laboratory rotations and research, complete the graduate students’ program of study. Research areas of particular strength among faculty in the Department of Anatomy include biological anthropology, cell injury, control of respiration, and non-molecular developmental neurobiology. The department has existing collaborative research efforts with basic scientists in several clinical departments, including medicine, orthopedics, pediatrics, neurology and neurosurgery.

MS Applied Anatomy

The Applied Anatomy program is designed for students who seek a comprehensive education in the anatomical sciences, particularly those individuals pursuing careers as medical health professionals and teachers who desire an advanced degree to enhance their skills and credentials. The Anatomical Sciences Core Curriculum (ASC) courses emphasize the traditional aspects of anatomical structure, function, and nomenclature with critical aspects of cell and developmental biology, biochemistry, and physiology of cells, tissues, and organs integrated into their content. The elective courses allow curriculum flexibility for students to emphasize their diverse individual interests. The Master of Science in Applied Anatomy serves as an excellent preparation for subsequent studies in schools of medicine, dentistry, and nursing. The knowledge of the human body and its physiological processes gained in this program also forms a significant foundation for physician assistants, physical therapists, dental technicians, and K-12 life sciences teachers.

Students in this post-baccalaureate program earning the Master of Science in Applied Anatomy use their rigorous training in the anatomical sciences to establish an academic basis for their application to professional schools. Case Western Reserve University medical students earning the joint MD/MS degree program seek advanced training in the anatomical sciences. The joint MD/MS program is undertaken and completed concurrently with the medical curriculum, particularly if the student enters the graduate program during the first year of medical school.

Admission

Acceptance into the Master of Science in Applied Anatomy program requires a baccalaureate degree from an accredited institution and is
Degree Requirements
The Master of Science in Applied Anatomy degree requires a minimum of 30 graduate course credits. Required courses include 19 credits of the Anatomical Sciences Core Curriculum; the remaining credits are elective courses selected to fulfill individual student interests and goals. Medical students are required to take at least one of the Surgical Anatomy courses. A research thesis is not required for the non-thesis type B MS Applied Anatomy, although research experience may be obtained as elective coursework ANAT 499: Independent Study with individual faculty members.

Comprehensive written and oral exams covering the basic scientific principles presented in the core curriculum must be passed after successful completion of the formal coursework comprising the Anatomical Sciences Core Curriculum. All degree requirements must be completed within five years; most students complete the program in 2 years. Tuition or stipends will not be provided for the master of science program (no additional tuition is required for enrolled medical students).

These specific sequences of classes, while common, are not exclusive and are meant only to exemplify the typical program of study leading to the Master of Science in Applied Anatomy degree. The required courses (19 credits) comprising the Anatomical Sciences Core Curriculum are specifically delineated, whereas the elective courses (11 credits minimum) are not identified since they vary significantly between individual students. Students become eligible to take the MS Comprehensive Examination upon successful completion of the ASCC courses.

MS & MD/MS Applied Anatomy, Plan of Study (4 semester)
First Year
Fall
ANAT 412 Histology and Ultrastructure (Elective) 4
ANAT 413 General Histology Laboratory () 2
Elective 1-3

Spring
ANAT 411 Gross Anatomy 6
Elective 1-3
(Medical students apply to MD/MS program)

Summer
Elective 1-6

Second Year
Fall
ANAT 414 Neurological Anatomy 4
Elective 1-3

Spring
ANAT 491 Embryology 3
Elective 1-3

Master of Science ASCC Comprehensive Examination (May/June)
(MD/MS Step I Exam)
Summer: MS Graduation (August)

1 Year III & IV MD/MS Only:
[MD/MS: continue clinical/ research rotations]
Surgical Anatomy courses [1 required—1 clinical block each]
Surgical Anatomy I, worth 4 credit hours, to be taken in the fall;
Surgical Anatomy II, worth 4 credit hours, to be taken in the spring.
ANAT 515: ‘Orthopedics’ [Block 4] 4
ANAT 516: ‘Head & Neck’ [Block 11] 4
[Year IV- Spring: MD/MS Graduation]

Pre-Approved Electives
ANAT 445 Mammal Diversity and Evolution 4
ANAT 467 Topics in Evolutionary Biology 3
ANAT 475 Human Evolution: The Fossil Evidence 3
ANAT 477 Human Osteology 4
ANAT 520 Imaging Anatomy 3
ANAT 560 Applied Neuroanatomy 3
BIOC 407 Introduction to Biochemistry: From Molecules To Medical Science 4
BIOC 408 Molecular Biology 4
PATH 416 Fundamental Immunology 4
ANAT 462 Principles of Developmental Biology 3
PAST 510 Clinical Residency: Elective 3
ANAT 523 Histopathology of Organ Systems 3
PHRM 409 Principles of Pharmacology 3
PHOL 480 Physiology of Organ Systems 4
ANAT 499 Independent Study 1 - 4
ANAT 503 Readings and Discussions 1 - 3
ANAT 611 Practicum in Human Gross Anatomy 3

Courses
ANAT 312. Basic Histology. 3 Units.
Fundamental histology course covering microscopic structure, nomenclature, and function of normal cells, tissues, and organs (human emphasis) to provide a sound foundation for bioengineering, pre-medical and pre-dental students.
ANAT 375. Human Evolution: The Fossil Evidence. 3 Units.
This course will survey the biological and behavioral changes that occurred in the hominid lineage during the past five million years. In addition to a thorough review of the fossil evidence for human evolution, students will develop the theoretical framework in evolutionary biology. Recommended preparation: ANTH 377, BIOL 225. Offered as ANAT 375, ANTH 375, ANAT 475 and ANTH 475. Prereq: ANTH 103.

ANAT 377. Human Osteology. 4 Units.
This course for upper division undergraduates and graduate students will review the following topics: human skeletal development and identification; and forensic identification (skeletal aging, sex identification and population affiliation). Offered as ANAT 377, ANTH 377, ANAT 477 and ANTH 477.

ANAT 391. Embryology. 3 Units.
A detailed description of development will be presented, focusing mainly on the developing human. Discussions and presentations will also include several developing systems that have served as useful models in experimental embryology for deciphering mechanisms responsible for producing adult metazoan organisms. Offered as ANAT 391 and ANAT 491.

ANAT 399. Independent Study. 1 - 4 Units.
Laboratory research project. Student must obtain approval of a supervising Anatomy department professor before registration and list the professor's name on the schedule card.

ANAT 410. Cadaver dissection-based human anatomy with histology and physiologic correlations. 6 Units.
This course will provide students with a sound understanding of the normal human body as a foundation for subsequent pursuing biomedical careers. A combination of daily lectures and laboratories integrates cadaver dissection-based gross anatomy with the associated histology, embryology, neuroanatomy and basic physiology. This course is well-suited to all biomedical careers, including pre-clinical and biomedical undergraduates, post-baccalaureate, pre-clinical master of science graduate programs, plus medical and dental students seeking additional training in the anatomical sciences. It will meet any of the anatomy-oriented prerequisites being implemented for medical and dental school applications, including those preferring or requiring a cadaver-based experience. The assessments will include a combination of written and cadaver-based practical questions. Offered as ANAT 410 and PAST 410.

ANAT 411. Gross Anatomy. 6 Units.
This in-depth, cadaver dissection-based, course covers all aspects of human gross anatomy. The course is modeled after a traditional medical school gross anatomy curriculum and taught by the CWRU School of Medicine, Department of Anatomy faculty. It is divided into three sections: thorax and abdomen; pelvis/perineum and limbs/back; and head and neck. One hour of lecture will precede 3 hours of dissection laboratory Monday, Wednesday, and Friday. Lectures and dissection labs will cover all human anatomy, and students should be prepared to devote more time that the scheduled hours of 1:00 to 5:00pm. Dissection labs are open 24 hours 7 days a week. Recommended preparation: B.A./B.S., or fourth year undergraduate science major.

ANAT 412. Histology and Ultrastructure. 4 Units.
Comprehensive functional histology course integrating microscopic identification ('structure plus nomenclature') of normal cells, tissues, and organs with aspects of their cell biology, biochemistry, and physiology ('function'). Topical coverage includes complete ('head-to-toe') tissue and organ survey with human emphasis.

ANAT 413. General Histology Laboratory. 2 Units.
Microscopic structure of tissues and organs. Laboratory course associated with ANAT 412 (see ANAT 412 description). Recommended preparation: ANAT 312 or ANAT 412 or concurrent enrollment.

ANAT 414. Neurological Anatomy. 4 Units.
This course employs a variety of teaching-learning methods—among them lectures, small-group discussions, hands-on "construction" of pathways, and brain dissection. Regional morphology will be studied via examination of the preserved brain and of sections through the CNS; functional systems will be "followed" through the spinal cord, brain stem and/or forebrain.

ANAT 415. Functional Neuroanatomy. 4 Units.
This course focuses on concepts underlying the structure and function of important sensory and motor systems in both the central and peripheral nervous systems. Emphasis is placed on learning how different patterns of neuronal connectivity give rise to certain perceptions and motor behaviors. Additionally, the composition and distribution of peripheral nerves -- spinal, cranial, and autonomic -- is studied. Particular attention is paid to the anatomy and function of those structures innervated by the cranial nerves. A variety of teaching-learning activities is employed - among them, lectures, small-group discussions, student presentations, and examination of preserved brains and brain sections.

ANAT 424. Neural Integrative and Regulatory Mechanisms. 3 Units.
This course is designed as a sequence to ANAT 414, Neurological Anatomy, or any other "introductory" course in neuroanatomy. Topics to be addressed include central regulation of pain, the regulation of somatic and visceral motor activity, neurotransmitter substances, the basal forebrain, the blood-brain barrier, levels of consciousness, sleep-wake mechanisms, cognitive behaviors and memory. Appreciation of the three-dimensional anatomy and vasculature of the spinal cord and brain will be gained through brain dissection and study of stained and unstained sections. Recommended preparation: ANAT 414 or permission.

ANAT 431. Statistical Methods I. 3 Units.
Application of statistical techniques with particular emphasis on problems in the biomedical sciences. Basic probability theory, random variables, and distribution functions. Point and interval estimation, regression, and correlation. Problems whose solution involves using packaged statistical programs. First part of year-long sequence. Offered as ANAT 431, BIOL 431, CRSF 431, PQHS 431 and MPH 431.

ANAT 445. Mammal Diversity and Evolution. 4 Units.
This course focuses on the anatomical and taxonomic diversity of mammals in an evolutionary context. The emphasis is living (extant) mammals, but extinct mammals are also discussed. By the end of the course, students will be able to: (1) describe the key anatomical and physiological features of mammals; (2) name all orders and most families of living mammals; (3) identify a mammal skull to order and family; (4) understand how to create and interpret a phylogenetic tree; (5) appreciate major historical patterns in mammal diversity and biogeography as revealed by the fossil record. Two student-led seminars and one lab each week. Most labs will take place at the Cleveland Museum of Natural History. One weekend field trip to Cleveland Metroparks Zoo. This course satisfies a laboratory requirement for the biology major. Offered as ANAT 445, BIOL 345, and BIOL 445. Prereq: BIOL 214.

ANAT 462. Principles of Developmental Biology. 3 Units.
The descriptive and experimental aspects of animal development. Gametogenesis, fertilization, cleavage, morphogenesis, induction, differentiation, organogenesis, growth, and regeneration. Students taking the graduate-level course will prepare an NIH-format research proposal as the required term paper. Offered as BIOL 362, BIOL 462 and ANAT 462.
ANAT 467. Topics in Evolutionary Biology. 3 Units.
The focus for this course on a special topic of interest in evolutionary biology will vary from one offering to the next. Examples of possible topics include theories of speciation, the evolution of language, the evolution of sex, evolution and biodiversity, molecular evolution. ANAT/ ANTH/EEPS/PHIL/PHOL 467/BIOL 468 will require a longer, more sophisticated term paper, and additional class presentation. Offered as ANTH 367, BIOL 368, EEPS 367, PHIL 367, ANAT 467, ANTH 467, BIOL 468, EEPS 467, PHIL 467 and PHOL 467.

ANAT 475. Human Evolution: The Fossil Evidence. 3 Units.
This course will survey the biological and behavioral changes that occurred in the hominin lineage during the past five million years. In addition to a thorough review of the fossil evidence for human evolution, students will develop the theoretical framework in evolutionary biology. Recommended preparation: ANTH 377, BIOL 225. Offered as ANAT 375, ANTH 375, ANAT 475 and ANTH 475. Prereq: ANTH 103.

ANAT 477. Human Osteology. 4 Units.
This course for upper division undergraduates and graduate students will review the following topics: human skeletal development and identification; and forensic identification (skeletal aging, sex identification and population affiliation). Offered as ANAT 377, ANTH 377, ANAT 477 and ANTH 477.

ANAT 491. Embryology. 3 Units.
A detailed description of development will be presented, focusing mainly on the developing human. Discussions and presentations will also include several developing systems that have served as useful models in experimental embryology for deciphering mechanisms responsible for producing adult metazoan organisms. Offered as ANAT 391 and ANAT 491.

ANAT 497. Scientific Presentations. 1 Unit.
These courses provide a foundation and experience for making scientific presentations. Scheduled simultaneously with ANAT 498 and students from both courses are present, but the requirements for passing differ. Students in ANAT 497 prepare PowerPoint and poster presentations. Oral presentations by students taking ANAT 498 will occur during the class periods for the remainder of the semester. Students taking 497 and 498 must participate in these discussions. Students must take ANAT 497: Scientific Presentations before ANAT 498: Applied Anatomy Seminar.

ANAT 498. Applied Anatomy Seminar. 1 Unit.
These courses provide a foundation and experience for making scientific presentations. Scheduled simultaneously with ANAT 497 and students from both courses are present, but the requirements for passing differ. Students in ANAT 497 prepare PowerPoint and poster presentations. Oral presentations by students taking ANAT 498 will occur during the class periods for the remainder of the semester. Students taking 497 and 498 must participate in these discussions. Students must take ANAT 497: Scientific Presentations before ANAT 498: Applied Anatomy Seminar.

ANAT 499. Independent Study. 1 - 4 Units.
Laboratory research project. Student must obtain approval of a supervising Anatomy department professor before registration and list the professor’s name on the schedule card.

ANAT 503. Readings and Discussions. 1 - 3 Units.
In-depth consideration of special selected topics through critical evaluation of the literature. Student must obtain approval of supervising Anatomy department professor before registration.

ANAT 513. Surgical Anatomy of the Thorax and Abdomen. 4 Units.
This course is intended for graduate and fourth-year medical students interested in surgery and surgical subspecialties. This integrated course will review basic gross anatomy, provide advanced training in gross and surgical anatomy, introduce common clinical problems and their anatomical consequences, and basic surgical approaches. Recommended preparation: ANAT 411 and permission of instructor.

ANAT 515. Surgical Anatomy: Orthopaedic Musculoskeletal. 4 Units.
This orthopaedic musculoskeletal anatomy course is offered to M.S. in Applied Anatomy students and fourth year medical students. The course will familiarize participants with surgical approaches used to treat musculoskeletal disease. Students will learn to correlate normal and abnormal anatomical findings with radiographical studies. Recommended preparation: ANAT 411.

ANAT 516. Surgical Anatomy: Head and Neck. 4 Units.
This cadaver-based advanced anatomy course is offered to M.S. in Applied Anatomy students and fourth year medical students. Students will build on their understanding of basic gross, histological, pathologic, and embryonic anatomy of the head and neck. The course will familiarize participants with surgical approaches used to treat pathological conditions of the head and neck including cranial cavity, cranial base, orbit, maxillofacial, oral, otic, pharyngeal, and airway. Students are required to attend and participate in lectures, surgical labs, and discussions in order to successfully complete the course. Instructor consent is required. Recommended preparation: ANAT 411.

ANAT 520. Imaging Anatomy. 3 Units.
Imaging anatomy will reinforce the student’s knowledge of anatomy and introduce the field of radiology. Students would be motivated to broaden their understanding of anatomy by being exposed to the application of that knowledge. The curriculum would introduce radiologic concepts, while stressing the normal anatomy of organ systems by imaging modalities. Anatomical structures will be recognized by projectional and cross-sectional modalities. The student will be expected to demonstrate the anatomical characteristics of that structure by oral or written account, for example course, area of supply, relations, morphology, etc. Recommended Preparation: Comprehensive knowledge of human anatomy, such as ANAT 411.

ANAT 523. Histopathology of Organ Systems. 3 Units.
Comprehensive course covering the underlying basic mechanisms of injury and cell death, inflammation, immunity, infection, and neoplasia followed by pathology of specific organ systems. Material will include histological ('structure') and physiological ('function') aspects related to pathology (human emphasis). Recommended preparation: ANAT 412 or permission of instructor. Offered as ANAT 523 and PATH 523.

ANAT 560. Applied Neuroanatomy. 3 Units.
This course is constructed to reinforce the student’s understanding of neuroanatomy. Through problem-based learning the student will set their own learning objectives based on a neurosurgical case. Presentations will use imaging, anatomic diagrams, and cadaveric dissection to demonstrate applications. Learning in this clinical context will increase motivation and understanding of this important subject. Primarily for medical students and graduate students, enrollment is by permission of instructor and completing ANAT 414, Neurological Anatomy. Prereq: ANAT 414.
ANAT 610. Oxygen and Physiological Function. 3 Units.
Lecture/discussion course which explores the significance and
consequences of oxygen and oxygen metabolism in living organisms.
Topics to be covered include oxygen transport by blood tissues, oxygen
toxicity, and mitochondrial metabolism. Emphasis will be placed
on mammalian physiology with special reference to brain oxidative
metabolism and blood flow as well as whole body energy expenditure and
oxidative stress related to disease. The course will cover additional spans
of physiology, nutrition and anatomy. Offered as ANAT 610, NTRN 610,
and PHOL 610.

ANAT 611. Practicum in Human Gross Anatomy. 3 Units.
A course of study designed especially for the preparation of teachers that
involves the supervised practical application of previously studied theory.
The teaching experience obtained will be obtained in ANAT 411 - Human
Gross Anatomy. Teaching will be guided, supervised, and evaluated by the
appropriate faculty from the department of anatomy. The three sections
of ANAT 611 and the subjects covered are: Trunk Gross Anatomy (6
weeks), Musculoskeletal Gross Anatomy (3 weeks), Head & Neck Gross
Anatomy (4 weeks). Required preparation: ANAT 411 and permission of
instructor.

ANAT 612. Practicum in Histology and Ultrastructure. 2 Units.
A course of study designed especially for the preparation of teachers that
involves the supervised practical application of previously studied theory.
The prerequisite knowledge required for ANAT 612 must have been
obtained previously in ANAT 412: Histology and Ultrastructure and
the associated laboratory ANAT 413: Histology Laboratory. Required
participation in ANAT 612 is defined as: 1. Meet weekly with course
instructor to (pre)review course material; 2. Attend all ANAT 412 lectures;
3. Participate/assist in all ANAT 413 laboratory sessions. Teaching
will be guided, supervised, and evaluated by the course instructor with
reference to the graduate student's overall progress and performance as
a teacher. Required prerequisites: 'A' grades on ANAT 412 and ANAT 413;
permission of instructor required.

ANAT 614. Practicum in Neurological Anatomy. 1 Unit.
A course of study designed especially for the preparation of teachers that
involves the supervised practical application of previously studied theory.
The graduate student will administer all laboratory sessions, assisting
students with identification of structures and with understanding the
functional aspects of neuroanatomical pathways. The graduate
student will meet with the course director once per week to discuss the
student's performance and progress and to plan for upcoming class
sessions. The course director will assist the student in developing the
organizational skills necessary to be a course director as the student
learns to anticipate questions, define problematic areas, and recognize
varying learning styles. The graduate student will be evaluated by the
course director with reference to the graduate student's overall progress and
performance as a teacher. Recommended prerequisites: 'A' grades on ANAT 412 and ANAT 413;
permission of instructor required.

ANAT 651. Thesis M.S.. 1 - 9 Units.
Master's Thesis Plan A.

ANAT 701. Dissertation Ph.D.. 1 - 9 Units.
(Credit as arranged.) Prereq: Predoctoral research consent or advanced to
Ph.D. candidacy milestone.

Jennifer Puin, PhD
Director of Admissions
info@anesthesiaprogram.com or 216.844.8077
http://case.edu/medicine/msa-program

The Department of Anesthesiology and Perioperative Medicine medical
division of University Hospitals Cleveland Medical Center includes more
than fifty attending anesthesiologists on staff supervising resident
anesthesiologists and anesthetists to provide the best patient care.

The Anesthesiologist Assistant (AA) program at Case Western Reserve
University began in 1970 and originally awarded a baccalaureate degree,
evolving into a professional postgraduate curriculum in 1987 and
granting the Master of Science degree. Admission to the AA program
requires a bachelor's degree with prescribed prerequisites typical of
premedical course work and successful completion of the MCAT. The
application deadline for the CWRU program is October 1 of each year
for admission into the class that starts at the end of May. The 24-month
AA program is accredited by the Commission on Accreditation of Allied
Health Education Programs (CAAHEP) and is based on the Standards
for Anesthesiologist Assistant Programs. Graduates must complete a
curriculum that includes 68 credit hours (six semesters) of classroom
and clinical instruction. The first three semesters integrate basic science
and clinical instruction.

CWRU also oversees the Master of Science in Anesthesia
Program's Houston, Texas campus (http://case.edu/medicine/msa-
program/locations/houston-tx) and Washington, DC campus (http://
case.edu/medicine/msa-program/locations/washington-dc).

The program is led by Joseph M. Rifici, CAA, MEd, and Matthew P.
Norcia, MD. More information can be obtained from Jennifer Puin
(info@anesthesiaprogram.com), Director of Admissions.

Master of Science in Anesthesia Degree

The Master of Science in Anesthesia (MSA) Program mission is to
graduate skilled and compassionate anesthesiologist assistants. The
admission policy reflects this goal. Applicants are considered on a variety
of parameters that measure academic ability, communication skills,
clinical aptitude, and personality traits.

Admission to the MSA Program requires that the following criteria are met:

A. Bachelor's degree from an accredited college or university

Documentation of each of the prerequisites listed below having been completed with a grade of B- or higher within five (5) years prior to the
application deadline at an accredited American or Canadian institution of
higher learning. For those courses that have been repeated, the highest
grade will be used in the calculation.

• one semester of biochemistry
• one year of biology with laboratory*
• one semester of human anatomy with laboratory
• one semester of human physiology
• one year of chemistry with laboratory*
• one year of organic chemistry with laboratory*
• one year of physics with laboratory*
• one semester of calculus*
• one semester of advanced statistics (preferably for the life sciences)*
• one semester of English with expository writing

* If any of the above courses marked with an asterisk were completed (with a grade of B- or higher) in excess of five (5) years prior to the application deadline, they will meet the prerequisite criteria only if the composite score of the MCAT is 500 or higher.

B. Medical College Admission Test

• minimum composite score of 493
• test must have been completed within 3 years of application deadline
• when the MCAT has been taken more than once, component scores from different exams may not be combined

Applicants with international undergraduate, graduate or advanced degrees must meet the standard admission requirements listed above. International application requirements also include the TOEFL (Test of English as a Foreign Language) or the IELTS (International English Language Testing System) and Education Credential Evaluation Reports for foreign transcripts.

All materials must be received by the deadline, October 1st. Candidates participate in interviews with members of the Admissions Committee, which is comprised of faculty and staff members of the MSA Program. All academic requirements must be completed satisfactorily before matriculation. Prospective candidates are permitted and encouraged to shadow an anesthetist in the OR. Prior approval for this visitation is required.

The 24-month program includes 68 credit hours (six semesters) of classroom and clinical instruction. The first three semesters integrate basic science and clinical instruction. During the remaining 3 semesters, students complete month-long rotations in all subspecialties of anesthesiology: ambulatory surgery, burns and trauma, cardiothoracic surgery, general surgery, neurosurgery, obstetrics, pediatrics, surgical intensive care unit. Clinical training focuses on all types of anesthesia including general, epidural, spinal and peripheral nerve blockade.

Instruction is also provided in advanced patient care monitoring techniques and pre-testing, calibration and operation of anesthesia delivery systems and monitors. At CWRU our personal approach and rigorous educational standards produce compassionate and highly skilled anesthesiologist assistants.

The MSA Program is accredited by the Commission on Accreditation of Allied Health Education Programs (CAAHEP) and is based on the Standards for Anesthesiologist Assistant Programs. Graduates sit for the Certification Examination administered by the National Commission for Certification of Anesthesiologist Assistants (NCCAA) and co-sponsored by the National Board of Medical Examiners (NBME).

The additional information may be found on the Master of Science in Anesthesia Program website (http://case.edu/medicine/msa-program).

MS Anesthesiologist Assistant, Plan of Study

<table>
<thead>
<tr>
<th>Basic Science Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac Electrophysiology (ANES 403)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Physiology for Anesthesiologist Assistants I (ANES 456)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anesthesia Clinical Correlation I (ANES 462)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anesthesia Clinical Experience I (ANES 463)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacology for Anesthesiologist Assistants I (ANES 475)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Anesthetic Sciences I (ANES 480)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiological Model-Based Simulation I (ANES 486)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anesthesia Non-Technical Skills Lab (ANES 488)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minimum Clinical Experience Required = 511 hours
Courses

ANES 403. Cardiac Electrophysiology. 2 Units.
In this course students will learn basic and advanced Electrocardiogram interpretation using simulators and electrocardiograms to understand an overview of heart anatomy, function, and neurophysiology.

ANES 440. Patient Monitoring and Instrumentation I. 2 Units.
Students are taught the proper balance between circuits and engineering concepts and the clinical application of anesthesia instrumentation. Monitors and devices used in the operating room are studied with respect to principles of operation, calibration, and interpretation of data. A hands-on laboratory is utilized to maximize direct contact to the instrumentation of the profession.

ANES 441. Patient Monitoring and Instrumentation II. 2 Units.
Continuation of ANES 440. Recommended preparation: ANES 440.

ANES 456. Applied Physiology for Anesthesiologist Assistants I. 3 Units.
Basic and applied human systems physiology with emphasis on topics and areas of special concern to the anesthetist.

ANES 458. Applied Physiology for Anesthesiologist Assistants II. 3 Units.
Continuation of ANES 456. Recommended preparation: ANES 403 and ANES 456.

ANES 460. Introduction to Anesthesia. 2 Units.
Introduction to basic concepts dealing with clinical anesthesia. Medical terminology, human anatomy, medical chart interpretation and drug dosage calculations.

ANES 461. Orientation to Clinical Experience. 3 Units.
Introduction to experience in the operating room with emphasis on the fundamental procedures and techniques used in administering an anesthetic. Preoperative assessment, IV placement techniques, airway management, intraoperative patient care and postoperative management are all emphasized in this course. BLS (basic life support) certification is required for course completion. Recommended preparation: Acceptance in the M.S.A. program.

ANES 462. Anesthesia Clinical Correlation I. 1 Unit.
A series of conferences presented by students that applies to anesthetic theory as it relates to the clinical experience. Specific anesthetic situations are emphasized. Recommended preparation: ANES 460.

ANES 463. Anesthesia Clinical Experience I. 3 Units.
A continuation of the preparation, observation, and hands-on learning format initiated in ANES 461. Patient management and technical skills are refined with close attention to the didactic course work. A comprehensive clinical examination is administered at the end of the semester. ACLS (Advanced Cardiac Life Support) certification is required for course completion. Recommended preparation: ANES 461.

ANES 464. Anesthesia Clinical Correlation II. 1 Unit.
A spectrum of case presentation conferences presented by the students dealing with basic and major problems in anesthesia management. Medical and surgical history of individual patients and the outcomes of anesthesia and surgery are emphasized. Journal Club and Morbidity and Mortality conferences are included. Recommended preparation: ANES 462.

ANES 465. Anesthesia Clinical Experience II. 4 Units.
A continuation of ANES 463. A comprehensive clinical examination is administered at the end of the semester. PALS (Pediatric Advanced Life Support) and ACLS (Advanced Cardiac Life Support) certification is required for course completion. Recommended preparation: ANES 463, BLS Certification, ACLS Certification.

ANES 467. Anesthesia Clinical Experience III. 4 Units.
Extended exposure to all of the clinical subspecialties of anesthesiology (obstetrics, pediatrics, neurosurgery, cardiovascular, etc.). Students alternate through rotations at several area hospitals. Recommended preparation: ANES 465, ACLS certification and PALS.

ANES 468. Anesthesia Clinical Correlation III. 1 Unit.

ANES 469. Anesthesia Clinical Experience IV. 8 Units.
A continuation of ANES 467. A comprehensive clinical examination is administered at the end of the semester. Recommended preparation: ANES 467.

ANES 470. Anesthesia Clinical Correlation IV. 1 Unit.

ANES 471. Anesthesia Clinical Experience V. 8 Units.
A continuation of ANES 469. A comprehensive clinical examination is administered at the end of the semester. Recommended preparation: ANES 469.

ANES 475. Pharmacology for Anesthesiologist Assistants I. 3 Units.
Pharmacodynamics, pharmacokinetics, uptake, distribution and action of the volatile and intravenous anesthetics, muscle relaxants, narcotics, hypnotics and other pharmaceuticals used in the administration of an anesthetic. Prereq: Consent of Department.

ANES 476. Pharmacology for Anesthesiologist Assistants II. 3 Units.
Continuation of ANES 475. Prereq: ANES 475.
ANES 477. Clinical Decision Making in Anesthesia. 2 Units.
An introduction to thinking about clinical situations and problems and coming to safe and effective solutions to these problems. This course focuses on common clinical situations where appropriate decision making is important to the outcome of the case. Numerous areas of medicine and anesthesiology will be covered to provide the student with a wide sampling of decisions made each day with patient care. This course supplements the other courses offered during the spring semester by integrating and applying basic science knowledge to the care of patients. Prereq: Consent of department.

ANES 480. Fundamentals of Anesthetic Sciences I. 1 Unit.
A series of courses over the fall and spring semesters that covers a series of topics in basic medical science with special emphasis on the effect of anesthetics on normal physiology. An examination is administered at the end of each semester.

ANES 481. Fundamentals of Anesthetic Sciences II. 1 Unit.
A series of topics in basic medical science with special emphasis on the effect of anesthetics on normal physiology. An examination is administered at the end of the semester. Prereq: ANES 480.

ANES 485. Introduction to Physiological Model-Based Simulation. 1 Unit.
Introduction to physiological model-based simulation using on-screen computer simulation and mannequins. Emphasis is placed on improving appropriate anesthesia-related basic science knowledge, manual skills in anesthesia machine checkout, drug and equipment setup, safety inspections, and performing anesthesia for uncomplicated surgical cases.

ANES 486. Physiological Model-Based Simulation I. 1 Unit.
An extension of ANES 485 with emphasis on improving or exercising knowledge of anesthesia-appropriate basic science, the use of more advanced equipment and techniques for uncomplicated surgical cases with an introduction to crisis management. Recommended preparation: ANES 485.

ANES 487. Physiological Model-Based Simulation II. 1 Unit.
An extension of ANES 486 emphasizing the physical techniques aspects of crisi management, team work and rescue in anesthesiology. Included are the elements of crisis management, team work and rescue in anesthesia. Prereq: ANES 486.

ANES 488. Anesthesia Non-Technical Skills Lab. 1 Unit.
In this course the student will learn anesthesia non-technical skills, which are used integrally with medical knowledge and clinical techniques. They encompass both interpersonal skills (e.g. communication, team working, leadership) and cognitive skills (e.g. situation awareness, decision making). This course uses modified Crew Resource Management techniques taught in the aviation industry and considers the limitations of human performance and the nature of human error. The goal is to train individuals to avoid, capture and mitigate against the consequences of error. During the course, behaviors shown to minimize errors and maximize patient safety are highlighted and then practiced, with feedback being given to students on their performance.

ANES 490. Ethics, Law and Diversity for Anesthesiologist Assistants. 2 Units.
This course will focus on three topics. First, a discussion of legal practice as it applies to health care including basics of medical jurisprudence, negligence, and how to avoid a lawsuit. Second, a discussion of ethical theory including the principles of medical ethics, do not resuscitate, truth telling, and assessment of competence. Last, a discussion on diversity that will focus on the differences and similarities among people and how these factors influence patient care. The final grade will be based on an essay and a multiple choice exam.

ANES 499. Clinical Remediation. 1 - 10 Units.
(Credit as arranged.) Course offered to the student one time during the program of study which remediates “C” or below work in a clinical course.

ANES 580. Fundamentals of Anesthetic Sciences III. 1 Unit.
The second-year equivalent of ANES 480 and ANES 481. An examination is administered at the end of the semester. Recommended preparation: ANES 480 and ANES 481.

ANES 581. Fundamentals of Anesthetic Sciences IV. 1 Unit.
The second year equivalent of ANES 481. An examination is administered at the end of the semester. Prereq: ANES 580.

ANES 584. Physiological Model-Based Simulation III. 1 Unit.
An extension of ANES 487 emphasizing the physical techniques and aspects of crisis management, team work, and rescue in anesthesia. Prereq: ANES 487.

ANES 585. Physiological Model-Based Simulation IV. 1 Unit.
Extension of ANES 584 emphasizing the physical techniques and aspects of crisis management, team work, and rescue in anesthesia. Prereq: ANES 584.

ANES 599. Clinical Remediation. 1 - 10 Units.
(Credit as arranged.) Course offered to the student one time during the program of study which remediates “C” or below work in a clinical course.

Department of Biochemistry
Room W-427, School of Medicine
http://www.case.edu/med/biochemistry/
Phone: 216.368.3334; Fax: 216.368.3419
Walter F. Boron, MD, PhD, Interim Chair
walter.boron@case.edu

Inca Dorsey (inca.dorsey@case.edu), Coordinator

Biochemistry is the study of the molecular basis of cellular function, making it a central discipline in the biological sciences. Biochemists ask the question, “How do life processes work at the molecular level?” The Department of Biochemistry offers undergraduate programs leading to the bachelor of arts degree and bachelor of science degree in biochemistry and graduate programs leading to the master of science, doctor of philosophy, and dual-degree programs as follows: doctor of medicine/doctor of philosophy degree; doctor of medicine/masters of science in biomedical investigation; juris doctor/masters of science in biochemistry.

The department also participates in several interdisciplinary and interdepartmental programs in the School of Medicine and at Case Western Reserve University that provide additional avenues of study. Research interests within the department include a spectrum of modern biochemical topics in six broad areas: enzymology, protein chemistry, structural biology, gene expression, cell biology, and molecular medicine/ gene therapy. The department has state-of-the-art equipment and facilities for research in modern biochemistry. More complete information about the undergraduate and graduate programs may be obtained by contacting the departmental office or by using the URL above.

Research Areas
Research of Department of Biochemistry faculty members covers a broad spectrum of topics from events at the level of electron movement in biochemical reactions to the intracellular trafficking of proteins. Research in the department is broadened by collaborations with faculty in other university departments and with scientists at other Cleveland research
institutions. The areas of active research within the department are outlined below.

Proteins and Enzymes
Proteins are components of all living tissue, and their function is critical for life processes. Understanding the chemical mechanisms of enzymatic catalysis is essential for determining the role of individual proteins in human disease. Biochemistry faculty study a variety of proteins and enzymes ranging from growth factors to oncogenes.

Structural Biology
The function of a protein is determined by its three-dimensional structure and interactions. Faculty apply many modern techniques to the determination of macromolecular structure, including X-ray crystallography, and multidimensional heteronuclear NMR, fluorescence, Raman, and circular dichroism spectroscopy. Macromolecules under investigation include, transcarboxylase, ribosomes, DNA-protein complexes, and neurochemical enzymes.

Regulation of Gene Expression
The elucidation of mechanisms regulating gene expression is a major goal of modern biology. Biochemistry faculty study the control of transcription by hormones and other regulatory molecules, the interaction between proteins and DNA, the function of oncogenes, the basal and hormone mediated transcriptional machinery, and the processing and translation of RNA.

Cell Biology
The control of the metabolism, differentiation and cell signaling within and between cells is an area of active investigation.

Metabolic Regulation
Biochemistry faculty investigate the control of metabolism in animals, such as dietary and hormonal regulation of gene expression. Transgenic murine technology allows the study of the impact of gene ablation on metabolic processes.

Major
The two undergraduate major programs in Biochemistry, BA and BS, are based on the Arts and Sciences General Education Requirements, but differ in amount and intensity of the mathematics and physical sciences required. Either degree is excellent for students planning to undertake graduate work in biochemistry or in related areas of the biomedical sciences. Both the BA and the BS programs permit students to follow many options after graduation. Graduates are well prepared to pursue further studies in the biological sciences, for a career in medicine, for Doctor of Pharmacy programs, for employment in the chemical, pharmaceutical, and biotechnology industries, or as research assistants in research laboratories. The BA has a reduced emphasis on the quantitative aspects of science and makes available a considerable amount of elective time that permits a student to either concentrate on biochemistry even more intensively than the curriculum requires, or pursue other subjects in science or liberal arts. The BS degree is for the student who has a particularly strong interest in the quantitative physical sciences.

In both programs, undergraduate research is required. As many as nine hours of Research in Biochemistry (BIOC 391 Research Project) may be credited toward the requirements for graduation. The capstone in Biochemistry (BIOC 393 Senior Capstone Experience) is a thesis and presentation of a student's undergraduate research studies.

Bachelor of Arts in Biochemistry

Required Courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 307</td>
<td>Introduction to Biochemistry: From Molecules To Medical Science</td>
<td>4</td>
</tr>
<tr>
<td>BIOC 308</td>
<td>Molecular Biology</td>
<td>4</td>
</tr>
<tr>
<td>BIOC 373</td>
<td>Biochemistry SAGES Seminar (SAGES Departmental Seminar)</td>
<td>3</td>
</tr>
<tr>
<td>Biochemistry elective:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>BIOC 312</td>
<td>Proteins and Enzymes</td>
<td>3</td>
</tr>
<tr>
<td>or BIOC 334</td>
<td>Structural Biology</td>
<td>3</td>
</tr>
</tbody>
</table>

Two approved technical electives in biochemistry 6

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 393</td>
<td>Senior Capstone Experience</td>
<td>3</td>
</tr>
</tbody>
</table>

Additional Required Courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 214 & 214L</td>
<td>Genes, Evolution and Ecology and Genes, Evolution and Ecology Lab</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 215 & 215L</td>
<td>Cells and Proteins and Cells and Proteins Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 105 or CHEM 111</td>
<td>Principles of Chemistry I or Principles of Chemistry for Engineers</td>
<td>3-4</td>
</tr>
<tr>
<td>CHEM 106 or ENGR 145</td>
<td>Principles of Chemistry II or Chemistry of Materials</td>
<td>3-4</td>
</tr>
<tr>
<td>CHEM 223 or CHEM 323</td>
<td>Introductory Organic Chemistry I or Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 224 or CHEM 324</td>
<td>Introductory Organic Chemistry II or Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 233</td>
<td>Introductory Organic Chemistry Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 234</td>
<td>Introductory Organic Chemistry Laboratory II</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 301</td>
<td>Introductory Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 125 or MATH 121</td>
<td>Math and Calculus Applications for Life, Managerial, and Social Sci I or Calculus for Science and Engineering I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 126 or MATH 122</td>
<td>Math and Calculus Applications for Life, Managerial, and Social Sci II or Calculus for Science and Engineering II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 115 or PHYS 121</td>
<td>Introductory Physics I or General Physics I - Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 116 or PHYS 122</td>
<td>Introductory Physics II or General Physics II - Electricity and Magnetism</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Units: 66-68

BA Biochemistry, Sample Plan of Study

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math and Calculus Applications for Life, Managerial, and Social Sci I (MATH 125)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles of Chemistry I (CHEM 105) or Principles of Chemistry for Engineers (CHEM 111)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent Activity (PHED 100)</td>
<td>0 - 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAGES First Seminar</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genes, Evolution and Ecology (BIOL 214) & Genes, Evolution and Ecology Lab (BIOL 214L)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math and Calculus Applications for Life, Managerial, and Social Sci II (MATH 126)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bachelor of Science in Biochemistry

Required Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 307</td>
<td>Introduction to Biochemistry: From Molecules To Medical Science</td>
<td>4</td>
</tr>
<tr>
<td>BIOC 308</td>
<td>Molecular Biology</td>
<td>4</td>
</tr>
<tr>
<td>BIOC 312</td>
<td>Proteins and Enzymes</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 334</td>
<td>Structural Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 373</td>
<td>Biochemistry SAGES Seminar</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 393</td>
<td>Senior Capstone Experience</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 214</td>
<td>Genes, Evolution and Ecology</td>
<td>4</td>
</tr>
<tr>
<td>& 214L</td>
<td>and Genes, Evolution and Ecology Lab</td>
<td></td>
</tr>
<tr>
<td>BIOC 215</td>
<td>Cells and Proteins Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>& 215L</td>
<td>and Cells and Proteins Laboratory</td>
<td></td>
</tr>
<tr>
<td>CHEM 105</td>
<td>Principles of Chemistry I</td>
<td>3-4</td>
</tr>
<tr>
<td>or CHEM 111</td>
<td>Principles of Chemistry for Engineers</td>
<td></td>
</tr>
<tr>
<td>CHEM 106</td>
<td>Principles of Chemistry II</td>
<td>3-4</td>
</tr>
<tr>
<td>or ENGR 145</td>
<td>Chemistry of Materials</td>
<td></td>
</tr>
<tr>
<td>CHEM 113</td>
<td>Principles of Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 223</td>
<td>Introductory Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 323</td>
<td>Organic Chemistry I</td>
<td></td>
</tr>
<tr>
<td>CHEM 224</td>
<td>Introductory Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 324</td>
<td>Organic Chemistry II</td>
<td></td>
</tr>
<tr>
<td>CHEM 301</td>
<td>Introductory Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 335</td>
<td>Physical Chemistry I</td>
<td></td>
</tr>
<tr>
<td>CHEM 302</td>
<td>Introductory Physical Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 336</td>
<td>Physical Chemistry II</td>
<td></td>
</tr>
<tr>
<td>CHEM 233</td>
<td>Introductory Organic Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 234</td>
<td>Introductory Organic Chemistry Laboratory II</td>
<td>2</td>
</tr>
<tr>
<td>MATH 121</td>
<td>Calculus for Science and Engineering I</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 124</td>
<td>Calculus for Science and Engineering II</td>
<td></td>
</tr>
<tr>
<td>MATH 223</td>
<td>Calculus for Science and Engineering III</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 227</td>
<td>Calculus III</td>
<td></td>
</tr>
<tr>
<td>MATH 224</td>
<td>Elementary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 228</td>
<td>Differential Equations</td>
<td></td>
</tr>
<tr>
<td>PHYS 121</td>
<td>General Physics I - Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>or PHYS 123</td>
<td>Physics and Frontiers I</td>
<td></td>
</tr>
<tr>
<td>PHYS 122</td>
<td>General Physics II - Electricity and Magnetism</td>
<td>4</td>
</tr>
<tr>
<td>or PHYS 124</td>
<td>Physics and Frontiers II - Electricity and Magnetism</td>
<td></td>
</tr>
<tr>
<td>PHYS 221</td>
<td>Introduction to Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>STAT 312</td>
<td>Basic Statistics for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 250</td>
<td>Computational Methods in Physics</td>
<td></td>
</tr>
</tbody>
</table>

Additional Notes:

- Selected students may be invited to take CHEM 323 Organic Chemistry I, CHEM 324 Organic Chemistry II.
- One of the approved electives in Biochemistry taken must be either BIOC 312 Proteins and Enzymes or BIOC 334 Structural Biology.
- Students should consult their academic advisers about the elective parts of the curriculum.

Note: At least the 3 credits of undergraduate research, BIOC 391 Research Project, is minimally recommended for the Capstone. An additional 3 credits of BIOC 391 is highly recommended.
BS Biochemistry, Sample Plan of Study

<table>
<thead>
<tr>
<th>Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculus for Science and Engineering I (MATH 121)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles of Chemistry I (CHEM 105) or Principles of Chemistry for Engineers (CHEM 111)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent Activity (PHED 100)</td>
<td>0-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAGES First Semester</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genes, Evolution and Ecology (BIOL 214) & Genes, Evolution and Ecology Lab (BIOL 214L)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculus for Science and Engineering II (MATH 122)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles of Chemistry II (CHEM 106) or Chemistry of Materials (ENGR 145)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles of Chemistry Laboratory (CHEM 113)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAGES University Seminar I</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cells and Proteins (BIOL 215) & Cells and Proteins Laboratory (BIOL 215L)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent Activity (PHED 100)</td>
<td>0-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>15-25</td>
<td>16-26</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introductory Organic Chemistry I (CHEM 223)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introductory Organic Chemistry Laboratory I (CHEM 233)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculus for Science and Engineering III (MATH 223)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Physics I - Mechanics (PHYS 121)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GER Course</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introductory Organic Chemistry II (CHEM 224)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introductory Organic Chemistry Laboratory II (CHEM 234)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elementary Differential Equations (MATH 224)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Physics II - Electricity and Magnetism (PHYS 122)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GER Course</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introductory Physical Chemistry I (CHEM 301)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Biochemistry: From Molecules To Medical Science (BIOC 307)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAGES University Seminar II</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GER Course</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GER Course or elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introductory Physical Chemistry II (CHEM 302)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Biology (BIOC 308)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Modern Physics (PHYS 221)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Project (BIOC 391)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Year Total:

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteins and Enzymes (BIOC 312)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Biochemistry SAGES Seminar (BIOC 373)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Research Project (BIOC 391)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Structural Biology (BIOC 334)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Senior Capstone Experience (BIOC 393)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Statistics/Data Analysis Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Computational Methods in Physics (PHYS 250)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Basic Statistics for Engineering and Science Using R Programming (STAT 312R)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Statistics for Experimenters (STAT 313) or equiv</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>15</td>
<td>18</td>
</tr>
</tbody>
</table>

Honors Program

Biochemistry majors who have excellent academic records may be admitted to the department’s Undergraduate Honors Program. To graduate with departmental honors in biochemistry, a student must satisfy the following requirements:

1. A combined grade point average of at least 3.600
2. A minimum of 6 credit hours of undergraduate research (BIOC 391) in one laboratory
3. A BIOC 393 capstone report approved by the Undergraduate Education Committee of the department on the basis of the quality of the research, the written report, and an oral presentation. An acceptable report:
 - Should follow a standard journal format
 - Should demonstrate the student’s understanding of the research area, experimental techniques, goals and implications of the project
 - Should show that the student has advanced his/her knowledge of the applicable techniques and the underlying scientific concepts.
4. Using all or part of the capstone report, the student must be a co-author on a manuscript either submitted, in press or published in a peer reviewed journal.

Minor

Required Courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 307</td>
<td>Introduction to Biochemistry: From Molecules To Medical Science</td>
<td>4</td>
</tr>
<tr>
<td>BIOC 308</td>
<td>Molecular Biology</td>
<td>4</td>
</tr>
<tr>
<td>BIOC 312</td>
<td>Proteins and Enzymes</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 334</td>
<td>Structural Biology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Approved technical elective in biochemistry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Units</td>
<td>14</td>
</tr>
</tbody>
</table>

Students may obtain credit for a minor in biochemistry by completing one year of freshman chemistry (including laboratory), one year of organic chemistry (including laboratory), two semesters of approved biology courses, and three semesters of didactic courses in biochemistry.

Masters Degrees

The Biochemistry Department offers four Masters degrees. The three-year Masters of Science in Biochemical Research provides training in laboratory research. The two-year Masters of Science in Biochemistry provides students with advanced study in biochemistry and related fields. Two other programs provide advanced study in biochemistry in conjunction with degrees in medicine (MD/MS) and law (JD/MS).

Prerequisites for admission into any of the Biochemistry Graduate Programs are one year each of chemistry, organic chemistry, calculus, biology and physics. Applicants must also have a BA, BS or equivalent undergraduate degree. As part of the application process, students are required to take the Graduate Record Examination. Some students with otherwise excellent qualifications, but lacking some of the prerequisites may be conditionally admitted and allowed to make up the deficiencies. Students with advanced training (coursework, laboratory research, MS degree, etc.) may be given advanced standing. Please visit the Department's web page (http://www.cwru.edu/med/biochemistry) for details about the application process.

MS Biochemical Research

The program leading to the MS degree in biochemical research is uniquely designed to provide students with sufficient background and laboratory experience to enable them to work as senior research assistants and eventually as laboratory supervisors in university departments, research institutes, or industrial laboratories. The students pursue flexible and individually designed schedules, which prepare them for independent research projects in the second and third years of the program. The program simultaneously develops background knowledge and technical skills in modern biochemistry, which can be applied to several career paths. A more complete description of the program is available from the departmental office.

The duration of the MSBR program is 33 months. Applicants who have been working as full time laboratory technicians may be granted 1 semester credit for one full year of work, and up to 2 semesters credit for two or more years of work. Credit for acceptable didactic coursework may be awarded up to a total of 14 hours. All decisions concerning advanced standing or transfer of credit will be made by the Graduate Education Committee following acceptance into the program and in consultation with the advisor. Courses taken to satisfy other degree requirements (i.e. BA or BS) may not be transferred for credit. A maximum of 6 hours can be transferred toward the course requirements, as set by the Graduate School. The program shall not be extended on the basis of work that needs to be completed in order to achieve a publishable result.

The degree follows Plan A for the Master’s degree. The program requires 36 hours of academic credit (including both research and didactic courses) as well as the writing and defense of a thesis. All courses must be at the 400 level or higher. The course credits include didactic courses (minimum of 12 hours of graded coursework), research (BIOC 601 Biochemical Research) and (BIOC 651 Thesis M.S.). BIOC 651 Thesis M.S. is taken only in the second and third years and requires an examination by the student’s pre-thesis committee and a written thesis. The student's transcript will be annotated M.S. in Biochemical Research, including the title of the student's independent project.

Prior to the student's matriculation, she/he chooses an academic advisor. In general the selection process involves communication with those faculty members who have announced their interest in taking a Master's student. In some cases the student may be invited to spend up to a week in the prospective advisor’s laboratory to facilitate the decision making process. In the early spring of the first year, pre-thesis committee of three faculty members (at least two of whom must be members of the Biochemistry faculty) is chosen by the student, in consultation with the advisor. In yearly meetings, this committee provides additional scientific expertise, offers support in overcoming research difficulties and evaluates the student’s progress in research and course work.

MS Biochemical Research Plan of Study

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Biochemistry: From Molecules To Medical Science (BIOC 407)</td>
<td>4</td>
</tr>
<tr>
<td>BIOC elective</td>
<td>3</td>
</tr>
<tr>
<td>Molecular Biology (BIOC 408)</td>
<td>4</td>
</tr>
<tr>
<td>BIOC elective</td>
<td>3</td>
</tr>
<tr>
<td>Year Total</td>
<td>7</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteins and Enzymes (BIOC 412)</td>
<td>3</td>
</tr>
<tr>
<td>Biochemical Research (BIOC 601)</td>
<td>3</td>
</tr>
<tr>
<td>Structural Biology (BIOC 434)</td>
<td>3</td>
</tr>
<tr>
<td>Biochemical Research (BIOC 601)</td>
<td>4</td>
</tr>
<tr>
<td>Master’s Comprehensive Exam (EXAM 600)</td>
<td>1</td>
</tr>
<tr>
<td>Year Total</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Units in Sequence: 28

MS Biochemistry

The program leading to the MS degree in biochemistry is designed to provide students with knowledge of the latest advancements in biochemistry and related fields. It is intended for students who desire to pursue a career not directly involved with research, such as teaching, or administrative positions in the biotechnology or pharmaceutical
industries or to advance to other degree programs. Students typically enroll in three courses for each of four semesters.

The duration of the MSB program is 21 months; it follows the Plan B for the Master's degree (http://bulletin.case.edu/schoolofgraduatestudies/academicrequirements). The advisor for this program is usually the Graduate Advisor, but another advisor may be selected. The student's progress is monitored by the Biochemistry Graduate Advisor and by the Graduate Education Committee. The program requires 36 hours of academic credit of which 18 hours must be graded coursework. Although this is a "coursework Masters degree," students in the program often take 6 to 12 hours of BIOC 601 (Biochemical Research) as part of their requirements. All courses must be at the 400 level; they must be on the list of approved electives, or be approved by the advisor.

MS Biochemistry Plan of Study

First Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Biochemistry: From Molecules To Medical Science (BIOC 407)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>BIOC elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Molecular Biology (BIOC 408)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>BIOC elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteins and Enzymes (BIOC 412)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BIOC elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Structural Biology (BIOC 434)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BIOC elective</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Master's Comprehensive Exam (EXAM 600)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

Total Units in Sequence: 28

MD/MS Biomedical Investigation-Biochemistry Track

The joint MD/MS program combine type (http://bulletin.case.edu/schoolofgraduatestudies/academicrequirements) B MS programs (http://bulletin.case.edu/schoolofgraduatestudies/academicrequirements) at the School of Medicine with the MD using a common template. The core activities for this degree include limited credit from the medical core curriculum, 3-6 graduate courses in specific tracks, participation in a common seminar series, scientific integrity training, and a requirement for a special problems project that reflects a full year of research (18 hours of 601 non-graded credits) culminating in a written report and examination. This program will require 5 years overall to complete the requirements for both degrees. Students who wish to join the MD/MS program may apply to the Program after arriving at the University any time prior to Fall of their second year of medical school. For more information, please see MD Dual Degrees (p. 26).

The Biochemistry track is designed to provide students with knowledge of the latest advances in biochemistry and related fields. It is also appreciated that a number of courses offered by other departments may be considered "biochemistry" in the broader sense. Depending on the research project, it may be appropriate for the student to substitute one of the courses below in lieu of one of the biochemistry electives. Should this be the case, the student must receive permission from the Graduate Program Advisor for this substitution prior to registering for the course.

Students in the Biochemistry track must complete:

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBIS 401</td>
<td>Integrated Biological Sciences I</td>
<td>3</td>
</tr>
<tr>
<td>IBIS 402</td>
<td>Integrated Biological Sciences II</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 412</td>
<td>Proteins and Enzymes</td>
<td>3</td>
</tr>
<tr>
<td>or BIOC 434</td>
<td>Structural Biology</td>
<td>3</td>
</tr>
<tr>
<td>Electives in Biochemistry (graded)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>BIOC 601</td>
<td>Biochemical Research</td>
<td>18</td>
</tr>
<tr>
<td>IBMS 500</td>
<td>On Being a Professional Scientist: The Responsible Conduct of Research</td>
<td>1</td>
</tr>
<tr>
<td>IBIS 600</td>
<td>Exam in Biomedical Investigation</td>
<td>0</td>
</tr>
</tbody>
</table>

JD/MS in Biochemistry

This program allows students admitted to the School of Law an opportunity to pursue a master of science degree in Biochemistry as part of an additional year of study. Such training adds expertise to students who anticipate careers in patent law or in areas related to biotechnology or pharmaceutical research. Please see the separate listing in the publication materials provided by the School of Law on this program.

Entrance into this program is achieved first by acceptance into the CWRU School of Law. Upon acceptance, students can then apply to the Biochemistry program for admission into the JD/MS program. As a result of participating in the dual degree program, students complete 12 fewer hours of law school coursework than they would if they were in the JD program alone. The Department of Biochemistry accepts 9 hours of law school coursework in courses dealing with science issues, in place of 9 credits of other elective work. Thus, the student will take a total of 27 hours of Biochemistry coursework of which at least 12 hours must be letter graded.

Dual degree students are advised concerning matters related to the JD degree by the Associate Dean for Academic Affairs at the School of Law. In addition, dual degree students are granted priority registration for upper level courses, ensuring that they will be able to accommodate their scheduling needs in obtaining required classes. Dual degree students are advised concerning matters related to the MS in Biochemistry by a JD/MS Advisor as designated by the Graduate Education Committee of the Department of Biochemistry.
PhD Biochemistry

The aim of the PhD in biochemistry program is to prepare students for careers in biochemistry. The emphasis of the doctoral program is on research, culminating in the completion of an original independent research project under the guidance of a faculty member in the biochemistry program. In addition to the research activities, graduate students participate in formal courses both within and outside the department, formal and informal seminars, discussions of current literature, and career development activities. Although students choose from the various tracks within the department, all are broadly trained in modern aspects of biochemistry and become familiar with techniques and literature in a variety of areas. Many collaborative projects with other departments also are available to broaden the spectrum of training offered. Most students begin with an integrated curriculum in cellular and molecular biology in addition to specialized courses in biochemistry. Students are admitted to the Biochemistry PhD program through the Biomedical Sciences Training Program (BSTP) (http://casemed.case.edu/bstp) or via the Medical Scientist Training Program (MSTP) (http://mstp.case.edu/default.asp). The BSTP offers a common entry point to most of our biomedical PhD programs. The MSTP is available for students desiring the dual MD/PhD degrees and research careers in medicine and related biosciences.

Prerequisites for admission into the Biochemistry PhD Program include one year each of chemistry, organic chemistry, calculus, biology and physics. Applicants must also have a BA, BS or equivalent undergraduate degree. Students must submit scores from the Graduate Record Examination and may submit scores from an advanced area test, usually in biology, biochemistry or chemistry. Some students with otherwise excellent qualifications, but lacking some of the prerequisites may be conditionally admitted allowed to make up the deficiencies. Please visit the Department’s web page (http://www.cwru.edu/med/biochemistry) for details about the application process.

To earn a PhD in Biochemistry, a student must complete rotations in at least three laboratories, followed by selection of a research advisor, and complete core and elective coursework, including Responsible Conduct of Research, as described in the Course of Study below. Students who have completed relevant coursework elsewhere, (for example, with a MS) may petition to complete alternative courses.

In addition, each PhD student must successfully complete a qualifying examination in the form of a short grant proposal with oral defense for advancement to candidacy. The qualifying examination is usually completed during the second year. During the dissertation period, students are expected to meet twice a year with their thesis committees, present seminars in the department, and fulfill journal publication requirements. Throughout the doctoral training, students are expected to be enthusiastic participants in seminars, journal clubs, and research meetings in the lab and program. Completion of the PhD degree requires 36 hours of coursework (24 hours of which are graded) and 18 hours of BiOC 701 Dissertation Ph.D.

PhD Biochemistry Plan of Study

§ Please also see Graduate Studies Academic Requirements for Doctoral Degrees (http://bulletin.case.edu/schoolofgraduatestudies/academicrequirements)

<table>
<thead>
<tr>
<th>First Year</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology I (CBIO 453)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BiOC Elective</td>
<td>3</td>
</tr>
<tr>
<td>Biochemistry Seminar I (BiOC 611)</td>
<td>1</td>
</tr>
<tr>
<td>Biochemical Research (BiOC 601) (601 for pre-candidacy, 701 for post-candidacy)</td>
<td>5</td>
</tr>
<tr>
<td>Biochemistry Seminar II (BiOC 612)</td>
<td>1</td>
</tr>
<tr>
<td>BiOC Elective</td>
<td>3</td>
</tr>
<tr>
<td>Dissertation Ph.D. (BiOC 701)</td>
<td>3</td>
</tr>
<tr>
<td>Proposition I (BiOC 641)</td>
<td>2</td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BiOC Elective</td>
<td>3</td>
</tr>
<tr>
<td>Dissertation Ph.D. (BiOC 701)</td>
<td>6</td>
</tr>
<tr>
<td>BiOC Elective</td>
<td>3</td>
</tr>
<tr>
<td>Dissertation Ph.D. (BiOC 701)</td>
<td>6</td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation Ph.D. (BiOC 701)</td>
<td>1-9</td>
</tr>
<tr>
<td>Dissertation Ph.D. (BiOC 701)</td>
<td>1-9</td>
</tr>
<tr>
<td>Year Total:</td>
<td>1-9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fifth Year</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation Ph.D. (BiOC 701)</td>
<td>1-9</td>
</tr>
<tr>
<td>Dissertation Ph.D. (BiOC 701)</td>
<td>1-9</td>
</tr>
<tr>
<td>Year Total:</td>
<td>1-9</td>
</tr>
</tbody>
</table>

Total Units in Sequence: 57-89
Courses

BIOC 307. Introduction to Biochemistry: From Molecules To Medical Science. 4 Units.
Overview of the macromolecules and small molecules key to all living systems. Topics include: protein structure and function; enzyme mechanisms, kinetics and regulation; membrane structure and function; bioenergetics; hormone action; intermediary metabolism, including pathways and regulation of carbohydrate, lipid, amino acid, and nucleotide biosynthesis and breakdown. The material is presented to build links to human biology and human disease. One semester of biology is recommended. Offered as BIOC 307, BIOC 407, and BIOL 407. Prereq: CHEM 223 and CHEM 224.

BIOC 308. Molecular Biology. 4 Units.
An examination of the flow of genetic information from DNA to RNA to protein. Topics include: nucleic acid structure; mechanisms and control of DNA, RNA, and protein biosynthesis; recombinant DNA; and mRNA processing and modification. Where possible, eukaryotic and prokaryotic systems are compared. Special topics include yeast as a model organism, molecular biology of cancer, and molecular biology of the cell cycle. Current literature is discussed briefly as an introduction to techniques of genetic engineering. Recommended preparation: BIOC 307. Offered as BIOC 308, BIOL 308, BIOC 408, and BIOL 408. Prereq: CHEM 223, BIOL 214, and BIOL 215.

BIOC 312. Proteins and Enzymes. 3 Units.
Aspects of protein and nucleic acid function and interactions are discussed, including binding properties, protein-nucleic acid interactions, kinetics and mechanism of proteins and enzymes, and macromolecular machines. Recommended Preparation: CHEM 301. Offered as BIOC 312 and BIOC 412. Prereq: BIOC 307.

BIOC 315. Nuclear Receptors in Health and Disease. 3 Units.
This course focuses on hormone-genre interactions mediated by the ligand-inducible transcription factors termed nuclear hormone receptors. The class will address the mechanisms of action, regulatory features, and biological activities of several nuclear receptors. The usage of nuclear receptors as therapeutic targets in disease states such as cancer, inflammation, and diabetes will also be discussed. The course aims to teach students to critically evaluate primary literature relevant to nuclear hormone receptors biology, and to reinforce presentation/discussion skills. Grades for undergraduates will be based on midterm, final exam; grades for graduates will be based on midterm, final exam, and presentation of a recently published research article related to the role of nuclear receptors in health and disease. Offered as PHRM 315, BIOC 315, PHRM 415 and BIOC 415.

BIOC 334. Structural Biology. 3 Units.
Introduces basic chemical properties of proteins and discusses the physical forces that determine protein structure. Topics include: the elucidation of protein structure by NMR and by X-ray crystallographic methods; the acquisition of protein structures from data bases; and simple modeling experiments based on protein structures. Offered as BIOC 334, BIOL 334, BIOC 434, and BIOL 434. Prereq: BIOC 307.

BIOC 354. Biochemistry and Biology of RNA. 3 Units.
Systematic overview of RNA biochemistry and biology. Course provides solid foundation for understanding processes of post-transcriptional regulation of gene expression. Topics include: RNA structure, RNA types, RNA-protein interactions, eukaryotic RNA metabolism including mRNA processing, ribosome biogenesis, tRNA metabolism, miRNA processing and function, bacterial RNA metabolism, transcriptomics. BIOC 454 requires an additional research proposal. Recommended preparation for BIOC 354: Undergraduate Biology (1 semester minimum), equivalents of CHEM 301, BIOC 307 or BIOC 308, CHEM 223, CHEM 224. Offered as BIOC 354 and BIOC 454. Prereq: CHEM 223, CHEM 224.

BIOC 373. Biochemistry SAGES Seminar. 3 Units.
Discussion of current topics in biochemical research using readings from the scientific literature. The goals are for the student: 1) to discuss and critically analyze selections from the biochemical literature; 2) to gain a broader understanding of important topics not formally covered in the didactic courses; and 3) to learn to write in the style of journals in the field of biochemistry. Counts as SAGES Departmental Seminar. Prereq: BIOC 307 and BIOC 308. Restricted to majors in Biochemistry.

BIOC 391. Research Project. 1 - 9 Units.
(Credit as arranged.) Offered on a pass/fail basis only. Maximum 9 hours total credit.

BIOC 393. Senior Capstone Experience. 3 Units.
Students will complete their Capstone Projects, begun in BIOC 391. Pertinent research activities will depend on the nature of the student's project. The student will meet regularly with their Capstone adviser, at least twice monthly, to provide progress reports, discuss the project, and for critique and guidance. By the end of this course, the student will have completed their SAGES Senior Capstone research project, written a project report in the form of a manuscript, and presented their project reports orally in the department and at the Senior Capstone Fair, or its equivalent. Counts as SAGES Senior Capstone. Prereq: BIOC 307 and BIOC 308.

BIOC 405. Principles of Biochemistry: An Introduction to the Molecules of Life. 3 Units.
This summer course provides an introduction to the macromolecules and small molecules that are the foundation of living systems. The focus is on mammalian biochemistry, with links to human biology and human disease. Topics include: protein structure and function; enzyme mechanisms, kinetics and regulation; membranes; hormone action; bioenergetics; intermediary metabolism, including pathways and regulation of carbohydrate, lipid, amino acid, and nucleotide biosynthesis and breakdown. One semester of biology is recommended. Suitable for students interested in careers in the health professions. This course is not open to undergraduate Biochemistry majors or Biochemistry graduate students. Prereq: CHEM 223 and CHEM 224.

BIOC 407. Introduction to Biochemistry: From Molecules To Medical Science. 4 Units.
Overview of the macromolecules and small molecules key to all living systems. Topics include: protein structure and function; enzyme mechanisms, kinetics and regulation; membrane structure and function; bioenergetics; hormone action; intermediary metabolism, including pathways and regulation of carbohydrate, lipid, amino acid, and nucleotide biosynthesis and breakdown. The material is presented to build links to human biology and human disease. One semester of biology is recommended. Offered as BIOC 307, BIOC 407, and BIOL 407. Prereq: CHEM 223 and CHEM 224.
BIOC 408. Molecular Biology. 4 Units.
An examination of the flow of genetic information from DNA to RNA to protein. Topics include: nucleic acid structure; mechanisms and control of DNA, RNA, and protein biosynthesis; recombinant DNA; and mRNA processing and modification. Where possible, eukaryotic and prokaryotic systems are compared. Special topics include yeast as a model organism, molecular biology of cancer, and molecular biology of the cell cycle. Current literature is discussed briefly as an introduction to techniques of genetic engineering. Recommended preparation: BIOC 307. Offered as BIOC 308, BIOL 308, BIOC 408, and BIOL 408.

BIOC 412. Proteins and Enzymes. 3 Units.
Aspects of protein and nucleic acid function and interactions are discussed, including binding properties, protein-nucleic acid interactions, kinetics and mechanism of proteins and enzymes, and macromolecular machines. Recommended Preparation: CHEM 301. Offered as BIOC 312 and BIOC 412.

BIOC 415. Nuclear Receptors in Health and Disease. 3 Units.
This course focuses on hormone-gene interactions mediated by the ligand-inducible transcription factors termed nuclear hormone receptors. The class will address the mechanisms of action, regulatory features, and biological activities of several nuclear receptors. The usage of nuclear receptors as therapeutic targets in disease states such as cancer, inflammation, and diabetes will also be discussed. The course aims to teach students to critically evaluate primary literature relevant to nuclear hormone receptors biology, and to reinforce presentation/discussion skills. Grades for undergraduates will be based on midterm, final exam; grades for graduates will be based on midtern, final exam, and presentation of a recently published research article related to the role of nuclear receptors in health and disease. Offered as PHRM 315, BIOC 315, PHRM 415 and BIOC 415.

BIOC 420. Current Topics in Cancer. 3 Units.
The concept of cancer hallmarks has provided a useful guiding principle in our understanding of the complexity of cancer. The hallmarks include sustaining proliferative signaling, evading growth suppressors, enabling replicative immortality, activating invasion and metastasis, inducing angiogenesis, resisting cell death, deregulating cellular energetics, avoiding immune destruction, tumor-promoting inflammation, and genome instability and mutation. The objectives of this course are to (1) examine the principles of some of these hallmarks, and (2) explore potential therapies developed based on these hallmarks of cancer. This is a student-driven and discussion-based graduate course. Students should have had some background on the related subjects and have read scientific papers in their prior coursework. Students will be called on to present and discuss experimental design, data and conclusions from assigned publications. There will be no exams or comprehensive papers but students will submit a one-page critique (strengths and weaknesses) of one of the assigned papers prior to each class meeting. The course will end with a full-day student-run symposium on topics to be decided jointly by students and the course director. Grades will be based on class participation, written critiques, and symposium presentations. Offered as BIOC 420, MBIO 420, PATH 422, and PHRM 420. Prereq: CBIO 453 and CBIO 455.

BIOC 430. Advanced Methods in Structural Biology. 1 - 6 Units.
The course is designed for graduate students who will be focusing on one or more methods of structural biology in their thesis project. This course is divided into 3-6 sections (depending on demand). The topics offered will include X-ray crystallography, nuclear magnetic resonance spectroscopy, optical spectroscopy, mass spectrometry, cryo-electron microscopy, and computational and design methods. Students can select one or more modules. Modules will be scheduled so that students can take all the offered modules in one semester. Each section is given in 5 weeks and is worth 1 credit. Each section covers one area of structural biology at an advanced level such that the student is prepared for graduate level research in that topic. Offered as BIOC 430, CHEM 430, PHOL 430, and PHRM 430.

BIOC 432. Current Topics in Vision Research. 3 Units.
Vision research is an exciting and multidisciplinary area that draws on the disciplines of biochemistry, genetics, molecular biology, structural biology, neuroscience, and pathology. This graduate level course will provide the student with broad exposure to the most recent and relevant research currently being conducted in the field. Topics will cover a variety of diseases and fundamental biological processes occurring in the eye. Regions of the eye that will be discussed include the cornea, lens, and retina. Vision disorders discussed include age-related macular degeneration, retinal ciliopathies, and diabetic retinopathy. Instructors in the course are experts in their field and are members of the multidisciplinary visual sciences research community here at Case Western Reserve University. Students will be exposed to the experimental approaches and instrumentation currently being used in the laboratory and in clinical settings. Topics will be covered by traditional lectures, demonstrations in the laboratory and the clinic, and journal club presentations. Students will be graded on their performance in journal club presentations (40%), research proposal (40%), and class participation (20%). Offered as NEUR 432, PATH 432, PHRM 432 and BIOC 432.

BIOC 434. Structural Biology. 3 Units.
Introduces basic chemical properties of proteins and discusses the physical forces that determine protein structure. Topics include: the elucidation of protein structure by NMR and by X-ray crystallographic methods; the acquisition of protein structures from data bases; and simple modeling experiments based on protein structures. Offered as BIOC 334, BIOL 334, BIOC 434, and BIOL 434.

BIOC 452. Nutritional Biochemistry and Metabolism. 3 Units.
Mechanisms of regulation of pathways of intermediary metabolism; amplification of biochemical signals; substrate cycling and use of radioactive and stable isotopes to measure metabolic rates. Recommended preparation: BIOC 307 or equivalent. Offered as BIOC 452 and NTRN 452.

BIOC 454. Biochemistry and Biology of RNA. 3 Units.
Systematic overview of RNA biochemistry and biology. Course provides solid foundation for understanding processes of post-transcriptional regulation of gene expression. Topics include: RNA structure, RNA types, RNA-protein interactions, eukaryotic RNA metabolism including mRNA processing, ribosome biogenesis, tRNA metabolism, miRNA processing and function, bacterial RNA metabolism, transcriptomics. BIOC 454 requires an additional research proposal. Recommended preparation for BIOC 354: Undergraduate Biology (1 semester minimum), equivalents of CHEM 301, BIOC 307 or BIOC 308, CHEM 223, CHEM 224. Offered as BIOC 354 and BIOC 454.
BIOC 460. Introduction to Microarrays. 3 Units.
Microarray technology is an exciting new technique that is used to analyze gene expression in a wide variety of organisms. The goal of this course is to give participants a hands-on introduction to this technology. The course is intended for individuals who are preparing to use this technique, including students, fellows, and other investigators. This is a hands-on computer-based course, which will enable participants to conduct meaningful analyses of microarray data. Participants will gain an understanding of the principles underlying microarray technologies, including: theory of sample preparation, sample processing on microarrays, familiarity with the use of Affymetrix Microarray Suite software and generation of data sets. Transferring data among software packages to manipulate data will also be discussed. Importation of data into other software (GeneSpring and DecisionSite) will enable participants to mine the data for higher-order patterns. Participants will learn about the rationale behind the choice of normalization and data filtering strategies, distance metrics, use of appropriate clustering choices such as K-means, Hierarchical, and Self Organizing Maps. Offered as BIOC 460, PATH 460 and CNCR 460. Prereq: CBIO 455.

BIOC 475. Protein Biophysics. 3 Units.
This course focuses on in-depth understanding of the molecular biophysics of proteins. Structural, thermodynamic and kinetic aspects of protein function and structure-function relationships will be considered at the advanced conceptual level. The application of these theoretical frameworks will be illustrated with examples from the literature and integration of biophysical knowledge with description at the cellular and systems level. The format consists of lectures, problem sets, and student presentations. A special emphasis will be placed on discussion of original publications. Offered as BIOC 475, CHEM 475, PHOL 475, PHRM 475, and NEUR 475.

BIOC 519. Molecular Biology of RNA. 3 Units.
Selected topics regarding editing, enzymatic function, splicing, and structure of RNA. Offered as BIOC 519, CLBY 519, and MBIO 519.

BIOC 528. Contemporary Approaches to Drug Discovery. 3 Units.
This course is designed to teach the students how lead compounds are discovered, optimized, and processed through clinical trials for FDA approval. Topics will include: medicinal chemistry, parallel synthesis, drug delivery and devices, drug administration and pharmacokinetics, and clinical trials. A special emphasis will be placed on describing how structural biology is used for in silico screening and lead optimization. This component will include hands-on experience in using sophisticated drug discovery software to conduct in silico screening and the development of drug libraries. Each student will conduct a course project involving in silico screening and lead optimization against known drug targets, followed by the drafting of an inventory disclosure. Another important aspect of this course will be inclusion of guest lectures by industrial leaders who describe examples of success stories of drug development. Offered as BIOC 528, PHOL 528, PHRM 528, and SYBB 528.

BIOC 599. RNA Structure and Function. 3 Units.
This course will cover fundamental aspects of modern RNA biology with emphasis on the interplay of three dimensional structure of nucleic acids and their function. The main focus of the course is on the recent discoveries that indicate a prominent role of RNA as a major regulator of cellular function. Topics discussed will include an introduction to RNA structure, folding and dynamics, RNA/RNA and RNA-protein interactions, and role of RNA in catalysis of biological reactions in ribosome and the role of other catalytic RNAs in tRNA biogenesis, pre-mRNA splicing, and viral replication. The course also covers the recently discovered RNA regulatory switches, large noncoding regulatory RNAs, and the role of RNA in human diseases and novel, RNA-based therapeutics. Offered as BIOC 599, CLBY 599, and MBIO 599.

BIOC 601. Biochemical Research. 1 - 18 Units.
Credit as arranged.

BIOC 611. Biochemistry Seminar I. 1 Unit.
Student presentations of topics from the current scientific literature unrelated to the student’s research project. Participants are required to present a seminar.

BIOC 612. Biochemistry Seminar II. 1 Unit.
Discussion of current research.

BIOC 641. Proposition I. 2 Units.
Design of research proposal.

BIOC 651. Thesis M.S.. 1 - 6 Units.
(Credit as arranged.)

BIOC 701. Dissertation Ph.D.. 1 - 9 Units.
(Credit as arranged.) Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.

Department of Bioethics

Room TA-200, School of Medicine
http://www.case.edu/med/bioethics/bioethics.html
Phone: 216.368.8718
Mark P. Aulisio, PhD, Susan E. Watson Professor and Chair
mark.aulisio@case.edu

Marie Norris (marie.norris@case.edu), Program Assistant

The mission of the Department of Bioethics is to improve public and professional understanding of the ethical and contextual issues involved in health sciences research, health care delivery, and health policy development through teaching, research and community dialogue.

The department has offices at the Case’s School of Medicine and at MetroHealth Medical Center and has faculty from multiple disciplines, including philosophy, religion, law, political science, anthropology, history, sociology, psychology, nursing and medicine.

Department faculty teach in both core and elective components of the medical school curriculum, undergraduate courses in ethics and medical humanities, and an intensive course in responsible conduct of research for PhD students in the School of Medicine. The department also has a highly successful master’s degree program in bioethics and an undergraduate minor

Department faculty have gained international prominence for research in many areas of biomedical ethics and medical humanities that collectively address the concerns of the School of Medicine’s spectrum of biomedical disciplines and questions of health more broadly.
Please visit the department website (http://www.case.edu/med/bioethics) to obtain information about the Master’s degree program and learn about department and faculty activities.

Minor in Bioethics and Medical Humanities

Bioethics and Medical Humanities together comprise a vibrant area of scholarship concerning the most important and cutting-edge ethical issues surrounding biomedical research and the delivery of health care today. The study of such ethical issues calls into action our most central human values and related behaviors, the exploration of which is of crucial importance for all students whether one plans to enter a career in the healthcare professions, biomedical research, law, nonprofit administration, or some other career path. The topics covered in Bioethics and Medical Humanities will help prepare students to become responsible world citizens in an increasingly complex biomedical environment.

The CWRU Minor in Bioethics and Medical Humanities formally recognizes a student's coordinated course of study comprised of courses currently offered by the Department of Bioethics and other departments in the College of Arts and Sciences. The Bioethics and Medical Humanities Minor is designed to give students ethical and social training centered specifically around the delivery of health care and biomedical research, and to do so in a highly interdisciplinary manner.

Plan of Study

I. REQUIRED COURSES (9 Credit Hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BETH 210</td>
<td>Perspectives on Health: Introduction to Medical Humanities and Social Medicine</td>
<td>3</td>
</tr>
<tr>
<td>BETH 271</td>
<td>Bioethics: Dilemmas</td>
<td>3</td>
</tr>
<tr>
<td>BETH 360</td>
<td>Science and Society</td>
<td>3</td>
</tr>
<tr>
<td>BETH 371</td>
<td>Advanced Bioethics</td>
<td>3</td>
</tr>
</tbody>
</table>

II. ELECTIVE COURSES (6 Credit Hours)

Additional Courses may be added in the future to this list of electives. Each new elective course must be approved by Bioethics Department faculty director of the Minor and must have substantial bioethics or medical humanities content (greater than 75%).

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 305</td>
<td>Ethics</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 306</td>
<td>Philosophy of Science</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 320</td>
<td>Introduction to Philosophy</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 321</td>
<td>Revolutions in Science</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 322</td>
<td>History of Medicine</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 323</td>
<td>Philosophy of Science</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 324</td>
<td>History of Drugs</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 325</td>
<td>Water</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 326</td>
<td>Guns, Germs, and Steel</td>
<td>3</td>
</tr>
<tr>
<td>BETH 315</td>
<td>International Bioethics: Policy and Practice</td>
<td>3</td>
</tr>
<tr>
<td>BETH 371C</td>
<td>Advanced Bioethics: Clinical Observation</td>
<td>3</td>
</tr>
<tr>
<td>BETH 371D</td>
<td>Society, Religion, and Bioethics</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 217B</td>
<td>Writing for the Health Professions</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 300</td>
<td>Victorian Literature</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 341</td>
<td>Rhetoric of Science and Medicine</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 342</td>
<td>Topics in Language Studies</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 386</td>
<td>Studies in Literature and Culture</td>
<td>3</td>
</tr>
<tr>
<td>HSTY 151</td>
<td>Technology in European Civilization</td>
<td>3</td>
</tr>
<tr>
<td>HSTY 152</td>
<td>Technology in America</td>
<td>3</td>
</tr>
<tr>
<td>HSTY 202</td>
<td>Science in Western Thought II</td>
<td>3</td>
</tr>
<tr>
<td>HSTY 241</td>
<td>Inventing Public Health</td>
<td>3</td>
</tr>
<tr>
<td>HSTY 243</td>
<td>The Age of Prozac: Social and Cultural Aspects of Depression</td>
<td>3</td>
</tr>
<tr>
<td>HSTY 293</td>
<td>History of Drugs</td>
<td>3</td>
</tr>
<tr>
<td>HSTY 340</td>
<td>Water</td>
<td>3</td>
</tr>
<tr>
<td>HSTY 346</td>
<td>Guns, Germs, and Steel</td>
<td>3</td>
</tr>
</tbody>
</table>

Master of Arts in Bioethics Degree

The Department of Bioethics offers a program leading to the Master of Arts degree in bioethics, emphasizing the interdisciplinary and inter-professional nature of the field. This graduate program is designed to provide advanced training in bioethics and medical humanities for students and professionals who anticipate encountering ethical issues in the course of their primary careers.

The 27 credit-hour degree can be earned full-time in one year or part-time in up to three years. Core courses are taught by department faculty and are scheduled so that part-time students can continue their professional responsibilities while completing the degree.

The Master of Arts program provides students with a firm understanding of the intellectual content of the study of bioethics, bioethical literature, medical humanities, and the underlying philosophical arguments and empirical assumptions that inform these areas. Students are taught to understand the institutions, structures and contexts of healthcare and the ethical issues that arise in medical practice. They are trained to identify and analyze a range of clinical ethics issues.

All students pursuing a Master of Arts degree in bioethics are required to complete the interdisciplinary core of 12 credit hours (the equivalent of four courses) in the first two semesters of their first year of study.

MA Bioethics Plan of Study

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundations in Bioethics I (BETH 401)</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Ethics Rotation (BETH 405)</td>
<td></td>
<td>1.5 - 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective I</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective II</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foundations in Bioethics II (BETH 402)</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Ethics Rotation (BETH 405)</td>
<td></td>
<td>1.5 - 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective I</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective II</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td></td>
<td>13.5-15</td>
<td>13.5-15</td>
<td>27-30</td>
</tr>
</tbody>
</table>

Total Units in Sequence:

MS/MA in Genetic Counseling and Bioethics (plan B)

The Departments of Genetics & Genome Sciences and Bioethics offer a dual degree program between the Masters in Genetic Counseling and the Masters in Bioethics Programs. The dual degree program provides a comprehensive curriculum integrating foundational principles of genetics and ethics. The goal of the program is to train Genetic Counselors who wish to apply additional Bioethics expertise into their clinical practice and/or research.
The dual degree program allows graduates to engage in both contemplative analysis and application of knowledge in the counseling of patients and should allow graduates to be more prepared to participate in the ongoing national dialogue about the ethical, legal, and social implications of advances in genomic technology as well as research within their home institutions and with other counselors nationwide regarding issues of new genomic testing technology, concerns about genetic services, and issues related to genetic discrimination, privacy, and the return of genetic and genomic results.

The curriculum for the Dual Genetic Counseling/Bioethics Degree consists of 59 credit hours to be completed in 2.5 years. Students enrolled in the dual degree program will spend their first year taking courses entirely within the Genetic Counseling Program and then will spread out their Bioethics coursework over the next 1.5 years while continuing with required coursework and clinical rotations in the genetic counseling program.

In addition to both a written and oral comprehensive examination as part of the Genetic Counseling Training Program, the dual degree requires a research project be carried out for the completion of the both degrees. For the dual degree, students will be required to choose a research project that includes ethical, legal, or social issues of genetic counseling practice, clinical genetics or genomics, or genetic research. Students will also be required to include at least one Bioethics Faculty member on their Research Project Committee.

Students who would like to enroll in the dual degree program will apply and be admitted into each program separately. While admissions committees for each program will communicate with each other regarding applicants, each admissions committee will decide independently about the suitability of the applicant to their program.

Once students have been admitted, the Director of the Genetic Counseling Training Program and the Director of the MA Program in Bioethics will act as student advisors for each of the two programs individually but will meet monthly to assess student progress, address any student or faculty concerns, and assure that student progress in each program is being achieved.

MS/MA Plan of Study

<table>
<thead>
<tr>
<th>First Year</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fall</td>
</tr>
<tr>
<td>Advanced Medical Genetics: Molecular & Cytogenetics (GENE 524)</td>
<td>2</td>
</tr>
<tr>
<td>Advanced Medical Genetics: Quantitative Genetics & Genomics (GENE 526)</td>
<td>2</td>
</tr>
<tr>
<td>Principles and Practices of Genetic Counseling (GENE 528)</td>
<td>3</td>
</tr>
<tr>
<td>Direct Practice Generalist Methods & Skills (SASS 477)</td>
<td>3</td>
</tr>
<tr>
<td>Psychosocial Issues in Genetic Counseling (GENE 529)</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Medical Genetics: Clinical Genetics (GENE 525)</td>
<td>2</td>
</tr>
<tr>
<td>Cancer Genetics (GENE 531)</td>
<td>2</td>
</tr>
<tr>
<td>Research in Genetics (GENE 601)</td>
<td>2</td>
</tr>
<tr>
<td>Clinical Practicum in Genetic Counseling (GENE 532)</td>
<td>3</td>
</tr>
<tr>
<td>Year Total:</td>
<td>10</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fall</td>
</tr>
<tr>
<td>Clinical Practicum in Genetic Counseling (GENE 532)</td>
<td>4</td>
</tr>
<tr>
<td>Advanced Medical Genetics: Biochemical Genetics (GENE 527)</td>
<td>2</td>
</tr>
<tr>
<td>Foundations in Bioethics I (BETH 401)</td>
<td>6</td>
</tr>
<tr>
<td>Clinical Practicum in Genetic Counseling (GENE 532)</td>
<td>4</td>
</tr>
<tr>
<td>Ethical Issues in Genetics/Genomics (BETH 412)</td>
<td>3</td>
</tr>
<tr>
<td>Foundations in Bioethics II (BETH 402)</td>
<td>6</td>
</tr>
<tr>
<td>Research in Genetics (GENE 601)</td>
<td>3</td>
</tr>
<tr>
<td>Year Total:</td>
<td>12</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fall</td>
</tr>
<tr>
<td>Research in Genetics (GENE 601)</td>
<td>3</td>
</tr>
<tr>
<td>Clinical Ethics Rotation (BETH 405)</td>
<td>3</td>
</tr>
<tr>
<td>BETH Course Elective</td>
<td>3</td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
</tr>
</tbody>
</table>

Total Units in Sequence: 59

Courses

BETH 210. Perspectives on Health: Introduction to Medical Humanities and Social Medicine. 3 Units.

This survey course is designed to give students a broad overview of medical humanities and medical social sciences. Students will engage materials from a wide range of disciplines and learn how to analyze which perspectives afford and obscure which types of knowledge relevant to health, illness and clinical practice. Students will learn how to identify epistemology, methodology, theory and data from various disciplinary perspectives. This course is relevant for students engaged in pre-clinical education as well as those interested in medical humanities and medical social sciences.

BETH 271. Bioethics: Dilemmas. 3 Units.

We have the genetic technology to change nature and human nature, but should we? We have the medical technology to extend almost any human life, but is this always good? Should we clone humans? Should we allow doctor-assisted suicide for the terminally ill? This course invites students from all academic disciplines and fields to examine current and future issues in bioethics—e.g., theory and methods in bioethics; death and dying; organ transplantation; genetics; aging and dementia; fertility and reproduction; distributive justice in health care access. The course will include guest lecturers from nationally-known Bioethics faculty. Offered as BETH 271 and PHIL 271.
BETH 314. Global Health: India. 3 Units.
Bioethics is the study of ethical controversies arising at the intersection of biology, medicine, technology, politics, law, philosophy, religion and culture. This course will discuss and analyze the issue of health in India; recognizing that health is more than the diagnosis and treatment of a disease. Using three diseases (HIV/AIDS, leprosy and tuberculosis) students will explore the relationship between culture and health care outcomes. Relevant issues addressed in the course include the history of British rule in India, Hinduism, the Caste system, poverty, access to education and public policy. Faculty will introduce readings on the history of India, medical anthropology, religion and the law. Students will then be given the opportunity to focus on a particular topic, research the existing literature, present their findings to the class and create a plan to observe the chosen topic while in India during the Summer semester. Course instructors include Nicole Deming, JD, MA Assistant Professor of Bioethics; Deepak Sarma, PhD, Associate Professor of South Asian Religions; and Gopal Yadavalli, MD Assistant Professor of Medicine and Chief of the Infectious Diseases Clinic at the Cleveland VA Medical Center. The course will also invite guest lectures from many different departments and schools to share their expertise and experience in the areas of Global Justice, Anthropology, and Human Rights.

BETH 315. International Bioethics: Policy and Practice. 3 Units.
Taught by Case and international faculty, this course will include 7-10 days of intensive didactic and experiential learning in one of several "host" countries. Examples of sites include: Free University of Amsterdam and University of Utrecht in the Netherlands; University of Paris in France; and Ben Gurion University in Israel. It will afford a unique opportunity to gain perspective on important bioethics issues in different societies, i.e., euthanasia, public health policies, access to healthcare, and stem cell research. At the international site, students will spend 6 hours per day (5 days) in seminar (involving didactics, discussion, and guided-observation clinical experience). There will be two 3-hour preparatory sessions, required reading, and two 3-hour post trip sessions. Requirements: preparation, attendance, and class participation, a 12-15 page paper (undergraduate credit) and a 15-20 page paper (graduate credit). Graduate credit will also require students to prepare a presentation for a post-intensive session. Enrollment will be capped at 25. This course has an additional fee to cover costs of travel and lodging. Limited scholarships are available. Offered as BETH 315 and BETH 415.

BETH 315A. International Bioethics Policy and Practice: Women's Health in the Netherlands. 3 Units.
This 3-credit course allows students to familiarize themselves with social policies and practices related to women's health in the United States and the Netherlands. Issues covered in the course include birth control and family planning, abortion, prenatal testing, childbirth, health care disparities, cosmetic surgery, prostitution and trafficking in women. This course also addresses the US and Dutch national policies regarding the public provision of health care for women. The course places an emphasis on the ways in which social norms shape policies over time, which political actors are involved in shaping women's health policy, and the balance between women's health as a matter of the public good or individual responsibility. This course substantively explores gender-specific cultural values and practices in relation to women's health in the United States and the Netherlands and will help students develop the analytical skills necessary for evaluating social policy and ethical issues related to women's health. Offered as BETH 315A and BETH 415A. Counts for CAS Global & Cultural Diversity Requirement.

BETH 315B. International Bioethics Policy and Practice: Public Health in the Netherlands. 3 Units.
This one week 3-credit intensive course will be held in Amsterdam, The Netherlands. Taught by faculty from Case and Utrecht University, this course offers students a cross-cultural perspective on ethical dilemmas raised by the practice of public health in the United States and Northern Europe. Additionally, this course examines policies related to prostitution, drug use, sex education, infectious disease prevention, and access to health care and how they differ in the cultural and political settings of U.S. and the Netherlands. We will examine both the rationales and outcomes of Dutch and American policies, stimulating course participants to consider their own views on these often controversial issues. Prior to the trip, students will attend lectures at Case, which will acquaint them with the theoretical approaches to public health ethics and major issues raised in the practice of public health. In these pre-trip sessions, students will also analyze and report on a case study designed to stimulate critical thinking on comparative public health ethics. In Amsterdam, students will attend lectures that will be supplemented by site visits and discussion sessions aimed at exploring the ethics of public health policy and practice in the Netherlands. Following the intensive week in Amsterdam, students will meet with instructors at Case for two hours to discuss their experiences and compare policies and practices in the U.S. and the Netherlands. Offered as BETH 315B and BETH 415B. Counts for CAS Global & Cultural Diversity Requirement.

BETH 315C. International Bioethics Policy and Practice: Health Care Costa Rica. 3 Units.
This 3-credit course gives students the unique opportunity to observe patients and practitioners encounter in a radically different health care system. Costa Rica has one of the most comprehensive health care systems in the Western hemisphere, featuring the innovative use of mid-level health care workers organized in basic comprehensive health care teams. This has resulted in a longer life expectancy than the United States, despite a per capita GDP of only $10,000 per person. Students will gain first-hand experience of Costa Rican health care through field experiences at sites including a national hospital in the capital city, San Jose; a peripheral treatment clinic in a smaller town; and observation of the work of an integrated basic health care team in an indigenous reserve. Following each visit, students will discuss the practical and ethical dilemmas that practitioners face in the context of the Costa Rican health care system. Specific topics include: health inequalities within and between nations; the ethics of transplantation, medical research, and end-of-life care; and health care in rural environments and with indigenous populations. Offered as BETH 315C and BETH 415C. Counts for CAS Global & Cultural Diversity Requirement.
BETH 315D. French Connections, A Cross-Cultural Comparison of Medical Ethics. 3 Units.
This 3-credit course is collaboration between Case Western Reserve University and the University of Paris. The course includes a ten-day trip to Paris, France over Spring Break. This course offers a cross-cultural comparison of the French and American medical systems. Students will have the unique opportunity to learn first-hand how the French medical education system is structured and how the social, cultural and political contexts in France shape medical and ethical issues. The trip includes guided field experiences in French clinical settings as well as opportunities to engage with French faculty members and physicians about contemporary issues in bioethics. Ethical issues that may be considered may include reproductive rights, decision-making involving severely impaired newborns, withholding/withdrawing life-sustaining treatment and issues in organ donation and transplant. The course also will also emphasize the role of French culture and history while in Paris with museum and site visits designed to complement seminar content and offer real-life illustrations of course content. Prior to the trip, students attend six hours of lectures, either at Case Western Reserve University or via a web-based tutorial. They are expected to become familiar with the representative articles assigned for the course, and be prepared to integrate those readings into pre-trip class participation and active participation while in France. Following the trip, students meet with the instructor for an additional four hours to discuss and synthesize their experiences. Offered as BETH 315D and BETH 415D. Counts for CAS Global & Cultural Diversity Requirement.

BETH 315E. International Bioethics: Policy and Practice--US and Spanish Perspectives, Salamanca Spain. 3 Units.
This 3-credit hour course will introduce advanced undergraduate and graduate students to theoretical and practical aspects of bioethics in a European context. Continental health professionals and bioethicists work in an environment that differs from the American context in at least three important dimensions: the political structure of their health care systems, the cultural influence of their religious histories, and the theoretical perspective of continental moral philosophy. The University of Salamanca in Spain, one of the oldest universities in Europe (known as the "Oxford of Spain"), will be used in this course as a focal point for examining the interplay of these three dimensions in shaping institutional and professional approaches to specific problems in bioethics, including end of life decisions, organ procurement and allocation, reproductive ethics, health care justice, and environmental bioethics ("eco-ethics"). This course will help advanced students who are already grounded in American bioethics develop the analytical skills necessary for evaluating European bioethical scholarship and policy-making, while helping less advanced students develop a familiarity with fundamental similarities and differences between bioethics in Spain and the U.S. The course will include a one week trip to Salamanca, Spain where students will be taught by instructors and faculty from the University of Salamanca. Teaching will include some guided field experiences and regular discussion sessions with the course faculty. Prior to the trip, students will attend 4 hours of class at Case to become familiar with elements of political theory and moral philosophy relevant to the in-country discussions. Following the trip, students will meet with instructors for an additional 2 hours. Offered as BETH 315E and BETH 415E. Counts for CAS Global & Cultural Diversity Requirement.

BETH 315F. Bioethics Themes as Expressed in Spanish and American Culture: Film, Television, and Literature. 3 Units.
This 3-credit intensive course will be held in San Sebastian, Spain. Taught by faculty from CWRU and University of the Basque Country, this course offers students a cross-cultural perspective on bioethics in the United States and Spain. This course uses the medium of film, complemented by readings in bioethics, film criticism, and medical research, to introduce students to a number of compelling bioethics problems facing physician-scientists today, including: when life begins, the nature and limits of informed consent, use of randomization without equipoise, medical imperialism (or the appearance thereof), the treatment of so-called "orphan" diseases, use of deception in research, and financial conflicts of interests caused by among other things, the involvement of the pharmaceutical industry in the drug invention process. Offered as BETH 315F and BETH 415F. Counts for CAS Global & Cultural Diversity Requirement.

BETH 315G. Death, Dying & Euthanasia: Netherlands & the USA. 3 Units.
Is it ever permissible for physicians to kill their patients? In the Netherlands, the answer is yes. In the United States, it is no. Are the Dutch sliding down a moral slippery slope? Are the Americans compromising the rights and dignity of dying patients? This 3-credit course is a unique opportunity to examine a range of Dutch and American end-of-life policies and practices with special focus on the unique ethical, cultural, religious, and legal contexts in which they developed. This course will compare how two liberal democracies, the United States and the Netherlands, have handled difficult end-of-life issues, including: The Dutch regulation of euthanasia; Regulation of physician-assisted suicide in the state of Oregon; Terminal sedation; End-of-life decisions in newborns; Withholding and withdrawing of artificially-provided fluids and nutrition; The legal basis for end-of-life decision making in the USA; Palliative care and hospice; Public trust in medicine and physicians. In the United States, teaching methods will include lectures, case discussion, and exposure to how some of the course’s themes are reflected in popular culture such as movies. Offered as BETH 315G and BETH 415G. Counts for CAS Global & Cultural Diversity Requirement.
BETH 315H. Water Security and Social Justice in Brazil. 3 Units.
CWRU, through the Center for Global Health and Diseases, has had projects, student exchanges and courses with institutions in Brazil and especially with the state of Bahia for over 30 years. In that time, personal and professional relationships have been developed with branches of the Ministry of Health (Oswaldo Cruz Foundation, the Municipal and State Health Departments), the Federal University of Bahia, and the Bahiana School of Medicine and Public Health. Brazil is the second largest country in the Western Hemisphere and the 7th or 8th largest economy in the world. There are more people who speak Portuguese in South America than Spanish. Despite newly discovered oil, enormous natural and human resources, development in Brazil has been uneven with the Northeast remaining the least developed. The Northeastern state of Bahia ranked 22nd out of 27 states on the UN’s Index of Human Development (http://www.pnud.org.br/IDH/DH.aspx# and http://www.atlasbrasil.org.br/2013/pt/home/). The State capital, Salvador, ranks 14th out of 20 major metropolitan regions and is one site for this study abroad program. The second site, the rural town of Ubaíra, is ranked 4590 out of 5565 municipalities. Even with large social inequities and health care disparities, the Brazilian government and society have produced remarkable social policies, have shown a willingness to implement these policies and have the resources to significantly improve the lives of its most impoverished citizens. Critical basic infrastructure for health and development is water. Its consumption is essential; it is a mechanism for waste disposal, industry and agriculture are dependent on its supply. The problem of water quantity and quality are common all human societies (witness the drought in California and the burning Cuyahoga). Individuals from all walks of life will need to assess issues of water at some time, from doctors, engineers, urban planners, lawyers and politicians. In Brazil the issues of water are more exposed and easier to examine on different scales than in the U.S. The problem also resides within a social, health care, and political context that compares well and at the same time contrasts sharply with that of the USA. As a student in this course, you will gain first-hand knowledge of the social and public health challenges regarding water security in Brazil. Through field experiences in the capital city of Salvador and the rural town of Ubaíra, you will immerse yourself in interdisciplinary perspectives on the public health, scientific, political, and bioethical dimensions of water security in Brazil. This immersive experience will be facilitated by faculty from the CWRU Dept. of Bioethics and the Center for Global Health and Diseases, the Brazilian Ministry of Health, the Federal University of Bahia, the Bahiana School of Medicine and Public Health, and Brazilian graduate student participants. Offered as: INTH 315, INTH 415, BETH 315H, and BETH 415H. Counts for CAS Global & Cultural Diversity Requirement.

BETH 353. Hindu and Jain Bioethics. 3 Units.
This course will provide both an introduction to basic Hinduism and Jainism and an introduction to Hindu and Jain bioethics. We will ask: How would a Hindu or a Jain respond to issues concerning euthanasia, abortion, and other topics of controversy. Are these answers altered in the North American context or in the light of recent technological changes? Offered as RLGN 353, RLGN 453, BETH 353, and BETH 453. Counts for CAS Global & Cultural Diversity Requirement.

BETH 360. Science and Society. 3 Units.
This course examines the complex ethical and other value relationships that exist between science and society. Students will be encouraged to question the simplistic view that science proceeds independently of societal values and contentious ethical commitments. A range of other social factors, such as ethical belief systems, political forces, and large-scale financial interests all influence new scientific and technological developments. In order to illuminate each of these larger themes, this course focuses on three exciting areas of scientific inquiry: stem cell research; synthetic biology; and nanotechnology. Each of these contentious scientific fields provides an excellent view into the challenging ethical, cultural, social, political, and economic issues that will face students, both as scholars and as citizens. No prior technical knowledge is necessary for any of these scientific areas. All relevant scientific information will be provided during the course by the professor. Offered as BETH 360, BETH 460 and PHIL 360.

BETH 371. Advanced Bioethics. 3 Units.
This course offers upper-level instruction on many key bioethical issues introduced in BETH/PHIL 271. The class follows a discussion-intensive seminar format. Students begin with an in-depth analysis of ethical issues surrounding the conduct of clinical trials, both within the U.S. and through U.S.-sponsored research abroad. Next students examine the philosophical and practical challenges involved in medical decision making for adults and pediatric patients. This course concludes by addressing the broader ethical problem of what duties we owe to future generations in terms of our reproductive choices and the allocation of health-related public expenditures. Each of these general topic areas – clinical trials, medical decision making, and future generations - is of crucial importance for all students whether one plans to enter a career in biomedical research, the healthcare professions, or some other career path. Everyone is a potential patient or the family member of a potential patient. The topics covered in Advanced Bioethics will help prepare students to become responsible participants in an increasingly complex biomedical world. Offered as BETH 371 and PHIL 371. Prereq: BETH 271 or PHIL 271.

BETH 371C. Advanced Bioethics: Clinical Observation. 1 Unit.
This course is a one credit class intended to supplement BETH 371: Advanced Bioethics. In this course students will become familiar with the clinical, psychological, social, professional, and institutional context in which bioethical problems arise. Students are exposed to clinical cases as they arise, to hospital ethics committees and ethics consultation programs, to institutional review boards (IRB), and to hospital policies covering “do not resuscitate” orders (DNR), advance directives, withdrawal of artificial feeding, and medical futility. The clinical rotation will consist of 20 hours of supervised observation where students attend structured clinical activities such as ICU rounds, case conferences as well as shadow clinicians that work with the Department of Bioethics and are used to having students at various levels of observers. The purpose of the clinical rotation will be to give students first hand observational experience in the health care system and how the key bioethical issues discussed in BETH 371 manifest in the clinical setting. The primary locations for this course are MetroHealth Medical Center and Louis Stokes Cleveland VA Medical Center. Prereq: BETH 271 or PHIL 271. Coreq: BETH 371 or PHIL 371.
BETH 401. Foundations in Bioethics I. 6 Units.
The first of the two required seminar courses, this course covers five basic topic areas in bioethics: death and dying; health professional-patient relationship; method and theory in bioethics; organ transplantation; and ethics and children. The course meets twice weekly and is taught in seminar format by Center faculty members who are experts on specific topics. Preentry.

BETH 402. Foundations in Bioethics II. 6 Units.
This course completes the required seminar core and covers the basic bioethics topic areas: health care justice; defining 'health care needs;' reproduction and fertility ethics; research ethics; and ethics in genetics. The course meets twice weekly and is taught in seminar format by Center faculty members who are experts on specific topics. Recommended preparation: BETH 401.

BETH 405. Clinical Ethics Rotation. 1.5 - 3 Units.
In this course students will become familiar with the clinical, psychological, social, professional, and institutional context in which ethical problems arise. This course exposes students to clinical cases, to hospital ethics committees and ethics consultation programs, to institutional review boards (IRB), and to hospital policies covering the "do not resuscitate" orders (DNR), advance directives, withdrawal of artificial feeding, organ procurement and transplantation, and medical futility. Requires minimum of 8 total hours of rotation experience per week during two semester 10-week rotations. Locations for this course include: MetroHealth Medical Center, University Hospitals of Cleveland, and the Hospice of the Western Reserve. Recommended preparation: BETH 401 or concurrent enrollment.

BETH 406. Society, Religion, and Bioethics. 3 Units.
Focus and Scope of Course: The course examines the interplay of politics, governmental structures, culture and religion and their impact on ethics questions that arise in the health arena. The course provides a broad overview of the basic tenets of several major faith traditions and examines how and why the interpretation of such tenets and their impact on bioethics issues varies across different societies. The specific domains in which we explore such issues, e.g., reproductive health, regenerative medicine, end-of-life issues, infectious disease, may be rotated each year. Objectives: Students will be able to *Describe how religious views and interests affect policymaking with respect to a variety of health-related issues *Enunciate strategies for the reconciliation of bioethics perspectives stemming from diverse religious interests in a pluralistic society *Compare and contrast the perspective of various world religions with respect to specific bioethics issues Prereq: Open to Graduate Students and Seniors only.

BETH 407. Interprofessional Integrative Seminar. 0 Unit.
This is an integrative seminar for dual professional degree students in Bioethics, e.g. Bioethics and Law, Bioethics and Public Health, Bioethics and Medicine. It is required for all dual professional degree students in Bioethics who were admitted to Bioethics on or after January 1, 2013. Students are required to take the seminar for two semesters at any time during their Bioethics program. The course focuses on the study of selected texts with respect to ethical issues and interprofessional relationships. Prereq: Must be a dual professional degree student.

BETH 408. Ethics, Law and Health Research. 3 Units.
This course focuses on an examination of issues arising at the juncture of law, ethics, and health research, such as informed consent, the assessment of risks and benefits, conflict of interest, and scientific misconduct. Particular attention is placed on issues arising in the context of study design and community based research. To the extent possible, the class will utilize a case-focused approach.

BETH 409. Global Justice and Bioethics. 3 Units.
This course aims to introduce students to the problem of global distributive justice, with an emphasis on both theoretical accounts of justice, and the practical implications of those accounts for important topics in global bioethics. The first half of this course will be devoted to important contemporary works which bring out core philosophical ideas about justice and how we address concerns of justice globally. The second half of this course will focus on current global bioethics topics, such as inequality and poverty, global intellectual property rights, the allocation of healthcare resources, the setting of research priorities, exploitation & the distribution of the benefits of research, and medical tourism. In addition to familiarizing students with the contemporary literature regarding global justice and related topics in bioethics, this course also seeks to help students strengthen their skills in reading, analyzing, interpreting, and engaging with philosophy and bioethics texts. This course is a seminar and will therefore emphasize in-class discussion rather than lecture. Students are expected to prepare by reading all assigned readings before class.

BETH 410. Foundations of Medicine, Society and Culture. 3 Units.
Topics will include comparative medical systems and concepts of health, medical history, illness narratives and narrative ethics, social determinants of health and health inequalities, analysis of representations of illness and medicine in literature and the arts, and medical rhetoric. Students who complete the course should develop a command of the basic problems, approaches, and literatures in the social and cultural contexts of health sickness, and medicine. Students will be able to identify epistemology, theory, methodology and data from neighboring disciplines and understand affordances and costs in each.

BETH 411. Narrative Medicine: Methodology in patient-centered medical education. 3 Units.
Narrative Medicine, or medicine practiced with narrative skills (as defined by Rita Charon, MD, PhD), is a methodology in patient-centered medical education. Narrative medicine is informed by the theory and practice of reading, writing, telling, and receiving of stories as a clinically empowering practice for anyone engaged (or planning to engage) in the field of healthcare. This course will employ various methods of learning and experiencing narrative, including fundamental skills of close reading and reflective writing and other forms of self-representation. Narrative competence is an important skill that enables a person to "recognize, absorb, interpret, represent, and be moved by the stories of illness". Major themes throughout the course will include caregivers' and patients' empowerment, empathy, narrative ethics, testimony, reflective writing, and illness and medical stories. The course will be conducted in a seminar-type format. Each session will have readings that relate to the theory of narrative (primarily from the Charon textbook but also from other sources in the Ethics and Humanities professional literature) and related health humanities. Many of the sessions will also include the application of reflective practice/close reading. Additional elements will be writing workshops and use of film and visual art as narrative. The class will meet once weekly for a 3 hour session. This class is open to graduate students in any humanities or healthcare field, and will be especially useful to those who intend to have a future career in which direct care of patients/ clients is a part of their work.
BETH 412. Ethical Issues in Genetics/Genomics. 3 Units.
This course is designed to familiarize graduate students with the major controversies over the generation and use of new human genetic information. Topics will include the spread of predictive genetic testing, prenatal diagnosis, genetic discrimination, human genetic variation research, eugenics, genetic counseling, and the limits of human gene therapy. The course will be conducted as a seminar, involving discussions of readings, guest speakers, and student presentations.

BETH 414. International Health Research Ethics. 3 Units.
This course will introduce students in the health and social sciences to key ethical issues that arise in international health research. The course will include intensive reading and case-based discussion of current ethical and moral quandaries posed by research conducted in the international arena. Five full-day sessions are planned. Each day will be divided into a series of formal presentations and active, group-based discussions around topics that include: the historical context of international health research; current international ethics principles, standards, and declarations; key tools and concepts for unpacking ethical issues in international health research; issues in informed consent and conflict of interest; "reasonable availability" and the conduct of clinical trials; cutting-edge international genetics research; and, the responsibility of researchers to the international health community. Course evaluation is based on class participation, a written exercise, and a case analysis.

BETH 415. International Bioethics: Policy and Practice. 3 Units.
Taught by Case and international faculty, this course will include 7-10 days of intensive didactic and experiential learning in one of several "host" countries. Examples of sites include: Free University of Amsterdam and University of Utrecht in the Netherlands; University of Paris in France; and Ben Gurion University in Israel. It will afford a unique opportunity to gain perspective on important bioethics issues in different societies, i.e., euthanasia, public health policies, access to healthcare, and stem cell research. At the international site, students will spend 6 hours per day (5 days) in seminar (including didactics, discussion, and guided-observation clinical experience). There will be two 3-hour preparatory sessions, required reading, and two 3-hour post trip sessions. Requirements: preparation, attendance, and class participation, a 12-15 page paper (undergraduate credit) and a 15-20 page paper (graduate credit). Graduate credit will also require students to prepare a presentation for a post-intensive session. Enrollment will be capped at 25. This course has an additional fee to cover costs of travel and lodging. Limited scholarships are available. Offered as BETH 315 and BETH 415.

BETH 415A. International Bioethics Policy and Practice: Women’s Health in the Netherlands. 3 Units.
This 3-credit course allows students to familiarize themselves with social policies and practices related to women's health in the United States and the Netherlands. Issues covered in the course include birth control and family planning, abortion, prenatal testing, childbirth, health care disparities, cosmetic surgery, prostitution and trafficking in women. This course also addresses the US and Dutch national policies regarding the public provision of health care for women. The course places an emphasis on the ways in which social norms shape policies over time, which political actors are involved in shaping women's health policy, and the balance between women's health as a matter of the public good or individual responsibility. This course substantively explores gender-specific cultural values and practices in relation to women's health in the United States and the Netherlands and will help students develop the analytical skills necessary for evaluating social policy and ethical issues related to women's health. Offered as BETH 315A and BETH 415A. Counts for CAS Global & Cultural Diversity Requirement.

BETH 415B. International Bioethics Policy and Practice: Public Health in the Netherlands. 3 Units.
This one week 3-credit intensive course will be held in Amsterdam, The Netherlands. Taught by faculty from Case and Utrecht University, this course offers students a cross-cultural perspective on ethical dilemmas raised by the practice of public health in the United States and Northern Europe. Additionally, this course examines policies related to prostitution, drug use, sex education, infectious disease prevention, and access to health care and how they differ in the cultural and political settings of U.S. and the Netherlands. We will examine both the rationales and outcomes of Dutch and American policies, stimulating course participants to consider their own views on these often controversial issues. Prior to the trip, students will attend lectures at Case, which will acquaint them with the theoretical approaches to public health ethics and major issues raised in the practice of public health. In these pre-trip sessions, students will also analyze and report on a case study designed to stimulate critical thinking on comparative public health ethics. In Amsterdam, students will attend lectures that will be supplemented by site visits and discussion sessions aimed at exploring the ethics of public health policy and practice in the Netherlands. Following the intensive week in Amsterdam, students will meet with instructors at Case for two hours to discuss their experiences and compare policies and practices in the U.S. and the Netherlands. Offered as BETH 315B and BETH 415B. Counts for CAS Global & Cultural Diversity Requirement.

BETH 415C. International Bioethics Policy and Practice: Health Care Costa Rica. 3 Units.
This 3-credit course gives students the unique opportunity to observe patients and practitioners encounter in a radically different health care system. Costa Rica has one of the most comprehensive health care systems in the Western hemisphere, featuring the innovative use of mid-level health care workers organized in basic comprehensive health care teams. This has resulted in a longer life expectancy than the United States, despite a per capita GDP of only $10,000 per person. Students will gain first-hand experience of Costa Rican health care through field experiences at sites including a national hospital in the capital city, San Jose; a peripheral treatment clinic in a smaller town; and observation of the work of an integrated basic health care team in an indigenous reserve. Following each visit, students will discuss the practical and ethical dilemmas that practitioners face in the context of the Costa Rican health care system. Specific topics include: health inequalities within and between nations; the ethics of transplantation, medical research, and end-of-life care; and health care in rural environments and with indigenous populations. Offered as BETH 315C and BETH 415C. Counts for CAS Global & Cultural Diversity Requirement.

BETH 412. Ethical Issues in Genetics/Genomics. 3 Units.
This course is designed to familiarize graduate students with the major controversies over the generation and use of new human genetic information. Topics will include the spread of predictive genetic testing, prenatal diagnosis, genetic discrimination, human genetic variation research, eugenics, genetic counseling, and the limits of human gene therapy. The course will be conducted as a seminar, involving discussions of readings, guest speakers, and student presentations.

BETH 414. International Health Research Ethics. 3 Units.
This course will introduce students in the health and social sciences to key ethical issues that arise in international health research. The course will include intensive reading and case-based discussion of current ethical and moral quandaries posed by research conducted in the international arena. Five full-day sessions are planned. Each day will be divided into a series of formal presentations and active, group-based discussions around topics that include: the historical context of international health research; current international ethics principles, standards, and declarations; key tools and concepts for unpacking ethical issues in international health research; issues in informed consent and conflict of interest; "reasonable availability" and the conduct of clinical trials; cutting-edge international genetics research; and, the responsibility of researchers to the international health community. Course evaluation is based on class participation, a written exercise, and a case analysis.

BETH 415. International Bioethics: Policy and Practice. 3 Units.
Taught by Case and international faculty, this course will include 7-10 days of intensive didactic and experiential learning in one of several "host" countries. Examples of sites include: Free University of Amsterdam and University of Utrecht in the Netherlands; University of Paris in France; and Ben Gurion University in Israel. It will afford a unique opportunity to gain perspective on important bioethics issues in different societies, i.e., euthanasia, public health policies, access to healthcare, and stem cell research. At the international site, students will spend 6 hours per day (5 days) in seminar (including didactics, discussion, and guided-observation clinical experience). There will be two 3-hour preparatory sessions, required reading, and two 3-hour post trip sessions. Requirements: preparation, attendance, and class participation, a 12-15 page paper (undergraduate credit) and a 15-20 page paper (graduate credit). Graduate credit will also require students to prepare a presentation for a post-intensive session. Enrollment will be capped at 25. This course has an additional fee to cover costs of travel and lodging. Limited scholarships are available. Offered as BETH 315 and BETH 415.

BETH 415A. International Bioethics Policy and Practice: Women’s Health in the Netherlands. 3 Units.
This 3-credit course allows students to familiarize themselves with social policies and practices related to women’s health in the United States and the Netherlands. Issues covered in the course include birth control and family planning, abortion, prenatal testing, childbirth, health care disparities, cosmetic surgery, prostitution and trafficking in women. This course also addresses the US and Dutch national policies regarding the public provision of health care for women. The course places an emphasis on the ways in which social norms shape policies over time, which political actors are involved in shaping women’s health policy, and the balance between women’s health as a matter of the public good or individual responsibility. This course substantively explores gender-specific cultural values and practices in relation to women’s health in the United States and the Netherlands and will help students develop the analytical skills necessary for evaluating social policy and ethical issues related to women’s health. Offered as BETH 315A and BETH 415A. Counts for CAS Global & Cultural Diversity Requirement.

BETH 415B. International Bioethics Policy and Practice: Public Health in the Netherlands. 3 Units.
This one week 3-credit intensive course will be held in Amsterdam, The Netherlands. Taught by faculty from Case and Utrecht University, this course offers students a cross-cultural perspective on ethical dilemmas raised by the practice of public health in the United States and Northern Europe. Additionally, this course examines policies related to prostitution, drug use, sex education, infectious disease prevention, and access to health care and how they differ in the cultural and political settings of U.S. and the Netherlands. We will examine both the rationales and outcomes of Dutch and American policies, stimulating course participants to consider their own views on these often controversial issues. Prior to the trip, students will attend lectures at Case, which will acquaint them with the theoretical approaches to public health ethics and major issues raised in the practice of public health. In these pre-trip sessions, students will also analyze and report on a case study designed to stimulate critical thinking on comparative public health ethics. In Amsterdam, students will attend lectures that will be supplemented by site visits and discussion sessions aimed at exploring the ethics of public health policy and practice in the Netherlands. Following the intensive week in Amsterdam, students will meet with instructors at Case for two hours to discuss their experiences and compare policies and practices in the U.S. and the Netherlands. Offered as BETH 315B and BETH 415B. Counts for CAS Global & Cultural Diversity Requirement.

BETH 415C. International Bioethics Policy and Practice: Health Care Costa Rica. 3 Units.
This 3-credit course gives students the unique opportunity to observe patients and practitioners encounter in a radically different health care system. Costa Rica has one of the most comprehensive health care systems in the Western hemisphere, featuring the innovative use of mid-level health care workers organized in basic comprehensive health care teams. This has resulted in a longer life expectancy than the United States, despite a per capita GDP of only $10,000 per person. Students will gain first-hand experience of Costa Rican health care through field experiences at sites including a national hospital in the capital city, San Jose; a peripheral treatment clinic in a smaller town; and observation of the work of an integrated basic health care team in an indigenous reserve. Following each visit, students will discuss the practical and ethical dilemmas that practitioners face in the context of the Costa Rican health care system. Specific topics include: health inequalities within and between nations; the ethics of transplantation, medical research, and end-of-life care; and health care in rural environments and with indigenous populations. Offered as BETH 315C and BETH 415C. Counts for CAS Global & Cultural Diversity Requirement.
BETH 415D. French Connections, A Cross-Cultural Comparison of Medical Ethics. 3 Units.
This 3-credit course is collaboration between Case Western Reserve University and the University of Paris. The course includes a ten-day trip to Paris, France over Spring Break. This course offers a cross-cultural comparison of the French and American medical systems. Students will have the unique opportunity to learn first-hand how the French medical education system is structured and how the social, cultural and political contexts in France shape medical and ethical issues. The trip includes guided field experiences in French clinical settings as well as opportunities to engage with French faculty members and physicians about contemporary issues in bioethics. Ethical issues that may be considered may include reproductive rights, decision-making involving severely impaired newborns, withholding/withdrawing life-sustaining treatment and issues in organ donation and transplant. The course also will also emphasize the role of French culture and history while in Paris with museum and site visits designed to complement seminar content and offer real-life illustrations of course content. Prior to the trip, students attend six hours of lectures, either at Case Western Reserve University or via a web-based tutorial. They are expected to become familiar with the representative articles assigned for the course, and be prepared to integrate those readings into pre-trip class participation and active participation while in France. Following the trip, students meet with the instructor for an additional four hours to discuss and synthesize their experiences. Offered as BETH 315D and BETH 415D. Counts for CAS Global & Cultural Diversity Requirement.

BETH 415E. International Bioethics: Policy and Practice--US and Spanish Perspectives, Salamanca Spain. 3 Units.
This 3-credit hour course will introduce advanced undergraduate and graduate students to theoretical and practical aspects of bioethics in a European context. Continental health professionals and bioethicists work in an environment that differs from the American context in at least three important dimensions: the political structure of their health care systems, the cultural influence of their religious histories, and the theoretical perspective of continental moral philosophy. The University of Salamanca in Spain, one of the oldest universities in Europe (known as the "Oxford of Spain"), will be used in this course as a focal point for examining the interplay of these three dimensions in shaping institutional and professional approaches to specific problems in bioethics, including end of life decisions, organ procurement and allocation, reproductive ethics, health care justice, and environmental bioethics ("eco-ethics"). This course will help advanced students who are already grounded in American bioethics develop the analytical skills necessary for evaluating European bioethical scholarship and policy-making, while helping less advanced students develop a familiarity with fundamental similarities and differences between bioethics in Spain and the U.S. The course will include a one week trip to Salamanca, Spain where students will be taught by instructors and faculty from the University of Salamanca. Teaching will include some guided field experiences and regular discussion sessions with the course faculty. Prior to the trip, students will attend 4 hours of class at Case to become familiar with elements of political theory and moral philosophy relevant to the in-country discussions. Following the trip, students will meet with instructors for an additional 2 hours. Offered as BETH 315E and BETH 415E. Counts for CAS Global & Cultural Diversity Requirement.

BETH 415F. Bioethics Themes as Expressed in Spanish and American Culture: Film, Television, and Literature. 3 Units.
This 3-credit intensive course will be held in San Sebastian, Spain. Taught by faculty from CWRU and University of the Basque Country, this course offers students a cross-cultural perspective on bioethics in the United States and Spain. This course uses the medium of film, complemented by readings in bioethics, film criticism, and medical research, to introduce students to a number of compelling bioethics problems facing physician-scientists today, including: when life begins, the nature and limits of informed consent, use of randomization without equipoise, medical imperialism (or the appearance thereof), the treatment of so-called "orphan" diseases, use of deception in research, and financial conflicts of interests caused by among other things, the involvement of the pharmaceutical industry in the drug invention process. Offered as BETH 315F and BETH 415F. Counts for CAS Global & Cultural Diversity Requirement.

BETH 415G. Death, Dying & Euthanasia: Netherlands & the USA. 3 Units.
Is it ever permissible for physicians to kill their patients? In the Netherlands, the answer is yes. In the United States, it is no. Are the Dutch sliding down a moral slippery slope? Are the Americans compromising the rights and dignity of dying patients? This 3-credit course is a unique opportunity to examine a range of Dutch and American end-of-life policies and practices with special focus on the unique ethical, cultural, religious, and legal contexts in which they developed. This course will compare how two liberal democracies, the United States and the Netherlands, have handled difficult end-of-life issues, including: The Dutch regulation of euthanasia; Regulation of physician-assisted suicide in the state of Oregon; Terminal sedation; End-of-life decisions in newborns; Withholding and withdrawing of artificially-provided fluids and nutrition; The legal basis for end-of-life decision making in the USA; Palliative care and hospice; Public trust in medicine and physicians. In the United States, teaching methods will include lectures, case discussion, and exposure to how some of the course's themes are reflected in popular culture such as movies. Offered as BETH 315G and BETH 415G. Counts for CAS Global & Cultural Diversity Requirement.
BETH 415H. Water Security and Social Justice in Brazil. 3 Units.
CWRU, through the Center for Global Health and Diseases, has had projects, student exchanges and courses with institutions in Brazil and especially with the state of Bahia for over 30 years. In that time, personal and professional relationships have been developed with branches of the Ministry of Health (Oswaldo Cruz Foundation, the Municipal and State Health Departments), the Federal University of Bahia, and the Bahiana School of Medicine and Public Health. Brazil is the second largest country in the Western Hemisphere and the 7th or 8th largest economy in the world. There are more people who speak Portuguese in South America than Spanish. Despite newly discovered oil, enormous natural and human resources, development in Brazil has been uneven with the Northeast remaining the least developed. The Northeastern state of Bahia ranked 22nd out of 27 states on the UN’s Index of Human Development (http://www.pnud.org.br/IDH/DH.aspx# and http://www.atlasbrasil.org.br/2013/pt/home/). The State capital, Salvador, ranks 14th out of 20 major metropolitan regions and is one site for this study abroad program. The second site, the rural town of Ubaíra, is ranked 4590 out of 5565 municipalities. Even with large social inequities and health care disparities, the Brazilian government and society have produced remarkable social policies, have shown a willingness to implement these policies and have the resources to significantly improve the lives of its most impoverished citizens. Critical basic infrastructure for health and development is water. Its consumption is essential; it is a mechanism for waste disposal, industry and agriculture are dependent on its supply. The problem of water quantity and quality are common all human societies (witness the drought in California and the burning Cuyahoga). Individuals from all walks of life will need to assess issues of water at some time, from doctors, engineers, urban planners, lawyers and politicians. In Brazil the issues of water are more exposed and easier to examine on different scales than in the U.S. The problem also resides within a social, health care, and political context that compares well and at the same time contrasts sharply with that of the USA. As a student in this course, you will gain first-hand knowledge of the social and public health challenges regarding water security in Brazil. Through field experiences in the capital city of Salvador and the rural town of Ubaíra, you will immerse yourself in interdisciplinary perspectives on the public health, scientific, political, and ethical dimensions of water security in Brazil. This immersive experience will be facilitated by faculty from the CWRU Dept. of Bioethics and the Center for Global Health and Diseases, the Brazilian Ministry of Health, the Federal University of Bahia, the Bahiana School of Medicine and Public Health, and Brazilian graduate student participants. Offered as: INTH 315, INTH 415, BETH 315H, and BETH 415H. Counts for CAS Global & Cultural Diversity Requirement.

BETH 417. Introduction to Public Health Ethics. 3 Units.
The course will introduce students to theoretical and practical aspects of ethics and public health. This course will help students develop the analytical skills necessary for evaluating of ethical issues in public health policy and public health prevention, treatment, and research. Will include intensive reading and case-based discussions. Evaluation based on class participation, a written exercise and a case analysis. Open to graduate students with permission from instructors.

BETH 421. Research Ethics Practicum. 1.5 Unit.
The Research Ethics Practicum (80 hours, 1.5 CREDITS) is designed to complement the theoretical and conceptual training received in the course, Critical Issues in Research Ethics. By way of a series of campus-wide rotations, students learn about the practical, everyday side of research administration, compliance, and scientific review. Students will work with key staff in research ethics centers, and observe their day-to-day operations, as well as attend institutional review board (IRB) and Institutional Animal Care and Use Committee (IACUC) meetings. They will become familiar with human subjects, animal, and tissue research regulations and policies as these are applied in an institutional/academic research context. Students will also spend time in a clinical trials unit and tour animal care facilities. The practicum has the following overall objectives: (1) students will be able to identify, analyze, and understand research ethics issues as they develop in the context of actual institutional research governance (2) students will gain an understanding of methods of ethical research design and implementation.

BETH 422. Clinical Ethics: Theory & Practice. 3 Units.
This course will focus on both theoretical and practical issues in clinical ethics. Clinical ethics will be distinguished from other areas of bioethics by highlighting distinctive features of the clinical context which must be taken into account in clinical ethics policy and practice. Fundamental moral and political foundations of clinical ethics will be examined, as will the role of bioethical theory and method in the clinical context. Topical issues to be considered may include informed consent; decision capacity; end of life decision making; confidentiality and privacy; the role and function of ethics committees; ethics consultation; the role of the clinical ethicist; decision making in various pediatric settings (from neonatal through adolescent); the role of personal values in professional life (e.g., rights of conscience issues, self disclosure and boundary issues); dealing with the chronically non-adherent patient; ethical issues in organ donation and transplant; health professional-patient communication; medical mistakes; and other ethical issues that emerge in clinical settings.

BETH 430. Bioethics in Literature. 1 Unit.
This course complements the Foundation course in the MA bioethics program by introducing students to narrative literature (fiction, nonfiction and poetry) that addresses ethical issues in medicine. The material is frequently the work of physicians and patients who narrate their respective experiences. As such, narrative provides direct insights into the practice of modern medicine tested against both accepted and controversial moral norms and serves as a vehicle for discussion and analysis of ethical issues. These issues involve topics such as death and dying, reproduction, pediatrics, women as patients and clinicians, public health and medicine as a profession and its practice as a privilege. Students will sample the work, among others, of William Carlos Williams, Lewis Thomas, Toni Morrison, Margaret Atwood, John Donne, Dylan Thomas and Abraham Verghese.
BETH 440. Science and Society Through Literature. 3 Units.
This course will examine the interaction of scientific investigation and discovery with the society it occurred in. What is the effect of science on society and, as importantly, what is the effect of society on science? An introduction will consider the heliocentric controversy with focus on Galileo. Two broad areas, tuberculosis and the Frankenstein myth, will then be discussed covering the period 1800-present. With tuberculosis, fiction, art and music will be examined to understand the changing views of society towards the disease, how society's perception of tuberculosis victims changed, and how this influenced their treatments and research. With Frankenstein, the original novel in its historical context will be examined. Using fiction and film, the transformation of the original story into myth with different connotations and implications will be discussed. Most classes will be extensive discussions with student presentations of assigned materials. Offered as PHRM 340, BETH 440, PHRM 440, and HSTY 440.

BETH 453. Hindu and Jain Bioethics. 3 Units.
This course will provide both an introduction to basic Hinduism and Jainism and an introduction to Hindu and Jain bioethics. We will ask: How would a Hindu or a Jain respond to issues concerning euthanasia, abortion, and other topics of controversy. Are these answers altered in the North American context or in the light of recent technological changes? Counts for CAS Global & Cultural Diversity Requirement.

BETH 460. Science and Society. 3 Units.
This course examines the complex ethical and other value relationships that exist between science and society. Students will be encouraged to question the simplistic view that science proceeds independently of societal values and contentious ethical commitments. A range of other social factors, such as ethical belief systems, political forces, and large-scale financial interests all influence new scientific and technological developments. In order to illuminate each of these larger themes, this course focuses on three exciting areas of scientific inquiry: stem cell research; synthetic biology; and nanotechnology. Each of these contentious scientific fields provides an excellent view into the challenging ethical, cultural, social, political, and economic issues that will face students, both as scholars and as citizens. No prior technical knowledge is necessary for any of these scientific areas. All relevant scientific information will be provided during the course by the professor. Offered as RLGN 353, RLGN 453, BETH 353, and BETH 453.

BETH 466. Promoting Health Across Boundaries. 3 Units.
This course examines the concepts of health and boundary spanning and how the synergy of the two can produce new, effective approaches to promoting health. Students will explore and analyze examples of individuals and organizations boundary spanning for health to identify practice features affecting health, compare and contrast practices and approaches, and evaluate features and context that promote or inhibit boundary spanning and promoting health. Offered as MPH 466, PQHS 466, SOCI 466, NURS 466 and BETH 466. Prereq: Graduate student status or instructor consent.

BETH 503. Research Ethics and Regulation. 3 Units.
This course is designed to introduce students to the ethical, policy, and legal issues raised by research involving human subjects. It is intended for law students, post-doctoral trainees in health-related disciplines and other students in relevant fields. Topics include (among others): regulation and monitoring of research; research in third-world nations; research with special populations; stem cell and genetic research; research to combat bioterrorism; scientific misconduct; conflicts of interest; commercialization and intellectual property; and the use of deception and placebos. Course will meet once per week for 2 hours throughout the semester. Grades will be given based on class participation and a series of group projects and individual short writing assignments. Offered as BETH 503, CRSP 603 and LAWS 5225.

BETH 504. Critical Readings in Bioethics. 3 Units.
This course will focus on both normative (traditional) and descriptive (empirical) approaches to bioethics. It will be co-directed by two faculty members, one with a specialization in normative bioethics and one with a specialization in descriptive bioethics.

BETH 505. Methods Normative Bioethics. 3 Units.
The purpose of this intensive graduate seminar is to master and to critique core philosophical concepts that are implicit in a wide array of bioethical issues. We will critically examine in a range of contemporary ethical theories beginning with modern conceptions of individual autonomy and concluding with theories of ethical justification. While no advanced knowledge of ethical theories is presupposed, students are expected to come to class prepared with the course readings and to engage in rigorous philosophical discussions with one another and the professor.

BETH 506. Methods in Normative Bioethics II. 3 Units.
The second of the two required Methods seminars is designed to give graduate students an intensive introduction to the modes of moral reasoning that have been adopted and adapted by contemporary Bioethics, and the major critical perspectives that have been brought to bear upon them.

BETH 508. Research Design in Bioethics II. 3 Units.
The second of two empirical research courses will introduce students to theoretical and methodological approaches in the design and implementation of empirical research on topics in biomedical ethics. Students will be provided with a comprehensive and robust exploration of empirical models for the development of bioethics research and the skills for critically assessing the optimal methods for designing studies relevant to ethical issues in biomedicine. Prereq: BETH 507.

BETH 511. Grant Writing. 3 Units.
This course will teach students the fundamentals of writing a grant proposal. We will concentrate on NIH-style applications, although the principals of grant writing can be applied to any venue. In the process of working through devising a research question and study design, students will be encouraged to use this as an opportunity to think about their dissertation topic. In addition to applying theoretical and research design knowledge gained through their other core course work, the course will also teach students about how to complete application forms and to create a budget. We will also familiarize students with the peer review process. Each student will produce a draft grant application. The students will form a mock peer review section and will critique the grants.
BETH 512. Clinical Ethics Rotation - Ph.D. 1.5 Unit.
In this course students will become familiar with the clinical, psychological, social, professional, and institutional context in which ethical problems arise. This course exposes students to clinical cases, to hospital ethics committees and ethics consultation programs, to institutional review boards (IRB), and to hospital policies covering the "do not resuscitate" orders (DNR), advance directives, withdrawal of artificial feeding, organ procurement an transplantation, and medical futility. Requires minimum of 10 total hours of rotation experience per week during two semester 10-week rotations. Locations for this course include: MetroHealth Medical Center, University Hospitals of Cleveland, and the Hospice of the Western Reserve. Recommended preparation: BETH 520/BETH 521 or concurrent enrollment.

BETH 521. Foundations in Bioethics II - Ph.D. 3 Units.
The second of the two required seminar courses, this course covers five basic topic areas in bioethics: death and dying; health professional-patient relationship; method and theory in bioethics; organ transplantation; and ethics and children. The course meets twice weekly and is taught in seminar format by Center faculty members who are experts on specific topics.

BETH 502. Special Topics in Bioethics. 1 - 3 Units.
Students will explore particular issues and themes in biomedical ethics in depth through independent study and research under the direction of a faculty member.

BETH 503. Bioethics Research. 6 Units.
Research leading toward the MD/MA degree is Bioethics.

BETH 504. Advanced Research Ethics Seminar. 0 Unit.
This course meets for two hours each month and is focused on the following topics and the development of the stated competencies: September Introduction; How to critically analyze the literature; Facilitator critique of assigned manuscript; Designing re-entry projects Critical analysis of literature. October Trainee #1 critique of assigned manuscript; Methodological and ethical issues in designing and reviewing research; Trainee presentation of concept papers for re-entry projects Critical review of research protocols and manuscripts; Issues in designing research. November Trainee #2 critique of assigned manuscript; How to prepare and present professional presentations Critical analysis of literature; Oral presentation skills December Trainee #3 critique of assigned manuscript; Principles of adult education Critical analysis of literature; Oral presentation skills; Development of teaching skills. January Trainee #1 critique of assigned manuscript; Principles of adult education Critical analysis of literature; Oral presentation skills February Trainee #2 critique of assigned manuscript; Developing submissions for IRB review Critical analysis of literature; Oral presentation skills; Identifying and addressing ethical issues in research; Preparation of IRB submissions. March Trainee #3 critique of assigned manuscript; Update on development of re-entry projects; Logistical issues related to re-entry projects; Manuscript preparation Critical analysis of literature; Oral presentation skills; Implementing research; Preparing work for publication; Negotiation skills. April Re-entry issued Implementing research; Readjustment. This course is only open to trainees in the Fogarty-funded Training Program in International Research Ethics.

BETH 605. Special Study: IRB Administration. 1.5 Unit.
This course is limited to Fogarty-sponsored trainees in the Training Program in International Research Ethics. The course, which meets 1.5 hours per week, focuses on issues relevant to the management and administrations of the various functions of research ethics review committees. Topics to be covered include identification and selection of appropriate community representatives for membership and/or consultation, utilization of independent experts/consultants, recordkeeping, approaches to communication with investigators, and others. Regular guest lectures will be provided by members of the various local IRBs, staff members of local IRBs, and senior investigators. The course will utilize a case-based approach.

BETH 701. Dissertation Ph.D.. 1 - 9 Units.
(Credit as arranged.) Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.

Environmental Health Sciences
Phone: 216.368.5957
Jonathan Haines, PhD, Interim Chair jonathan.haines@case.edu

Programs in Environmental Health Sciences are on hiatus and are being reevaluated as part of the merger of the Department of Environmental Health Sciences and the Department of Epidemiology & Biostatistics into the new Department of Population & Quantitative Health Sciences.

General Medical Sciences
Contact: Main contact information is listed separately under each Center.

The Division of General Medical Sciences was established in 1986 to provide an organizational home for units pursuing interdisciplinary research and education objectives. The division is the equivalent of an academic department, and its constituent units are characterized as Centers. The Dean of the School of Medicine serves as the Chair of the division; each Center is led by a director. The unique nature of each of the General Medical Sciences centers is described in the paragraphs below. (Centers are listed in alphabetical order by full title, and associated academic programs including certificate, MS and PhD programs described in top navigation tabs).

Case Comprehensive Cancer Center
Phone: 216.844.8797
http://cancer.case.edu
Stanton L. Gerson, MD, Director, Case Comprehensive Cancer Center

The Case Comprehensive Cancer Center (Case CCC) is one of only 41 National Cancer Institute-designated Comprehensive Cancer Centers in the country. The Case CCC integrates the cancer research activities of the largest medical collaborative in Ohio, Case Western Reserve University (CWRU), University Hospitals Case Medical Center and Cleveland Clinic - under a single leadership structure. Our researchers dedicate themselves to improving cancer outcomes through basic studies into signaling pathways giving rise to cancer and its genetic and epigenetic causes, pursuing novel therapeutic targets, and analyzing lifestyle interventions to prevent cancer and detect it earlier.
The Case CCC has over 360 collaborating scientists and physicians who have successfully competed for over $119 million in annual funding. These investigators are organized into eight interdisciplinary scientific programs and have access to 15 Scientific Core Facilities. A unified
clinical research effort consisting of 12 multidisciplinary clinical disease teams develop and prioritize clinical trials among the partner institutions. Located in Cleveland, Ohio, the Case CCC serves a population with higher than average cancer rates. Research programs extend to CWRU affiliates MetroHealth Medical Center (the region's county hospital) and Louis Stokes Veterans Affairs Hospital and to 13 community medical centers operated by University Hospitals and Cleveland Clinic. As a consortium cancer center, Case CCC has become a powerful example of the potential generated by complementary institutions coming together for the benefit of research and discovery, patient treatments and community impact. Through its partners, Cancer Center programs extend throughout Northeast Ohio to offer residents access to cancer care through participation in community outreach, cancer prevention, cancer survivorship initiatives and a robust clinical trials operational effort coordinated across academic medical centers and community sites.

Center for Clinical Investigation
Phone: 216.368.3286
http://cci.case.edu/cci/index.php/Main_Page
James Spilsbury, PhD, Academic Development Core Director

The Center for Clinical Investigation (CCI) was founded in 2007 and is part of Case Western Reserve University School of Medicine's Division of General Medical Sciences. The CCI serves as the academic home of Cleveland's Clinical & Translational Science Collaborative, a partnership of 4 local institutions (Case Western Reserve University, the Cleveland Clinic Foundation, the MetroHealth System, and University Hospitals) and member of a national consortium of approximately 66 institutions funded by the National Institutes of Health to increase the efficiency and speed of clinical and translational research across the country.

The CCI's mission is to enhance clinical and translational research efforts across the Cleveland area by: (1) spurring advances in knowledge of risk factors, outcomes and treatment effectiveness in the population; (2) facilitating the transfer of scientific advances to the community; and (3) developing a new generation of clinical researchers equipped with the skills needed to efficiently design, implement and interpret novel studies that address important public health questions. To accomplish its mission, the CCI provides computer systems and applications support for basic science and clinical research activities and works closely with basic science and clinical investigators in the CWRU Schools of Medicine, Nursing, and Dental Medicine, as well as the University Hospitals Case Medical Center, Cleveland Clinic, and MetroHealth System. The CCI has supported hundreds of clinical research and epidemiology projects, including local and national multicenter, longitudinal studies. The CCI has two cores that provide research support to all investigators: the Academic Development Core and Statistical Sciences Core. The Academic Development Core manages the newly created PhD Program in Clinical Translational Science, the Master's Degree Program in Clinical Research (Clinical Research Scholars Program - available to undergraduate, graduate and professional school students), a weekly World Health Interest Group (WHIG) seminar series, overseas rotations for graduate and professional school students, and training programs at the university and abroad for scholars from developing countries (with support from the Fogarty International Center at NIH).

A certificate in Global Health is available (see Certificates).

Center for Medical Education
Phone: 216.368.1948
Patricia A. Thomas, MD, FACP, Director
Klara Papp, PhD, Director, CAML

The Center for Medical Education, established in 2010, provides an organizational home for teaching and learning programs in the School of Medicine and a supportive environment for those who want to develop special skills in medical education. The Center also sponsors faculty appointments, both full- and part-time, for faculty whose roles are predominantly focused on teaching medical students and physician assistant students. These include community clinicians who welcome medical students into their clinics and practices. The Center for the Advancement of Medical Learning ("CAML") operates its programs under the auspices of the CMEd. CAML supports and promotes the development of teaching and lifelong-learning skills among students, faculty, staff, residents, and alumni. CAML pursues research into educational innovations to advance our knowledge of medical learning and teaching. The Center offers workshops to faculty locally, regionally, and nationally to enhance faculty teaching, research and evaluation skills.
The Case Center for Proteomics and Bioinformatics was created, in part, to strengthen Cleveland’s presence in modern proteomics and bioinformatics research to make the region a leader in the field. The vision for the Center has been shaped over the past several years by the leadership of the Center’s Director, Mark Chance, Ph.D, with over $120 million in grants awarded to the Center and its collaborators since its inception in February 2006. One of the primary goals of the CPB is to develop an infrastructure of sophisticated equipment that facilitates and maximizes shared equipment usage, as well as to offer a wide array of proteomics and bioinformatics services including mass spectrometry, protein expression/interactions, systems biology, and biostatistical analyses.

The CPB has expanded its vision to include education of graduate students in systems biology and bioinformatics. The Center for Proteomics and Bioinformatics developed a graduate program in Systems Biology and Bioinformatics in collaboration with Schools and Departments across the campus. For more information regarding the SYBB graduate program please see “Systems/Bioinformatics” tab above. You may also visit http://bioinformatics.case.edu/.

Proteomics entails the in depth structural analysis of individual proteins in human and animal cells. In studying proteins and their changes, bioinformatics enables researchers to take an integrated -omics approach for discovering networks involved in human disease. The School of Medicine has established the Center for Proteomics and Bioinformatics to perform research to better understand the genetic and environmental bases of disease as well as provide new technologies to diagnose diseases such as cancer, heart disease, and diabetes. New technologies in mass spectrometry are also allowing protein expression, localization, post-translational modifications, and interactions to be studied in increasing detail and on a genome wide scale. The Center is also developing and applying state-of-the-art structural proteomics technologies to understand the function and interactions of macromolecular complexes.

The CPB has three divisions: Proteomics and Genomics, Bioinformatics, and Macromolecular Structure.

Proteomics and Genomics Division
The mission of the Division of Proteomics and Genomics is to support research in protein and gene expression analysis, protein and gene modifications, and protein interactions in a wide variety of biological contexts. The division also develops new tools in Proteomics and Genomics research. Multiple Proteomics Cores support these activities.

Bioinformatics Division
The mission of the Division of Bioinformatics is to support interdisciplinary research and training in many areas of bioinformatics including analysis of DNA and protein sequences, protein interaction networks from whole genome expression data, analysis of signaling pathways from phospho-proteomics data, linkage and association studies for simple and complex traits, and gene and protein expression profiles. This includes a Bioinformatics Core that provides research support for these activities.

Macromolecular Structure Division
The mission of the Division of Macromolecular Structure is to support interdisciplinary research in new methods of structure determination, the combination of computational and experimental structural biology approaches, and developing and maintaining infrastructure for macromolecular structure determination. The Division will work closely and coordinate their activities with faculty and Departments in the University who use structural information to understand function as well as other Centers that provide leadership in Structural Biology and Biophysics.

The CPB also offers a wide range of seminars, workshops, and possibilities for individual training. These activities are posted on the CPB Web site. For a list of services and to explore opportunities to collaborate, please visit the Web site: http://proteomics.case.edu or e-mail: proteomics@case.edu.

Center for Psychoanalytic Child Development
Phone: 216.991.4472
Kimberly Bell (kmb207@case.edu), PhD; John A. Hadden Jr. Assistant Professor of Psychoanalytic Child Development

The Center for Psychoanalytic Child Development was established in 2001 as a memorial to John A. Hadden Jr., past President of the Board of Trustees of the Cleveland Center for Research in Child Development and of the Hanna Perkins School. The mission of the center is to advance the science of psychoanalytic child development at the School of Medicine.

The Center offers medical students and residents who are interested in working with children the opportunity for observational learning in the Hanna Perkins school. In addition, didactic courses, case conferences and supervision are available to deepen students’ understanding of the relationship between physical and psychological development in the first 5 years of life.

The Center for RNA Science and Therapeutics
Phone: 216.368.0299
http://www.case.edu/med/rnacenter/home.htm
Jeffery M. Coller, PhD, Director

The Center for RNA Science and Therapeutics is a free standing academic unit in the basic sciences within the School of Medicine at Case Western Reserve University. The RNA Center was established in the mid-nineties as a core entity in recognition of the strong cadre of research laboratories devoted to studying post-transcriptional mechanisms of gene expression focusing on various aspects of RNA Biology. The current mission of the RNA Center is to parlay the strengths of RNA Center scientists towards the development of unique therapeutic initiatives. The RNA Center is combining the usage of nanoparticle technology with RNA science to develop new classes of drugs, leading towards the amelioration of a variety of diseases. Current efforts are focused on metabolic disorders, cancer immunotherapies, immunity, and protein replacement. In addition, we are developing new technologies that promise to improve diagnostics, allowing for earlier detection of a variety of human diseases, especially cancer.

The RNA Center contains one of the largest concentrations of RNA scientists in the nation. The faculty of the RNA Center cover nearly every aspect of RNA research. Current research in the Center focuses on several problems ranging from extremely basic questions such as the mechanism of RNA catalysis and how proteins interact with RNA to the roles of RNA processing in disease. Specific research interests include splicing and its regulation, RNA editing, tRNA maturation, mechanisms of translation regulation, RNA degradation, RNA trafficking, RNA interference and regulation of gene expression by microRNAs and non-coding RNAs.
Collectively, the RNA Center provides a valuable resource for collaborative efforts within the University and its affiliated institutions: the Cleveland Foundation, MetroHealth Medical Center, the Cleveland VA Medical Center, and University Hospitals Cleveland Medical Center. In addition, the official journal of the RNA Society “RNA” was founded and continues to be housed in the RNA Center. The members of the RNA Center have an excellent funding record and the research performed is regularly published in highly visible journals such as Science, Nature, Molecular Cell, NSMB, Molecular Cell, etc.

Center for Science, Health and Society
Phone: 216.368.2059
http://casemed.case.edu/cksb/
Nathan A. Berger, MD, Director

Recognizing that the successful futures of Case Western Reserve University, the City of Cleveland, and Cuyahoga County are integrally related, the Center for Science, Health and Society (CSHS) was created in 2002 to focus the efforts of the University and the community in a significant new collaboration to impact the areas of health and healthcare delivery systems through community outreach, education, and health policy. The Center, based in the School of Medicine, with university wide associations is engaging the many strengths of the University and the community to improve the health of the community.

The Center has engaged the community at the level of the individual and the neighborhood, in public and private schools, at civic and faith-based organizations, and at the level of governmental agencies and community leadership to identify community problems, perceptions, assets and resources; advise the community of faculty skills, assets and expertise; and, catalyze that community service based scholarship that benefits community interests and promotes mutual enhancement. The Center coordinates the Scientific Enrichment Opportunity outreach program that brings Cleveland high school students on to the medical school campus in the summer to work along with our distinguished faculty in their research labs, to introduce and stimulate the students and help prepare them to enter careers in the health care professions and biomedical workforce. The Center also coordinates the Mini Medical School Program presented every Spring and Fall to educate the community in the latest developments in healthcare, particularly those developed at CWRU. The overall goal of these programs is to educate and empower the community to become better consumers of healthcare and more informed and stronger advocates for healthcare policy and legislation in their own interests.

Center for the Study of Kidney Biology and Disease
Phone: 216.444.8415
John R. Sedor, MD, Director
Thomas H. Hostetter, MD, Co-director
Jeffrey Garvin, MD, PhD, Co-director
Jeffrey Schelling, MD, Co-director

Chronic Kidney Disease (CKD) is a growing public health problem in the United States. More than seventeen percent of US adults—more than 30 million Americans—have CKD. CKD generally progresses over time, and can cause cardiovascular disease, anemia, bone disease, fluid overload, and eventually end-stage kidney disease (ESKD). Patients with ESKD need renal replacement therapy, either from dialysis or a kidney transplant, to live. The risk of death for patients receiving dialysis is nearly eight times higher than the non-ESRD population, leading to a 20% annual probability of death. Kidney disease disproportionately affects minorities and vulnerable populations. Kidney disease treatment is expensive and uniquely tied to federal expenditures through the Medicare entitlement program. The cost of care for ~550,000 ESKD patients is nearly $34 billion annually, exceeding the total NIH budget. Treating all health conditions of CKD and ESRD patients consumes nearly 25% of the Medicare’s budget.

The Center’s mission is to accelerate discovery and its translation for treatment and cure of kidney diseases in an interdisciplinary environment within the rich, research environment of the CWRU School of Medicine. The faculty is an accomplished and highly interactive group of investigators, based in the adult or pediatric Divisions of Nephrology in CWRU-affiliated hospitals as well as other clinical and basic science departments. Research interests of the faculty include digital pathology image analysis, glomerular diseases, diabetic and other chronic kidney diseases, epithelial cell biology and ion transport, tubular physiology, genetic epidemiology, health services research, renal transplantation, health disparities research and clinical trials. Center faculty are members of the NIDDK-funded Kidney Precision Medicine Project. Research projects use cellular, molecular biological, computational, genetic, genomic and epidemiological methods to study in vitro and animal models and/or patients. Many projects by Center investigators use health data, culled from electronic health records, and biological samples from patients with kidney diseases in order to generate novel hypotheses, which can then tested with animal models and cell lines. Training opportunities are available for undergraduate, pre- and post-doctoral students.

National Center for Regenerative Medicine
Phone: 216.368.3614
http://www.ncrm.us/
Stanton L. Gerson, MD, Director
Jeremy Rich, MD, PhD, Co-Director

The Center for Regenerative Medicine is a multi-institutional center composed of investigators from Case Western Reserve University, University Hospitals Case Medical Center, the Cleveland Clinic, Athersys, Inc., and The Ohio State University. Building on over 30 years of experience in adult stem cell research in northeast Ohio, the Center was created in 2003 with a $19.4 million award from the State of Ohio as a Wright Center of Innovation. An additional $8M award in 2006 from the State of Ohio's Biomedical Research and Commercialization Program (BRCP) was successfully completed and enabled 3 new clinical trials to enroll patients. In 2009, $5M was awarded by the Ohio Third Frontier (OTF) Research Commercialization Program (RCP) which further validated the Center's ability to achieve its mission to utilize human stem cell and tissue engineering technologies to treat human disease. In 2010, $1M was awarded to the NCRM by the OTF Biomedical Program (OTFBP) to advance the clinical treatment of spinal cord injury, and a $2.1M OTF Wright Program Project (WPP) award was made to create a consortium of quantitative analysis imaging systems for stem cells.

Clinical Research Scholars Program (CRSP) (http://casemed.case.edu/CRSP)
The Clinical Research program is designed for individuals with an existing degree in medicine, dentistry, nursing, or an allied science such as pharmacy or biomedical engineering. Moreover, a track has also been established for medical students interested in obtaining dual MD/MS degree. The program seeks individuals committed to a career in clinical investigation in an academic or related environment. The
The program consists of a total of 36 credits: 27 credit hours of coursework, 9 credit hours of mentored research and a formal oral thesis defense. The curriculum offers both focus and flexibility. Focus is provided through a core curriculum (13 credit hours) highlighting clinical research methods, the ethical conduct of research, and a seminar series that introduces the skills necessary for scholarly success. Students typically have special interests in a particular area of clinical research, both clinically and methodologically. This program facilitates pursuit of different methodological interests guided by seasoned CWRU research faculty and addressed partly with choice of appropriate electives (14 credit hours). Requirements for the dual MD/MS degree differ to reflect integration with the medical school curriculum. Most graduates of this program are currently working in academic medical settings, with smaller numbers located in research positions in the private sector or private practice.

CRSP Curriculum

36 credit hours are required for completion of this Master of Science in Clinical Research degree.

Core Courses and Thesis Requirement

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRSP 401</td>
<td>Introduction to Clinical Research Summer Series</td>
<td>3</td>
</tr>
<tr>
<td>CRSP 402</td>
<td>Study Design and Epidemiologic Methods</td>
<td>3</td>
</tr>
<tr>
<td>CRSP 412</td>
<td>Communication in Clinical Research - Grant Writing</td>
<td>1</td>
</tr>
<tr>
<td>NURS 630</td>
<td>Advanced Statistics: Linear Models</td>
<td>3</td>
</tr>
<tr>
<td>CRSP 413</td>
<td>Communication in Clinical Research - Oral Presentation, Posters, and the Mass Media</td>
<td>1</td>
</tr>
<tr>
<td>CRSP 603</td>
<td>Research Ethics and Regulation</td>
<td>1 - 2</td>
</tr>
<tr>
<td>CRSP 651</td>
<td>Clinical Research Scholars Thesis</td>
<td>9</td>
</tr>
</tbody>
</table>

Total Units: 21-22

Recommended Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRSP 406</td>
<td>Introduction to R Programming</td>
<td>2</td>
</tr>
<tr>
<td>CRSP 407</td>
<td>Logistic Regression and Survival Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CRSP 500</td>
<td>Design and Analysis of Observational Studies</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Units: 8

Each scholar is encouraged to develop his/her own area of concentration based on personal interests and needs. Typical areas of concentration include: Clinical Research Trials, Health Services Research and Outcomes, and Multidisciplinary/Translational Clinical Research. Please consult with CRSP faculty and your Research Mentor on which electives will best suit your needs.

The choices of electives include but are not limited to:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRSP 410</td>
<td>Independent Study in Clinical Research</td>
<td>1 - 3</td>
</tr>
<tr>
<td>CRSP 501</td>
<td>Team Science - Working in Interdisciplinary Research Teams</td>
<td>1</td>
</tr>
<tr>
<td>CRSP 502</td>
<td>Leadership Skills for Clinical Research Teams</td>
<td>2</td>
</tr>
<tr>
<td>CRSP 503</td>
<td>Innovation and Entrepreneurship</td>
<td>1</td>
</tr>
<tr>
<td>CRSP 504</td>
<td>Managing Research Records - A System’s Approach</td>
<td>2 - 3</td>
</tr>
<tr>
<td>CRSP 505</td>
<td>Investigating Social Determinants of Health</td>
<td>2 - 3</td>
</tr>
<tr>
<td>CRSP 510</td>
<td>Health Disparities</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 411</td>
<td>Introduction to Health Behavior</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 450</td>
<td>Clinical Trials and Intervention Studies</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 467</td>
<td>Comparative and Cost Effectiveness Research</td>
<td>1</td>
</tr>
</tbody>
</table>

MS Clinical Research, Plan of Study

Prep Year

CRSP Program starts in the Summer Term of First Year

Year Total:

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>2-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Design and Epidemiologic Methods (CRSP 402)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication in Clinical Research - Grant Writing (CRSP 412)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Statistics: Linear Models (NURS 630)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication in Clinical Research - Oral Presentation, Posters, and the Mass Media (CRSP 413)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design and Analysis of Observational Studies (CRSP 500)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Clinical Research Summer Series (CRSP 401)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Introduction to R Programming (CRSP 406)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>9-10</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

Second Year

Year Total:

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Ethics and Regulation (CRSP 603)</td>
<td>1 - 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Research Scholars Thesis (CRSP 651)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Research Scholars Thesis (CRSP 651)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Clinical Research Scholars Thesis (CRSP 651)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>7-8</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Units in Sequence: 34-36

MD/MS Biomedical Investigation-Clinical Research Track

For information about Program Admission and MD requirements, please see MD Dual Degrees section (p. 26). The Clinical Research track includes formal instruction in methods common to all fields of clinical investigation along with mentored research. In addition to medical school credits, students must complete the track-specific courses and electives listed below.
All students in this track must complete the CRSP Core Curriculum or equivalents:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBIS 434</td>
<td>Integrated Biological Sciences in Medicine (or IBIS 401 and 402)</td>
<td>6</td>
</tr>
<tr>
<td>CMED 401</td>
<td>Intro to Clinical Research and Scientific Writing or CRSP 401</td>
<td>3</td>
</tr>
<tr>
<td>CMED 402</td>
<td>Statistical Science for Medical Research</td>
<td>3</td>
</tr>
<tr>
<td>CMED 403</td>
<td>Introduction to Clinical Epidemiology or CRSP 402</td>
<td>3</td>
</tr>
<tr>
<td>CMED 404</td>
<td>Clinical Research Seminars (*) or CRSP 412</td>
<td>1</td>
</tr>
<tr>
<td>CMED 405</td>
<td>Clinical Research Seminars (*) or CRSP 413</td>
<td>1</td>
</tr>
<tr>
<td>CMED 450</td>
<td>Clinical Trials</td>
<td>3</td>
</tr>
<tr>
<td>CMED 458</td>
<td>Statistical Modeling with Applications in Clinical Research</td>
<td>3</td>
</tr>
<tr>
<td>CMED 500</td>
<td>Scientific Integrity in Biomedical Research or IBMS 500</td>
<td>0-1</td>
</tr>
<tr>
<td>CMED 601</td>
<td>Clinical Research Project</td>
<td>18</td>
</tr>
<tr>
<td>IBIS 600</td>
<td>Exam in Biomedical Investigation</td>
<td>0</td>
</tr>
</tbody>
</table>

Program Advisors: Dr. Dennis Stacey (College students) and Dr. William Merrick (University students).

Registration permits for all CMED courses can be obtained from Dr. Ticknor’s office.

Certificate in Global Health

Ronald Blanton, MD, Director
216.368.4814

Daniel Tisch, PhD, Co-Director
216.368.0875

The Certificate is the centerpiece of the Framework for Global Health Curricula comprised of faculty from across the Case Western Reserve University campus, whose objective is to promote education in global health issues. Nearly every department at CWRU offers multiple educational activities in global health. Rather than attempt to own all of these activities, the group at CWRU (representing Applied Social Sciences, Anthropology, Bioethics, Biology, Engineering, Mathematics, Medicine, Nursing, Population and Quantitative Health Sciences) elected to develop a structure within which each department could develop independently while taking advantage of what the others had to offer. The organizing structure for this became the certificate program rather than a separate degree. This approach recognizes that students' need to graduate within a recognized discipline as well as recognition of a student's focus, time and effort in training.

Each student in the Certificate program will be grounded in global health by a core course (INTH 301 Fundamentals of Global Health/INTH 401 Fundamentals of Global Health) that will allow them to understand concepts and vocabulary across disciplines and that will facilitate meaningful communication with others based in a different discipline. In addition to the Certificate, the Framework for Global Health Curricula had identified and is annotating all global health related courses at CWRU. It has supported the recent revival of Medical Spanish and new courses and electives in Global Health.

Requirements for Certificate in Global Health:

Anthropology

Undergraduate:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTH 301</td>
<td>Fundamentals of Global Health</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 215</td>
<td>Health, Culture, and Disease: An Introduction to Medical Anthropology</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 359</td>
<td>Introduction to International Health</td>
<td>3</td>
</tr>
</tbody>
</table>

And one elective selected from list of approved electives in the Anthropology Department

Graduate:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTH 401</td>
<td>Fundamentals of Global Health</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 459</td>
<td>Introduction to International Health</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 511</td>
<td>Seminar in Anthropology and Global Health: Topics</td>
<td>3</td>
</tr>
</tbody>
</table>

And one elective selected from list of approved electives in the Anthropology Department

Contact: Janet McGrath (janet.mcgrath@case.edu), 216.368.2287

Bioethics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTH 401</td>
<td>Fundamentals of Global Health</td>
<td>3</td>
</tr>
<tr>
<td>BETH 414</td>
<td>International Health Research Ethics</td>
<td>3</td>
</tr>
</tbody>
</table>

And complete one elective selected from list of approved electives in the Bioethics Department

Contact: Insoo Hyun (insoo.hyun@case.edu), 216.368-8658

Population and Quantitative Health Sciences

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTH 401</td>
<td>Fundamentals of Global Health</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 484</td>
<td>Global Health Epidemiology</td>
<td>1-3</td>
</tr>
<tr>
<td>PQHS 494</td>
<td>Infectious Disease Epidemiology</td>
<td>3</td>
</tr>
</tbody>
</table>

And complete an epidemiology research project with global perspective (may be substituted with other course work).

Contact: Daniel Tisch (daniel.tisch@case.edu), 216.368.0875

Math/Applied Math specialization:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTH 301</td>
<td>Fundamentals of Global Health</td>
<td>3</td>
</tr>
<tr>
<td>or INTH 401</td>
<td>Fundamentals of Global Health</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 431</td>
<td>Statistical Methods I</td>
<td>3</td>
</tr>
<tr>
<td>or PQHS 490</td>
<td>Epidemiology: Introduction to Theory and Methods</td>
<td>3</td>
</tr>
<tr>
<td>MATH 449</td>
<td>Dynamical Models for Biology and Medicine Special Topics</td>
<td>3</td>
</tr>
</tbody>
</table>

Complete a heal related modeling project with global perspective (may be substituted with other course work).
Certificate in Cancer Biology

216.844.5375
Stanton Gerson, MD, Director
Damian J. Junk (djj40@case.edu), PhD, Assistant Director Cancer Training and Education, Case Comprehensive Cancer Center
http://www.case.edu/cancer/

The Clinical Oncology Research Career Development Program (CORP) provides interdisciplinary training in clinical and translational oncology research for clinical oncology junior faculty physicians who are interested in pursuing academic research careers as physician scientists. This training addresses the need for clinician investigators to translate fundamental cancer research discoveries into medical care of cancer patients. Eligible candidates are physicians (MD, DO or MD/PhD) with a clinical training background in one of a number of oncology disciplines, including medical, surgical, pediatric, dermatological, gynecological and radiation oncology. Scholars select one of three areas of concentration:

- Mechanism Based Therapeutics and Clinical Trials
- Stem Cell Biology and Hematopoietic Malignancy Clinical Trials
- Prevention, Aging and Cancer Genetics and Clinical Trials

The Scholars’ individual training plan consists of a 2-year certificate program which includes a didactic curriculum designed to provide basic background and highly individualized advanced training in both clinical and methodological components of clinical and translational cancer research.

Each Scholar is co-mentored by both a basic or behavioral scientist and a clinical investigator. A mentoring committee comprised of faculty in the Scholar’s focus of oncology research provides additional guidance and support. During the period of mentored laboratory training, the Scholars develop original hypothesis-based experiments related to disease mechanisms at a molecular or cellular level. As the Scholars build on their laboratory conclusions to create and implement clinical trials, they are mentored by clinical investigators. Clinical trials are aimed at developing new methods for diagnosis and testing promising ideas for novel therapeutic interventions. These components come together with the Scholar’s presentations at a national conference, publications in peer review journals and application for independent funding as a physician scientist.

This two-year certificate program is administered through the Case Comprehensive Cancer Center. The overall goal of the K12 CORP certificate program is to foster interdisciplinary training in clinical and translational oncology therapeutic research for physicians. Upon completion of this 15-19 hour two year training, scholars will earn the K12 CORP Certificate.

The formal didactic program includes a course in responsible conduct IBMS 500 On Being a Professional Scientist: The Responsible Conduct of Research (0) or CRSP 603 Research Ethics and Regulation (2 hr); CNCR 501 Translational Cancer Research A (Translational Cancer Research Course (1 hr/semester); and one elective (1-3). Additional required activities include Clinical Protocol Tutorials, Intensive Mentored Research Project, Ongoing seminars, Meetings and Presentations; and applications for independent funding.

Formal Didactic Curriculum Coursework *:
Graduate Certificate in Clinical Research

James Spilsbury (james.spilsbury@case.edu), PhD, Director
Angela Bowling (angela.bowling@case.edu), Education Administrator
Center for Clinical Investigation
http://case.edu/medicine/crsp/programs/certificate-program/216.368.2601

The Clinical Research Certificate program is a four course, 11 credit hour program. Students who successfully complete the required coursework will receive a Certificate in Clinical Research. Coursework includes: Introduction to Clinical and Translational Research; Study Design and Epidemiologic Methods; Advanced Statistics: Linear Models; and a course on Research Ethics and Regulation.

Admissions will be administered by the Clinical Research Scholars program in the Populations and Quantitative Health Science Department. Individuals who want to participate in the program will complete an online application form that includes a brief personal statement describing the reason(s) for seeking clinical research training and a recent CV or resume. Per CWRU School of Graduate Studies requirements, individuals who are not already graduate-degree-seeking students at CWRU must submit to the School of Graduate Studies a completed non-degree application form. Individuals who are not faculty, staff, or employees of CWRU must also submit a transcript or copy of their diploma, documenting completion of a baccalaureate degree. Once accepted into the Certificate program, participants will register for the courses through the Student Information System. The program will have rolling admissions, and students will be able to start taking courses in the summer or fall semester. The coursework for the Certificate will be listed on the official CWRU transcript. However, the Certificate in Clinical Research will be issued by the Clinical Research Scholars Program, not the University, and will not appear on the official CWRU transcript.

Performance Standards: A grade of B or higher in each graded course will be required for successful completion of the Certificate program. Enrollees will be responsible for keeping track of the courses they take.

*Additionally, choose one course from following core courses for credit towards certificate:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRSP 401</td>
<td>Introduction to Clinical Research Summer Series</td>
<td>1-2</td>
</tr>
<tr>
<td>CRSP 402</td>
<td>Study Design and Epidemiologic Methods</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 460</td>
<td>Introduction to Microarrays</td>
<td>3</td>
</tr>
<tr>
<td>CRSP 406</td>
<td>Introduction to R Programming</td>
<td>2</td>
</tr>
<tr>
<td>CRSP 413</td>
<td>Communication in Clinical Research - Oral Presentation, Posters, and the Mass Media</td>
<td>1</td>
</tr>
<tr>
<td>CRSP 412</td>
<td>Communication in Clinical Research - Grant Writing</td>
<td></td>
</tr>
<tr>
<td>CRSP 500</td>
<td>Design and Analysis of Observational Studies</td>
<td>3</td>
</tr>
<tr>
<td>CRSP 501</td>
<td>Team Science - Working in Interdisciplinary Research Teams</td>
<td></td>
</tr>
</tbody>
</table>

Required Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRSP 401</td>
<td>Introduction to Clinical Research Summer Series</td>
<td>3</td>
</tr>
<tr>
<td>CRSP 402</td>
<td>Study Design and Epidemiologic Methods</td>
<td>3</td>
</tr>
<tr>
<td>NURS 630</td>
<td>Advanced Statistics: Linear Models</td>
<td>3</td>
</tr>
<tr>
<td>or CRSP 431</td>
<td>Statistical Methods I</td>
<td></td>
</tr>
<tr>
<td>CRSP 603</td>
<td>Research Ethics and Regulation</td>
<td>2</td>
</tr>
</tbody>
</table>

Exit Standards: Students who complete all required coursework will submit a certificate to the Clinical Research Scholars Program (http://case.edu/medicine/crsp/programs/certificate-program) notifying the Education Administrator/Manager (AXB710@case.edu) that all coursework has been completed. This administrator will verify with the registrar’s office that all requirements have been met and will then issue a certificate to the enrollee, documenting completion of the program.

Systems Biology and Bioinformatics MS and PhD Programs

BRB 9th Floor, School of Medicine
http://bioinformatics.case.edu/
Phone: 216.368.0291
Mark Chance, PhD, Co-Director
David T. Lodowski, PhD, Co-Director

Graduate Certificate in Clinical Research

Data science is the convergence of data engineering, math, statistics, advanced computing, the scientific method and subject-matter expertise. It involves the collection, management and transformation of “big data” into actionable information that can answer some of the world’s most pressing problems. Yet there is a distinct need for data science experts who can efficiently interpret data into information that is useful for strategic decision-making. It is the goal of the Systems Biology and Bioinformatics program to produce the scientists that are needed to assist in extracting meaning from the burgeoning biological ‘omics field.

The Systems Biology and Bioinformatics PhD program at CWRU offers trainees the opportunity to combine both experimental and computational or mathematical disciplines to understand complex biological systems. The SYBB program will train scientists who are able to generate and analyze experimental data for biomedical research and to develop physical or computational models of the molecular components that drive the behavior of a biological system. The goal of the program is to produce scientists who are familiar with multiple disciplines and equipped to conduct interdisciplinary research.

The Case Western Reserve University (CWRU) graduate program in Systems Biology and Bioinformatics (SYBB) has two tracks:

1. **Translational Bioinformatics** - The SYBB Track in Translational Bioinformatics poises students to work at the interface of applied ‘omics research and clinical medicine. From integrating genomic and functional genomic data into electronic medical records, to developing meta-analysis tools for communicating genomic risk to patients to utilizing this data in personalized medicine. Students trained in the Translational Bioinformatics track work to integrate bioinformatics tools
and technologies into clinical workflows. Graduates of this training track will find ample opportunities within industry and, as genomics enters the clinical arena, within hospitals, as well.

Molecular and Computational Biology - The SYBB Track in Molecular and Computational Biology embraces the pursuit of basic science research, employing the application and development of computational approaches to address difficult questions derived from today’s "Big data" derived from 'omics approaches. This track equips students in the acquisition of experimental data utilizing approaches including proteomics, metabolomics, genomics and structural biology and extends this work with interpretation provided by computational analysis. Graduates of this training track will find ample opportunities within the pharmaceutical industry, contract research organizations as well as more traditional academic career paths.

Students can choose either track for both the M.S. and Ph.D. programs.

The SYBB participating departments and centers include:

- Biology
- Biomedical Engineering
- Center for Proteomics and Bioinformatics
- Electrical Engineering and Computer Science
- Epidemiology and Biostatistics
- Genetics and Genome Sciences
- Mathematics
- Nutrition
- Physiology and Biophysics
- Pharmacology

Program Competencies

The specific academic requirements of the SYBB Program are intended to provide students with a required core curriculum in Systems Biology and a set of electives designed both to assure minimum competencies in three Fundamental Core Competencies (Biological data, Bioinformatics and Computational Biology, Quantitative Analysis and Modeling) and equip them for their particular thesis research discipline. Each trainee will be guided in their customized course of study by a mentoring committee to ensure the completion of training in the program competencies as well as maintenance of a focus on molecular systems theory.

Masters Degree Plan A Summary

The minimum requirements for the master’s degree under Plan A are 21 semester hours of course work plus a thesis equivalent to at least 9 semester hours of registration for 30 hours total. These must include SYBB 501 Biomedical Informatics and Systems Biology Journal Club, and a minimum of 9 hours of SYBB 651 Thesis M.S.. Additional required courses for the Translational Bioinformatics and Molecular and Computational Biology tracks are SYBB 459 Bioinformatics for Systems Biology and SYBB 555 Current Proteomics. The curriculum plan must be approved by the program steering committee and include appropriate coverage of the core competencies in genes and proteins, bioinformatics, and quantitative modeling and analysis. At least 18 semester hours of course work, in addition to thesis hours, must be at the 400-level or higher.

Each student must prepare an individual thesis that must conform to regulations concerning format, quality, and time of submission as established by the dean of graduate studies as well as conforming to the SYBB program guidelines. For completion of master's degrees under Plan A, an oral examination (defense) of the master's thesis is required, where the examination is conducted by a committee of at least three members of the university faculty.

Masters Degree Plan B Summary

The minimum requirements for the master’s degree under Plan B are 30 semester hours of course work (with at least 18 semester hours of course work at the 400 level or higher) and a written comprehensive examination or major project with report to be administered and evaluated by the program steering committee. The coursework must include SYBB 501 Biomedical Informatics and Systems Biology Journal Club. Additional required courses for the Translational Bioinformatics and Molecular and Computational Biology tracks are SYBB 459 Bioinformatics for Systems Biology and SYBB 555 Current Proteomics. The curriculum plan must be approved by the program steering committee and include appropriate coverage of the core competencies in genes and proteins, bioinformatics, and quantitative modeling and analysis.

Sample Plan of Study for MS Degree in Molecular and Computational Biology

Plan of Study includes required courses as well as electives.

Plan of Study Grid

<table>
<thead>
<tr>
<th>Year Total</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First Year

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survey of Bioinformatics: Technologies in Bioinformatics (SYBB 411A)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey of Bioinformatics: Data Integration in Bioinformatics (SYBB 411B)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey of Bioinformatics: Translational Bioinformatics (SYBB 411C)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomedical Informatics and Systems Biology Journal Club (SYBB 501)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistical Methods I (POHS 431)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topical Elective from Elective Course List</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey of Bioinformatics: Programming for Bioinformatics (SYBB 412)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomedical Informatics and Systems Biology Journal Club (SYBB 501)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Proteomics (SYBB 555)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional 3 Credit Course TBD</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Year Total: 9

Second Year

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Learning (EECS 440)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein Biophysics (BIOC 475)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomedical Informatics and Systems Biology Journal Club (SYBB 501)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systems Biology and Bioinformatics Research (SYBB 601)</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Methods in Structural Biology (BIOC 430)</td>
<td>1 - 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomedical Informatics and Systems Biology Journal Club (SYBB 501)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systems Biology and Bioinformatics Research (SYBB 601)</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Year Total: 12
PhD Program Summary

The Systems Biology and Bioinformatics program differs from current CWRU programs in the comprehensive requirement for an understanding of biological systems, bioinformatics, and quantitative analysis & modeling. The program includes a minimal set of required courses including (SYBB 501 Biomedical Informatics and Systems Biology Journal Club) and a course in the Responsible Conduct of research (IBMS 500 On Being a Professional Scientist: The Responsible Conduct of Research). Additional required courses for the Translational Bioinformatics and Molecular and Computational Biology tracks are SYBB 459 Bioinformatics for Systems Biology and SYBB 555 Current Proteomics. At least six additional courses will be required based upon individualized student interests. Other requirements include a qualifying exam, a PhD Dissertation, and oral defense. The total credits required for the PhD is at least 54 credits: 24 graded credits, 12 pre-dissertation research credits, and at least 18 dissertation research credits. Admissions to this program may be obtained through the integrated Biomedical Sciences Training Program (http://casemed.case.edu/bstp), by direct admission to the department or via the Medical Scientist Training Program (http://mstp.case.edu/default.asp).

Sample Plan of Study for PhD Degree

Please also see Graduate Studies Academic Requirements for Doctoral Degrees (http://bulletin.case.edu/schoolofgraduatestudies/academicrequirements)

Plan of study includes required courses as well as electives. Visit www.bioinformatics.case.edu for information regarding Plan of Study for all SYBB Tracks.

Plan of Study Grid for Translational Bioinformatics Track

<table>
<thead>
<tr>
<th>First Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomedical Informatics and Systems Biology Journal Club (SYBB 501)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey of Bioinformatics: Technologies in Bioinformatics (SYBB 411A)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey of Bioinformatics: Data Integration in Bioinformatics (SYBB 411B)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey of Bioinformatics: Translational Bioinformatics (SYBB 411C)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Biology I (CBIO 453)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistical Methods I (PQHS 431)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systems Biology and Bioinformatics Research (SYBB 601)</td>
<td>1-9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomedical Informatics and Systems Biology Journal Club (SYBB 501)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>11-19</td>
<td>14-22</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contemporary Approaches to Drug Discovery (BIOC 520)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>A Data-Driven Introduction to Genomics and Human Health (PQHS 451)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Biomedical Informatics and Systems Biology Journal Club (SYBB 501)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Systems Biology and Bioinformatics Research (SYBB 601)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Ethical Issues in Genetics/Genomics (BETH 412)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Biomedical Informatics and Systems Biology Journal Club (SYBB 501)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Systems Biology and Bioinformatics Research (SYBB 601)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Additional 3 Credit Course TBD</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
<td>12</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation Ph.D. (SYBB 701)</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (SYBB 701)</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>1-9</td>
<td>1-9</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation Ph.D. (SYBB 701)</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (SYBB 701)</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>1-9</td>
<td>1-9</td>
</tr>
</tbody>
</table>

Fifth Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation Ph.D. (SYBB 701)</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (SYBB 701)</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>1-9</td>
<td>1-9</td>
</tr>
</tbody>
</table>

Total Units in Sequence: 53-117

Footnotes

* Students admitted into program via BSTP would take BSTP 400 for research rotations; students admitted via MSTP would take MSTP 400 for research rotations
Required Core Courses for the Molecular and Computational Biology and Translational Bioinformatics Tracks of the MS and PhD programs

Course List

SYBB 459 Bioinformatics for Systems Biology 3
SYBB 555 Current Proteomics 3
SYBB 501 Biomedical Informatics and Systems Biology Journal Club 0
SYBB 601 Systems Biology and Bioinformatics Research 1 - 18
SYBB 651 Thesis M.S. (For MS Students only) 1 - 18
SYBB 701 Dissertation Ph.D. (For PhD students only) 1 - 9

Quantitative Analysis and Modeling

Course List

NEUR 478/ Computational Neuroscience 3
BIOC 420/ COGS/ MATH 378/ BIOC 478/ EBME 478
BIOC 430 Advanced Methods in Structural Biology 1 - 6

Elective Courses for MS and PhD programs

Genes and Proteins Courses

Course List

SYBB 411A Survey of Bioinformatics: Technologies in Bioinformatics 3
SYBB 411B Survey of Bioinformatics: Data Integration in Bioinformatics 1
SYBB 411C Survey of Bioinformatics: Translational Bioinformatics 1
SYBB 412 Survey of Bioinformatics: Programming for Bioinformatics 3
PQHS 431 Statistical Methods I 3
PHOL/CHEM/ PHRM/BIOC/ NEUR 475 Protein Biophysics 3
PHOL 456 Conversations on Protein Structure and Function 2
PHOL 480 Physiology of Organ Systems 4
CBIO 453 Cell Biology I 3
CBIO 455 Molecular Biology I 3
BIOC 452 Nutritional Biochemistry and Metabolism 3
BIOC 519 Molecular Biology of RNA 3
BIOC 599 RNA Structure and Function 3
BIOC 412 Proteins and Enzymes 3
BIOC 420 Current Topics in Cancer 3
BIOC 454 Biochemistry and Biology of RNA 3
BIOC 528 Contemporary Approaches to Drug Discovery 3
BETH 412 Ethical Issues in Genetics/Genomics 3

Bioinformatics and Computational Biology Courses

Course List

BIOC/ECECS 419 Applied Probability and Stochastic Processes for Biology 3
PQHS 451 A Data-Driven Introduction to Genomics and Human Health 3
PQHS/PHRM/ CHEM/BIOC 430 Advanced Methods in Structural Biology 1 - 6
EECS 458 Introduction to Bioinformatics 3

Part-time SYBB MS program

The program in systems biology and bioinformatics offers a flexible curriculum with a minimal number of required classes (SYBB Journal club (SYBB 501), Bioinformatics for Systems Biology (SYBB 459) and Current Proteomics (SYBB 555) are the only required classes); the majority of classes taken toward the MS are tailored to the student's research interests and thesis project. This flexibility enables students that are interested in pursuing the MS on a part time basis to maximize employee tuition benefits. A CWRU employee (or spouse) has a total of 15 credit hours/year (6 per semester and 3 per summer session) with which to pursue a degree. Taking only this number will net a part time student a MS in 5 semesters and 2 summer sessions; not taking a class during the summer sessions will result in it taking 6 semesters to get the MS; and if a student were to take a single class a semester, it would take 11 semesters to reach the requisite number of classes needed for the MS.
CNCR Courses

CNCR 460. Introduction to Microarrays. 3 Units.
Microarray technology is an exciting new technique that is used to analyze gene expression in a wide variety of organisms. The goal of this course is to give participants a hands-on introduction to this technology. The course is intended for individuals who are preparing to use this technique, including students, fellows, and other investigators. This is a hands-on computer-based course, which will enable participants to conduct meaningful analyses of microarray data. Participants will gain an understanding of the principles underlying microarray technologies, including: theory of sample preparation, sample processing on microarrays, familiarity with the use of Affymetrix Microarray Suite software and generation of data sets. Transferring data among software packages to manipulate data will also be discussed. Importation of data into other software (GeneSpring and DecisionSite) will enable participants to mine the data for higher-order patterns. Participants will learn about the rationale behind the choice of normalization and data filtering strategies, distance metrics, use of appropriate clustering choices such as K-means, Hierarchical, and Self Organizing Maps. Offered as BIOL 460, PATH 460 and CNCR 460.

CNCR 501. Translational Cancer Research A. 1 Unit.
In this course Case K12 Paul Calabresi Scholars will learn about the steps to receive an IRB approval for their research proposal and clinical trials; how to design and conduct clinical trials-designing a protocol, developing a research question, the purpose of the LOI, funding and budge issues, working with pharmaceutical companies; essential writing skills for successfully submitting a manuscript for publication in a peer reviewed journal. The class will discuss Social Intelligence and the Biology of Leadership by Goleman and Boyatzis; the scholars will learn about the Case Cancer Center Core Facilities services and resources which are available for their research projects. Topics also include the expectations of the K12 CORP program and essential elements for advancing their academic and research career. Recommended preparation: Acceptance to Case K12 Clinical Oncology Career Development Training Program as Paul Calabresi Research Scholar.

CNCR 502. Translational Cancer Research B. 1 Unit.
In this course Case K12 Paul Calabresi Scholars will learn how to manage clinical trials; including staffing, multi or single site, contracting issues, translation and incorporation of laboratory research/correlative science into clinical trials design, getting involved with ECOG. The scholars will learn about the language and statistical computing, as well as provide opportunities for problem-solving, and practical application of the information derived from the lectures. The material is organized along the internal logic of the research process, beginning with mechanisms of choosing a research question and moving into the information needed to design the protocol, implement it, analyze the findings, and draw and disseminate the conclusion(s). Prereq: M.D., R.N., Ph.D., D.D.S., health professionals.

CRSP Courses

CRSP 401. Introduction to Clinical Research Summer Series. 1 - 3 Units.
This course is designed to familiarize one with the language and concepts of clinical investigation and statistical computing, as well as provide opportunities for problem-solving, and practical application of the information derived from the lectures. The material is organized along the internal logic of the research process, beginning with mechanisms of choosing a research question and moving into the information needed to design the protocol, implement it, analyze the findings, and draw and disseminate the conclusion(s). Prereq: M.D., R.N., Ph.D., D.D.S., health professionals.

CRSP 402. Study Design and Epidemiologic Methods. 3 Units.
This course will cover the methods used in the conduct of epidemiologic and health services research and considers how epidemiologic studies may be designed to maximize etiologic inferences. Topics include: measures of disease frequency, measures of effect, cross-sectional studies, case-control studies, cohort studies, randomized controlled trials, confounding, bias, effect modification, and select topics. Recommended preparation: CRSP 401 or permission of instructor.
CRSP 406. Introduction to R Programming. 2 Units.
This course will provide students with an introduction to R. Major topics will include session management, data objects, reading and writing data, restructuring and combining data frames, handling missing data, working with dates, statistical analysis concepts, and R traditional graphics. Students will learn R programming conventions, how to create, manage and edit R scripts programs, and how to interpret output. Each class will consist of a demo on each lesson followed by a practice session when time permits. Small research datasets will be used both in class examples and in the exercises for each lesson. Students will be expected to complete all homework assignments on time and submit a take-home final exam.

CRSP 407. Logistic Regression and Survival Analysis. 3 Units.
This course will focus on the conceptual understanding and practical application of multivariable modeling in the context of binary and time to event outcomes. Particular emphasis will be placed on model specification, assessment of model assumptions and proper interpretation and visualization of model results. Classes will generally involve a conceptual discussion of the topic in question, followed by a practical application using R statistical software. Planned topics include contingency tables, logistic regression models, Kaplan-Meier curves, Cox proportional hazard models, and sample size estimation for binary and time to event outcomes. Students will be expected to complete biweekly assignments and two course projects involving problem specification, data collection, analysis using R, and a presentation. Prior to taking this course students should have working knowledge of linear regression and its application using R. Students must have the latest software version of R installed on their laptops. Recommended preparation: CRSP 406. Prereq: NURS 630.

CRSP 410. Independent Study in Clinical Research. 1 - 3 Units.
Independent Study in Clinical Research enables the student to undertake study of advanced topics in clinical research that are not offered as standing courses at Case Western Reserve University. The student(s) and a member of the Clinical Research Scholars Program faculty, or another faculty member at CWRU, submit a 1-2 page proposal for independent study to the CRSP Program Director. The proposal should include a descriptive title (e.g., research method or clinical topic area) to be studied; a list of up to 5 student-centered objectives of the study; how the subject matter will be learned; and how success in achieving the objectives will be measured (e.g., manuscript, essay, grant proposal, or other written product; examination, etc.). It is expected that there will be at least one contact hour per week for each credit hour requested.

CRSP 412. Communication in Clinical Research - Grant Writing. 1 Unit.
Written communication is a critical skill in clinical science. We disseminate our work to others through publications, and we obtain the resources to conduct research through grant proposals. This course has been developed for K12 and CRSP scholars. The course focuses on writing grant proposals and, in particular, specific sections of an NIH-style grant. However, the principles discussed in the course apply to any type of proposal. Prereq: CRSP 401 or equivalent.

CRSP 413. Communication in Clinical Research - Oral Presentation, Posters, and the Mass Media. 1 Unit.
To move their work forward, investigators must be able to present their research effectively to both scientific and lay audiences. Although "the written word" is probably the first medium that comes to mind when we think of communication in scientific circles, other modes of communication are also vital. The main objective of this course is to help scholars improve their oral and poster presentation skills, as well as interaction with the mass media. This objective will be achieved through a combination of didactic sessions, readings, and presentations by the students. Prereq: CRSP 401 or equivalent.

CRSP 431. Statistical Methods I. 3 Units.
Application of statistical techniques with particular emphasis on problems in the biomedical sciences. Basic probability theory, random variables, and distribution functions. Point and interval estimation, regression, and correlation. Problems whose solution involves using packaged statistical programs. First part of year-long sequence. Offered as ANAT 431, BIOL 431, CRSP 431, PQHS 431 and MPHP 431.

CRSP 432. Statistical Methods II. 3 Units.
Methods of analysis of variance, regression and analysis of quantitative data. Emphasis on computer solution of problems drawn from the biomedical sciences. Design of experiments, power of tests, and adequacy of models. Offered as BIOL 432, PQHS 432, CRSP 432 and MPHP 432. Prereq: PQHS/EPBI 431 or equivalent.

CRSP 440. Translational & Patient-Oriented Research Theory. 3 Units.
Clinical (patient-oriented) and translational science has emerged as a new scientific discipline aimed to accelerate scientific discovery into effective practice. This course provides an overview of the theoretical framework, rationale, process, methodologies, and ethics of clinical and translational research. An integral feature of this course is the participation of a multidisciplinary teaching team, whose expertise and perspective will contribute to providing real-world insights into the complexities of translational and patient-oriented research.

CRSP 450. Seminar in Multidisciplinary Clinical & Translational Research. 0 Unit.
The purpose of this monthly seminar is to introduce students to the processes and challenges of multidisciplinary clinical/translational science, through which discoveries in the laboratory or in early clinical studies are transformed into interventions, treatments, and ultimately, best practices and policies on national and international levels. The seminar will use a case-based approach. Examination of active projects at Case Western Reserve University, Cleveland Clinic Foundation, the MetroHealth Medical Center, University Hospitals Case Medical Center, and the Louis Stokes Veterans Administration Medical Center will enable students to learn first-hand about clinical translational science in action.
CRSP 500. Design and Analysis of Observational Studies. 3 Units.
An observational study investigates treatments, policies or exposures and the effects that they cause, but it differs from an experiment because the investigator cannot control assignment. We introduce appropriate design, data collection and analysis methods for such studies, to help students design and interpret their own studies, and those of others in their field. Technical formalities are minimized, and the presentations will focus on the practical application of the ideas. A course project involves the completion of an observational study, and substantial use of the R statistical software. Topics include randomized experiments and how they differ from observational studies, planning and design for observational studies, adjustments for overt bias, sensitivity analysis, methods for detecting hidden bias, and focus on propensity score methods for selection bias adjustment, including multivariate matching, stratification, weighting and regression adjustments. Recommended preparation: a working knowledge of multiple regression, some familiarity with logistic regression, with some exposure to fitting regression models in R. Offered as CRSP 500 and PQHS 500.

CRSP 501. Team Science - Working in Interdisciplinary Research Teams. 1 Unit.
This course will assist learners to understand how different professional disciplines, each representing a body of scientific knowledge, can best work together to develop and disseminate translational knowledge. Learners will develop a set of skills specific to be an effective member and leader of an interdisciplinary research team, including working with different value and knowledge sets across disciplines, understanding the mental models of other disciplines, creating shared mental models, running effective meetings, managing conflict, giving and receiving feedback, and group decision making techniques. Using the small group seminar approach and case studies, learners will practice individual and group communication, reflective and self-assessment techniques, and engage in experiential learning activities regarding effective teamwork in interdisciplinary research teams. Techniques to increase group creativity and frame new insights will be discussed.

CRSP 502. Leadership Skills for Clinical Research Teams. 2 Units.
Leadership Assessment and Development is for participants to learn a method for assessing their knowledge, abilities, and values relevant to management; and for developing and implementing plans for acquiring new management related knowledge and abilities. The major goals of this course include generating data through a variety of assessment methods designed to reveal your interests, abilities, values, and knowledge related to leadership effectiveness; learning how to interpret this assessment data and use it to design/plan developmental activities; small group sharing of insights from the various assessments. Recommended preparation: K grant appointment or consent of instructor.

CRSP 503. Innovation and Entrepreneurship. 1 Unit.
The purpose of this module is to acquaint and ultimately engage clinical researchers with the business of innovation and entrepreneurship. Goals include: (1) to provide researchers with many of the skills that they would need to translate academic research into commercial uses; (2) to sensitize clinical researchers to the goals of the business community and facilitate their ability to work with the private sector on technology development; and (3) to make clinical researchers aware of the processes of academic technology development and transfer. Sessions consist of a lecture and case discussion facilitated by one of the co-directors.

CRSP 504. Managing Research Records - A System's Approach. 2 - 3 Units.
This course will provide an approach to managing data for research studies. Major topics include a discussion of a research study system including database design and development, data management, and clinical data management; how to evaluate the data needs of a study including the impact of required regulations; summary of key regulations; the role of the data manager including protocol review, development of a data management plan, CRF design, data cleaning, locking studies and ensuring best practices. Each session will include a lecture, class discussion, and student presentation.

CRSP 505. Investigating Social Determinants of Health. 2 - 3 Units.
The biopsychosocial model highlights the inter-related roles that biological, psychological, and social factors play in health and illness. This course is geared towards clinical research scholars who would like to incorporate aspects of the "social context" in their research. The course will examine the conceptualization, measurement, and effects of several key socio-cultural determinants of health and illness. Sample studies that incorporate social determinants of health will be reviewed. The course will also consider strategies and techniques to conduct clinical research involving social factors in socially and ethnically diverse settings. Students will be encouraged to develop a prototypical study design to incorporate social determinants in their research. To earn an optional third credit hour for this course, students will be required to complete additional assignments tailored to the students' research needs and interests upon mutual agreement with the instructor at the beginning of the course. Recommended preparation: CRSP 401.

CRSP 510. Health Disparities. 3 Units.
This course aims to provide theoretical and application tools for students from many disciplinary backgrounds to conduct research and develop interventions to reduce health disparities. The course will be situated contextually within the historical record of the United States, reviewing social, political, economic, cultural, legal, and ethical theories related to disparities in general, with a central focus on health disparities. Several frameworks regarding health disparities will be used for investigating and discussing the empirical evidence on disparities among other subgroups (e.g., the poor, women, uninsured, disabled, and non-English speaking populations) will also be included and discussed. Students will be expected to develop a research proposal (observational, clinical, and/or intervention) rooted in their disciplinary background that will incorporate materials from the various perspectives presented throughout the course, with the objective of developing and reinforcing a more comprehensive approach to current practices within their fields. Offered as CRSP 510, PQHS 510, MPH 510, NURS 510, and SASS 510.
INTH 301. Fundamentals of Global Health. 3 Units.
This course seeks to integrate the multiple perspectives and objectives in global health by investigating how the disciplines of Biology, Medicine, Anthropology, Nursing, Mathematics, Engineering analyze and approach the same set of international health problems. Students will develop a shared vocabulary with which to understand these various perspectives from within their own discipline. The focus sites will emphasize issues related to the health consequences of development projects, emergency response to a health care crisis and diseases of development in presence of underdevelopment. Offered as INTH 301 and INTH 401. Prereq: Junior or senior.

INTH 315. Water Security and Social Justice in Brazil. 3 Units.
CWRU, through the Center for Global Health and Diseases, has had projects, student exchanges and courses with institutions in Brazil and especially with the state of Bahia for over 30 years. In that time, personal and professional relationships have been developed with branches of the Ministry of Health (Oswaldo Cruz Foundation, the Municipal and State Health Departments), the Federal University of Bahia, and the Bahiana School of Medicine and Public Health. Brazil is the second largest country in the Western Hemisphere and the 7th or 8th largest economy in the world. There are more people who speak Portuguese in South America than Spanish. Despite newly discovered oil, enormous natural and human resources, development in Brazil has been uneven with the Northeast remaining the least developed. The Northeastern state of Bahia ranked 22nd out of 27 states on the UN¿s Index of Human Development (http://www.pnud.org.br/IDH/DH.aspx# and http://www.atlasbrasil.org.br/2013/pt/home/). The State capital, Salvador, ranks 14th out of 20 major metropolitan regions and is one site for this study abroad program. The second site, the rural town of Ubaíra, is ranked 4590 out of 5565 municipalities. Even with large social inequities and health care disparities, the Brazilian government and society have produced remarkable social policies, have shown a willingness to implement these policies and have the resources to significantly improve the lives of its most impoverished citizens.

Critical basic infrastructure for health and development is water. Its consumption is essential; it is a mechanism for waste disposal, industry and agriculture are dependent on its supply. The problem of water quality and quantity are common all human societies (witness the drought in California and the burning Cuyahoga). Individuals from all walks of life will need to assess issues of water at some time, from doctors, engineers, urban planners, lawyers and politicians. In Brazil the issues of water are more exposed and easier to examine on different scales than in the U.S. The problem also resides within a social, health care, and political context that compares well and at the same time contrasts sharply with that of the USA. As a student in this course, you will gain first-hand knowledge of the social and public health challenges regarding water security in Brazil. Through field experiences in the capital city of Salvador and the rural town of Ubaíra, you will immerse yourself in interdisciplinary perspectives on the public health, scientific, political, and bioethical dimensions of water security in Brazil. This immersive experience will be facilitated by faculty from the CWRU Dept. of Bioethics and the Center for Global Health and Diseases, the Brazilian Ministry of Health, the Federal University of Bahia, the Bahiana School of Medicine and Public Health, and Brazilian graduate student participants. Offered as: INTH 315, INTH 415, BETH 315H, and BETH 415H. Counts for CAS Global & Cultural Diversity Requirement.

INTH 401. Fundamentals of Global Health. 3 Units.
This course seeks to integrate the multiple perspectives and objectives in global health by investigating how the disciplines of Biology, Medicine, Anthropology, Nursing, Mathematics, Engineering analyze and approach the same set of international health problems. Students will develop a shared vocabulary with which to understand these various perspectives from within their own discipline. The focus sites will emphasize issues related to the health consequences of development projects, emergency response to a health care crisis and diseases of development in presence of underdevelopment. Offered as INTH 301 and INTH 401. Prereq: Graduate student.
INTH 415. Water Security and Social Justice in Brazil. 3 Units.

CWRU, through the Center for Global Health and Diseases, has had projects, student exchanges and courses with institutions in Brazil and especially with the state of Bahia for over 30 years. In that time, personal and professional relationships have been developed with branches of the Ministry of Health (Oswaldo Cruz Foundation, the Municipal and State Health Departments), the Federal University of Bahia, and the Bahiana School of Medicine and Public Health. Brazil is the second largest country in the Western Hemisphere and the 7th or 8th largest economy in the world. There are more people who speak Portuguese in South America than Spanish. Despite newly discovered oil, enormous natural and human resources, development in Brazil has been uneven with the Northeast remaining the least developed. The Northeastern state of Bahia ranked 22nd out of 27 states on the UN’s Index of Human Development (http://www.pnud.org.br/IDH/DH.aspx# and http://www.atlasbrasil.org.br/2013/pt/home/). The State capital, Salvador, ranks 14th out of 20 major metropolitan regions and is one site for this study abroad program. The second site, the rural town of Ubaíra, is ranked 4590 out of 5565 municipalities. Even with large social inequities and health care disparities, the Brazilian government and society have produced remarkable social policies, have shown a willingness to implement these policies and have the resources to significantly improve the lives of its most impoverished citizens. Critical basic infrastructure for health and development is water. Its consumption is essential; it is a mechanism for waste disposal, industry and agriculture are dependent on its supply. The problem of water quantity and quality are common to all human societies (witness the drought in California and the burning Cuyahoga). Individuals from all walks of life will need to assess issues of water at some time, from doctors, engineers, urban planners, lawyers and politicians. In Brazil the issues of water are more exposed and easier to examine on different scales than in the U.S. The problem also resides within a social, health care, and political context that compares well and at the same time contrasts sharply with that of the USA. As a student in this course, you will gain first-hand knowledge of the social and public health challenges regarding water security in Brazil. Through field experiences in the capital city of Salvador and the rural town of Ubaíra, you will immerse yourself in interdisciplinary perspectives on the public health, scientific, political, and bioethical dimensions of water security in Brazil. This immersive experience will be facilitated by faculty from the CWRU Dept. of Bioethics and the Center for Global Health and Diseases, the Brazilian Ministry of Health, the Federal University of Bahia, the Bahiana School of Medicine and Public Health, and Brazilian graduate student participants. Offered as: INTH 315, INTH 415, BETH 315H, and BETH 415H. Counts for CAS Global & Cultural Diversity Requirement.

INTH 447. Global Health: Outbreak Investigation in Real-Time. 3 Units.

This course provides a trans-cultural, trans-disciplinary, multimedia learning experience by analyzing historical and real-time data from the annual dengue endemics and sporadic epidemics in Puerto Rico and Brazil. A rigorous problem-centered training in the epidemiology, prevention, treatment, and control of infectious diseases using real-time and historical surveillance data of endemic and epidemic Dengue in Bahia, Brazil. This is an advanced epidemiology course in which core material will be primarily taught through reading assignments, class discussion, group projects, and class presentations. The course will utilize the online web-based communication and learning technology to create a single classroom between the CWRU and international partners with unique and complementary skills. In addition to joint classroom lectures across sites, student groups will also perform smaller-scale videoconference meetings for assigned group projects, thus creating strong international connections for the students, faculty, and our institutions. Note: Due to the complexities of time zones for this international course, the course will begin at 8:00a.m. until the U.S.A. adjusts clocks for Daylight Savings Time (unlike Brazil). Therefore, classes after the second week of March will begin at 9:00a.m. Offered as PQHS 447, INTH 447 and MPHP 447.

INTH 484. Global Health Epidemiology. 1 - 3 Units.

This course provides a rigorous problem-centered training in the epidemiology, prevention, treatment, and control of infectious diseases and, more generally, global health. This is an advanced epidemiology that embraces an active learning environment. Students are expected to invest time out of the classroom reading and working with classmates. Classes will be conducted with discussions, debates, group projects, and group presentations. By taking this course, students will develop a framework for interpreting, assessing, and performing epidemiologic research on issues of global importance. The course will be divided into three modules: 1) Global Health Epidemiology 2) Helminth Epidemiology, and 3) Epidemiology of Disease Elimination. Each module is worth 1 credit hour and may be taken separately. Each module will have a separate project and/or exam. The final exam time will be used for group presentations and panel discussion. Active class participation is required through discussions, case studies, and group projects. Offered as PQHS 484, INTH 484, and MPHP 484.

INTH 494. Infectious Disease Epidemiology. 3 Units.

This course focuses on tuberculosis (TB) and HIV epidemiology, including perspectives on these diseases in the US and globally. It is a follow-up to PQHS/MPHP 484: Global Health Epidemiology, but these courses do not necessarily need to be taken in sequence. This is an advanced course, focusing on methods and approaches in epidemiology and public health. Offered as PQHS 494, INTH 494 and MPHP 494. Prereq: PQHS/EPBI 490.

INTH 551. World Health Seminar. 1 Unit.

This seminar series examines a broad range of topics related to infectious disease research in international settings. Areas of interest are certain to include epidemiology, bioethics, medical anthropology, pathogenesis, drug resistance, vector biology, cell and molecular biology, vaccine development, diagnosis, and socio-cultural factors contributing to or compromising effective health care delivery in endemic countries. Additionally we will discuss intellectual property policies on global access to medical innovations. Topics will also include neglected diseases and the interactions between these diseases with HIV and malaria infections. Speakers will include a diverse group of regional faculty and post-doctoral trainees, as well as visiting colleagues from around the world. Students will be asked to read a journal article written by the speaker and then discuss this article with the speaker after their seminar.
PAST Courses

PAST 401. Foundations of Clinical Medicine-Principles of Interviewing. 3 Units.
The general purpose of this course is to teach the physician assistant student the skills necessary to conduct a clinical/medical interview with a patient and to be able to present the information to other health care professionals in both an oral and written form. This course, which is designed as small, group seminars, will focus on the skills necessary to question patients in a directed fashion and to listen to the patient with concern and empathy. Instruction will emphasize what data is needed in a complete medical history as well as the focused interview, the proper technique for gathering information, and the format for presentation of the data. Instructional techniques will include role-playing, small group discussion, and observation and critique by instructors, other students and simulated patient models. Prereq: Students must be in Physician Assistant Program.

PAST 402. Physical Diagnosis. 4 Units.
This lecture/discussion/laboratory course presents and explores the techniques for performing a complete and competent physical examination, understanding the pathophysiology presented by the patient, and organizing and reporting the findings in both written and oral format. Synthesis of historical and physical presentations for an accurate evaluation of the patient will be emphasized. The problem-oriented physical examination and special examination tools and techniques will be presented. Instructional techniques will include small group discussion, practical experience with other students and faculty, and the observation and critique of physical examination skills by faculty. Prereq: Students must be in Physician Assistant Program.

PAST 403. Diagnostic Methods-Clinical Lab. 1 Unit.
This course is designed to introduce the student to clinical laboratory medicine. Lectures are designed to review the various types of laboratory tests, acquisition and handling of specimens, normal values as well as interpretation of results and correlation with clinical conditions. Prereq: Students must be in Physician Assistant Program.

PAST 404. Clinical Correlations. 1 Unit.
This seminar course places emphasis on internal organs with clinical correlation to anatomic conditions. Content will include basic concepts of genetics, embryology, the comparison of normal and abnormal structural relationships and the demonstration of how these things relate to health and disease. Students will review on-line genetics learning modules and meet in small seminar groups to review anatomical clinical correlates. Prereq: Students must be in Physician Assistant Program.

PAST 405. Medical Microbiology & Infectious Disease. 2 Units.
This course is the study of microorganisms and the diseases they cause in man. It includes consideration of infectious disease microorganisms including their biochemical, serological and virulence characteristics, and clinical manifestations. An organ system approach is used to examine the fundamentals of pathogenicity, host response, epidemiological aspects of infectious disease, as well as clinical manifestations, diagnosis and treatment of infections with clinical correlations. Prereq: Students must be in Physician Assistant Program.

PAST 406. Ethics in Healthcare Delivery. 1 Unit.
This course is an overview of the discipline of medical ethics presenting the study and application of relevant principles, insights, and understandings of modern medical practice. The course includes a brief overview of ethical theories which lay the foundation for subsequent investigation into specific ethical problems found in medical science and technology. The purpose of the course is to provide a framework which enables the student to reason clearly and effectively about the ethics involved in medical science and technology. The course assumes no prior knowledge of philosophical ethics or medical science. A framework of ethical decision making is introduced and practiced using realistic medical cases via a Medical Ethics Committee. Prereq: Students must be in Physician Assistant Program.

PAST 407. Clinical Procedures. 4 Units.
The purpose is to prepare these future clinicians for clinical management of health and disease by preparing them for common clinical procedures. These will include basic and advanced surgical skills, basic laboratory skills, common out-patient procedures, common emergency procedures, and interpretation of electrocardiographs and common radiologic tests. Prereq: Students must be in Physician Assistant Program.

PAST 410. Cadaver dissection-based human anatomy with histology and physiologic correlations. 6 Units.
This course will provide students with a sound understanding of the normal human body as a foundation for subsequent pursuing biomedical careers. A combination of daily lectures and laboratories integrates cadaver dissection-based gross anatomy with the associated histology, embryology, neuroanatomy and basic physiology. This course is well-suited to all biomedical careers, including pre-clinical and biomedical undergraduates, post-baccalaureate, pre-clinical master of science graduate programs, plus medical and dental students seeking additional training in the anatomical sciences. It will meet any of the anatomy-oriented prerequisites being implemented for medical and dental school applications, including those preferring or requiring a cadaver-based experience. The assessments will include a combination of written and cadaver-based practical questions. Offered as ANAT 410 and PAST 410. Prereq: Students must be in Physician Assistant Program.

PAST 411. Professional Issues for PA's-History & Roles of the PA I. 1 Unit.
This one semester course explores through lecture and discussion the factors affecting the development of the profession and role socialization with emphasis on history, regulations and organizations governing PA practice. An overview of clinical responsibilities, team based practice, population health and the PAs role, licensing and credentialing practices will be presented and discussed. Prereq: Students must be in Physician Assistant Program.

PAST 412. Professional Issues for Physician Assistants II. 2 Units.
In this three course series students will explore factors affecting the development of the profession, the status of the PA in the U.S. healthcare system and current issues in clinical practice including practice-based improvement and systems-based practice. Through lecture and discussion, this series prepares the student for the transition from classroom to clinical training and clinical practice. Emphasis is given to the responsibilities that come with being a professional, professionalism and practicing quality improvement. Prereq: Students must be in Physician Assistant Program.
PAST 413. Professional Issues for Physician Assistants III. 2 Units.
In this three course series students will explore factors affecting the development of the profession, the status of the PA in the U.S. healthcare system and current issues in clinical practice including practice-based improvement and systems-based practice. Through lecture and discussion, this series prepares the student for the transition from classroom to clinical training and clinical practice. Emphasis is given to the responsibilities that come with being a professional, professionalism and practicing quality improvement. Prereq: Students must be in Physician Assistant Program.

PAST 420. Pharmacology I. 2 Units.
In this two course series, (PAST 421 Pharmacology II) students will be provided with a basic introduction to the principles of pharmacology and to drug classes of particular relevance to the physician assistant. Information concerning drug doses and calculations used in determining doses will be included in this course and PAST 421 Pharmacology. Prereq: Students must be in Physician Assistant Program.

PAST 421. Pharmacology II. 3 Units.
In this two course series (PAST 420 Pharmacology), physician assistant students will be provided with foundational knowledge of the therapeutic uses and effects of drugs. The indications, contraindications and adverse effects of prototypical drugs are covered. Drug dependence and addiction are also discussed. This course also includes a problem-based learning component which will enhance students’ teamwork and clinical reasoning skills by examining and analyzing case scenarios in small groups. Prereq: Students must be in Physician Assistant Program.

PAST 430. Principles of Internal Medicine. 7 Units.
This one semester lecture/discussion course provides students with a detailed study of the etiology, pathophysiology, signs, symptoms, diagnosis and treatment of various disorders encountered in internal medicine. A broad array of diseases in cardiology, dermatology, endocrinology, gastroenterology, gerontology, hepatology, hematology, oncology, urology, nephrology, neurology, pulmonology and rheumatology are explored. Prereq: Students must be in Physician Assistant Program.

PAST 431. Principles of Clinical Medicine-Surgery & Emergency Medicine. 4 Units.
This one semester lecture course presents the fundamentals of surgical disease and care of the acutely injured and ill patients. The purpose is to familiarize the student with the etiology, anatomy, pathophysiology, clinical manifestations and appropriate diagnosis and treatment of selected surgical conditions and conditions encountered in the surgical subspecialty and emergency medical settings. Prereq: Students must be in Physician Assistant Program.

PAST 432. Principles of Clinical Medicine-OB/GYN. 3 Units.
This lecture/case presentation course gives the student an overview of commonly encountered obstetric and gynecologic disorders. Anatomy and physiology of the human reproduction system are examined, including the changes in pregnancy, prenatal care, medical and surgical complications of pregnancy, pre- and postpartum care. Common gynecologic conditions, methods and effectiveness of contraception, cancer detection methods and the diagnosis and treatment of sexually transmitted infections in the female are explored. Prereq: Students must be in Physician Assistant Program.

PAST 433. Principles of Clinical Medicine-Pediatrics. 3 Units.
This course introduces the student to a unique, complex and challenging field of pediatrics. It emphasizes aspects of general pediatrics and provides a foundation for those students who elect to further study the health care of infants, children and adolescents. This course addresses issues unique to childhood and adolescence by focusing on human developmental biology, and by emphasizing the impact of family, community, and society on child health and well-being. Additionally, it focuses on the impact of disease and its treatment on the developing human, and emphasizes growth and development, principles of health supervision, and recognition of common health problems. Prereq: Students must be in Physician Assistant Program.

PAST 440. Pre-Clinical Clerkships I. 1 Unit.
This course/clerkship provides the student with clinical experience at clinical sites in the didactic year utilizing what was learned in Foundations of Clinical Medicine (Interviewing and Physical Diagnosis class/lab). During the pre-clinical time at program designated sites, students will continue to develop and apply their history and physical exam skills, interpersonal skills, oral presentation and medical documentation skills. For expanding skills and creating relationships within the community, this course also encompasses community service, experiential learning and interprofessional education activities. This course/clerkship will help to better prepare students to gain experience and develop confidence in approaching patients prior to entering the clinical year. Prereq: Students must be in Physician Assistant Program.

PAST 441. Pre-Clinical Clerkships II. 1 Unit.
This course/clerkship provides the student with clinical experience at clinical sites in the didactic year utilizing what was learned in Foundations of Clinical Medicine (Interviewing and Physical Diagnosis class/lab). During the pre-clinical time at program designated sites, students will continue to develop and apply their history and physical exam skills, interpersonal skills, oral presentation and medical documentation skills. For expanding skills and creating relationships within the community, this course also encompasses community service, experiential learning and interprofessional education activities. This course/clerkship will help to better prepare students to gain experience and develop confidence in approaching patients prior to entering the clinical year. Prereq: Students must be in Physician Assistant Program.

PAST 450. Culture and Health. 2 Units.
This lecture/discussion course provides students with a detailed understanding of the societal and individual prejudices, preconceptions, and biases that enter into the clinical interaction and how to develop appropriate responses and coping strategies. This course provides the student with common psychosocial problems encountered by health professionals today. Students explore issues related to sexuality, cultural competency, multicultural health, cross-cultural communication, and healthcare disparities. Prereq: Students must be in Physician Assistant Program.
PAST 451. Introduction to Public Health. 1 Unit.
This course will introduce students to concepts of public health and provide experience in public health by completion of a mentored project with a local health department. The course will enhance the student’s knowledge of the history and philosophy of public health, the Healthy People 2020 initiatives and the social determinants of health and how they can be impacted. Teaching methodologies will include online modules from the Association for Prevention Teaching and Research and discussion along with the mentored public health project. Prereq: Students must be in Physician Assistant Program.

PAST 452. Introduction to Evidence Based Medicine. 2 Units.
This course is intended to provide learners with a basic understanding of the principles of epidemiology, biostatistics and evidence-based medicine. The course involves analysis of prospective and retrospective studies, cross-sectional studies and experimental epidemiology. It will focus on epidemiological scenarios that relate to both infectious disease and chronic disease. In addition, the course will provide the student with a basic understanding of the application of statistical techniques to the biological and health sciences and to demonstrate their areas of application. Emphasis will be placed on probability laws, sampling and parameter estimation, test of hypothesis, correlation, regression and analysis of variance. Finally, students will be introduced to the basic concepts of evidence-based medicine, information mastery, and critical appraisal of the medical literature. Prereq: Students must be in Physician Assistant Program.

PAST 453. Medical Spanish Elective. 1 Unit.
This course will teach students the basics of Spanish as it applies to the medical field such as physical examinations, emergencies, common diseases within the Latino population, and specializations. By familiarizing students with conversational Spanish and medical Spanish, this course will enable students to apply their learning to real-world situations, to assist in communications, and ultimately to break down the barrier between doctors and patients. Prereq: Students must be in Physician Assistant Program.

PAST 454. Research Methods Elective. 1 Unit.
This lecture course introduces students to research design and scientific inquiry and provides them with the skills necessary for interpretation and critical evaluation of the medical literature. It includes a brief review of important statistical principles and methods and their application to problems in medicine and health. Prereq: Students must be in Physician Assistant Program.

PAST 477. Human Physiology. 4 Units.
This lecture/seminar experience is meant to enhance the students fundamental knowledge in human physiology with an emphasis on physiologic concepts in relationship to health, disease and illnesses. The course will provide students with an understanding of the function, regulation and integration of the major organ systems. Offered as PAST 477 and PHOL 477. Prereq: Students must be in Physician Assistant Program.

PAST 500. Clinical Residency: Emergency Medicine Rotation. 3 Units.
This clinical rotation is designed to expose the student to the wide variety of problems encountered in the hospital-based emergency room setting in both the fast track and acute care sides of the emergency department. The rotation experience includes the medical/surgical management of patients of all ages (infant to geriatric) with presenting problems that may be of a life threatening nature. The formulation and understanding of the many and varied medical problems is accomplished via the accurate collection of data through a history and physical exam, interpretation of diagnostic testing, and the development of a plan. The student will also be exposed to and perform diagnostic and therapeutic procedures. These experiences will be under appropriate supervision. Prereq: Students must be in Physician Assistant Program.

PAST 501. Clinical Residency: Family Medicine. 3 Units.
This clinical rotation is designed to give the student an understanding of family medicine/primary care medicine as practiced in office and/ or clinic in an outpatient setting. The student will work with patients from a variety of social, economic and cultural backgrounds across the lifespan. They will experience continuity of care while assessing, diagnosing, monitoring, managing, referring and educating patients. The student will be exposed to both acute and chronic problems as well as the psychosocial problems that are encountered in this setting. Students may encounter and participate in the care of patients of all ages: pediatric, adolescent, adult and geriatric populations. The formulation and understanding of the many and varied medical problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem. Prereq: Students must be in Physician Assistant Program.

PAST 502. Clinical Residency: Geriatrics. 3 Units.
This clinical rotation is designed to give the student an understanding of geriatric medicine. The understanding of the many and varied medical and psycho-social problems in geriatric patients is accomplished via the accurate collection of data through a complete history and physical examination, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem. Teaching rounds and lectures may be used to introduce concepts of geriatric medicine. Prereq: Students must be in Physician Assistant Program.

PAST 503. Clinical Residency: Internal Medicine Rotation. 3 Units.
This clinical rotation is designed to provide the student with an understanding of the wide variety of problems encountered in hospital-based internal medicine. The formulation and understanding of the many and varied medical problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem. Students are assigned to medical teams during their rotation. Teaching rounds and lectures are used to introduce concepts of internal medicine. Prereq: Students must be in Physician Assistant Program.
PAST 504. Clinical Residency: Obstetrics & Gynecology. 3 Units.
This clinical rotation is designed to expose the student to the variety of problems encountered in women's health care. The focus of the learning experience is on recognition and management of common gynecological illnesses, sexually transmitted infections, family planning, birth control, and cancer of the female reproductive system and breast. Obstetrical focus is on pregnancy, labor and delivery, and postpartum care. The student will also have an exposure to the surgical management of gynecological and obstetric problems. Teaching rounds and lectures may be used to introduce concepts of obstetrics and gynecology. Prereq: Students must be in Physician Assistant Program.

PAST 505. Clinical Residency: Pediatrics. 3 Units.
This clinical rotation is designed to emphasize care of the child from birth to adolescence. The focus of the learning experience is on recognition and management of common childhood illnesses, assessment of variations of normal growth and development, and the counseling of parents regarding immunizations, preventative health care visits, growth and development, nutrition, injury prevention and common psychosocial problems. The formulation and understanding of the many and varied medical problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem. Teaching rounds and lectures may be used to introduce concepts of pediatrics. Prereq: Students must be in Physician Assistant Program.

PAST 506. Clinical Residency: Behavioral and Mental Health. 3 Units.
This clinical rotation is designed to give the student an understanding of the psycho-social and behavioral components of health, disease, and disability. The student will be exposed to a variety of mental illnesses and disabilities and will also be able to recognize and categorize psychiatric disorders along with the therapeutic modalities used in their treatment. The formulation and understanding of the varied psychiatric problems is accomplished via the accurate collection of data through a complete history and mental status exam, interpretation of diagnostic testing when appropriate, formulation of a problem list, and the development of a plan for each presenting problem. Emphasis is placed on early recognition, intervention, and psychiatric referral and/or consultation. Teaching rounds and lectures are used to introduce concepts of psychiatric medicine. Prereq: Students must be in Physician Assistant Program.

PAST 507. Clinical Residency: Surgery. 3 Units.
This clinical rotation is designed to expose the student to the varied population with surgically manageable disease from adolescence to geriatrics. The formulation and understanding of the varied medical problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan. The focus of the learning experience is on the pre-operative evaluation and preparation of the patients for surgery, procedures and assisting during the intra-operative period, and the care of patients post-operatively. The student will be exposed to both emergent and non-emergent surgical management of patients. The student may be assigned to surgical teams during his/her rotation. Teaching rounds and lectures are used to introduce concepts of surgical care. Prereq: Students must be in Physician Assistant Program.

PAST 508. Clinical Residency: Primary Care Elective. 3 Units.
This clinical rotation is designed to give the student an understanding of family medicine/primary care medicine as practiced in office and/or clinic in an outpatient setting. The student will work with patients from a variety of social, economic and cultural backgrounds across the lifespan. They will experience continuity of care while assessing, diagnosing, monitoring, managing, referring and educating patients. The student will be exposed to both acute and chronic problems as well as the psychosocial problems that are encountered in this setting. Students may encounter and participate in the care of patients of all ages: pediatric, adolescent, adult and geriatric populations. The formulation and understanding of the many and varied medical problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem. Prereq: Students must be in Physician Assistant Program.

PAST 509. Clinical Residency: Inpatient Medicine Elective. 3 Units.
This clinical rotation is designed to provide the student with an understanding of the wide variety of problems encountered in hospital-based internal/surgical medicine. The formulation and understanding of the many and varied medical and or surgical problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problems. Students are assigned to medical teams during their rotation. Teaching rounds and lectures are used to introduce concepts of hospital based medicine. Prereq: Students must be in Physician Assistant Program.

PAST 510. Clinical Residency: Elective. 3 Units.
This elective clinical rotation is designed to provide the student with the knowledge and skills in an area of interest. Students will gain an understanding of the variety of problems encountered in a medical or surgical sub-specialty discipline. The formulation and understanding of the many and varied medical and/or surgical subspecialty problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem including pharmacologic and non-pharmacologic management. Acquisition of these skills helps facilitate the PA student to progress through the clinical rotation with increasing complexity of clinical experiences, building confidence, competence and compassion. In addition to gaining clinical skills specific to the specialty of the rotation, the student will also continue to develop skills in systematic medical problem solving and patient management abilities, establish or reinforce patterns of independent learning, self-evaluation, interprofessional relationships and communication skills. Elective rotation sites are chosen based on practice characteristics that are important for the PA student within this rotation. These may include practice location, patient populations, and availability of specific experiences and procedures. Prereq: Students must be in Physician Assistant Program.
PAST 511. Clinical Residency: Elective. 3 Units.
This elective clinical rotation is designed to provide the student with the knowledge and skills in an area of interest. Students will gain an understanding of the variety of problems encountered in a medical or surgical sub-specialty discipline. The formulation and understanding of the many and varied medical and/or surgical sub-specialty problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem including pharmacologic and non-pharmacologic management. Acquisition of these skills helps facilitate the PA student to progress through the clinical rotation with increasing complexity of clinical experiences, building confidence, competence and compassion. In addition to gaining clinical skills specific to the specialty of the rotation, the student will also continue to develop skills in systematic medical problem solving and patient management abilities, establish or reinforce patterns of independent learning, self-evaluation, interprofessional relationships and communication skills. Elective rotation sites are chosen based on practice characteristics that are important for the PA student within this rotation. These may include practice location, patient populations, and availability of specific experiences and procedures. Prereq: Students must be in Physician Assistant Program.

PAST 600. Capstone Quality Improvement Project & Comprehensive Examination. 3 Units.
The Quality Improvement (QI) Project (PAST 600 Capstone) is one of two major components of the capstone of the PA program (Comprehensive Examination is the second component of PAST 600 Capstone). The goal of this component of the PAST 600 Capstone course is to introduce the fundamentals of patient safety, evaluation of quality and quality measures and principals of quality improvement to PA students. The Capstone Quality Improvement project will be conducted during PAST 508-Primary Care Elective. Prereq: Students must be in Physician Assistant Program.

SYBB Courses
SYBB 201R. Basic Statistics for Social and Life Sciences Using R Programming. 3 Units.
Designed for undergraduates in the social sciences and life sciences who need to use statistical techniques in their fields. Descriptive statistics, probability models, sampling distributions, point and confidence interval estimation, hypothesis testing. Elementary regression and analysis of variance. Not for credit toward major or minor in Statistics. Students may earn credit for only one of the following courses: STAT 201, STAT 201R, ANTH 319, PSCL 282 or SYBB 201R. Offered as STAT 201R and SYBB 201R.

SYBB 311A. Survey of Bioinformatics: Technologies in Bioinformatics. 1 Unit.
SYBB 311A/411A is a 5-week course that introduces students to the high-throughput technologies used to collect data for bioinformatics research in the fields of genomics, proteomics, and metabolomics. In particular, we will focus on mass spectrometer-based proteomics, DNA and RNA sequencing, genotyping, protein microarrays, and mass spectrometry-based metabolomics. This is a lecture-based course that relies heavily on out-of-class readings. Graduate students will be expected to write a report and give an oral presentation at the end of the course. SYBB 311A/411A is part of the SYBB survey series which is composed of the following course sequence: (1) Technologies in Bioinformatics, (2) Data Integration in Bioinformatics, (3) Translational Bioinformatics, and (4) Programming for Bioinformatics. Each standalone section of this course series introduces students to an aspect of a bioinformatics project - from data collection (SYBB 311A/411A), to data integration (SYBB 311B/411B), to research applications (SYBB 311C/411C), with a fourth module (SYBB 311D/411D) introducing basic programming skills. Graduate students have the option of enrolling in all four courses or choosing the individual modules most relevant to their background and goals with the exception of SYBB 411D, which must be taken with SYBB 411A. Offered as SYBB 311A, BIOL 311A and SYBB 411A. Prereq: (BIOL 214 and BIOL 215) or BIOL 250. Coreq: SYBB 311B, SYBB 311C, and SYBB 311D.

SYBB 311B. Survey of Bioinformatics: Data Integration in Bioinformatics. 1 Unit.
SYBB 311B/411B is a five week course that surveys the conceptual models and tools used to analyze and interpret data collected by high-throughput technologies, providing an entry point for students new to the field of bioinformatics. The knowledge structures that we will cover include: biomedical ontologies, signaling pathways, and interaction networks. We will also cover tools for genome exploration and analysis. The SYBB survey series is composed of the following course sequence: (1) Technologies in Bioinformatics, (2) Data Integration in Bioinformatics, (3) Translational Bioinformatics, and (4) Programming for Bioinformatics. Each standalone section of this course series introduces students to an aspect of a bioinformatics project - from data collection (SYBB 311A/411A), to data integration (SYBB 311B/411B), to research applications (SYBB 311C/411C), with a fourth module (SYBB 311D/411D) introducing basic programming. Graduate students have the option of enrolling in all four courses or choosing the individual modules most relevant to their background and goals with the exception of SYBB 411D, which must be taken with SYBB 411A. Offered as SYBB 311B, BIOL 311B, and SYBB 411B. Prereq: (BIOL 214 and BIOL 215) or BIOL 250. Coreq: SYBB 311A, SYBB 311C, and SYBB 311D.
SYBB 311C. Survey of Bioinformatics: Translational Bioinformatics. 1 Unit.
SYBB 311C/411C is a longitudinal course that introduces students to the latest applications of bioinformatics, with a focus on translational research. Topics include 'omic drug discovery, pharmacogenomics, microbiome analysis, and genomic medicine. The focus of this course is on illustrating how bioinformatic technologies can be paired with data integration tools for various applications in medicine. The course is organized as a weekly journal club, with instructors leading the discussion of recent literature in the field of bioinformatics. Students will be expected to complete readings beforehand; students will also work in teams to write weekly reports reviewing journal articles in the field. The SYBB survey series is composed of the following course sequence: (1) Technologies in Bioinformatics, (2) Data Integration in Bioinformatics, (3) Translational Bioinformatics, and (4) Programming for Bioinformatics. Each standalone section of this course series introduces students to an aspect of a bioinformatics project - from data collection (SYBB 311A/411A), to data integration (SYBB 311B/411B), to research applications (SYBB 311C/411C), with a fourth module (SYBB 311D/411D) introducing basic programming. Graduate students have the option of enrolling in all four courses or choosing the individual modules most relevant to their background and goals with the exception of SYBB 411D, which must be taken with SYBB 411A. Offered as SYBB 311C, BIOL 311C and SYBB 411C. Prereq: (BIOL 214 and BIOL 215) or BIOL 250. Coreq: SYBB 311A, SYBB 311B, and SYBB 311D.

SYBB 312R. Basic Statistics for Engineering and Science Using R Programming. 3 Units.
For advanced undergraduate students in engineering, physical sciences, life sciences. Comprehensive introduction to probability models and statistical methods of analyzing data with the object of formulating statistical models and choosing appropriate methods for inference from experimental and observational data and for testing the model's validity. Balanced approach with equal emphasis on probability, fundamental concepts of statistics, point and interval estimation, hypothesis testing, analysis of variance, design of experiments, and regression modeling. Note: Credit given for only one (1) of STAT 312, STAT 312R, STAT 313, STAT 333, STAT 433 or SYBB 312R. Offered as STAT 312R and SYBB 312R. Prereq: MATH 122 or equivalent.

SYBB 319. Applied Probability and Stochastic Processes for Biology. 3 Units.
Applications of probability and stochastic processes to biological systems. Mathematical topics will include: introduction to discrete and continuous probability spaces (including numerical generation of pseudo random samples from specified probability distributions), Markov processes in discrete and continuous time with discrete and continuous sample spaces, point processes including homogeneous and inhomogeneous Poisson processes and Markov chains on graphs, and diffusion processes including Brownian motion and the Ornstein-Uhlenbeck process. Biological topics will be determined by the interests of the students and the instructor. Likely topics include: stochastic ion channels, molecular motors and stochastic ratchets, actin and tubulin polymerization, random walk models for neural spike trains, bacterial chemotaxis, signaling and genetic regulatory networks, and stochastic predator-prey dynamics. The emphasis will be on practical simulation and analysis of stochastic phenomena in biological systems. Numerical methods will be developed using a combination of MATLAB, the R statistical package, MCell, and/or URDME, at the discretion of the instructor. Student projects will comprise a major part of the course. Offered as BIOL 319, EEC 319, MATH 319, SYBB 319, BIOL 419, EBME 419, MATH 419, PHOL 419, and SYBB 419. Prereq: MATH 224 or MATH 223 and BIOL 300 or BIOL 306 and MATH 201 or MATH 307 or consent of instructor.

SYBB 322. Clinical Informatics at the Bedside and the Bench (Part II). 3 Units.
This course is part of a two semester series that provides student with an overview of the field of clinical informatics and its research applications. SYBB 422 focuses on the use of informatics in public health, epidemiology, and translational bioinformatics; topics include: pharmacosurveillance, comparative effectiveness research, and personalized medicine. Through lectures and in-depth readings of literature in the field, students will learn to approach population-level problems in medicine through the lens of 'informatics', the science of information, with a focus on application over theory. Students will be required to use R (or another programming language) for data analysis assignments. Offered as SYBB 322 and SYBB 422. Prereq: SYBB 321.

SYBB 387. Undergraduate Research in Systems Biology. 1 - 3 Units.
This course provides students research experience in data science, proteomics, bioinformatics, and clinical informatics under the guidance of faculty affiliated with the Systems Biology and Bioinformatics program. Areas of research include production of big data at bench (cellular proteomics, structural proteomics, genomics, and interaction proteomics) and analysis of big data such as computational/statistical biology, bioinformatics tool development and clinical research informatics. A written report must be approved by the sponsor and submitted to the director of the Center for Proteomics and Bioinformatics before credit is granted.

SYBB 388. Undergraduate Research. 1 - 3 Units.
Guided laboratory research under the sponsorship of a biology faculty member. May be carried out within the biology department or in associated departments. Appropriate forms must be secured in the biology department office. A written report must be approved by the biology sponsor and submitted to the chairman of the biology department before credit is granted. Only 3 credit-hours may count towards the biology majors or minor. Offered as BIOL 388 and SYBB 388.
SYBB 388S. Undergraduate Research - SAGES Capstone. 3 Units.
Guided laboratory research under the sponsorship of a biology faculty member. May be carried out within the biology department or in associated departments. May be taken only one semester during the student's academic career. Appropriate forms must be secured in the biology department office. A written report must be approved by the biology sponsor and submitted to the chairman of the biology department before credit is granted. A public presentation is required. Offered as BIOL 388S and SYBB 388S. Counts as SAGES Senior Capstone.

SYBB 411A. Survey of Bioinformatics: Technologies in Bioinformatics. 1 Unit.
SYBB 311A/411A is a 5-week course that introduces students to the high-throughput technologies used to collect data for bioinformatics research in the fields of genomics, proteomics, and metabolomics. In particular, we will focus on mass spectrometer-based proteomics, DNA and RNA sequencing, genotyping, protein microarrays, and mass spectrometry-based metabolomics. This is a lecture-based course that relies heavily on out-of-class readings. Graduate students will be expected to write a report and give an oral presentation at the end of the course. SYBB 311A/411A is part of the SYBB survey series which is composed of the following course sequence: (1) Technologies in Bioinformatics, (2) Data Integration in Bioinformatics, (3) Translational Bioinformatics, and (4) Programming for Bioinformatics. Each standalone section of this course series introduces students to an aspect of a bioinformatics project - from data collection (SYBB 311A/411A), to data integration (SYBB 311B/411B), to research applications (SYBB 311C/411C), with a fourth module (SYBB 311D/411D) introducing basic programming. Graduate students have the option of enrolling in all four courses or choosing the individual modules most relevant to their background and goals with the exception of SYBB 411D, which must be taken with SYBB 411A. Offered as SYBB 311A, BIOL 311A and SYBB 411A. Prereq: Graduate Standing or Requisites Not Met Permission.

SYBB 411B. Survey of Bioinformatics: Data Integration in Bioinformatics. 1 Unit.
SYBB 311B/411B is a week course that surveys the conceptual models and tools used to analyze and interpret data collected by high-throughput technologies, providing an entry points for students new to the field of bioinformatics. The knowledge structures that we will cover include: biomedical ontologies, signaling pathways, and interaction networks. We will also cover tools for genome exploration and analysis. The SYBB survey series is composed of the following course sequence: (1) Technologies in Bioinformatics, (2) Data Integration in Bioinformatics, (3) Translational Bioinformatics, and (4) Programming for Bioinformatics. Each standalone section of this course series introduces students to an aspect of a bioinformatics project - from data collection (SYBB 311A/411A), to data integration (SYBB 311B/411B), to research applications (SYBB 311C/411C), with a fourth module (SYBB 311D/411D) introducing basic programming. Graduate students have the option of enrolling in all four courses or choosing the individual modules most relevant to their background and goals with the exception of SYBB 411D, which must be taken with SYBB 411A. Offered as SYBB 311B, BIOL 311B, and SYBB 411B. Prereq: Graduate Standing or Requisites Not Met Permission.

SYBB 411C. Survey of Bioinformatics: Translational Bioinformatics. 1 Unit.
SYBB 311C/411C is a longitudinal course that introduces students to the latest applications of bioinformatics, with a focus on translational research. Topics include: ‘omic drug discovery, pharmacogenomics, microbiome analysis, and genomic medicine. The focus of this course is on illustrating how bioinformatic technologies can be paired with data integration tools for various applications in medicine. The course is organized as a weekly journal club, with instructors leading the discussion of recent literature in the field of bioinformatics. Students will be expected to complete readings beforehand; students will also work in teams to write weekly reports reviewing journal articles in the field. The SYBB survey series is composed of the following course sequence: (1) Technologies in Bioinformatics, (2) Data Integration in Bioinformatics, (3) Translational Bioinformatics, and (4) Programming for Bioinformatics. Each standalone section of this course series introduces students to an aspect of a bioinformatics project - from data collection (SYBB 311A/411A), to data integration (SYBB 311B/411B), to research applications (SYBB 311C/411C), with a fourth module (SYBB 311D/411D) introducing basic programming. Graduate students have the option of enrolling in all four courses or choosing the individual modules most relevant to their background and goals with the exception of SYBB 411D, which must be taken with SYBB 411A. Offered as SYBB 311C, BIOL 311C and SYBB 411C. Prereq: Graduate Standing or Requisites Not Met Permission.

SYBB 412. Survey of Bioinformatics: Programming for Bioinformatics. 3 Units.
SYBB 412 is a 3 credit-course that will introduce students to bioinformatics analysis and programming in the R language. This course is designed for those with little or no prior programming experience. However, advanced programmers can still learn bioinformatics pipelines and software packages to conduct research. Students will gain hands-on experience working with bioinformatics software, R packages and functions designed for bioinformatics applications. Programming for Bioinformatics course mainly focuses on R (rproject.org), and introduces students to basic programming in R, what packages are available, and teaches an introductory hands-on experience working with R by walking through the students in analyzing large -omics datasets. At the end of the class, the students are assessed with a small-scale project, where they analyze a publicly available dataset and produce a short report. Prereq: (Graduate Standing and SYBB 411A) or Requisites Not Met Permission.
SYBB 419. Applied Probability and Stochastic Processes for Biology. 3 Units.
Applications of probability and stochastic processes to biological systems. Mathematical topics will include: introduction to discrete and continuous probability spaces (including numerical generation of pseudo random samples from specified probability distributions), Markov processes in discrete and continuous time with discrete and continuous sample spaces, point processes including homogeneous and inhomogeneous Poisson processes and Markov chains on graphs, and diffusion processes including Brownian motion and the Ornstein-Uhlenbeck process. Biological topics will be determined by the interests of the students and the instructor. Likely topics include: stochastic ion channels, molecular motors and stochastic ratchets, actin and tubulin polymerization, random walk models for neural spike trains, bacterial chemotaxis, signaling and genetic regulatory networks, and stochastic predator-prey dynamics. The emphasis will be on practical simulation and analysis of stochastic phenomena in biological systems. Numerical methods will be developed using a combination of MATLAB, the R statistical package, MCell, and/or URDME, at the discretion of the instructor. Student projects will comprise a major part of the course. Offered as BIOL 319, EECS 319, MATH 319, SYBB 319, BIOL 419, EBME 419, MATH 419, PHOL 419, and SYBB 419.

SYBB 421. Fundamentals of Clinical Information Systems. 3 Units.
Technology has played a significant role in the evolution of medical science and treatment. While we often think about progress in terms of the practical application of, say, imaging to the diagnosis and monitoring of disease, technology is increasingly expected to improve the organization and delivery of healthcare services, too. Information technology plays a key role in the transformation of administrative support systems (finance and administration), clinical information systems (information to support patient care), and decision support systems (managerial decision-making). This introductory graduate course provides the student with the opportunity to gain insight and situational experience with clinical information systems (CIS). Often considered synonymous with electronic medical records, the "art" of CIS more fundamentally examines the effective use of data and information technology to assist in the migration away from paper-based systems and improve organizational performance. In this course we examine clinical information systems in the context of (A) operational and strategic information needs, (B) information technology and analytic tools for workflow design, and (C) subsequent implementation of clinical information systems in patient care. Legal and ethical issues are explored. The student learns the process of "plan, design, implement" through hands-on applications to select CIS problems, while at the same time gaining insights and understanding of the impacts placed on patients and health care providers. Offered as EBME 473, IIME 473 and SYBB 421.

SYBB 422. Clinical Informatics at the Bedside and the Bench (Part II). 3 Units.
This course is part of a two semester series that provides student with an overview of the field of clinical informatics and its research applications. SYBB 422 focuses on the use of informatics in public health, epidemiology, and translational bioinformatics; topics include: pharmacosurveillance, comparative effectiveness research, and personalized medicine. Through lectures and in-depth readings of literature in the field, students will learn to approach population-level problems in medicine through the lens of "informatics", the science of information, with a focus on application over theory. Students will be required to use R (or another programming language) for data analysis assignments. Offered as SYBB 322 and SYBB 422. Prereq: SYBB 321.

SYBB 437. Laboratory Course in Proteomics. 3 Units.
SYBB 437 is designed to train students, postdoctoral fellows, and senior investigators in advanced methods in quantitative proteomics in the context of investigating the effects of pH on protein expression in the model organism E-coli. This intensive laboratory class is a 3-credit laboratory course and will be offered for a scheduled three hours time block once each week. In this course, we will cover topics in proteomics including protein sample preparation, total protein quantification, gel based separation and quantification methods, quantitative high throughput mass spectrometry and data analysis methods for examining these high throughput data. Students enrolled in SYBB 437 will be expected to turn in weekly lab reports summarizing their findings on each of the lab topics and will write two project reports at the end of labs 9 and 14 interpreting and summarizing the results obtained.

SYBB 459. Bioinformatics for Systems Biology. 3 Units.

SYBB 472. BioDesign. 3 Units.
Medical device innovations that would have been considered science fiction a decade ago are already producing new standards of patient care. Innovation leading to lower cost of care, minimally invasive procedures and shorter recovery times is equally important to healthcare business leaders, educators, clinicians, and policy-makers. Innovation is a driver of regional economic development and wealth creation in organizational units ranging in size from the start-up to the Fortune 500 companies. In a broader context, the pace of translational research leading to product and service innovation is highly interdisciplinary, thus, new products and services result from team efforts, marked by a systematic, structured approach to bringing new medical technologies to market and impacting patient care. In this course we examine medical technology innovations in the context of (A) addressing unmet clinical needs, (B) the process of inventing new medical devices and instruments, and (C) subsequent implementation of these advances in patient care. In short, the student learns the process of "identify, invent, implement" in the field of BioDesign. Offered as EBME 472, IIME 472 and SYBB 472.
SYBB 501. Biomedical Informatics and Systems Biology Journal Club. 0 Unit.
The purpose of this journal club is to provide an opportunity for students to critically discuss a wide variety of informatics and systems biology topics and to present their works in progress. A wide range of informatics and systems theory approaches to conducting biomedical research will be accomplished through the guided selection of articles to be discussed during the club. Potential articles will be chosen from scientific journals including: Nature, Science, BMC Bioinformatics, BMC Systems Biology, the Journal of Bioinformatics and Computational Biology, and the Journal for Biomedical Informatics. During journal presentations, trainees will be expected to lead a discussion of the article that leads to the critical evaluation of the merit of the article and its implication for biomedical informatics and systems biology. The Journal Club will also provide a forum for trainees to present proposed, on-going, and completed research. Trainees will attend and participate in the Journal Club throughout their tenure in the program. The Journal Club will meet twice a month and each trainee will be required to present one journal article and one research in progress presentation yearly. The Journal Club will also include sessions where issues related to the responsible conduct of research are reviewed and extended.

SYBB 502. Clinical Informatics Journal Club. 0 Unit.
The Clinical Informatics Journal Club serves as a forum for students to present current research in the field of clinical informatics. Students are required to coregister for SYBB 421 or SYBB 422; weekly lectures in SYBB 421/422 will introduce topics for discussion in the journal club Coreq: SYBB 421 or SYBB 422

SYBB 528. Contemporary Approaches to Drug Discovery. 3 Units.
This course is designed to teach the students how lead compounds are discovered, optimized, and processed through clinical trials for FDA approval. Topics will include: medicinal chemistry, parallel synthesis, drug delivery and devices, drug administration and pharmacokinetics, and clinical trials. A special emphasis will be placed on describing how structural biology is used for in silico screening and lead optimization. This component will include hands-on experience in using sophisticated drug discovery software to conduct in silico screening and the development of drug libraries. Each student will conduct a course project involving in silico screening and lead optimization against known drug targets, followed by the drafting of an inventory disclosure. Another important aspect of this course will be inclusion of guest lectures by industrial leaders who describe examples of success stories of drug development. Offered as BIOC 528, PHOL 528, PHRM 528, and SYBB 528.

SYBB 535. Independent Study in Biomedical Informatics. 1 - 3 Units.
For students pursuing MS or PhD degrees in SYBB, this course provides the opportunity for in-depth exposure to a subfield of systems biology and/or biomedical informatics. Degree-seeking students can enroll in this course prior to beginning 601 or 701 research. In conjunction with their proposed research advisor, enrolled students will undertake a self-directed study of a subfield of systems biology and/or biomedical informatics pertinent to their research area. The selected readings may also represent topics not covered by the student’s coursework. The student’s performance will be evaluated in an end-of-semester presentation or report at their advisor’s discretion.

SYBB 555. Current Proteomics. 3 Units.
This course is designed for graduate students across the university who wish to acquire a better understanding of fundamental concepts of proteomics and hands-on experience with techniques used in current proteomics. Lectures will cover protein/peptide separation techniques, protein mass spectrometry, bioinformatics tools, and biological applications which include quantitative proteomics, protein modification proteomics, interaction proteomics, structural genomics and structural proteomics. Laboratory portion will involve practice on the separation of proteins by two-dimensional gel electrophoresis, molecular weight measurement of proteins by mass spectrometry, peptide structural characterization by tandem mass spectrometry and protein identification using computational tools. The instructors’ research topics will also be discussed. Recommended preparation: CBIO 453 and CBIO 455. Offered as PHRM 555 and SYBB 555.

SYBB 600. Special Topics. 1 - 18 Units.
Offered as EECS 600 and SYBB 600.

SYBB 601. Systems Biology and Bioinformatics Research. 1 - 18 Units. (Credit as arranged.)

SYBB 651. Thesis M.S.. 1 - 18 Units. (Credit as arranged.)

SYBB 701. Dissertation Ph.D.. 1 - 9 Units. (Credit as arranged.) Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.

Department of Genetics and Genome Sciences

Biomedical Research Building
http://genetics.case.edu/
Phone: 216.368.3431
Anthony Wynshaw-Boris, MD, PhD, Chair
ajw168@case.edu

Clarice Young (clarice.young@case.edu), Coordinator

The Department of Genetics & Genome Sciences embraces a unified program devoted to outstanding research and teaching in all areas of genetics, with particular emphases on genomics, human genetics and animal models, development, and chromosome structure and function. Faculty conduct internationally recognized research programs in each of these areas. The also are committed to training the next generations of leading genetics researchers. The department has three special programs: the Center for Human Genetics, the Center for Computational Genomics, and the Genomic Medicine Institute (descriptions appear later in this narrative).

Programs offered lead to the PhD, combined MD/PhD degree, MS with a special emphasis in genetic counseling, or MS/MA dual degree in genetic counseling and bioethics. In addition to required and elective coursework, students participate in ongoing journal clubs, research seminars, and grand rounds. A program of departmental and interdepartmental seminars by outstanding visiting scientists provides regular exposure to a broad range of current research in genetics.

Applications to the PhD program in Genetics and Genome Sciences are through the Biomedical Sciences Training Program, which provides access to most of the biomedical science PhD programs at CWRU during the first semester. Students who wish to join Genetics and Genome Sciences directly should apply to the BSTP by selecting "Biomedical Sciences Training Program" as their Academic Program in the "Enrollment
The Genetic Counseling Training Program is a 40 credit hour program that spans four academic semesters and an intervening summer. Acquisition and mastery of clinical competencies are reflected in the Program's didactic coursework, clinical rotations, research process and supplementary experiences. The sequence of medical genetics courses and genetic counseling courses are designed to introduce concepts regarding medical genetics, general medical practice, counseling theory and clinical skills such that they build from beginning skills to a more advanced skill set in the order needed for clinical experiences. The goal of the program is to provide students with the knowledge and clinical skills to function as competent and empathetic genetic counselors in a wide range of settings and roles. All of these activities enable successful graduates to meet the clinical competencies as outlined by the Accreditation Council for Genetic Counseling (ACGC) and successfully pass the American Board of Genetic Counseling certification examination (ABGC).

Experiential professional training occurs concurrently with formal coursework and over the summer between years one and two. Clinical settings include a variety of clinics and inpatient services at the Center for Human Genetics at University Hospitals Cleveland Medical Center, the Genomic Medicine Institute at the Cleveland Clinic, Genetic Services at MetroHealth Medical Center and Medical Genetics at Akron Children's Hospital. Students also rotate through the Center for Human Genetics Laboratory to become familiarized with the clinical aspects of a diagnostic cytogenetics and molecular genetics laboratory.

The First Year

The major activities during the first year consist of course work (in plan of study below), clinical observations and defining a research question and preparing a research proposal. Observational clinical rotations begin early in October with students observing in prenatal genetics, cancer genetics, and general genetics clinics at the program's three affiliated institutions. Additionally, students meet several times over the fall semester to discuss the research process, potential topics, development of a research question and are introduced to the faculty's research areas of interest.

In addition to continuing clinical observational rotations and research, students continue with course work including an introduction to research methods and more in-depth theory and practice in the psychosocial aspects of counseling during spring semester.

During the intervening summer of years 1 and 2, students begin clinical rotations at the Medical Genetics Division at Akron Children's Hospital to gain exposure in various clinical settings including prenatal, general genetics, pediatrics, specialty clinics and cancer genetics clinic. They also rotate through the Center for Human Genetics Laboratory to become familiarized with the clinical aspects of a diagnostic cytogenetics and molecular genetics laboratory.

The Second Year

The major focus of the second year is continued clinical experiences, research and taking the comprehensive written and oral examinations. Students also complete their coursework, taking one course each semester.

At the beginning of spring semester in January, the students sit for the written comprehensive examination (covering the didactic and clinical genetic counseling material covered to date in the program) and the oral section of the examination, which is given shortly after the written portion. Both examinations are intended to allow students to expand on their knowledge base of human and medical genetics and genetic counseling. Students are expected to pass both sections of the examination in order to meet graduation requirements by the Program. The written portion of the examination is patterned after the national certification examination given by the American Board of Genetic Counseling.

Students continue to work on data collection and analyses for their research projects, which should result in a publishable document. They meet with the Program Director periodically to review their progress as well as with their research committee and of course, are meeting with their mentor on a more frequent basis. During the fall semester of the second year, the students also attend the National Society of Genetic Counselors annual education meeting. This provides an opportunity for students to meet genetic counselors from across the country, to attend scientific sessions to continue adding to their knowledge base and to meet and discuss job opportunities with prospective employers. Successful completion of the program fulfills the curricular and clinical training requirements for eligibility to sit for the certification examination given by the ABGC.
The sequence of courses for students is as follows:

MS Plan of Study

First Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensive: Medical Terminology (1 week)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Embryology (online course)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Medical Genetics: Molecular & Cytogenetics (GENE 524)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles and Practices of Genetic Counseling (GENE 528)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Medical Genetics: Quantitative Genetics & Genomics (GENE 526)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or Advanced Medical Genetics: Biochemical Genetics (GENE 527)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct Practice Generalist Methods & Skills (SASS 477)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intensive: Human Development (1 week)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychosocial Issues in Genetic Counseling (GENE 529)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Medical Genetics: Clinical Genetics (GENE 525)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer Genetics (GENE 531)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research in Genetics (GENE 601)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Practicum in Genetic Counseling (GENE 532)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>10</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Medical Genetics:</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Biochemical Genetics (GENE 527)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or Advanced Medical Genetics: Quantitative Genetics & Genomics (GENE 526)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Practicum in Genetic Counseling (GENE 532)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Research in Genetics (GENE 601)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Ethical Issues in Genetics/Genomics (BETH 412)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Clinical Practicum in Genetic Counseling (GENE 532)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Research in Genetics (GENE 601)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Total Units in Sequence: 40

MS/MA in Genetic Counseling and Bioethics (plan B)

The Departments of Genetics & Genome Sciences and Bioethics offer a dual degree program between the Masters in Genetic Counseling and the Masters in Bioethics Programs. The dual degree program provides a comprehensive curriculum integrating foundational principles of genetics and ethics. The goal of the program is to train Genetic Counselors who wish to apply additional Bioethics expertise into their clinical practice and/or research.

The dual degree program allows graduates to engage in both contemplative analysis and application of knowledge in the counseling of patients and should allow graduates to be more prepared to participate in the ongoing national dialogue about the ethical, legal, and social implications of advances in genomic technology as well as research within their home institutions and with other counselors nationwide regarding issues of new genomic testing technology, concerns about genetic services, and issues related to genetic discrimination, privacy, and the return of genetic and genomic results.

The curriculum for the Dual Genetic Counseling/Bioethics Degree consists of 59 credit hours to be completed in 2.5 years. Students enrolled in the dual degree program will spend their first year taking courses entirely within the Genetic Counseling Program and then will spread out their Bioethics coursework over the next 1.5 years while continuing with required coursework and clinical rotations in the genetic counseling program.

In addition to both a written and oral comprehensive examination as part of the Genetic Counseling Training Program, the dual degree requires a research project be carried out for the completion of the both degrees. For the dual degree, students will be required to choose a research project that includes ethical, legal, or social issues of genetic counseling practice, clinical genetics or genomics, or genetic research. Students will also be required to include at least one Bioethics Faculty member on their Research Project Committee.

Students who would like to enroll in the dual degree program will apply and be admitted into each program separately. While admissions committees for each program will communicate with each other regarding applicants, each admissions committee will decide independently about the suitability of the applicant to their program.

Once students have been admitted, the Director of the Genetic Counseling Training Program and the Director of the MA Program in Bioethics will be act as student advisors for each of the two programs individually as well as collaboratively - meeting monthly to assess student progress, address any student or faculty concerns, and assure that student progress in each of the programs, and their overlapping components, are being achieved.

MS/MA Plan of Study

First Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Medical Genetics: Molecular & Cytogenetics (GENE 524)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Medical Genetics: Quantitative Genetics & Genomics (GENE 526)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles and Practices of Genetic Counseling (GENE 528)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct Practice Generalist Methods & Skills (SASS 477)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychosocial Issues in Genetic Counseling (GENE 529)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Advanced Medical Genetics: Clinical Genetics (GENE 525) 2
Cancer Genetics (GENE 531) 2
Research in Genetics (GENE 601) 2
Clinical Practicum in Genetic Counseling (GENE 532) 3

Year Total: 10 9 3

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Practicum in Genetic Counseling (GENE 532)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Medical Genetics: Biochemical Genetics (GENE 527)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foundations in Bioethics I (BETH 401)</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Practicum in Genetic Counseling (GENE 532)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethical Issues in Genetics/Genomics (BETH 412)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foundations in Bioethics II (BETH 402)</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research in Genetics (GENE 601)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>12</td>
<td>13</td>
<td>3</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Research in Genetics (GENE 601)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Clinical Ethics Rotation (BETH 405)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BETH Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Total Units in Sequence: 59

PhD Genetics, Plan of Study Sample

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology I (CBIO 453/455)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Molecular Biology I (CBIO 455)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Complete 3 lab rotations (July 1 to Dec 15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choose Ph.D. mentor (end December)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research in Genetics (GENE 601)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Advanced Eukaryotic Genetics I (GENE 500/504)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Ph.D. Comprehensive exam (end of May or early June)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Advanced Eukaryotic Genetics II (GENE 504)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Research in Genetics (GENE 601)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Program Directors meet with students to discuss status, mentor; students begin assembling PhD thesis committee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grant Writing and Reviewing Skills Workshop (GENE 511)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Elective course (Genetics or other)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Research in Genetics (GENE 601)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Elective course (Genetics or other)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Research in Genetics (GENE 601)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Oral Defense of Thesis Proposal (to be completed by June 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Either semester 1 elective course (Genetics or other)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (GENE 701)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (GENE 701)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Fourth Year</td>
<td>Units</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (GENE 701)</td>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (GENE 701)</td>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Total Units in Sequence:</td>
<td>72</td>
<td></td>
</tr>
</tbody>
</table>

Please also see Graduate Studies Academic Requirements for Doctoral Degrees (http://bulletin.case.edu/schoolofgraduatestudies/academicrequirements).

Other Requirements

- Students meet twice per year with Thesis Committee
- Students meet once per year with Genetics Graduate Education Committee
- Genetics Student Seminar (weekly attendance, yearly presentation)
- Genetics Journal Club (weekly attendance, yearly presentation in spring semester)
- Genetics Retreat (yearly participation, organized by students)
- Two first-author, peer-reviewed publications

Courses

BETH 412. Ethical Issues in Genetics/Genomics. 3 Units.
This course is designed to familiarize graduate students with the major controversies over the generation and use of new human genetic information. Topics will include the spread of predictive genetic testing, prenatal diagnosis, genetic discrimination, human genetic variation research, eugenics, genetic counseling, and the limits of human genetic therapy. The course will be conducted as a seminar, involving discussions of readings, guest speakers, and student presentations.

GENE 367. Commercialization and Intellectual Property Management. 3 Units.
This interdisciplinary course covers a variety of topics, including principles of intellectual property and intellectual property management, business strategies and modeling relevant to the creation of start-up companies and exploitation of IP rights as they relate to biomedical-related inventions. The goal of this course is to address issues relating to the commercialization of biomedical-related inventions by exposing law students, MBA students, and Ph.D. candidates (in genetics and proteomics) to the challenges and opportunities encountered when attempting to develop biomedical intellectual property from the point of early discovery to the clinic and market. Specifically, this course seeks to provide students with the ability to value a given technological advance or invention holistically, focusing on issues that extend beyond scientific efficacy and include patient and practitioner value propositions, legal and intellectual property protection, business modeling, potential market impacts, market competition, and ethical, social, and healthcare practitioner acceptance. During this course, law students, MBA students, and Ph.D. candidates in genetics and proteomics will work in teams of five (two laws students, two MBA students and one Ph.D. candidate), focusing on issues of commercialization and IP management of biomedical-related inventions. The instructors will be drawn from the law school, business school, and technology-transfer office. Please visit the following website for more information: fusioninnovate.com. Offered as PQHS 451, GENE 451, and MPHP 451.

GENE 467. Commercialization and Intellectual Property Management. 3 Units.
This interdisciplinary course covers a variety of topics, including principles of intellectual property and intellectual property management, business strategies and modeling relevant to the creation of start-up companies and exploitation of IP rights as they relate to biomedical-related inventions. The goal of this course is to address issues relating to the commercialization of biomedical-related inventions by exposing law students, MBA students, and Ph.D. candidates (in genetics and proteomics) to the challenges and opportunities encountered when attempting to develop biomedical intellectual property from the point of early discovery to the clinic and market. Specifically, this course seeks to provide students with the ability to value a given technological advance or invention holistically, focusing on issues that extend beyond scientific efficacy and include patient and practitioner value propositions, legal and intellectual property protection, business modeling, potential market impacts, market competition, and ethical, social, and healthcare practitioner acceptance. During this course, law students, MBA students, and Ph.D. candidates in genetics and proteomics will work in teams of five (two laws students, two MBA students and one Ph.D. candidate), focusing on issues of commercialization and IP management of biomedical-related inventions. The instructors will be drawn from the law school, business school, and technology-transfer office. Please visit the following website for more information: fusioninnovate.com. Offered as PQHS 451, GENE 451, and MPHP 451.

GENE 451. A Data-Driven Introduction to Genomics and Human Health. 3 Units.
This course introduces the foundational concepts of genomics and genetic epidemiology through four key principles: 1) Teaching students how to query relational databases using Structure Query Language (SQL); 2) Exposing students to the most current data used in genomics and bioinformatics research, providing a quantitative understanding of biological concepts; 3) Integrating newly learned concepts with prior ones to discover new relationships among biological concepts; and 4) providing historical context to how and why data were generated and stored in the way they were, and how this gave rise to modern concepts in genomics. Offered as PQHS 451, GENE 451, and MPHP 451.

GENE 488. Yeast Genetics and Cell Biology. 3 Units.
This seminar course provides an introduction to the genetics and molecular biology of the yeasts S. cerevisiae and S. pombe by a discussion of current literature focusing primarily on topics in yeast cell biology. Students are first introduced to the tools of molecular genetics and special features of yeasts that make them important model eukaryotic organisms. Some selected topics include cell polarity, cell cycle, secretory pathways, vesicular and nuclear/cytoplasmic transport, mitochondrial import and biogenesis, chromosome segregation, cytoskeleton, mating response and signal transduction. Offered as CLBY 488, GENE 488, MBIO 488, and PATH 488.

GENE 500. Advanced Eukaryotic Genetics I. 3 Units.
Fundamental principles of modern genetics; recombination, structure and function of the genetic material in eukaryotes, dosage compensation, behavior and consequences of chromosomal abnormalities, mapping and isolation of mutations, gene complementation and genetic interactions. Recommended preparation: BIOL 362.

GENE 503. Readings and Discussions in Genetics. 0 - 3 Units.
(Credit as arranged.) In-depth consideration of special selected topics through critical evaluation of classic and current literature.

GENE 5341. Genomics. 3 Units.
This course develops the foundational concepts of genomics and their application to human disease. Topics will include the spread of predictive genetic testing, prenatal diagnosis, genetic discrimination, human genetic variation research, eugenics, genetic counseling, and the limits of human genetic therapy. The course will be conducted as a seminar, involving discussions of readings, guest speakers, and student presentations.

GENE 488. Yeast Genetics and Cell Biology. 3 Units.
This seminar course provides an introduction to the genetics and molecular biology of the yeasts S. cerevisiae and S. pombe by a discussion of current literature focusing primarily on topics in yeast cell biology. Students are first introduced to the tools of molecular genetics and special features of yeasts that make them important model eukaryotic organisms. Some selected topics include cell polarity, cell cycle, secretory pathways, vesicular and nuclear/cytoplasmic transport, mitochondrial import and biogenesis, chromosome segregation, cytoskeleton, mating response and signal transduction. Offered as CLBY 488, GENE 488, MBIO 488, and PATH 488.

GENE 500. Advanced Eukaryotic Genetics I. 3 Units.
Fundamental principles of modern genetics; recombination, structure and function of the genetic material in eukaryotes, dosage compensation, behavior and consequences of chromosomal abnormalities, mapping and isolation of mutations, gene complementation and genetic interactions. Recommended preparation: BIOL 362.

GENE 503. Readings and Discussions in Genetics. 0 - 3 Units.
(Credit as arranged.) In-depth consideration of special selected topics through critical evaluation of classic and current literature.
GENE 504. Advanced Eukaryotic Genetics II. 3 Units.
Fundamental principles of modern genetics: population and quantitative genetics, dissection of genome organization and function, transgenics, developmental genetics, genetic strategies for dissecting complex pathways in organisms ranging from Drosophila and C. elegans to mouse and human. Recommended preparation: GENE 500 or permission of instructor.

GENE 505. Genetics Journal Club. 1 Unit.
Genetics Journal Club is a graduate level course designed to facilitate discussion of topics in Genetics. Students choose “hot” papers in Genetics and present them to their peers. Group presentations are designed to encourage audience participation. The intent of this class is to expose students to cutting edge topics in Genetics and to instill teaching and leadership skills.

GENE 511. Grant Writing and Reviewing Skills Workshop. 3 Units.
This is an introductory graduate course in grant writing and reviewing skills. During this course each student will write a research grant on a topic of his or her choice. Proposals may form the basis for the written component of the preliminary examination in the Genetics Department. Students will also participate in editing and reviewing the proposals of their classmates. Prereg: GENE 500 and GENE 504 or consent of instructor.

GENE 513. Stem Cell Genetics. 3 Units.
This course focuses on fundamental aspects of development with implications for stem cell therapy, tissue engineering, regenerative medicine and postnatal health. The goal of the class is to inform and promote critical thinking and discussion of research topics of medical importance in developmental biology. The themes of the course will include the conditions and factors which promote pluripotency and differentiation, regeneration and repair, epigenetic stability and reprogramming, and postnatal conditions which affect postnatal health. The topics will include early embryonic development and embryonic stem cells, cardiac development and regeneration, bone development and repair, pancreatic development and regeneration, germ line stem cells and conditions affecting postnatal health. The course will be structured around facilitated discussion of the primary literature.

GENE 524. Advanced Medical Genetics: Molecular & Cytogenetics. 2 - 3 Units.
This course provides an in-depth forum for discussion of fundamental principles regarding clinical cytogenetics and molecular genetics and their relevance to medical genetics, genomics and genetic counseling. Following a historical overview, topics include a discussion of numerical and structural aberrations, sex chromosome abnormalities, issues regarding population cytogenetics, clinical relevance of such findings as marker chromosomes, mosaicism, contiguous gene deletions and uniparental disomy. The course will cover principles of molecular genetics including structure, function and regulations of genes (DNA, RNA, proteins), genetic variation, inheritance patterns and both cytogenetic and molecular laboratory techniques (fluorescence in situ hybridization, micro-array, SNP analyses, sequencing) in the clinical laboratory. Students who register for 3.00 credit hours are required to do an additional paper.

GENE 526. Advanced Medical Genetics: Quantitative Genetics & Genomics. 2 - 3 Units.
The purpose of this course is twofold: first, to provide a foundation in quantitative genetics and second, to focus on genomic approaches and technologies which have greatly expanded our understanding of not only rare genetic disorders but common ones as well. We will cover concepts related to risk assessment and calculation and its application to medical genetics including principles and application of Hardy Weinberg equilibrium as well as applying Bayes’ Theorem as a mechanism to refine risk assessment based on data specific to a patient. We will also focus on understanding the clinical implications of the interpretation of next generation sequencing results, identify limitations of genomic technologies, and practice curation / annotation and interpretation of genomic testing results. In addition, we will discuss resources and bioinformatics tools including national databases and clinical labs to aid in the interpretation of genomic test results including variants of uncertain significance. Students who register for 3.00 credit hours are required to do an additional paper.

GENE 527. Advanced Medical Genetics: Biochemical Genetics. 2 - 3 Units.
Fundamental principles of metabolic testing; amino acid disorders; organic acid disorders; carbohydrate disorders; peroxisomal disorders; mitochondrial disorders; etc. Discussion of screening principles and newborn screening as well as approaches to diagnosis, management and therapy for metabolic diseases.

GENE 528. Principles and Practices of Genetic Counseling. 3 Units.
Fundamental principles needed for the practicing genetic counselor. Topics include skills in obtaining histories (prenatal, perinatal, medical, developmental, psychosocial and family); pedigree construction and analysis, physical growth and development; the genetic evaluation; the physical examination and laboratory analyses; prenatal issues, prenatal screening and diagnosis; and teratogenicity.

GENE 529. Psychosocial Issues in Genetic Counseling. 3 Units.
Fundamental principles regarding the psychosocial aspects of genetic disease and birth defects, its psychological and social impact on the individual and family. Topics include the genetic counseling interview process, issues regarding pregnancy and prenatal diagnosis, chronicity, death and loss. Cultural issues and their impact on the genetic counseling session are addressed. Resources for families are also explored. Basic interviewing skills are presented. Students will have an opportunity for practice of skills through role play and actual interviewing situations.

GENE 531. Cancer Genetics. 2 - 3 Units.
This seminar will discuss basic concepts in cancer epidemiology, principles of cancer genetics, inherited cancer syndromes, cytogenetics of cancers, pedigree analysis for familial cancer risk and approaches to the differential diagnosis of inherited and familial cancers. Additionally, topics of risk assessment, genetic testing, screening, management and psychosocial issues in providing genetic counseling to patients with familial and inherited cancers will be discussed.

GENE 532. Clinical Practicum in Genetic Counseling. 1 - 6 Units.
This clinical practicum provides the student an opportunity to function as a genetic counselor by preparing for cases; obtaining appropriate histories; determining risks; performing psychosocial assessments; discussing disease characteristics, inheritance, and natural history; providing anticipatory guidance and supportive counseling; using medical and community resources; and follow-up. Students rotate through four clinical areas and one laboratory and will register for a total of 12 hours over the course of the program. Recommended preparation: Admission to Genetic Counseling Training Program.
GENE 537. Microscopy-Principles and Applications. 3 Units.
This course provides an introduction to various types of light microscopy, digital and video imaging techniques, and their applications to biological and biomedical sciences via lectures and hands-on experience. Topics covered include geometrical and physical optics; brightfield, darkfield, phase contrast, DIC, fluorescence and confocal microscopes; and digital image processing. Offered as GENE 537, MBIO 537, and PHOL 537.

GENE 601. Research in Genetics. 1 - 9 Units.
(Credit as arranged.)

GENE 651. Thesis M.S.. 1 - 9 Units.
(Credit as arranged.) Master's Thesis Plan A.

GENE 701. Dissertation Ph.D.. 1 - 9 Units.
(Credit as arranged.) Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.

Molecular Biology and Microbiology
Room W200, School of Medicine
http://www.case.edu/med/microbio/index.htm
Phone: 216.368.3420
Jonathan Karn, PhD, Reinberger Professor, Chair
jonathan.karn@case.edu
Brinn Omabegho (brinn.omabegho@case.edu), Manager

The Department of Molecular Biology and Microbiology provides a focus within the School of Medicine for the study of the growth and development of microorganisms at the molecular level. The Department is home to three PhD programs: Cell Biology, Molecular Biology and Microbiology, and Molecular Virology.

Faculty have nationally-funded research programs. Many faculty serve on study sections of national agencies, publish in the most prestigious journals, serve as editors of journals, and take leadership positions in throughout Case School of Medicine. The department also enjoys numerous collaborations with faculty in the Departments of Biochemistry, Neuroscience, and Genetics, the Case Comprehensive Cancer Center, the Visual Sciences Research Center, the Center for AIDS Research, and the Center for RNA Molecular Biology, and the Department of Cell Biology at the Lerner Research Center at CCF, because of shared research interests. All these activities create a vibrant scientific environment.

Research areas include the study of normal cell functions, microbial systems, viruses, and infectious diseases. It is only by developing a thorough understanding of the fundamental biology of cells and pathogenic microbes, their host organisms, and how the two interact during infection that improved strategies for prevention and treatment of infectious diseases can be achieved.

PhD in Cell Biology, Molecular Biology and Microbiology, Molecular Virology
The Department of Molecular Biology and Microbiology is home to three PhD programs: Cell Biology, Molecular Biology and Microbiology, and Molecular Virology. Admissions for all three of these programs occurs through the common PhD admissions program, the Biomedical Sciences Training Program (p. 32). In addition, students in the Medical Scientist Training Program (p. 27) (MSTP) can also pursue these three PhD programs.

PhD Requirements
Students entering through BSTP begin the first of three research rotations during the summer and participate in the Core Curriculum in Cell and Molecular Biology (C3MB), two integrated courses which provide formal instruction in modern cell and molecular biology. Some exceptional students with strong backgrounds, such as a previous Master's Degree, may be eligible to be exempted from part of the Core Curriculum, and instead enroll in one or more advanced courses during the fall semester. Some students may be eligible to apply for the transfer of credit from their previous institution (please visit here (http://gradstudies.case.edu) for more information). Transfer credit must be requested prior to beginning coursework at CWRU.

A student who chooses a thesis advisor from Cell Biology, Molecular Biology and Microbiology or Molecular Virology can become a member of one of these three PhD programs. To earn a PhD a student must complete 400-level graduate Core and Elective coursework including Responsible Conduct of Research and Research Rigor and Reproducibility as described in the course of study.

Students in each program are expected to attend the joint student seminars (MBIO 435 Seminar in Molecular Biology/Microbiology/MVIR 435 Seminar in Molecular Biology/Microbiology/CLBY 435 Seminar in Molecular Biology/Microbiology) for at least 3 semesters (3 credit hours). Continued participation in the seminars after completion of this requirement is encouraged. Up to 4 credit hours can be allocated to the seminar course (one credit per semester).

Molecular Biology and Microbiology/ Molecular Virology and Cell Biology students should take the MBIO 450 Cells and Pathogens/MVIR 450 Cells and Pathogens/CLBY 450 Cells and Pathogens.

In addition, Cell Biology Students must take both of the following fundamental course: CLBY 526 Cell Biology and Human Disease/MBIO 526 Cell Biology and Human Disease and CLBY 488 Yeast Genetics and Cell Biology. Molecular Virology Students must take MVIR 445 Molecular Biology and Pathogenesis of RNA and DNA Viruses.

Beyond that, any combination of graduate courses from within or outside the department can be used to fulfill the requirement as long as the planned program of study has the approval of the student’s advisor and committee.

In addition, each PhD student must successfully complete a qualifier examination for advancement to candidacy in the form of a short grant proposal with oral defense. The qualifier is generally completed in the summer after year two. During the dissertation period, students are expected to meet twice a year with the thesis committee, present seminars in the department, and fulfill journal publication requirements. Throughout the doctoral training, students are expected to be enthusiastic participants in seminars, journal clubs, and research meetings in the lab and program.

Plan of Study
Please also see Graduate Studies Academic Requirements for Doctoral Degrees (http://bulletin.case.edu/schoolofgraduatestudies/academicrequirements).

<table>
<thead>
<tr>
<th>First Year</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology I (CBIO 453)</td>
<td>Fall: 3</td>
</tr>
<tr>
<td>Molecular Biology I (CBIO 455)</td>
<td></td>
</tr>
</tbody>
</table>
Seminar in Molecular Biology/Microbiology (MBIO 435) (optional) or Seminar in Molecular Biology/Microbiology (CLBY 435) or Seminar in Molecular Biology/Microbiology (MVIR 435)

Research Rotation in Biomedical Sciences Training Program (BSTP 400) or Research Rotation in Medical Scientist Training Program (MSTP 400)

Seminar in Molecular Biology/Microbiology (MBIO 435) or Seminar in Molecular Biology/Microbiology (CLBY 435) or Seminar in Molecular Biology/Microbiology (MVIR 435)

Elective graduate coursework

Research in Molecular Biology and Microbiology (MBIO 601) or Special Problems (CLBY 601) or Research (MVIR 601)

On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500)

Year Total:

Second Year

Seminar in Molecular Biology/Microbiology (MBIO 435) or Seminar in Molecular Biology/Microbiology (CLBY 435) or Seminar in Molecular Biology/Microbiology (MVIR 435)

Elective graduate coursework

Research in Molecular Biology and Microbiology (MBIO 601) or Special Problems (CLBY 601) or Research (MVIR 601)

Seminar in Molecular Biology/Microbiology (MBIO 435) (3 semesters required) or Seminar in Molecular Biology/Microbiology (CLBY 435) or Seminar in Molecular Biology/Microbiology (MVIR 435)

Elective graduate coursework

Research in Molecular Biology and Microbiology (MBIO 601) or Special Problems (CLBY 601) or Research (MVIR 601)

Year Total:

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Molecular Biology/Microbiology (MBIO 435)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Seminar in Molecular Biology/Microbiology (CLBY 435)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Seminar in Molecular Biology/Microbiology (MVIR 435)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Elective graduate coursework</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Research in Molecular Biology and Microbiology (MBIO 601)</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Special Problems (CLBY 601) or Research (MVIR 601)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Elective graduate coursework</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Research in Molecular Biology and Microbiology (MBIO 601)</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Special Problems (CLBY 601) or Research (MVIR 601)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Year Total: 7-16 5-14 1

Total Units in Sequence: 23-59

Third Year + Full-time thesis research (701) - 18 total credit hours total

CLBY Courses

CLBY 416. Fundamental Immunology. 4 Units.
Introduction to modern immunology, including activation, effector mechanisms, and regulation. Topics include antigen-antibody reactions, immunologically important cell surface receptors, cell-cell interactions, cell-mediated immunity, innate versus adaptive immunity, cytokines, and basic molecular biology and signal transduction in B and T lymphocytes, and immunopathology. Three weekly lectures emphasize experimental findings leading to the concepts of modern immunology. An additional recitation hour is required to integrate the core material with experimental data and known immune mediated diseases. Five mandatory 90-minute group problem sets per semester will be administered outside of lecture and recitation meeting times. Graduate students will be graded separately from undergraduates, and 22 percent of the grade will be based on a critical analysis of a recently published, landmark scientific article. Offered as BIOL 316, BIOL 416, CLBY 416, PATH 316 and PATH 416. Prereq: Graduate standing.

CLBY 417. Cytokines: Function, Structure, and Signaling. 3 Units.
Regulation of immune responses and differentiation of leukocytes is modulated by proteins (cytokines) secreted and/or expressed by both immune and non-immune cells. Course examines the function, expression, gene organization, structure, receptors, and intracellular signaling of cytokines. Topic include regulatory and inflammatory cytokines, colony stimulating factors, chemokines, cytokine and cytokine receptor gene families, intracellular signaling through STAT proteins and tyrosine phosphorylation, clinical potential, and genetic defects. Lecture format using texts, scientific reviews and research articles. Recommended preparation: PATH 416 or equivalent. Offered as BIOL 417, CLBY 417, and PATH 417.

CLBY 435. Seminar in Molecular Biology/Microbiology. 1 Unit.
Graduate students will attend the departmental seminar given by all graduate students in the Department of Molecular Biology and Microbiology, in the Molecular Virology Program, and in the Cell Biology Program, as well as attend seminars on their own thesis research. Students will be evaluated by the faculty member in charge of that student's seminar with input from the students' own thesis committee. After each seminar, the student presenter will meet with other graduate students for peer-review of the content, delivery, and style of the seminar. Peer reviewers will also be evaluated for the quality of their input. Offered as CLBY 435 and MBIO 435 and MVIR 435.

CLBY 450. Cells and Pathogens. 3 Units.
Modern molecular cell biology owes a great debt to viral and bacterial pathogens as model systems. In some instances pathogens operate by faithful mimicry of host proteins, and other cases represent the result of extensive molecular tinkering and convergent evolution. This course will also explore numerous mechanisms utilized by pathogens to subvert the host and enhance their own survival. Topics covered include nuclear regulatory mechanisms, protein synthesis and stability, membrane-bound organelles, endocytosis and phagocytosis, and factors that influence cell behavior such as cytoskeleton rearrangements, cell-cell interactions, and cell migration. Additional topics include cell signaling and co-evolution of pathogens and host cell functions. Students are expected to come to class prepared to discuss pre-assigned readings consisting of brief reviews and seminal papers from the literature. Student assessment will be based on effective class participation (approximately 80%) and successful presentation of an independent research topic (approximately 20%). Offered as CLBY 450, MBIO 450, and MVIR 450. Prereq: CBIO 453 and CBIO 455 or permission of instructor.
CLBY 466. Cell Signaling. 3 Units.
This is an advanced lecture/journal/discussion format course that covers cell signaling mechanisms. Included are discussions of neurotransmitter-gated ion channels, growth factor receptor kinases, cytokine receptors, G protein-coupled receptors, steroid receptors, heterotrimeric G proteins, ras family GTPases, second messenger cascades, protein kinase cascades, second messenger regulation of transcription factors, microtubule-based motility, actin/myosin-based motility, signals for regulation of cell cycle, signals for regulation of apoptosis. Offered as CLBY 466, PHOL 466 and PHRM 466.

CLBY 468. Membrane Physiology. 3 Units.
This student-guided discussion/journal course focuses on biological membranes. Topics discussed include thermodynamics and kinetics of membrane transport, oxidative phosphorylation and bioenergetics, electro-physiology of excitable membranes, and whole and single channel electrophysiology, homeostasis and pH regulation, volume and calcium regulation. Offered as CLBY 468 and PHOL 468.

CLBY 488. Yeast Genetics and Cell Biology. 3 Units.
This seminar course provides an introduction to the genetics and molecular biology of the yeasts S. cerevisiae and S. pombe by a discussion of current literature focusing primarily on topics in yeast cell biology. Students are first introduced to the tools of molecular genetics and special features of yeasts that make them important model eukaryotic organisms. Some selected topics include cell polarity, cell cycle, secretory pathways, vesicular and nuclear/cyttoplasmic transport, mitochondrial import and biogenesis, chromosome segregation, cytoskeleton, mating response and signal transduction. Offered as CLBY 488, GENE 488, MBIO 488, and PATH 488.

CLBY 511. Cell Biology Seminar. 1 Unit.
The Cell Biology Seminar provides a forum for presentation and discussion of contemporary issues in Cell Biology. Students, fellows, local faculty and guest speakers present both research talks and journal clubs.

CLBY 512. Cell Biology Seminar. 1 Unit.
The Cell Biology Seminar provides a forum for presentation and discussion of contemporary issues in Cell Biology. Students, fellows, local faculty and guest speakers present both research talks and journal clubs.

CLBY 519. Molecular Biology of RNA. 3 Units.
Selected topics regarding editing, enzymatic function, splicing, and structure of RNA. Offered as BIQC 519, CLBY 519, and MBO 519.

CLBY 525. Protein Misfolding and Human Disease: Molecular Basis and Clinical Implications. 3 Units.
This is a graduate-level seminar course that familiarizes the students with human diseases resulting from aberrations in protein folding, processing, and turnover. Contribution of associated inflammation and heavy metal mis-metabolism will be discussed where appropriate. Specific examples include, but are not limited to, Alzheimer’s Disease, Parkinson’s Disease, Prion disorders multiple sclerosis, amyotrophic lateral sclerosis, Huntington’s Disease, and others based on popular demand. The students will be expected to discuss relevant research publications in an interactive format. Grading will be based on class participation and an R21 grant proposal on the subject of their choice that does not overlap with their current area of research. Recommended Preparation: Concurrent enrollment in PATH 526, on grant-writing skills, is highly recommended but not required. Offered as PATH 525 and CLBY 525.

CLBY 526. Cell Biology and Human Disease. 3 Units.
This course is designed to provide broad base of knowledge regarding cell structure and function. The basic structure of the cell will be discussed, as will the various functional systems that are superimposed upon and interact with this structure. The course will discuss organelle biogenesis, materials movement inside cells, cell interaction with the external environment, cell cycle and cell death regulation, cytoskeleton dynamics, quality control mechanisms, and basic signal transduction concepts. The course will also discuss how abnormal cell function may lead to human disease, and how basic cell function may be harnessed by intracellular pathogens to provide favorable intracellular environments for replication. The major goals of this course are to provide students with a working knowledge of the cell to facilitate understanding of the scientific literature, and to familiarize students with modern experimental approaches in cell biology. The course will rely heavily on student participation. Students will be provided with study guides with the expectation they will come to class prepared to lead interactive group discussions with minimal input from instructors. Offered as CLBY 526, MBO 526 and MVIR 526.

CLBY 599. RNA Structure and Function. 3 Units.
This course will cover fundamental aspects of modern RNA biology with emphasis on the interplay of three dimensional structure of nucleic acids and their function. The main focus of the course is on the recent discoveries that indicate a prominent role of RNA as a major regulator of cellular function. Topics discussed will include an introduction to RNA structure, folding and dynamics, RNA/RNA and RNA-protein interactions, and role of RNA in catalysis of biological reactions in ribosome and the role of other catalytic RNAs in tRNA biogenesis, pre-mRNA splicing, and viral replication. The course also covers the recently discovered RNA regulatory switches, large noncoding regulatory RNAs, and the role of RNA in human diseases and novel, RNA-based therapeutics. Offered as BIQC 599, CLBY 599, and MBIO 599.

CLBY 601. Special Problems. 1 - 18 Units.
This is the listing for independent research. Students should enroll in this course once they have selected their laboratory for Ph.D. research. The number of credit hours depends on how many didactic courses they are following at the same time. Once they have passed their qualifying examination they should register for CLBY 701.

CLBY 701. Dissertation Ph.D.. 1 - 9 Units.
This is the listing for independent research toward the Ph.D. The number of credit hours depends on how many didactic courses students are following at the same time. Students may register for this course only once they have passed their qualifying examination. Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.

MBIO Courses

MBIO 399. Undergraduate Research. 1 - 3 Units.
Permits qualified undergraduates to work in a faculty member’s laboratory.
MBIO 420. Current Topics in Cancer. 3 Units.
The concept of cancer hallmarks has provided a useful guiding principle in our understanding of the complexity of cancer. The hallmarks include sustaining proliferative signaling, evading growth suppressors, enabling replicative immortality, activating invasion and metastasis, inducing angiogenesis, resisting cell death, deregulating cellular energetics, avoiding immune destruction, tumor-promoting inflammation, and genome instability and mutation. The objectives of this course are to (1) examine the principles of some of these hallmarks, and (2) explore potential therapies developed based on these hallmarks of cancer. This is a student-driven and discussion-based graduate course. Students should have had some background on the related subjects and have read scientific papers in their prior coursework. Students will be called on to present and discuss experimental design, data and conclusions from assigned publications. There will be no exams or comprehensive papers but students will submit a one-page critique (strengths and weaknesses) of one of the assigned papers prior to each class meeting. The course will end with a full-day student-run symposium on topics to be decided jointly by students and the course director. Grades will be based on class participation, written critiques, and symposium presentations. Offered as BIOC 420, MBIO 420, PATH 422, and PHRM 420. Prereq: CBIO 453 and CBIO 455.

MBIO 435. Seminar in Molecular Biology/Microbiology. 1 Unit.
Graduate students will attend the departmental seminar given by all graduate students in the Department of Molecular Biology and Microbiology, in the Molecular Virology Program, and in the Cell Biology Program, as well as give a seminar on their own research. Students will be evaluated by the faculty member in charge of that student’s seminar with input from the students’ own thesis committee. After each seminar, the student presenter will meet with other graduate students for peer-review of the content, delivery, and style of the seminar. Peer reviewers will also be evaluated for the quality of their input. Offered as CLBY 435 and MBIO 435 and MVIR 435. Prereq: CBIO 453 and CBIO 455.

MBIO 445. Molecular Biology and Pathogenesis of RNA and DNA Viruses. 3 Units.
Through a combination of lectures by Case faculty and guest lecturers, along with student discussion of current literature, this course emphasizes mechanisms of viral gene expression and pathogenesis. RNA viruses to be discussed include positive, negative, and retroviruses. DNA viruses include SV40, adenovirus, herpes, papilloma, and others. Important aspects of host defense mechanisms, antiviral agents, and viral vectors will also be covered. Students will be evaluated based on their quality of presentation of course papers assigned to them and their overall participation in class discussions. Offered as MBIO 445 and MVIR 445.

MBIO 450. Cells and Pathogens. 3 Units.
Modern molecular cell biology owes a great debt to viral and bacterial pathogens as model systems. In some instances pathogens operate by faithful mimicry of host proteins, and other cases represent the result of extensive molecular tinkering and convergent evolution. This course will also explore numerous mechanisms utilized by pathogens to subvert the host and enhance their own survival. Topics covered include nuclear regulatory mechanisms, protein synthesis and stability, membrane-bound organelles, endocytosis and phagocytosis, and factors that influence cell behavior such as cytoskeleton rearrangements, cell-cell interactions, and cell migration. Additional topics include cell signaling and co-evolution of pathogens and host cell functions. Students are expected to come to class prepared to discuss pre-assigned readings consisting of brief reviews and seminal papers from the literature. Student assessment will be based on effective class participation (approximately 80%) and successful presentation of an independent research topic (approximately 20%). Offered as CLBY 450, MBIO 450, and MVIR 450. Prereq: CBIO 453 and CBIO 455 or permission of instructor.

MBIO 488. Yeast Genetics and Cell Biology. 3 Units.
This seminar course provides an introduction to the genetics and molecular biology of the yeasts S. cerevisiae and S. pombe by a discussion of current literature focusing primarily on topics in yeast cell biology. Students are first introduced to the tools of molecular genetics and special features of yeasts that make them important model eukaryotic organisms. Some selected topics include cell polarity, cell cycle, secretory pathways, vesicular and nuclear/cytoplasmic transport, mitochondrial import and biogenesis, chromosome segregation, cytoskeleton, mating response and signal transduction. Offered as CLBY 488, GENE 488, MBIO 488, and PATH 488.

MBIO 513. Bacterial Virulence and Host Interactions. 3 Units.
The goal of this seminar course is to familiarize students with bacterial virulence mechanisms and how they interact with the host. The focus will be on current literature pertaining to this field. While the molecular basis of bacterial virulence mechanisms will be the main focus, some time will be spent on the host immune response. Topics covered will include adhesins/pili, secretion mechanisms, AB toxins, bacterial invasion and intracellular survival, regulation of virulence gene expression. Prereq: CBIO 453 and CBIO 455 or equivalent courses.

MBIO 519. Molecular Biology of RNA. 3 Units.
Selected topics regarding editing, enzymatic function, splicing, and structure of RNA. Offered as BIOC 519, CLBY 519, and MBIO 519.

MBIO 526. Cell Biology and Human Disease. 3 Units.
This course is designed to provide broad base of knowledge regarding cell structure and function. The basic structure of the cell will be discussed, as will the various functional systems that are superimposed upon and interact with this structure. The course will discuss organelle biogenesis, materials movement inside cells, cell interaction with the external environment, cell cycle and cell death regulation, cytoskeleton dynamics, quality control mechanisms, and basic signal transduction concepts. The course will also discuss how abnormal cell function may lead to human disease, and how basic cell function may be harnessed by intracellular pathogens to provide favorable intracellular environments for replication. The major goals of this course are to provide students with a working knowledge of the cell to facilitate understanding of the scientific literature, and to familiarize students with modern experimental approaches in cell biology. The course will rely heavily on student participation. Students will be provided with study guides with the expectation they will come to class prepared to lead interactive group discussions with minimal input from instructors. Offered as CLBY 526, MBIO 526 and MVIR 526.
MBIO 537. Microscopy-Principles and Applications. 3 Units.
This course provides an introduction to various types of light microscopy, digital and video imaging techniques, and their applications to biological and biomedical sciences via lectures and hands-on experience. Topics covered include geometrical and physical optics; brightfield, darkfield, phase contrast, DIC, fluorescence and confocal microscopes; and digital image processing. Offered as GENE 537, MBIO 537, and PHOL 537.

MBIO 599. RNA Structure and Function. 3 Units.
This course will cover fundamental aspects of modern RNA biology with emphasis on the interplay of three dimensional structure of nucleic acids and their function. The main focus of the course is on the recent discoveries that indicate a prominent role of RNA as a major regulator of cellular function. Topics discussed will include an introduction to RNA structure, folding and dynamics, RNA/RNA and RNA-protein interactions, and role of RNA in catalysis of biological reactions in ribosome and the role of other catalytic RNAs in tRNA biogenesis, pre-mRNA splicing, and viral replication. The course also covers the recently discovered RNA regulatory switches, large noncoding regulatory RNAs, and the role of RNA in human diseases and novel, RNA-based therapeutics. Offered as BIOL 599, CLBY 599, and MBIO 599.

MBIO 601. Research in Molecular Biology and Microbiology. 1 - 18 Units.
MBIO 701. Dissertation Ph.D.. 1 - 9 Units.
Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.

MVIR Courses

MVIR 435. Seminar in Molecular Biology/Microbiology. 1 Unit.
Graduate students will attend the departmental seminar given by all graduate students in the Department of Molecular Biology and Microbiology, in the Molecular Virology Program, and in the Cell Biology Program, as well as give a seminar on their own thesis research. Students will be evaluated by the faculty member in charge of that student’s seminar with input from the students’ own thesis committee. After each seminar, the student presenter will meet with other graduate students for peer-review of the content, delivery, and style of the seminar. Peer reviewers will also be evaluated for the quality of their input. Offered as CLBY 435 and MBIO 435 and MVIR 435.

MVIR 445. Molecular Biology and Pathogenesis of RNA and DNA Viruses. 3 Units.
Through a combination of lectures by Case faculty and guest lecturers, along with student discussion of current literature, this course emphasizes mechanisms of viral gene expression and pathogenesis. RNA viruses to be discussed include positive, negative, and retroviruses. DNA viruses include SV40, adenovirus, herpes, papilloma, and others. Important aspects of host defense mechanisms, antiviral agents, and viral vectors will also be covered. Students will be evaluated based on their quality of presentation of course papers assigned to them and their overall participation in class discussions. Offered as MBIO 445 and MVIR 445. Prereq: CBIO 453 and CBIO 454 and CBIO 455 and CBIO 456.

MVIR 450. Cells and Pathogens. 3 Units.
Modern molecular cell biology owes a great debt to viral and bacterial pathogens as model systems. In some instances pathogens operate by faithul mimicry of host proteins, and other cases represent the result of extensive molecular tinkering and convergent evolution. This course will also explore numerous mechanisms utilized by pathogens to subvert the host and enhance their own survival. Topics covered include nuclear regulatory mechanisms, protein synthesis and stability, membrane-bound organelles, endocytosis and phagocytosis, and factors that influence cell behavior such as cytoskeleton rearrangements, cell-cell interactions, and cell migration. Additional topics include cell signaling and co-evolution of pathogens and host cell functions. Students are expected to come to class prepared to discuss pre-assigned readings consisting of brief reviews and seminal papers from the literature. Student assessment will be based on effective class participation (approximately 80%) and successful presentation of an independent research topic (approximately 20%). Offered as CLBY 450, MBIO 450, and MVIR 450. Prereq: CBIO 453 and CBIO 455 or permission of instructor.

MVIR 526. Cell Biology and Human Disease. 3 Units.
This course is designed to provide broad base of knowledge regarding cell structure and function. The basic structure of the cell will be discussed, as will the various functional systems that are superimposed upon and interact with this structure. The course will discuss organelle biogenesis, materials movement inside cells, cell interaction with the external environment, cell cycle and cell death regulation, cytoskeleton dynamics, quality control mechanisms, and basic signal transduction concepts. The course will also discuss how abnormal cell function may lead to human disease, and how basic cell function may be harnessed by intracellular pathogens to provide favorable intracellular environments for replication. The major goals of this course are to provide students with a working knowledge of the cell to facilitate understanding of the scientific literature, and to familiarize students with modern experimental approaches in cell biology. The course will rely heavily on student participation. Students will be provided with study guides with the expectation they will come to class prepared to lead interactive group discussions with minimal input from instructors. Offered as CLBY 526, MBIO 526 and MVIR 526.

MVIR 601. Research. 1 - 18 Units.
Grade of S/U only.

MVIR 701. Dissertation Ph.D.. 1 - 9 Units.
Grade of S/U only. Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.

Molecular Medicine Program

Lerner Research Institute, ND-46
http://www.lerner.ccf.org/molecmed/phd/
Phone: 216.445.9417
Jonathan Smith, PhD, Chair

The Molecular Medicine PhD Program is a unique collaborative graduate training opportunity that integrates medical knowledge into graduate training. The goal of this program is to produce scientists trained in translational research: basic or applied research relevant to human health and disease that can lead to new understanding of disease, clinical and diagnostic tools, medications, and therapies. Students train rigorously to apply basic science discoveries to human health and to the causes and treatments of human disease. The mastery of competencies necessary to translate scientific observations from the research bench to clinical care is the focus of this PhD program.
Graduates will be well prepared to collaborate with physicians and for the challenge of using molecular and cellular biology to advance human health.

PhD in Molecular Medicine

Admission into the Molecular Medicine PhD program is obtained through application directly to the program. Graduate students complete didactic coursework, independent research, and other doctoral requirements to earn the PhD. First year students complete two to four laboratory rotations among the laboratories of training faculty, and are exposed to trainer research projects during the Frontiers of Molecular Medicine seminars. The first year begins mid-July. Students from all years present their research and received feedback in the Student Seminar Series.

During subsequent years, students will devote the majority of their time to thesis research while attending advanced graduate courses, and seminars. Advanced elective courses may be chosen from any department or program on campus with the approval of the graduate program director and the student's thesis committee over the first two years. Students must take a total of 36 semester hours of courses and pre-candidacy thesis research, including 24 graded credit hours, and maintain a B average.

The qualifying exam will be comprised of preparing and defending a grant application in the NIH format. The topic of the grant is the area of the student's thesis research. At least one aim of this proposal will consist of a specific translational or clinical aim.

All efforts should be made to complete the PhD within five years from the date of matriculation. All students are expected to submit two or more first-authored primary research publications in peer-reviewed scientific journals. At least one manuscript must be accepted for publication prior to the thesis defense.

PhD Program Requirements

Coursework

Students begin in July by taking MMED 402 Tools for Research and MMED 410 Introduction to Human Physiology and Disease. The student will follow a progressive curriculum including Cell Biology, Metabolism and Pharmacology; Nucleic Acids, Gene Expression and Gene Regulation; Mammalian Genetics; and Infection and Immunity. In the second summer students take Principles of Clinical and Translational Research. During year 2, students are required to take MMED 521, focusing on molecular mechanisms of human disease, and a independent study mentored MMED 612 Clinical Experience.

Research Rotations

The research rotations allow the student to sample areas of research and become familiar with faculty members and their laboratories. The main purpose of these rotations is to aid the student in selecting a laboratory for the thesis work. Students will begin their rotations in July. At least two rotations are highly recommended prior to choosing the thesis advisor.

Choosing a Thesis Advisor

During or after the second semester of the first year, students select an advisor for their dissertation research. The emphasis of the PhD work is on research, culminating in the completion of an original, independent research thesis.

Plan of Study

Please also see Graduate Studies Academic Requirements for Doctoral Degrees (http://bulletin.case.edu/schoolofgraduatestudies/academicrequirements).

<table>
<thead>
<tr>
<th>First Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Rotations (MMED 400)*</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tools for Research (MMED 402)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Human Physiology and Disease (MMED 410)*</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Biology (MMED 415)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student Seminar Series (MMED 504)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Rotations (MMED 400)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolism and Introduction to Principles of Pharmacology (MMED 412)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nucleic Acids, Gene Expression, and Gene Regulation (MMED 413)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mammalian Genetics (MMED 414)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Host Defense: Infection and Immunity (MMED 416)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student Seminar Series (MMED 504)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of Clinical and Translational Research (MMED 501)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular aspects of the diagnosis, pathology, and treatment of selected human diseases (MMED 521)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissertation Research (MMED 601)*</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Experience (MMED 612)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Electives (approved by program director)**</td>
<td>varies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissertation Research (MMED 601)*</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation Ph.D. (MMED 701)</td>
<td>1-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Electives (if necessary)**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (MMED 701)</td>
<td>1 - 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Electives (if necessary)**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>1-9</td>
<td>1-9</td>
<td></td>
</tr>
</tbody>
</table>

Total Units in Sequence: 38-54

* Starts in July
** Credits vary
+ Credits may vary to yield 9 credits per semester

Third Year and beyond: Complete elective coursework so that total graded courses less than or equal to 24 credits; Research credits switch from MMED 601 to MMED 701 once passed into candidacy. Minimum of 1 credit of 701 is required each regular semester thereafter for a total of 18 credits to graduate.
Courses

MMED 400. Research Rotations. 0 Unit.
Research rotations are conducted to expose the student to several laboratory environments, a variety of research problems and numerous laboratory techniques as well as to assist them in the selection of their Research Advisor. Rotations will begin immediately upon enrollment and continue through the second semester of the first year. Usually rotations will last 12 weeks, however if a student decides that he/she is not interested in the assigned laboratory a shorter rotation is appropriate. The student is responsible for arranging each rotation with an approved trainer with the consultation of the Graduate Program Director. To assist in this endeavor, the Graduate Program Director will provide a list of approved trainers who have space, time and money to support a graduate student. During the rotation, students are expected to participate in all lab and departmental activities, e.g., lab meetings and seminars. At the completion of a rotation the student is required to submit a written Rotation Report including an outline of the problem being studied, a description of the experimental approaches, a discussion of the results of performed experiments as well as future directions.

MMED 402. Tools for Research. 2 Units.
The goal of this course is to provide a thorough and comprehensive review of current laboratory technology essential to research in molecular medicine, focusing on basic underlying principles, important controls and caveats. The students will clone a cytokine during a laboratory component of the course, which will involve designing appropriate primers, obtaining RNA from cytokine-expressing cells, performing RT/PCR, and ligating isolated, characterized fragments into cloning- and expression vectors, followed by transfection into mammalian cells. Additional bench work will include characterizing the cloned product using real time PCR, ELISA, western blot analysis, and immunohistochemistry. Seminars on commonly used molecular techniques will be given intermittently by guest lecturers with the relevant expertise. Evaluation will be based on the student’s lab techniques, class participation, and contribution to the group learning process.

MMED 404. Journal Club / Frontiers in Molecular Medicine. 1 Unit.
This course is a combination of a weekly discussion-based Journal Club with selected articles relevant to the core curriculum of the week and the Frontiers in Molecular Medicine Seminar series. The seminars are presented by Molecular Medicine faculty and guest lecturers to introduce first year students to the opportunities and issues in translational and clinical research.

MMED 410. Introduction to Human Physiology and Disease. 4 Units.
The purpose of this course is to give an introduction to the physiology of the major human organ systems, as well as selected associated pathophysiology. The course will provide a physiological basis for subsequent study and research in Molecular Medicine. The integration of clinical faculty into the course will emphasize the importance of bringing scientific knowledge to bear on clinical problems, a theme which will be stressed throughout the Molecular Medicine curriculum. The course will also acquaint students with medical terminology.

MMED 412. Metabolism and Introduction to Principles of Pharmacology. 2 Units.
The course will include a combination of interactive lectures, research presentations, related journal club article, and group projects with presentations. Topics to be covered include: bioenergetics/oxidative phosphorylation, carbohydrate metabolism; lipid and lipoprotein metabolism, amino acid and nucleotide metabolism; integrative regulation of metabolism; and principals of pharmacology.

MMED 413. Nucleic Acids, Gene Expression, and Gene Regulation. 2 Units.
The course will include a combination of interactive lectures and problem-based learning. Each week will conclude with at least one clinical correlation where the weekly topic is presented in the context of a clinical problem. Topics to be covered include: DNA structure, chromosome structure, replication and repair; RNA synthesis and RNA processing, the organization of eukaryotic genes and the genetic code and translation; and gene regulation.

MMED 414. Mammalian Genetics. 2 Units.
The course focuses on genetics, genomics, and bioinformatics, and it will include a combination of interactive lectures, problem-based learning and a week-long group project. Topics to be covered include: genetic variation; linkage studies; association studies; complex traits, linkage disequilibrium, the Hap Map, pharmacogenetics; genome-wide expression studies, and mouse models of human disease, and bioinformatics.

MMED 415. Cell Biology. 2 Units.
The course will include a combination of interactive lectures and problem-based learning. Each week will conclude with at least one clinical correlation where the weekly topic is presented in the context of a clinical problem. Topics to be covered include: cell structure and organelles, prokaryotes/eukaryotes; intracellular compartments and protein sorting; receptors/endocytosis/rafts; the nucleus; cell communication; and mechanics of cell division.

MMED 416. Host Defense: Infection and Immunity. 2 Units.
The course will include a reading program, lectures, and weekly problem-based student-led presentations. Weeks 1 and 2 are dedicated to establishing the scope of the field and forming vocabulary. Week 3 and part of Week 4 will cover immune mechanisms. The remainder of the course will deal with clinical aspects of immunobiology. On a regular basis Clinical Correlations, relevant to weekly topics, are integrated into the material. Topics to be covered include: biology and molecular biology of infectious agents; fundamentals of immunology; innate and adaptive responses to infection, immune effector mechanisms; and clinical aspects of immunobiology.

MMED 501. Principles of Clinical and Translational Research. 4 Units.
To give an introduction to the ethical, statistical, methodologic and informatics basis of clinical and translational research. Topics will include the history of clinical and translational research, regulatory aspects of human subjects research, clinical trials study design, conflicts of interest, human subjects recruitment, research and publication ethics, technology transfer, biobank construction and utilization, and clinical and research database construction and utilization. In addition, students will be introduced to principles of biostatistics and clinical epidemiology relevant to clinical and translational research and gain expertise in statistical tool using problem based learning sets.

MMED 504. Student Seminar Series. 1 Unit.
This course is designed as a weekly seminar series that will include presentations by the MMED graduate students. The format will be as follows: seminar talks by students in years 3 and beyond to provide a research update presentations by second year students involving basic science-clinical case translation topics, and short presentations on lab rotation accomplishments by first year students. The primary goals of this series are to gain experience and improve oral presentation skills, to share results and thoughts with peers during research discussions, and to learn to take the lead in developing and asking questions during seminars.
MMED 521. Molecular aspects of the diagnosis, pathology, and treatment of selected human diseases. 3 Units.
The goal of this course is to integrate medical knowledge into PhD training. This team-taught seminar course focuses on a top down examination of selected human diseases starting with clinical presentations of the manifestations, diagnoses, and treatment of disease. This is followed by study of the pathology, cell biology, and molecular biology of the disease. This information forms the foundation of a final discussion of current treatment strategies and ongoing research to identify new strategies. Three to four separate disease areas will be discussed during each semester, such as diabetes, cancer, and cardiovascular diseases. The specific areas of discussion are selected to demonstrate the strength of an integrated team of clinical and basic scientists; and to provide a model for students to follow in future studies in their own area of expertise. Emphasis will be given to the basic scientific observations that formed the basis of successful clinical practice, and how this was utilized by integrated teams of basic and clinical investigators to provide better patient care. Students will prepare for discussions with close reading of the literature. Faculty will present an overview in a discussion format. It is anticipated that each disease area will be presented by an integrated team of clinical and basic scientists. The final weeks of the semester will be devoted to student preparation of a research proposal based upon the information discussed during the course. The specific topic of this proposal will be of the students choosing. Grading will be based both upon preparation for and participation in discussions, and upon the research proposal. Recommended Preparation: Introductory Graduate or Medical School courses in Cell Biology, Molecular Biology, and Physiology

MMED 601. Dissertation Research. 1 - 9 Units.
Research leading toward the Ph.D. dissertation in Molecular Medicine.

MMED 612. Clinical Experience. 2 Units.
Each student will be assigned a Clinical Mentor who will co-advice the student and serve on both the Qualifying Examination Committee and Thesis Committee. The Clinical Mentor will develop an individualized curriculum for the student in consultation with the Thesis Research Mentor and Program Director. The curriculum will be organized around the integrated, multidisciplinary disease groups at the Clinic. The students will attend and actively participate in the regularly scheduled multidisciplinary clinical conference organized by their disease group (most meet for one hour every week or every other week), usually involving a combination of case presentations and research presentations. At the conclusion of the semester the student will make a presentation to the group focused on a relevant translational research problem. The Clinical Mentor will also organize a series of supervised clinical experiences (with a Mentor) to various locations where students will observe clinician interactions with patients to better understand the disease from the patient perspective and to disease-related diagnostic and research laboratories.

MMED 701. Dissertation Ph.D.. 1 - 9 Units.
Research leading toward the Ph.D. dissertation in Molecular Medicine. Recommended preparation: Advancement to candidacy in MMED. Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.

Department of Neurosciences
Room E-653, School of Medicine, Robbins Building
http://case.edu/medicine/neurosciences/
Phone: 216.368.6252; Fax: 216.368.4650
Evan Deneris, PhD, Interim Chair
evan.deneris@case.edu

Katie Wervey (kathleen.wervey@case.edu), Department Assistant

Understanding how the nervous system develops and functions to process information and mediate behavior and how it is altered by disease, injury and the environment is one of the most exciting frontiers remaining in biological science. Neuroscience is inherently multidisciplinary and integrative and solving the major outstanding problems will require knowledge of molecular, cellular, systems, and behavioral levels of organization. It also requires a multidisciplinary approach combining the tools of electrophysiology, anatomy, biochemistry and molecular biology in studies of animals, brain slices, and tissue culture models.

The department offers a PhD program that provides interdisciplinary training in modern neurosciences through a combination of course work, seminars and research experience. Medical students are encouraged to pursue research projects with neurosciences faculty. Neuroscientists at CWRU are using state-of-the art techniques and instrumentation to study diverse aspects of nervous system function, including neural circuitry and plasticity, development and regeneration, and cellular and molecular neurobiology. Techniques used include electrical recording and imaging to study the behavior of neurons from ion channels to how they function in awake, behaving animals; molecular genetic approaches to discover the roles of specific genes in circuit formation, synaptic function, and in neurological disorders; and anatomical, biochemical, computational, and behavioral methods to understand the normal nervous system and how it is affected by disease and injury.

PhD in Neurosciences

The Neurosciences graduate program has a strong emphasis on cellular and molecular mechanisms that mediate the function and development of the nervous system. Admissions to the Neurosciences PhD program may be obtained through the integrated Biomedical Sciences Training Program or via the Medical Scientist Training Program. To earn a PhD in Neurosciences, a student must complete rotations in at least three laboratories, followed by selection of a research advisor, and complete Core and Elective coursework including responsible conduct of research as described in the plan of study, below. In general, students must be registered for a total of 9 credit hours each fall and spring semester until they advance to candidacy, at the end of their 2nd year. Students who previously completed relevant coursework, for example, with a MS, may petition to complete alternative courses. Each graduate program follows the overall regulations established and described in CWRU Graduate Studies and documented to the Regents of the State of Ohio.

In addition, each student must successfully complete a preliminary exam after year one, and a qualifier examination for advancement to candidacy in the form of a short grant proposal with oral defense. The qualifier is generally completed in the summer after year two. During the dissertation period, students are expected to meet at least once a year with their thesis committee, present seminars in the department, and fulfill journal publication requirements. Throughout the doctoral training, students are expected to be enthusiastic participants in seminars, journal clubs, and research meetings in the lab and program. Completion of the PhD degree will require 36 hours of coursework (24 hours of which are graded) and 18 hours of NEUR 701 Dissertation Ph.D.
Plan of Study

§ Please also see Graduate Studies Academic Requirements for Doctoral Degrees (http://bulletin.case.edu/schoolofgraduatestudies/academicrequirements)

First Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology I (CBIO 453)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research in Neuroscience (NEUR 601) or Research Rotation in Biomedical Sciences Training Program (BSTP 400) or Research Rotation in Medical Scientist Training Program (MSTP 400)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Biology I (CBIO 455)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective Graduate Course</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuroscience Seminars (NEUR 415)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research in Neuroscience (NEUR 601)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles of Neural Science (NEUR 402)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Begin Thesis Research</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete preliminary exam by July 31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>7</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective courses</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Research in Neuroscience (NEUR 601)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Critical Thinking in Neuroscience (NEUR 419)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Elective Courses</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Research in Neuroscience (NEUR 601)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Complete Qualifier Exam by July 31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Form Thesis Committee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prepare Individual Fellowship Application</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation Ph.D. (NEUR 701)</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Thesis Committee Meetings every 6 months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (NEUR 701)</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Advanced Topics in Neuroscience Ethics (NEUR 540)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Thesis Committee Meetings every 6 months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>1-9</td>
<td>1-9</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation Ph.D. (NEUR 701)</td>
<td>1-9</td>
</tr>
<tr>
<td>Thesis Committee Meetings every 6 months</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>1-9</td>
</tr>
</tbody>
</table>

Total Units in Sequence: 37-61

* NEUR 540 Advanced Topics in Neuroscience Ethics is offered every other spring semester (beginning 2008), so can be taken in 3rd or 4th year.

Courses

NEUR 402. Principles of Neural Science. 3 Units.

Lecture/discussion course covering concepts in cell and molecular neuroscience, principles of systems neuroscience as demonstrated in the somatosensory system, and fundamentals of the development of the nervous system. This course will prepare students for upper level Neuroscience courses and is also suitable for students in other programs who desire an understanding of neurosciences. Recommended preparation: CBIO 453. Offered as BIOL 402 and NEUR 402.

NEUR 405. Cellular and Molecular Neurobiology. 3 Units.

Cell biology of nerve cells, including aspects of synaptic structure physiology and chemistry. The application of molecular biological tools to questions of synaptic function will be addressed. Recommended preparation: BIOL 473. Prereq: NEUR 402.

NEUR 415. Neuroscience Seminars. 1 Unit.

Current topics of interest in neurosciences. Students attend weekly seminars. From this series, students prepare critiques. No credit is given for less than 75% attendance.

NEUR 419. Critical Thinking in Neuroscience. 3 Units.

The goal of this course is to develop the student’s critical reasoning skills through reading and discussing primary research papers. Each year, the course will focus on 3-4 different topics selected by participating Neuroscience faculty members. Students will receive a letter grade based on their contributions to discussions, and at the discretion of the faculty, performance on exams and/or term paper. Prereq: NEUR 402.

NEUR 424. Sensory Neuroscience. 3 Units.

How do our brains and those of other animals allow for the acquisition and processing of unique sensory percepts? In what manners might sensory systems interact to enhance perception? Further, what happens to sensory system function in cases of neurological disorders? This course is a topic introduction to sensory neuroscience, a major area of modern neuroscience with connections to neurology, psychology, ethology, and related topics. Topics include visual, auditory, somatosensory, gustatory, and olfactory neuroscience. We will also examine the mechanisms and uses of magnetoreception, electroreception, echolocation, and other “special” senses. All of the above topics will be covered under the theme of how animals actively sample their sensory environments for information. Prereq: BIOL 402 or BIOL 473 or NEUR 402 or PSCL 403 or Consent of Instructor.
NEUR 432. Current Topics in Vision Research. 3 Units.
Vision research is an exciting and multidisciplinary area that draws on the disciplines of biochemistry, genetics, molecular biology, structural biology, neuroscience, and pathology. This graduate level course will provide the student with broad exposure to the most recent and relevant research currently being conducted in the field. Topics will cover a variety of diseases and fundamental biological processes occurring in the eye. Regions of the eye that will be discussed include the cornea, lens, and retina. Vision disorders discussed include age-related macular degeneration, retinal ciliopathies, and diabetic retinopathy. Instructors in the course are experts in their field and are members of the multidisciplinary visual sciences research community here at Case Western Reserve University. Students will be exposed to the experimental approaches and instrumentation currently being used in the laboratory and clinical settings. Topics will be covered by traditional lectures, demonstrations in the laboratory and the clinic, and journal club presentations. Students will be graded on their performance in journal club presentations (40%), research proposal (40%), and class participation (20%). Offered as NEUR 432, PATH 432, PHRM 432 and BIOL 432.

NEUR 466. Cell Signaling. 3 Units.
This is an advanced lecture/journal/discussion format course that covers cell signaling mechanisms. Included are discussions of neurotransmitter-gated ion channels, growth factor receptor kinases, cytokine receptors, G-protein-coupled receptors, steroid receptors, heterotrimeric G-proteins, ras family GTPases, second messenger cascades, protein kinase cascades, second messenger regulation of transcription factors, microtubule-based motility, actin/myosin-based motility, signals for regulation of cell cycle, signals for regulation of apoptosis. Offered as CLBY 466, PHOL 466 and PHRM 466.

NEUR 473. Introduction to Neurobiology. 3 Units.
How nervous systems control behavior. Biophysical, biochemical and molecular biological properties of nerve cells, their organization into circuitry, and their function within networks. Emphasis on quantitative methods for modeling neurons and networks, and on critical analysis of the contemporary technical literature in the neurosciences. Term paper required for graduate students. This course satisfies a lab requirement for the B.A. in Biology, and a Quantitative Laboratory requirements for the B.S. in Biology. Offered as BIOL 473, BIOC 473, and NEUR 473.

NEUR 474. Neurobiology of Behavior. 3 Units.
In this course, students will examine how neurobiologists interested in animal behavior study the linkage between neural circuitry and complex behavior. Various vertebrate and invertebrate systems will be considered. Several exercises will be used in this endeavor. Although some lectures will provide background and context on specific neural systems, the emphasis of the course will be on classroom discussion of specific journal articles. In addition, students will each complete a project in which they will observe some animal behavior and generate both behavioral and neurobiological hypotheses related to it. In lieu of examinations, students will complete three written assignments, including a theoretical grant proposal, a one-page Specific Aims paper related to the project, and a final project paper. These assignments are designed to give each student experience in writing biologically-relevant documents. Classroom discussions will help students understand the content and format of each type document. They will also present their projects orally to the entire class. Offered as BIOL 474, BIOL 474 and NEUR 474. Counts as SAGES Departmental Seminar.

NEUR 475. Protein Biophysics. 3 Units.
This course focuses on in-depth understanding of the molecular biophysics of proteins. Structural, thermodynamic and kinetic aspects of protein function and structure-function relationships will be considered at the advanced conceptual level. The application of these theoretical frameworks will be illustrated with examples from the literature and integration of biophysical knowledge with description at the cellular and systems level. The format consists of lectures, problem sets, and student presentations. A special emphasis will be placed on discussion of original publications. Offered as BIOC 475, CHEM 475, PHOL 475, PHRM 475, and NEUR 475.

NEUR 476. Neurobiology Laboratory. 3 Units.
Introduction to the basic laboratory techniques of neurobiology. Intracellular and extracellular recording techniques, forms of synaptic plasticity, patch clamping, immunohistochemistry and confocal microscopy. During the latter weeks of the course students will be given the opportunity to conduct an independent project. One laboratory and one discussion session per week. Recommended preparation for BIOL 476 and NEUR 476: BIOL 216. Offered as BIOL 376, BIOL 476 and NEUR 476.

NEUR 478. Computational Neuroscience. 3 Units.
Computer simulations and mathematical analysis of neurons and neural circuits, and the computational properties of nervous systems. Students are taught a range of models for neurons and neural circuits, and are asked to implement and explore the computational and dynamic properties of these models. The course introduces students to dynamical systems theory for the analysis of neurons and neural learning, models of brain systems, and their relationship to artificial and neural networks. Term project required. Students enrolled in MATH 478 will make arrangements with the instructor to attend additional lectures and complete additional assignments addressing mathematical topics related to the course. Recommended preparation: MATH 223 and MATH 224 or BIOL 300 and BIOL 306. Offered as BIOC 378, BIOC 478, BIOC 475, BIOC 475, BIOL 378, BIOL 378, BIOL 478, ECE 478, EEC 478, MATH 478 and NEUR 478.

NEUR 482. Drugs, Brain, and Behavior. 3 Units.
This course is concerned with the mechanisms underlying neurochemical signaling and the impact of drugs on those mechanisms. The first half of the course emphasizes the fundamental mechanisms underlying intra- and extracellular communication of neurons and the basic principles of how drugs interact with the nervous system. The second half of the course emphasizes understanding the neural substrates of disorders of the nervous system, and the mechanisms underlying the therapeutic effects of drugs at the cellular and behavioral levels. This course will consist of lectures designed to give the student necessary background for understanding these basic principles and class discussion. The class discussion will include viewing video examples of behavioral effects of disorders of the nervous system, and analysis of research papers. The goal of the class discussions is to enhance the critical thinking skills of the student and expose the student to contemporary research techniques. Offered as BIOL 382, BIOL 482, and NEUR 482.

NEUR 540. Advanced Topics in Neuroscience Ethics. 0 Unit.
This course offers continuing education in responsible conduct of research for advanced graduate students. The course will cover the nine defined areas of research ethics through a combination of lectures, online course material and small group discussions. Six 2 hr meetings per semester. Maximum enrollment of 15 students with preference given to graduate students in the Neurosciences program. All neurosciences graduate students must complete this course during their 3rd or 4th year.
NEUR 601. Research in Neuroscience. 1 - 18 Units.
NEUR 651. Master’s Thesis (M.S.). 1 - 6 Units.
 (Credit as arranged.) Recommended preparation: M.S. candidates only.
NEUR 701. Dissertation Ph.D.. 1 - 9 Units.
 Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.

Department of Nutrition

School of Medicine, Room WG 48
https://case.edu/medicine/nutrition/
Phone: 216.368.2440; Fax: 216.368.6644
Hope Barkoukis, PhD, RD, Interim Chair
hd@case.edu
Pamela Woodruff (pamela.woodruff@case.edu), Graduate Student Coordinator

The department’s focus is on human nutrition and the application of the science of nutrition to health promotion and disease prevention. Undergraduate programs are designed for students interested in nutritional biochemistry and metabolism, clinical nutrition, professional study in dietetics, public health nutrition, medicine, physical therapy, pharmacy or dentistry. Graduate programs emphasize dietetics, public health nutrition, nutritional biochemistry and clinical nutrition.

The Department of Nutrition offers programs leading to the bachelor of arts degree in nutrition, the bachelor of science degree in nutrition, the bachelor of arts degree in nutritional biochemistry and metabolism, the bachelor of science degree in nutritional biochemistry and metabolism, the master of science degree in nutrition, the dual degree of master of public health/master of science nutrition, and the doctor of philosophy degree. Two minors are available: the minor in nutrition and the minor in sports nutrition. Graduate certificate programs are available in areas such as maternal and child nutrition, nutrition for health care professionals, global health nutrition and gerontology. The certificates are in addition to the basic graduate degree. Students are able to pursue certificates at no additional cost to the student.

Undergraduate Degrees (NTRN)

Major Programs

The undergraduate degree in nutrition is appropriate for students who wish to:

1. pursue graduate programs in nutritional biochemistry, dietetics, public health and community nutrition or other biomedical sciences
2. enter professional schools of dentistry, medicine, physical therapy, or pharmacy
3. apply to dietetic internships or approved experience programs in order to prepare for the professional practice of dietetics
4. pursue careers with the government or in the food or pharmaceutical industry

This major offers flexibility in course selection within a framework of general program requirements. The selection of courses depends on the student’s choice of emphasis. Students wishing to qualify for admission to professional or graduate programs need to include specific courses considered prerequisites for admission. Students interested in applying to dietetic internships must meet specific course requirements (Didactic Program in Dietetics) as required by the Accreditation Council for Education in Nutrition and Dietetics of the Academy of Nutrition and Dietetics. These requirements are met in the courses that comprise the Didactic Program in Dietetics (DPD). The DPD at Case Western Reserve University is currently granted Accreditation by the Accreditation Council for Education in Nutrition and Dietetics of the Academy of Nutrition and Dietetics, 120 South Riverside Plaza, Suite 2000, Chicago, IL 60606-6995, 800.877.1600. A department advisor should be consulted in the freshman year to plan the dietetics coursework.

Human Nutrition

Bachelor of Science degree requires:

Required Courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTRN 201 Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 342 Food Science</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 342L Food Science Lab</td>
<td>2</td>
</tr>
<tr>
<td>NTRN 343 Dietary Patterns</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 363 Human Nutrition I: Energy, Protein, Minerals</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 364 Human Nutrition II: Vitamins</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 397 SAGES Capstone Proposal Seminar</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 398 SAGES Senior Capstone Experience</td>
<td>3</td>
</tr>
</tbody>
</table>

Three nutrition electives chosen from: 9

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTRN 328 Child Nutrition, Development and Health</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 341 Food as Medicine: How what we eat influences how we feel, think, and our health status</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 351 Food Service Systems Management</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 359 Diabetes Prevention and Management</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 360 Clinical Assessment and Diagnosis: Nutritional, Functional, Physical</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 361 Energy Dysregulation: From Obesity to Anorexia</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 362 Exercise Physiology and Macronutrient Metabolism</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 365 Nutrition for the Prevention and Management of Disease: Pathophysiology</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 366 Nutrition for the Prevention and Management of Disease: Clinical Applications</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 367 Nutrition Strategies and Wellness Programming</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 371 Special Problems *</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 388 Seminar in Sports Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 390 Undergraduate Research *</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 435 Nutrition during Pregnancy and Lactation</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 436 Pediatric Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 437 Evaluation of Nutrition Information for Consumers</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 438 Dietary Supplements</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 439 Food Behavior: Physiological, Psychological and Environmental Determinants</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 440 Nutrition for the Aging and Aged</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 452 Nutritional Biochemistry and Metabolism</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 550A Advanced Community Nutrition or NTRN 528 Introduction to Public Health Nutrition</td>
<td>3</td>
</tr>
</tbody>
</table>

Additional Required Courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 105 Principles of Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 106 Principles of Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 113 Principles of Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 223 Introductory Organic Chemistry I (before NTRN 363)</td>
<td>3</td>
</tr>
</tbody>
</table>
Bachelor of Arts degree requires:

Required Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTRN 201</td>
<td>Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 342</td>
<td>Food Science</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 342L</td>
<td>Food Science Lab</td>
<td>2</td>
</tr>
<tr>
<td>NTRN 343</td>
<td>Dietary Patterns</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 363</td>
<td>Human Nutrition I: Energy, Protein, Minerals</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 364</td>
<td>Human Nutrition II: Vitamins</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 397</td>
<td>SAGES Capstone Proposal Seminar</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 398</td>
<td>SAGES Senior Capstone Experience</td>
<td>3</td>
</tr>
</tbody>
</table>

Two nutrition electives chosen from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTRN 328</td>
<td>Child Nutrition, Development and Health</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 341</td>
<td>Food as Medicine: How what we eat influences how we feel, think, and our health status</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 351</td>
<td>Food Service Systems Management</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 359</td>
<td>Diabetes Prevention and Management</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 360</td>
<td>Clinical Assessment and Diagnosis: Nutritional, Functional, Physical</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 361</td>
<td>Energy Dysregulation: From Obesity to Anorexia</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 362</td>
<td>Exercise Physiology and Macronutrient Metabolism</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 365</td>
<td>Nutrition for the Prevention and Management of Disease: Pathophysiology</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 366</td>
<td>Nutrition for the Prevention and Management of Disease: Clinical Applications</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 367</td>
<td>Nutrition Strategies and Wellness Programming</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 371</td>
<td>Special Problems *</td>
<td></td>
</tr>
<tr>
<td>NTRN 388</td>
<td>Seminar in Sports Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 390</td>
<td>Undergraduate Research *</td>
<td></td>
</tr>
<tr>
<td>NTRN 435</td>
<td>Nutrition during Pregnancy and Lactation</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 436</td>
<td>Pediatric Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 437</td>
<td>Evaluation of Nutrition Information for Consumers</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 438</td>
<td>Dietary Supplements</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 439</td>
<td>Food Behavior: Physiological, Psychological and Environmental Determinants</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 440</td>
<td>Nutrition for the Aging and Aged</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Units: 60

* Only one of these courses is permitted.

400 level courses require instructor consent for undergraduates to enroll.

Bachelor of Science in Nutrition - Human Nutrition Major Example Plan of Study

First Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

- Principles of Chemistry I (CHEM 105) 3
- Nutrition (NTRN 201) 3
- SAGES First Seminar 4
- Genes, Evolution and Ecology (BIOL 214) 3
- Principles of Chemistry II (CHEM 106) 3
- Principles of Chemistry Laboratory (CHEM 113) 2
- SAGES Breadth Requirements 9

Year Total:

13 14

Second Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

- NTRN Electives 6
- Introductory Organic Chemistry I (CHEM 223) 3
- SAGES University Seminar 3
- Development and Physiology (BIOL 216) 3
- Development and Physiology Lab (BIOL 216L) 1
- SAGES University Seminar 3
- Basic Statistics for Social and Life Sciences (STAT 201) 3
- Electives 6
- Dietary Patterns (NTRN 343) 3

Year Total:

16 15

Third Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

- Introduction to Biochemistry: From Molecules To Medical Science (BIOL 216L) 4
- SAGES Breadth Requirements 6
- Food Science (NTRN 342) 3
- Food Science Lab (NTRN 342L) 2
Bachelor of Arts degree requires:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutritional Biochemistry and Metabolism</td>
<td></td>
</tr>
<tr>
<td>Bachelor of Arts degree requires:</td>
<td></td>
</tr>
<tr>
<td>Required courses:</td>
<td></td>
</tr>
<tr>
<td>NTRN 201 Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 342 Food Science</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 342L Food Science Lab</td>
<td>2</td>
</tr>
<tr>
<td>NTRN 363 Human Nutrition I: Energy, Protein, Minerals (NTRN 363)</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 364 Human Nutrition II: Vitamins</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 397 SAGES Capstone Proposal Seminar</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 398 SAGES Senior Capstone Experience</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 452 Nutritional Biochemistry and Metabolism</td>
<td>3</td>
</tr>
<tr>
<td>One nutrition elective at 300-level (or above with instructor consent)</td>
<td>3</td>
</tr>
<tr>
<td>Additional required courses:</td>
<td></td>
</tr>
<tr>
<td>MATH 121 Calculus for Science and Engineering I</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 124 Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 223 Calculus for Science and Engineering III</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 227 Calculus III</td>
<td>3</td>
</tr>
<tr>
<td>MATH 224 Elementary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 228 Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 105 Principles of Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 106 Principles of Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 113 Principles of Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 223 Introductory Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 323 Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 224 Introductory Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 324 Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 233 Introductory Organic Chemistry Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 234 Introductory Organic Chemistry Laboratory II</td>
<td>2</td>
</tr>
<tr>
<td>BIOL 214 Genes, Evolution and Ecology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 215 Cells and Proteins</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 216 Development and Physiology</td>
<td>3</td>
</tr>
<tr>
<td>or BIOL 340 & BIOL 346 Human Physiology & Human Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 216L Development and Physiology Lab</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 115 Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>or PHYS 121 General Physics I - Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 116 Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>or PHYS 122 General Physics II - Electricity and Magnetism</td>
<td>4</td>
</tr>
<tr>
<td>BIOC 307 Introduction to Biochemistry: From Molecules To Medical Science</td>
<td>4</td>
</tr>
<tr>
<td>BIOC 334 Structural Biology</td>
<td>3</td>
</tr>
<tr>
<td>or BIOC 312 Proteins and Enzymes</td>
<td>3</td>
</tr>
<tr>
<td>or NTRN 454 Advanced Nutrition and Metabolism: Investigative Methods</td>
<td>3</td>
</tr>
<tr>
<td>Total Units:</td>
<td>118</td>
</tr>
</tbody>
</table>

Bachelor of Science degree requires:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor of Science degree requires:</td>
<td></td>
</tr>
<tr>
<td>Required courses:</td>
<td></td>
</tr>
<tr>
<td>NTRN 201 Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 342 Food Science</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 342L Food Science Lab</td>
<td>2</td>
</tr>
<tr>
<td>NTRN 363 Human Nutrition I: Energy, Protein, Minerals</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 364 Human Nutrition II: Vitamins</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 397 SAGES Capstone Proposal Seminar</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 398 SAGES Senior Capstone Experience</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 452 Nutritional Biochemistry and Metabolism</td>
<td>3</td>
</tr>
<tr>
<td>One nutrition elective at 300-level (or above with instructor consent)</td>
<td>3</td>
</tr>
<tr>
<td>Additional required courses:</td>
<td></td>
</tr>
<tr>
<td>MATH 125 Calculus for Science and Engineering I</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 124 Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 223 Calculus for Science and Engineering III</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 227 Calculus III</td>
<td>3</td>
</tr>
<tr>
<td>MATH 224 Elementary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 228 Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 105 Principles of Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 106 Principles of Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 113 Principles of Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 223 Introductory Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 323 Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 224 Introductory Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 324 Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 233 Introductory Organic Chemistry Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 234 Introductory Organic Chemistry Laboratory II</td>
<td>2</td>
</tr>
<tr>
<td>BIOL 214 Genes, Evolution and Ecology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 215 Cells and Proteins</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 216 Development and Physiology</td>
<td>3</td>
</tr>
<tr>
<td>or BIOL 340 & BIOL 346 Human Physiology & Human Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 216L Development and Physiology Lab</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 115 Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>or PHYS 121 General Physics I - Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 116 Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>or PHYS 122 General Physics II - Electricity and Magnetism</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 221 Introduction to Modern Physics</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Units in Sequence: **157**
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 307</td>
<td>Introduction to Biochemistry: From Molecules To Medical Science</td>
<td>4</td>
</tr>
<tr>
<td>BIOC 334</td>
<td>Structural Biology</td>
<td>3</td>
</tr>
<tr>
<td>or BIOC 312</td>
<td>Proteins and Enzymes</td>
<td></td>
</tr>
<tr>
<td>or NTRN 454</td>
<td>Advanced Nutrition and Metabolism: Investigative Methods</td>
<td></td>
</tr>
</tbody>
</table>

One of the following

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 201</td>
<td>Basic Statistics for Social and Life Sciences</td>
<td></td>
</tr>
<tr>
<td>STAT 243</td>
<td>Statistical Theory with Application I</td>
<td></td>
</tr>
<tr>
<td>STAT 312</td>
<td>Basic Statistics for Engineering and Science</td>
<td></td>
</tr>
<tr>
<td>STAT 313</td>
<td>Statistics for Experimenters</td>
<td></td>
</tr>
</tbody>
</table>

Total Units: 86

Bachelor of Arts in Nutrition - Nutritional Biochemistry and Metabolism Major Example Plan of Study

First Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math and Calculus Applications for Life, Managerial, and Social Sci I (MATH 125)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Nutrition (NTRN 201)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Genes, Evolution and Ecology (BIOL 214)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SAGES First Seminar</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Principles of Chemistry I (CHEM 105)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SAGES Breadth Requirements</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Cells and Proteins (BIOL 215)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Principles of Chemistry Laboratory (CHEM 113)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Math and Calculus Applications for Life, Managerial, and Social Sci II (MATH 126)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Principles of Chemistry II (CHEM 106)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>17</td>
<td>15</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introductory Organic Chemistry Laboratory I (CHEM 233)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Introductory Organic Chemistry I (CHEM 223)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Development and Physiology (BIOL 216) & Development and Physiology Lab (BIOL 216L)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>SAGES University Seminar</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Introductory Organic Chemistry II (CHEM 224)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Introductory Organic Chemistry Laboratory II (CHEM 234)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Nutrition Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SAGES University Seminar</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>15</td>
<td>14</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Biochemistry: From Molecules To Medical Science (BIOC 307)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Introductory Physics I (PHYS 115)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Food Science (NTRN 342)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Food Science Lab (NTRN 342L) | 2 |
SAGES Capstone Proposal Seminar (NTRN 397) | 3 |
Elective | 3 |
Introductory Physics II (PHYS 116) | 4 |
SAGES Breadth Requirement | 6 |
Year Total: | 13 | 16 |

Fourth Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAGES Senior Capstone Experience (NTRN 398)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Nutritional Biochemistry and Metabolism (NTRN 452)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Human Nutrition I: Energy, Protein, Minerals (NTRN 363)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Nutrition Elective (if not already taken)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Human Nutrition II: Vitamins (NTRN 364)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Structural Biology (BIOC 334)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

Total Units in Sequence: 114

Minor in Nutrition

Nutrition majors are not eligible for this minor.

Non Nutrition majors may only take one minor: either Minor in Nutrition or Minor in Sports Nutrition.

Required courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTRN 201</td>
<td>Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 328</td>
<td>Child Nutrition, Development and Health</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 342</td>
<td>Food Science</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 343</td>
<td>Dietary Patterns</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 351</td>
<td>Food Service Systems Management</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 361</td>
<td>Energy Dysregulation: From Obesity to Anorexia</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 363</td>
<td>Human Nutrition I: Energy, Protein, Minerals</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 364</td>
<td>Human Nutrition II: Vitamins</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 365</td>
<td>Nutrition for the Prevention and Management of Disease: Pathophysiology</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 366</td>
<td>Nutrition for the Prevention and Management of Disease: Clinical Applications</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 388</td>
<td>Seminar in Sports Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>Total Units</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Minor in Sports Nutrition

Nutrition majors are not eligible for this minor.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTRN 201</td>
<td>Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 361</td>
<td>Energy Dysregulation: From Obesity to Anorexia</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 362</td>
<td>Exercise Physiology and Macronutrient Metabolism</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 388</td>
<td>Seminar in Sports Nutrition</td>
<td>3</td>
</tr>
</tbody>
</table>
One Nutrition elective at the 300 level 3

Total Units 15

Didactic Program in Dietetics (DPD)
The following courses must be included in the program.

Required courses:
- NTRN 201 Nutrition 3
- NTRN 342 Food Science 3
- NTRN 342L Food Science Lab 2
- NTRN 343 Dietary Patterns 3
- NTRN 351 Food Service Systems Management 3
- NTRN 360 Clinical Assessment and Diagnosis: Nutritional, Functional, Physical 3
- NTRN 363 Human Nutrition I: Energy, Protein, Minerals 3
- NTRN 364 Human Nutrition II: Vitamins 3
- NTRN 365 Nutrition for the Prevention and Management of Disease: Pathophysiology 4
- NTRN 366 Nutrition for the Prevention and Management of Disease: Clinical Applications 3
- NTRN 550A Advanced Community Nutrition (or NTRN 528) 3
- BIOC 307 Introduction to Biochemistry: From Molecules To Medical Science 4
- BIOL 216 Development and Physiology 3
- BIOL 343 Microbiology 3
- CHEM 223 Introductory Organic Chemistry I 3
- ENGL 150 Expository Writing (or SAGES Writing Portfolio) 3
- PSCL 101 Introduction to Sociology 3

One of the following:
- EDUC 304 Educational Psychology 3
- PSCL 353 Psychology of Learning 3
- PSCL 357 Cognitive Psychology 3

One of the following:
- ANTH 215 Health, Culture, and Disease: An Introduction to Medical Anthropology 3
- SOCI 311 Health, Illness, and Social Behavior 3

One of the following:
- ANTH 319 Introduction to Statistical Analysis in the Social Sciences 3
- PSCL 282 Quantitative Methods in Psychology 3
- STAT 201 Basic Statistics for Social and Life Sciences 3
- PQHS 431 Statistical Methods I 3
- STAT 243 Statistical Theory with Application I 3
- STAT 312 Basic Statistics for Engineering and Science 3
- STAT 313 Statistics for Experimenters 3

Total Units 61

Masters Degrees
The Department of Nutrition offers five distinct programs leading to Masters Degrees: (1) MS in Nutrition (2) MS in Public Health Nutrition Dietetic Internship (3) Combined Dietetic Internship/Master’s Degree Program and (4) Master of Public Health/Master of Science in Nutrition.

MS in Nutrition
This degree program offers two options. For those pursuing the thesis option, 30 semester hours of a planned program of study are required, including six to nine semester hours of research, as well as a final oral defense of the thesis. The non-thesis option requires 30 semester hours and a final written, comprehensive examination.

All candidates are required to take 18 semester hours of nutrition, including seven hours of advanced human nutrition. In addition, students are encouraged to pursue complementary studies in the biomedical, social and behavioral sciences. The plan of study may vary considerably depending on the education, goals and specific interests of each student. Students may elect to focus on nutritional biochemistry and metabolism or molecular nutrition. The individual program also may be planned to fulfill the academic requirements for dietetic registration (Didactic Program in Dietetics).

MS in Public Health Nutrition Dietetic Internship Program
The primary goal of this program is to prepare Registered Dietitian Nutritionists (RDNs) for employment in public health or community agencies. A minimum of 30 semester hours of combined academic work and supervised practice is required to earn the degree. Supervised practice is concurrent with coursework utilizing local agencies for translation of theory and science into practice. The program includes a ten - twelve week experience in an out of town public health agency that has a strong nutrition program.

In addition to the public health nutrition curriculum, students may elect to complete a certificate in Maternal and Child Nutrition or Gerontology. Specialty certificates may require completion of additional coursework. If a certificate program is selected, supervised practice will be geared toward the specific population group.

Upon completion of the program, students are eligible to take the Registered Dietitian Nutritionist (RDN) exam. The program is accredited by the Accreditation Council for Education in Nutrition and Dietetics (ACEND). This program is a non-thesis program of study.

MS in Public Health Nutrition Dietetic Internship Program

General Track: Plan of Study
Note: Students must take either NTRN 436 or NTRN 440.

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Public Health Nutrition (NTRN 528)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutritional Epidemiology (NTRN 529)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutrition for the Aging and Aged (NTRN 440)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or Elective at the 400 level or higher</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminar in Dietetics I (NTRN 516)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Health Nutrition (NTRN 530)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective: Any NTRN 400 or 500 level course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Combined Dietetic Internship/Master’s Degree Program

The Combined Dietetic Internship/Master’s Degree Program combines academic work with clinical practice at a dietetic internship at University Hospitals Case Medical Center, the Louis Stokes Cleveland Department of Veterans Affairs Medical Center, or the Cleveland Clinic. A minimum of 30 semester hours is required. Admission is contingent on the student being selected and matched to one of the hospitals’ dietetic internship programs. Appointment to these internships follows the admission procedure outlined by the Accreditation Council for Education in Nutrition and Dietetics of the Academy of Nutrition and Dietetics.

Coursework is planned individually with the student’s academic advisor. This program is a non-thesis program of study.

<table>
<thead>
<tr>
<th>First Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Dietetics I (NTRN 516)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTRN 561 Investigative Methods in Nutrition</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminar in Dietetics II (NTRN 517)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Practicum (NTRN 562)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives: Any NTRN 400 or 500 level courses and/or graduate course in basic science or social science</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electives: Any NTRN 400, 500, or 600 level courses and/or graduate course in basic science or social science</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Units in Sequence: 30

Master of Public Health/Master of Science in Nutrition Dual Degree Program

This is a dual degree program that is offered jointly by the Departments of Epidemiology and Biostatistics, and Nutrition. The core Master Degree courses include a mixture of those from nutrition, biochemistry and public health.

The trained graduate could be employed in a wide variety of settings, including (but not limited to) local, state, national, or global public policy, governmental public health, hospital outreach, community-based health non-profit organizations, health organizations, research projects; or the Food and Drug Administration. Additionally, these graduates could serve as health emissaries to foreign countries regarding nutrition, sufficient food supply, sanitary environment, food safety, oral rehydration, or the advisability of food supplements.

The MPH/Nutrition dual degree is envisioned with students able to apply for either degree, then later join the other; or apply directly for the joint degree. Both the MPH and MS programs confer degrees through the School of Graduate Studies and as such are subject to Graduate Studies rules and procedures. Both programs are housed in the School of Medicine. This program is a non-thesis program of study.

<table>
<thead>
<tr>
<th>First Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Biochemistry: From Molecules To Medical Science (BIOC 407)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History and Philosophy of Public Health (MPHP 406)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Epidemiology for Public Health Practice (MPHP 483)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research & Evaluation Methods (MPHP 403)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Biology (BIOC 408)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Environmental Health (MPHP 429)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistical Methods in Public Health (MPHP 405)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Health Management and Policy (MPHP 439)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>13</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Human Nutrition I (NTRN 433)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Health Behavior (MPHP 411)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTRN Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Human Nutrition II (NTRN 434)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Health Practicum (MPHP 650)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Health Major Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>10</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutritional Biochemistry and Metabolism (NTRN 452)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Health Capstone Experience (MPHP 652)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTRN Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTRN Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Health Capstone Experience (MPHP 652)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master’s Comprehensive Exam (EXAM 600)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Total Units in Sequence: 61
MD/MS Biomedical Investigation-
Nutrition Track

For Admissions and MD requirements, see the MD Dual Degree Programs section (p. 26). This track is designed to provide medical students with more in-depth knowledge and research experience in nutrition. Students may elect to focus on nutrition biochemistry and metabolism or molecular nutrition or clinical nutrition. The student’s mentor or the Graduate Program Director will assist the student in selecting the appropriate courses for their interests.

Students in Nutrition must complete:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTRN 551</td>
<td>Seminar in Advanced Nutrition</td>
<td>2</td>
</tr>
<tr>
<td>NTRN 601</td>
<td>Special Problems</td>
<td>1</td>
</tr>
<tr>
<td>IBIS 600</td>
<td>Exam in Biomedical Investigation</td>
<td>0</td>
</tr>
<tr>
<td>IBIS 401</td>
<td>Integrated Biological Sciences I</td>
<td>1</td>
</tr>
<tr>
<td>IBMS 500</td>
<td>On Being a Professional Scientist: The Responsible Conduct of Research</td>
<td>1</td>
</tr>
</tbody>
</table>

And 9-10 credits or three courses from those listed below:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTRN 433</td>
<td>Advanced Human Nutrition I</td>
<td>2</td>
</tr>
<tr>
<td>NTRN 434</td>
<td>Advanced Human Nutrition II</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 435</td>
<td>Nutrition during Pregnancy and Lactation</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 436</td>
<td>Pediatric Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 438</td>
<td>Dietary Supplements</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 439</td>
<td>Food Behavior: Physiological, Psychological and Environmental Determinants</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 440</td>
<td>Nutrition for the Aging and Aged</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 452</td>
<td>Nutritional Biochemistry and Metabolism</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 448</td>
<td>Integrative and Functional Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 459</td>
<td>Diabetes Prevention and Management</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 454</td>
<td>Advanced Nutrition and Metabolism: Investigative Methods</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 455</td>
<td>Molecular Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 460</td>
<td>Sports Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 461</td>
<td>Energy Dysregulation: From Obesity to Anorexia</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 529</td>
<td>Nutritional Epidemiology</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 530</td>
<td>Public Health Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 533</td>
<td>Nutritional Care of Neonate</td>
<td>3</td>
</tr>
</tbody>
</table>

Global Health Nutrition

Certificate Requirements: A maximum of 6 credits may be double counted for this certificate. Students must maintain an average GPA of 3.0 to successfully complete this certificate.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTH 401</td>
<td>Fundamentals of Global Health</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 484</td>
<td>Global Health Epidemiology</td>
<td>3</td>
</tr>
<tr>
<td>NURS 494</td>
<td>Global Health Seminar</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 602</td>
<td>Special Project in Nutrition</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Units: 12

Gerontology Certificate Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTRN 440</td>
<td>Nutrition for the Aging and Aged</td>
<td>3</td>
</tr>
<tr>
<td>GER 498</td>
<td>Seminar in Gerontological Studies</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 532C</td>
<td>Specialized Public Health Nutrition Field Experience</td>
<td>3</td>
</tr>
</tbody>
</table>

One Gerontology Elective

Total Units: 3

PhD in Nutrition

The PhD degree in Nutrition is awarded for study and research in nutrition. Areas of concentration are nutritional biochemistry and metabolism, and molecular nutrition. Admissions to the PhD in Nutrition...
program are obtained through the integrated Biomedical Scientist Training Program (BSTP), by direct admission to the department or via the Medical Scientist Training Program (MSTP).

In order to earn a PhD in Nutrition, a student must complete rotations in at least three laboratories followed by selection of a research advisor, completion of Core and Elective coursework, including responsible conduct of research, as described in the plan of study. Each graduate program follows the overall regulations established and described in CWRU Graduate Studies and documented to the Regents of the State of Ohio. Completion of the PhD degree will require 36 hours of coursework (24 hours of which are graded) and 18 hours of NTRN 701 Dissertation Ph.D..

In addition, each student must successfully complete a qualifier examination for advancement to candidacy in the form of a short grant proposal with oral defense. During the dissertation period, students are expected to meet twice a year with the thesis committee, present seminars in the department, and fulfill journal publication requirements. Throughout the doctoral training, students are expected to be enthusiastic participants in seminars, journal clubs, and research meetings in the lab and program.

Plan of Study

§ Please also see Graduate Studies Academic Requirements for Doctoral Degrees (http://bulletin.case.edu/schoolofgraduatestudies/academicrequirements)

<table>
<thead>
<tr>
<th>First Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology I (CBIO 453)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminar in Advanced Nutrition (NTRN 551)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Rotation in Biomedical Sciences Training Program (BSTP 400) or Research Rotation in Medical Scientist Training Program (MSTP 400) or Special Problems (NTRN 601)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Biology I (CBIO 455)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Human Nutrition II (NTRN 434)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminar in Advanced Nutrition (NTRN 551)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Nutrition and Metabolism: Investigative Methods (NTRN 454) or Molecular Nutrition (NTRN 455)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investigative Methods in Nutrition (NTRN 561)</td>
<td>1 - 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Problems (NTRN 601)</td>
<td>1-9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500)</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>7</td>
<td>9-20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Human Nutrition I (NTRN 433)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nutritional Biochemistry and Metabolism (NTRN 452)	3			
Seminar in Advanced Nutrition (NTRN 551)		1		
Investigative Methods in Nutrition (NTRN 561)	1 - 4			
Special Problems (NTRN 601)	1-9			
Seminar in Advanced Nutrition (NTRN 551)			1	
Electives: 2 courses - Any NTRN 400 and/or graduate course in SOM basic science departments			6	
Investigative Methods in Nutrition (NTRN 561)			1 - 4	
Special Problems (NTRN 601)			1-9	
Dissertation Ph.D. (NTRN 701)			1-9	
Year Total:		10-21	9-20	1-9

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Advanced Nutrition (NTRN 551)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (NTRN 701)</td>
<td></td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Seminar in Advanced Nutrition (NTRN 551)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Dissertation Ph.D. (NTRN 701)</td>
<td></td>
<td></td>
<td>1-9</td>
</tr>
<tr>
<td>Year Total:</td>
<td></td>
<td>2-10</td>
<td>2-10</td>
</tr>
</tbody>
</table>

Total Units in Sequence: 41-98

After the third year, student enrolls in one credit of NTRN 701 Dissertation Ph.D., Fall and Spring Semesters until graduation.

Courses

NTRN 201. Nutrition. 3 Units.
The nutrients, their functions, food sources, and factors affecting human needs throughout life.

NTRN 328. Child Nutrition, Development and Health. 3 Units.
The relationship between nutrition and physical/cognitive growth and development of the child from the prenatal period through adolescence, including individuality, maturation and biological needs. Nutritional influences (nutrient requirements, food choices, and nutritional/feeding problems) and effects on health are emphasized. Prereq: NTRN 201.
NTRN 341. Food as Medicine: How what we eat influences how we feel, think, and our health status. 3 Units.
This course will discuss key aspects of the interplay between food and health/wellness and in particular food synergy - interactions among dietary components and the effects on health. What are "whole foods" vs. basic nutrients? What are the most common nutrient deficiencies in men, women and children, including the elderly? Students will learn to interpret dietary recommendations/guidelines and which foods are used to improve digestion, optimize cardiovascular health and immune function, and help prevent cancer. Basic discussion of importance of gut micro-flora. Diet and body weight; also pros and cons of different dieting strategies. Increasing awareness of "culinary medicine" (i.e. how food acts as an integrated therapy). How what we eat influences how we feel, think and our general health status. There is an integrated culinary experience. Prereq: NTRN 201 or requisites not met permission.

NTRN 342. Food Science. 3 Units.
Chemical, physical and biological properties of food constituents and their interactions in food preparation and processing and practical application of processing methods and their effect on nutritional quality and acceptability. Prereq: CHEM 106.

NTRN 342L. Food Science Lab. 2 Units.

NTRN 343. Dietary Patterns. 3 Units.
Examination of the food supply in the United States as it is affected by production, processing, marketing, government programs, regulation, and consumer selection. Nutritional evaluation of dietary patterns of different cultures. Counts for CAS Global & Cultural Diversity Requirement. Prereq: NTRN 201.

NTRN 351. Food Service Systems Management. 3 Units.
The application of organizational theory and skills in the preparation and service of quantity food. Laboratory experience in professional food services are included. Graduate students will analyze one aspect of food service management in depth. Offered as NTRN 351 and NTRN 451. Prereq: Nutrition major or consent of instructor.

NTRN 359. Diabetes Prevention and Management. 3 Units.
In this course, we will explore the diabetes epidemic, its effects on the healthcare system, and strategies for prevention. The pathophysiology of the disease will be examined as well as environmental factors leading to the increase in diagnoses. Comorbid conditions and acute and chronic complications of diabetes and hyperglycemia will be addressed. Rationale for current therapeutic strategies will be explored, including the use of blood glucose monitoring, physical activity, nutrition counseling, oral medications, and insulin therapy. Patient education and health literacy will be studied in the context of patient centered goal setting. Requirements for developing a Diabetes Self-Management Education Program will be discussed. Community program development will be examined in the context of population-based prevention strategies. Offered as NTRN 359 and NTRN 459. Prereq: NTRN 201 and Junior or Senior Status.

NTRN 360. Clinical Assessment and Diagnosis: Nutritional, Functional, Physical. 3 Units.
Methods for the provision of nutrition services to individuals and groups. Principles of professional practice including ethics, standards, and regulatory issues. Prereq: NTRN 201 and NTRN 363 or MS in Nutrition or MS in Public Health Nutrition.

NTRN 361. Energy Dysregulation: From Obesity to Anorexia. 3 Units.
Energy imbalance and the implications on health will be explored in this course. Key concepts covered in this class include: 1. Energy imbalance refers to positive and negative states of energy balance and occurs when energy intake does not match energy expended in metabolic processes, daily living activities, and physical activity; 2. Obesity is a result of chronic positive energy balance whereas anorexia nervosa is a condition of chronic negative energy balance; 3. Energy metabolism is controlled by a complex array of neural and hormonal signaling; 4. Energy imbalance disrupts the neural and hormonal signaling pathways of energy metabolism resulting in unfavorable health consequences such as pro-inflammatory state, oxidative stress, immune dysregulation, menstrual dysfunction, sarcopenia, and low bone mineral density; 5. Exercise training can impact energy imbalance health-related outcomes. Learning Outcomes: Students will be able to 1. define energy balance and explain the components of energy expenditure; 2. define disordered eating, female athlete triad, and disordered eating; 3. explain the relationship among energy intake, energy expenditure, and body composition in energy imbalance; 4. describe alterations in skeletal muscle and adipose physiology in energy imbalance; 5. diagram neural control of feeding and energy homeostasis and hormonal control of energy metabolism; 6. explain the neural and hormonal changes that occur in chronic energy imbalance and describe current theories in how it results in menstrual dysfunction, inflammatory response, oxidative stress, immune dysregulation, sarcopenia, and low bone mineral density; and 7. explain how exercise training can influence inflammatory response, oxidative stress, immune function, and musculoskeletal health in energy imbalance. Offered as NTRN 361 and NTRN 461. Prereq: NTRN 201 or requisites not met permission.

NTRN 362. Exercise Physiology and Macronutrient Metabolism. 3 Units.
The purpose of this course is to provide students with the knowledge of theoretical and applied concepts of exercise physiology. Students will gain an understanding of the acute and chronic physiological responses and adaptations of the cardiovascular, metabolic, hormonal, and neuromuscular systems in response to exercise. Additional topics include factors effecting performance, assessing cardiorespiratory and muscular fitness, designing exercise programs for health and wellness, special populations, and athletes, environmental considerations and nutrition's role in sport and exercise performance. Offered as NTRN 362 and NTRN 462. Prereq: NTRN 201 and BIOL 216.

NTRN 363. Human Nutrition I: Energy, Protein, Minerals. 3 Units.
Chemical and physiological properties of specific nutrients, including interrelationships and multiple factors, in meeting nutritional needs throughout the life cycle. Prereq: BIOL 216 and (Junior or Senior status).

NTRN 364. Human Nutrition II: Vitamins. 3 Units.
Chemical and physiological properties of vitamins, including interrelationships and multiple factors, in meeting nutritional needs throughout the life cycle. Prereq: NTRN 363.

NTRN 365. Nutrition for the Prevention and Management of Disease: Pathophysiology. 4 Units.
Interplay among etiology, metabolic perturbations, pathophysiology, clinical signs and symptoms, and nutrition principles for the prevention and management of disease. Prereq: NTRN 363 and BIOC 307 or equivalent or consent of instructor.
NTRN 366. Nutrition for the Prevention and Management of Disease: Clinical Applications. 3 Units.
Application of nutrition principles and knowledge for the prevention and management of disease. Case studies and other educational approaches and techniques will be used. Course includes evidence-based assessments and interpretation of key data (biochemical, dietary, physical) to develop nutritional interventions. Coreq: NTRN 365.

NTRN 367. Nutrition Strategies and Wellness Programming. 3 Units.
Wellness and its implication on nutritional choices will be explored in this class. Key concepts covered in this class include: 1. Overall wellness extends beyond smart dietary choices including social, emotional, spiritual, occupational, intellectual, and physical wellness. 2. The interrelationship among the wellness areas can alter adherence to a healthy diet. 3. Cultural differences in wellness exist and have an impact on nutritional choices. 4. Nutritional strategies must be individualized taking into account all aspects of wellness and cultural differences. 5. Interprofessional teams that include experts from each area of wellness are essential to provide optimal health care to individuals. Prereq: NTRN 201.

NTRN 371. Special Problems. 1 - 3 Units.
Independent reading, research, or special projects supervised by a member of the nutrition faculty. Prereq: Junior or senior standing.

NTRN 388. Seminar in Sports Nutrition. 3 Units.
Study of energy and nutrient needs to support recreational exercise and competitive athletics, dietary supplements and specific foods and beverages that are marketed to athletes, and how nutrition can provide optimal muscle development, recovery and sports performance. Prereq: Junior or senior standing.

NTRN 390. Undergraduate Research. 3 - 9 Units.
Guided laboratory research in nutritional biochemistry or molecular nutrition under the sponsorship of a nutrition faculty member.

NTRN 397. SAGES Capstone Proposal Seminar. 3 Units.
In this departmental seminar course, students will conceptualize, develop and prepare a written plan, known as the "Capstone Proposal," for their senior Capstone project (NTRN 398: Senior Capstone Experience). Discussion will include, but not be limited to basic research principles, different types of research, ethics and IRB procedures. The Capstone Proposal shall include the project design, aims, methodology, budget, data analysis and presentation. Upon completion of this course, students will have confirmed student/Capstone advisor and, if applicable, mentor relationships, written a Capstone proposal and given an oral presentation of their proposal at a departmental colloquium. Counts as SAGES Departmental Seminar. Prereq: NTRN 201 and NTRN 342.

NTRN 398. SAGES Senior Capstone Experience. 3 Units.
Students will implement their "Capstone Proposal" projects as designed in NTRN 397: Capstone Proposal Seminar. Pertinent research activities will depend on the nature of the student’s "Capstone Proposal" project. The student will meet regularly with their Capstone advisor; at least twice monthly, to provide progress reports, discuss the project, and for critique and guidance. By the end of this course, the student will have completed their SAGES Senior Capstone research project and presented their project results/findings orally at the Senior Capstone Fair and at a departmental colloquium. Counts as SAGES Senior Capstone. Prereq: NTRN 397.

NTRN 399. Senior Project. 3 Units.

NTRN 401. Nutrition for Community and Health Care Professionals. 2 Units.
This course will focus on understanding how diet and nutrition impact health and wellness throughout the life cycle. There are core concepts in human nutrition that all health care providers should understand to optimize their care of individuals, themselves, and the community. These core concepts are the focus of this course.

NTRN 410. Basic Oxygen & Physiological Function. 2 Units.
On-line lecture only course which explores the significance and consequences of oxygen and oxygen metabolism in living organisms. Topics to be covered include transport by blood tissues, oxygen toxicity, and mitochondrial metabolism. Emphasis will be placed on mammalian physiology with special reference to brain oxidative metabolism and blood flow as well as whole body energy expenditure and oxidative stress related to disease. The course will cover additional spans of physiology, nutrition and anatomy. Offered as NTRN 410 and PHOL 410.

NTRN 433. Advanced Human Nutrition I. 4 Units.
Emphasis on reading original research literature in energy, protein and minerals with development of critical evaluation and thinking skills. Recommended preparation: NTRN 201 and CHEM 223 and BIOL 348 or equivalent.

NTRN 434. Advanced Human Nutrition II. 3 Units.
Emphasis on reading original research literature on vitamins with development of critical evaluation and thinking skills. Recommended preparation: NTRN 433 or consent.

NTRN 435. Nutrition during Pregnancy and Lactation. 3 Units.
Study of current research literature on nutrition for pregnancy and lactation including nutrient requirements, nutrition assessment, and nutrition intervention. Prereq: Graduate Student in Nutrition or Public Health Nutrition or (NTRN 363 and NTRN 364) or requisites not met permission.

NTRN 436. Pediatric Nutrition. 3 Units.
This course will focus on understanding the nutritional needs of infants, children and adolescents. Evidence based guidelines will be used as we discuss best clinical practice for the management of pediatric nutrition issues. Anthropometric measurements used in growth assessment will be reviewed. Nutrient requirements for each stage of development will be explored with a specific focus on micronutrients relevant to pediatrics such as fluoride, iron, calcium and vitamin D. Abnormal growth resulting in malnutrition and obesity will be examined with a focus on prevention, diagnosis and treatment. Skills necessary to complete a pediatric nutrition assessment will be reviewed with opportunities to practice and demonstrate competency. Prereq: NTRN 435.

NTRN 437. Evaluation of Nutrition Information for Consumers. 3 Units.
Reading and appraisal of food and nutrition literature written for the general public, including books, magazines, newsletters. Prereq: Graduate standing and Nutrition or Public Health Nutrition major or consent of instructor.

NTRN 438. Dietary Supplements. 3 Units.
An examination of dietary supplements specific to health promotion and disease prevention/treatment throughout the life cycle. Topics and concepts include regulation, controversies, safety, efficacy, and the surrounding scientific evidence for dietary supplement use. Prereq: NTRN 364 or requisites not met permission.
NTRN 439. Food Behavior: Physiological, Psychological and Environmental Determinants. 3 Units.
Good dietary habits are associated with improved population health. Despite this, a large proportion of individuals do not meet current dietary recommendations and there are significant disparities between groups based on sociodemographic characteristics. Why is this? Traditional views on this question focused solely on individual decision making without taking into account the complex influence of biology, social forces, and environment on dietary behavior. This course will introduce students to the major influences on dietary behavior and their interactions and modifying factors in the context of the socioecological model.

NTRN 440. Nutrition for the Aging and Aged. 3 Units.
Consideration of the processes of aging and needs which continue throughout life. The influences of food availability, intake, economics, culture, physical and social conditions and chronic disease as they affect the ability of the aged to cope with living situations. Recommended preparation: Nutrition major or consent of instructor.

NTRN 446. Advanced Maternal Nutrition: Special Topics. 3 Units.
Analysis of the problems commonly associated with high-risk pregnancies and fetal outcome. Discussion of causes, mechanisms, management and current research. Recommended preparation: NTRN 435 or consent.

NTRN 448. Integrative and Functional Nutrition. 3 Units.
An examination of the core concepts and principles surrounding integrative and functional medical nutrition therapy (IFMNT). The course will emphasize a whole systems approach to addressing clinical imbalances and creating personalized therapeutic interventions based upon an individual’s genetics, environment and lifestyle. Topics include precision medicine, IFMNT nutrition care plan processes, IFMNT laboratory tests and interpretation, dietary supplementation, and discussion of the evidence for integrative therapeutic nutrition/diet plans related to the gut microbiome/gastrointestinal disorders, food sensitivity/ intolerance, methylation, immune function, detoxification, cardiometabolic intervention, energy, hormones, and wellness.

NTRN 451. Food Service Systems Management. 3 Units.
The application of organizational theory and skills in the preparation and service of quantity food. Laboratory experience in professional food services are included. Graduate students will analyze one aspect of food service management in depth. Offered as NTRN 351 and NTRN 451. Prereq: Nutrition major.

NTRN 452. Nutritional Biochemistry and Metabolism. 3 Units.
Mechanisms of regulation of pathways of intermediary metabolism; amplification of biochemical signals; substrate cycling and use of radioactive and stable isotopes to measure metabolic rates. Recommended preparation: BIOC 307 or equivalent. Offered as BIOC 452 and NTRN 452.

NTRN 454. Advanced Nutrition and Metabolism: Investigative Methods. 3 Units.
Lecture/discussion course on the use of analytical techniques in metabolic research on whole body metabolism, energy balance, and disease (diabetes, obesity, and neuropathologies); discussions include the design of in-vitro and in-vivo investigative protocols in humans and animals using stable isotope tracer and mass spectrometric analysis; critical interpretation of data from the literature with emphasis on metabolic pathway identification, regulation and kinetics. Recommended preparation: BIOC 407.

NTRN 455. Molecular Nutrition. 3 Units.
Students will gain in-depth understanding of the basic science and translational aspects of ‘hot topics’ in current molecular nutrition. Class will be conducted by interactive discussion of assigned primary research articles. Prereq: BIOC 407 or Requisites Not Met permission.

NTRN 459. Diabetes Prevention and Management. 3 Units.
In this course, we will explore the diabetes epidemic, its effects on the healthcare system, and strategies for prevention. The pathophysiology of the disease will be examined as well as environmental factors leading to the increase in diagnoses. Comorbid conditions and acute and chronic complications of diabetes and hyperglycemia will be addressed. Rationale for current therapeutic strategies will be explored, including the use of blood glucose monitoring, physical activity, nutrition counseling, oral medications, and insulin therapy. Patient education and health literacy will be studied in the context of patient centered goal setting. Requirements for developing a Diabetes Self-Management Education Program will be discussed. Community program development will be examined in the context of population-based prevention strategies. Offered as NTRN 359 and NTRN 459. Prereq: Graduate Standing.

NTRN 460. Sports Nutrition. 3 Units.
Study of the relationships of nutrition and food intake to body composition and human performance. Laboratory sessions include demonstrations of body composition and fitness measurements and participation in a research project. Recommended preparation: NTRN 363 or NTRN 433 or consent.

NTRN 461. Energy Dysregulation: From Obesity to Anorexia. 3 Units.
Energy imbalance and the implications on health will be explored in this course. Key concepts covered in this class include: 1. Energy imbalance refers to positive and negative states of energy balance and occurs when energy intake does not match energy expended in metabolic processes, daily living activities, and physical activity; 2. Obesity is a result of chronic positive energy balance whereas anorexia nervosa is a condition of chronic negative energy balance; 3. Energy metabolism is controlled by a complex array of neural and hormonal signaling; 4. Energy imbalance disrupts the neural and hormonal signaling pathways of energy metabolism resulting in unfavorable health consequences such as pro-inflammatory state, oxidative stress, immune dysregulation, menstrual dysfunction, sarcopenia, and low bone mineral density; and 5. Exercise training can impact energy imbalance health-related outcomes. Learning Outcomes: Students will be able to 1. define energy balance and explain the components of energy expenditure; 2. define disordered eating, female athlete triad, and disordered eating; 3. explain the relationship among energy intake, energy expenditure, and body composition in energy imbalance; 4. describe alterations in skeletal muscle and adipose physiology in energy imbalance; 5. diagram neural control of feeding and energy homeostasis and hormonal control of energy metabolism; 6. explain the neural and hormonal changes that occur in chronic energy imbalance and describe current theories in how it results in menstrual dysfunction, inflammatory response, oxidative stress, immune dysregulation, sarcopenia, and low bone mineral density; and 7. explain how exercise training can influence inflammatory response, oxidative stress, immune function, and musculoskeletal health in energy imbalance. Offered as NTRN 361 and NTRN 461. Prereq: NTRN 201 or requisites not met permission.
NTRN 462. Exercise Physiology and Macronutrient Metabolism. 3 Units.
The purpose of this course is to provide students with the knowledge of
theoretical and applied concepts of exercise physiology. Students
will gain an understanding of the acute and chronic physiological
responses and adaptations of the cardiovascular, metabolic, hormonal,
and neuromuscular systems in response to exercise. Additional topics
include factors effecting performance, assessing cardiorespiratory and
muscular fitness, designing exercise programs for health and wellness,
special populations, and athletics, environmental considerations and
nutrition's role in sport and exercise performance. Offered as NTRN 362
and NTRN 462. Prereq: Nutrition Major.

NTRN 516. Seminar in Dietetics I. 4 Units.
Study of evidence-based guidelines for dietetic practice in medical
nutrition therapy. Emphasis on life cycle stages and common disease
states that require specialized nutrition care. Enrollment restricted to
those accepted into Case Coordinated Dietetic Internship/Master Degree
Program.

NTRN 517. Seminar in Dietetics II. 4 Units.
Study of scientific basis for clinical and community nutrition practice
and developments in food service systems management. Recommended
preparation: Dietetic internship.

NTRN 528. Introduction to Public Health Nutrition. 3 Units.
An introduction to the field of public health/community nutrition with a
focus on three key themes: (1) The role of nutrition in population based
health, (2) the multilevel nature of key influences on dietary behavior, and
(3) skills needed to be a successful public health practitioner. Prereq:
Graduate Student in Nutrition or Public Health Nutrition or Requisites Not
Met permission.

NTRN 529. Nutritional Epidemiology. 3 Units.
This course uses epidemiology as a tool for assessing potential causal
associations between dietary excesses, deficiencies and imbalances to
the prevalent chronic diseases. It addresses the epidemiologic aspects of
nutrition related chronic diseases, for example, the multi-factorial nature
of etiology. Recommended preparation: Statistics and Public Health
Nutrition students only.

NTRN 530. Public Health Nutrition. 3 Units.
Exploration of the professional role of the Public Health Dietitian/
Nutritionist with a focus on three key themes: (1) The conduct of
research and interpretation of research findings related to public health
nutrition; (2) development of skills in the domains of public health
management, program design and implementation, and communications
and marketing; and (3) approaches to thinking about public health more
broadly through the use of entrepreneurship and community building.
Prereq: Graduate Student in Nutrition or Public Health Nutrition or
Requisites Not Met permission.

NTRN 531. Public Health Nutrition Field Experience. 1 - 6 Units.
Individually planned public health nutrition experience. May be concurrent
with course work in local agencies or in blocks of full-time work with a city,
county, or state health agency. Prereq: Open to public health nutrition
students only. Consent of instructor.

NTRN 532C. Specialized Public Health Nutrition Field Experience. 1 - 3
Units.
Individually arranged clinical experience. Prereq: Public Health Nutrition
students only. Consent of instructor.

NTRN 533. Nutritional Care of Neonate. 3 Units.
Nutritional assessment and management of high-risk newborns with
emphasis on prematurity and low birth weight. Review of current
literature coordinated with clinical experience in the neonatal intensive
care unit. Issues on follow-up included. Recommended preparation:
NTRN 435 or consent.

NTRN 534. Advanced Public Health Nutrition Field Experience. 1 - 6
Units.
Individually planned advanced public health experience. Prereq: Open to
public health nutrition students only.

NTRN 550A. Advanced Community Nutrition. 3 Units.
An introduction to the field of public health/community nutrition with a
focus on three key themes: (1) The role of nutrition in population based
health, (2) the multilevel nature of key influences on dietary behavior, and
(3) skills needed to be a successful public health practitioner. Prereq:
Senior Nutrition major or Requisites Not Met permission.

NTRN 551. Seminar in Advanced Nutrition. 1 Unit.
Ph.D. students meet weekly to discuss topical journal articles.
Students gain experience in critical evaluation of research and develop
presentation/communication skills. Discussion of research integrity
and ethics. Students participate in departmental seminars with invited
speakers.

NTRN 561. Investigative Methods in Nutrition. 1 - 4 Units.
Research methods appropriate for nutrition. Methods for conducting
research in nutrition and food sciences, food service management and
dietetics. Designing research proposals. Prereq: Nutrition major.

NTRN 562. Research Practicum. 1 - 3 Units.
Students will participate in nutrition-related research activities that
employ a variety of research methodologies (clinical research, bench
science, surveys, systematic reviews, etc.). Students will be engaged
in the acquisition of scientific data, and data entry, analysis and
interpretation.

NTRN 601. Special Problems. 1 - 18 Units.
NTRN 602. Special Project in Nutrition. 1 - 3 Units.
Under the supervision of the instructor, the student will develop and/
or implement an individual or group special project in global nutrition,
community nutrition, wellness, or other area of food and nutrition
practice. Prereq: Graduate Standing.

NTRN 610. Oxygen and Physiological Function. 3 Units.
Lecture/discussion course which explores the significance and
consequences of oxygen and oxygen metabolism in living organisms.
Topics to be covered include oxygen transport by blood tissues, oxygen
toxicity, and mitochondrial metabolism. Emphasis will be placed
on mammalian physiology with special reference to brain oxidative
metabolism and blood flow as well as whole body energy expenditure and
oxidative stress related to disease. The course will cover additional spans
of physiology, nutrition and anatomy. Offered as ANAT 610, NTRN 610,
and PHOL 610.

NTRN 651. Thesis M.S.. 1 - 18 Units.
NTRN 701. Dissertation Ph.D.. 1 - 9 Units.
Prereq: Predoctoral research consent or advanced to Ph.D. candidacy
milestone.

Department of Pathology
Wolstein Research Building 5537
http://www.case.edu/med/pathology/
Phone: 216.368.1993; Fax: 216.368.0494
Clifford V. Harding, MD, PhD, Chair
clifford.harding@case.edu

Christine Kehoe (christine.kehoe@case.edu), Student Affairs

The clinical, research, and educational activities of the Case Department of Pathology are centered at the Case School of Medicine and University Hospitals Cleveland Medical Center (UHCMC). The core components of the department are the Basic Science Pathology Program at Case School of Medicine and the three clinical divisions of Pathology at University Hospitals Health System (UHHS), including the Division of Anatomic Pathology at UHCMC, the Division of Clinical Pathology at UHCMC, and the UHHS Pathology Division of Community Hospitals. In addition, our affiliates include the Cuyahoga County Medical Examiner’s Office, the Pathology Department at the Louis Stokes Veteran’s Administration Medical Center, and the Pathology Department at MetroHealth Medical Center. Research laboratories of the department are located in the Wolstein Research Building and Institute of Pathology. Both are situated adjacent to University Hospitals of Cleveland, the primary teaching hospital of the Case School of Medicine and the location of the department’s Pathology Residency Program.

World-class research is conducted in the department in biomaterials biocompatibility, cancer biology, immunology, neuropathology and neurodegenerative disease, outcomes research, and tissue injury and healing. The department’s research activities are characterized by highly cooperative and collaborative interactions within the department, and with many other departments at Case and its affiliated institutions. The CWRU Department of Pathology NIH funding level is ranked in the top 10 nationally. For information about graduate programs, please see here (http://www.case.edu/med/pathology/training/graduate.html).

Masters Degrees

MS in Pathology (full-time)

The full-time Master’s Program in Pathology is intended for students with a background in the biological or chemical sciences, typically a bachelors or baccalaureate degree, who are interested in pursuing advanced coursework in the basis of disease. This coursework may be useful for those interested in pursuing a professional doctoral degree (e.g., MD, DO, DDS, or DMD) or other health professions degree, since the core curriculum and electives include many topics of medical relevance, including histology, gross anatomy, pathology, cancer and immunology. The time of matriculation in the Program is flexible; a typical time to degree is anticipated to be 4 semesters, although completion in approximately 13 months, including an intensive summer course in Anatomy, is possible. The course of study will be determined by the student, their Academic advisor, and the Graduate Program Committee and will consist of 30 credit hours of course work. Flexible electives in cellular basis of disease, immunology and cancer biology will allow students to focus on an area of interest. Graduates of the Program can pursue opportunities in basic or clinical research, teaching, biotechnology, pharmaceuticals, health care, or government. While the Master’s may be a terminal degree, it may also lead to admission to professional or PhD programs. For information on the Pathology M.S. Program, please contact Pamela Wearsch, Ph.D., paw28@case.edu/216.368.5059, or Christy Kehoe, cxx15@case.edu/216.368.1993.

Description of Program

Students will earn a Plan B Masters from Case Western Reserve University. The degree program is comprised of core courses in Pathology with elective course work from related disciplines, a course

Typical Curriculum

<table>
<thead>
<tr>
<th>Year</th>
<th>Units</th>
<th>Summer</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadaver dissection-based human anatomy with histology and physiologic correlations (ANAT 410)</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Biology of Neurodegenerative Disorders (PATH 524)</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attendance optional in summer semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students may apply to laboratories to do research projects in related fields (e.g. cancer, immunology, neuropathology)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-professional students may wish to spend time on school applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histology and Ultrastructure & General Histology Laboratory (ANAT 412)</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell and Molecular Foundations of Pathology (PATH 475)</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar I (PATH 511)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent Study (PATH 650)</td>
<td></td>
<td>1 - 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Pathologic Mechanisms (PATH 510)</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamental Immunology (PATH 416)</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar II (PATH 512)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td></td>
<td>9</td>
<td>11-19</td>
<td>10</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Year</th>
<th>Units</th>
<th>Summer</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent Study (PATH 650)</td>
<td></td>
<td>1 - 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar I (PATH 511)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives:</td>
<td></td>
<td>6-9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Current Topics in Cancer (PATH 422)
Oxidative Stress and Disease Pathogenesis (PATH 430)

Advanced Immunobiology (PATH 465)

Immunology of Infectious Diseases (PATH 481)

Yeast Genetics and Cell Biology (PATH 488)

Protein Misfolding and Human Disease: Molecular Basis and Clinical Implications (PATH 525)

Other electives upon approval

Independent Study (PATH 650) 1 - 9

Experimental Pathology Seminar II (PATH 512)

Electives: 6 - 9

Cytoskeleton and Disease (PATH 415)

Current Topics in Vision Research (PATH 432)

Neurodegenerative Diseases: Pathological, Cellular & Molecular Perspectives (PATH 444)

Introduction to Microarrays (PATH 460)

Yeast Genetics and Cell Biology (PATH 488)

Special Topics in Cancer Biology and Clinical Oncology (PATH 521)

Cell Biology of Neurodegenerative Disorders (PATH 524)

Other electives upon approval

Independent Study (PATH 650) 1 - 9

Year Total: 1 - 9 8 - 19 8 - 19

Total Units in Sequence: 47 - 85

Accelerated Curriculum

First Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Summer</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadaver dissection-based human anatomy with histology and physiologic correlations (ANAT 410)</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histology and Ultrastructure (ANAT 412)</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>& General Histology Laboratory (ANAT 413)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell and Molecular Foundations of Pathology (PATH 475)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar I (PATH 511)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Pathologic Mechanisms (PATH 510)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Fundamental Immunology (PATH 416)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar II (PATH 512)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Year Total: 1 - 9 10 11 - 19

Second Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Summer</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent Study (PATH 650)</td>
<td>1 - 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histology and Ultrastructure (ANAT 412)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Histology Laboratory (ANAT 413)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cell and Molecular Foundations of Pathology (PATH 475)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar I (PATH 511)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Pathologic Mechanisms (PATH 510)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Fundamental Immunology (PATH 416)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar II (PATH 512)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Independent Study (PATH 650)</td>
<td>1 - 9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Year Total: 1 - 9 10 11 - 19

Total Units in Sequence: 28 - 44

* Students with a significant background in Cell and Molecular Biology may take Path 525 (Transport and targeting of macromolecules in health and disease) or Path 488 (Yeast Genetics and Cell Biology) instead.

Admission Criteria

Applicants will be screened by the Pathology Department Admissions Committee. Students will be required to supply a GRE or MCAT score, a transcript, three letters of recommendation and an application essay that details the student’s interest in the Program. Students will be interviewed on campus or via electronic media (i.e. FaceTime or Skype). Although there are no set requirements, successful applicants would be expected to have an MCAT > 26, GRE verbal > 150 and GRE quantitative > 150, and an undergraduate GPA around 3.0. Applications will be accepted
throughout the year with a deadline of June 1st; final decisions for Fall matriculation will be made by July 1st. Prospective students are advised to submit their applications well in advance of the deadline, since the class may fill completely before that date.

Tuition

Financial aid will not be provided by the Department. Students may apply for financial aid through the federal government at http://www.fafsa.ed.gov/. Tuition for the 2017-2018 academic year is $1827/credit hour. Tuition increases each academic year by approximately 4%. The total cost of the Program is based on tuition for the credits taken each term.

MS in Pathology (part-time)

A part-time program leading to the Master of Science degree in Pathology is available to laboratory staff who are employed by Case Western Reserve University. Students in this program must be full-time university employees and must have the agreement of their supervisor to begin studies as a part-time student. Courses are available as an employee fringe benefit (up to 6 credits per semester for Fall and Spring, and 3 credits for Summer) and can only be taken as limited by the fringe benefit regulations.

A formal application for this program must be submitted to the graduate school. Prior to submission of this application, the employee, the supervisor, and the Director of the Pathology Graduate Program must meet to review and facilitate the student's application for admission.

This program can lead to an M.S. degree through Plan A. Required core courses include CBIO 453 Cell Biology I (4 credits), CBIO 455 Molecular Biology I (4 credits), PATH 510 Basic Pathologic Mechanisms (4 credits), and participation in a seminar course (PATH 511 Experimental Pathology Seminar I and/or PATH 512 Experimental Pathology Seminar II) for at least one semester. CBIO 453 Cell Biology I, CBIO 455 Molecular Biology I and must be taken as graded courses (not P/F).

Plan A requires a minimum of 27 total coursework credits. In addition to the required core courses, the student must take a minimum of 6 credits of PATH 651 Thesis, which involves research in the laboratory of the supervisor (who serves as the M.S. Thesis Mentor) and thesis preparation. The student must register for at least one credit of PATH 651 Thesis M.S. every semester until graduation. A GPA of 2.75 or better must be maintained for a terminal M.S. (Students considering using the M.S. in Pathology as a "stepping stone" to the Ph.D. degree must maintain a GPA of 3.0 or better.) An M.S. thesis must be prepared based on the research, and the student must pass an M.S. Degree Examination in which the thesis is defended.

MD/MS Biomedical Investigation--Pathology Track

For Program Admissions and MD requirements, see MD Dual Degree Programs (p. 26). This track is designed to provide students with an in-depth understanding of the cellular basis of disease or immunity. During the first year of medical school the student should identify a mentor and begin planning coursework and a research project leading to the MD degree. Because the background and interest of applicants varies widely, members of the Program Oversight Committee will assist each student in designing an individualized schedule of graduate courses for any track.

Students are expected to complete at least two graduate courses (3 credits each or total 6 credits) before beginning the laboratory research period (year 3), and students should take three graduate courses before the research period if this is possible. For students to receive graduate credit for any medical coursework (as IBIS credit, e.g. IBIS 403 Integrated Biological Sciences III), they must register at the beginning of the semester. Students in the MD/MS joint degree program must attain a cumulative GPA of 3.0 in the graduate courses. Students in this program may participate in any of the three tracks of the Department of Pathology Graduate Program.

For information about the Pathology Track in the MD/MS program, contact Christy Kehoe, 216.368.1993, or Dr. Clive Hamlin (clive.hamlin@case.edu), 216.368.0512.

Students in the Pathology track must complete:

<table>
<thead>
<tr>
<th>PATH 601</th>
<th>Special Problems</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATH 511</td>
<td>Experimental Pathology Seminar I</td>
<td>1</td>
</tr>
<tr>
<td>or PATH 512 Experimental Pathology Seminar II</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IBIS 600</td>
<td>Exam in Biomedical Investigation</td>
<td>0</td>
</tr>
</tbody>
</table>

And 9 credits from the Pathology courses listed below or other Approved courses. Other department's graduate level course may be accepted provided it is appropriate to the student's project and is approved by his/her Thesis Committee or the Graduate Program Director in Pathology.

PATH 410	Aging and the Nervous System	1
PATH 415	Cytoskeleton and Disease	1
PATH 416	Fundamental Immunology	4
PATH 417	Cytokines: Function, Structure, and Signaling	3
PATH 430	Oxidative Stress and Disease Pathogenesis	1
PATH 432	Current Topics in Vision Research	3
PATH 444	Neurodegenerative Diseases:Pathological,Cell. & Molecular Perspectives	3
PATH 480	Logical Dissection of Biomedical Investigations	3
PATH 481	Immunology of Infectious Diseases	3
PATH 488	Yeast Genetics and Cell Biology	3
PATH 510	Basic Pathologic Mechanisms	4
PATH 525	Protein Misfolding and Human Disease: Molecular Basis and Clinical Implications	3

Example Plan of Study of Minimum Coursework:

<table>
<thead>
<tr>
<th>First Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD Curriculum</td>
<td>Graduate course*</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD Curriculum</td>
<td>Special Problems (PATH 601) (optional)</td>
<td>1-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>3</td>
<td>1-3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Biological Sciences III (IBIS 403)</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate Course*</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD Curriculum</td>
<td>Graduate Course*</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
In addition, each PhD student must successfully complete a qualifier examination for advancement to candidacy in the form of a short grant proposal with oral defense. The qualifier is generally completed in the summer after year two. During the dissertation period, students are expected to meet twice a year with the thesis committee, present seminars in the department, and fulfill journal publication requirements. Throughout the doctoral training, students are expected to be enthusiastic participants in seminars, journal clubs, and research meetings in the lab and program.

§ Please also see Graduate Studies Academic Requirements for Doctoral Degrees (http://bulletin.case.edu/schoolofgraduatestudies/academicrequirements)

Molecular and Cellular Basis of Disease Training Program (MCBTP)

<table>
<thead>
<tr>
<th>First Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology I (CBIO 453)*</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Biology I (CBIO 455)*</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Rotation in Biomedical Sciences Training Program (BSTP 400)*</td>
<td>0 - 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mentor and track chosen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Pathologic Mechanisms (PATH 510)*</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamental Immunology (PATH 416)*</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar II (PATH 512)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis committee chosen; preproposal meeting scheduled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Problems (PATH 601)</td>
<td>1-9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>6-15</td>
<td>10-18</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Pathology Seminar I (PATH 511)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCBDTP Track Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCBDTP Track or other Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Problems (PATH 601)</td>
<td>1-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis proposal defense and advancement to candidacy within next 9 months*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar I (PATH 511)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives (Core, MCBDTP track or other)</td>
<td>4-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Problems (PATH 601)</td>
<td>1-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis proposal defense and advancement to candidacy must be completed**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>8-16</td>
<td>6-16</td>
<td></td>
</tr>
</tbody>
</table>

PhD in Pathology

PhD Training in the Pathology Graduate Program occurs in three tracks that share a common core curriculum but provide additional track-specific curricular offerings. This provides a cohesive program that addresses the specific needs of different Pathology-related areas of research training. Section II of the handbook “Pathology PhD Program” describes core features of the program that are shared and provides detailed descriptions of the three training tracks:

- Molecular and Cellular Basis of Disease Training Program (MCBTP)
- Immunology Training Program (ITP)
- Cancer Biology Training Program (CBTP)

To earn a PhD in Pathology, a student must complete rotations in at least three laboratories followed by selection of a research advisor, and complete Core and Elective coursework including responsible conduct of research as described in the Course of Study, below. Students who previously completed relevant coursework, (for example, with a MS) may petition to complete alternative courses. Each training track follows the overall regulations established and described in CWRU Graduate Studies and documented to the Regents of the State of Ohio. Completion of the PhD degree will require 36 hours of coursework (24 hours of which are graded) and 18 hours of PATH 701 Dissertation Ph.D.
Third Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Pathology Seminar I (PATH 511)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701)**</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar II (PATH 512)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701)**</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>2-10</td>
<td>2-10</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Pathology Seminar I (PATH 511)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701)**</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar II (PATH 512)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701)**</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>2-10</td>
<td>2-10</td>
</tr>
</tbody>
</table>

Fifth Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Pathology Seminar I (PATH 511)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701)**</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar II (PATH 512)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701)**</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>2-10</td>
<td>2-10</td>
</tr>
</tbody>
</table>

Total Units in Sequence: 43-126

* Alternate courses for MSTP students: IBIS 401-404. MSTP students in the MCBDT/P do not need to take CBIO 453 Cell Biology I, CBIO 455 Molecular Biology I, PATH 510 Basic Pathologic Mechanisms or PATH 416 Fundamental Immunology although PATH 416 Fundamental Immunology may still be taken as a Track Elective

^ Alternate course is MSTP 400 Research Rotation in Medical Scientist Training Program for MSTP students and PATH 601 Special Problems for direct admit students

Immunology Training Program (ITP)

First Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology I (CBIO 453)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Molecular Biology I (CBIO 455)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Research Rotation in Biomedical Sciences Training Program (BSTP 400)*</td>
<td>0 - 9</td>
<td></td>
</tr>
<tr>
<td>Immunology Journal Club (optional this semester)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mentor and Track chosen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Pathologic Mechanisms (PATH 510)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Fundamental Immunology (PATH 416)</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Pathology Seminar I (PATH 511)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Immunobiology (PATH 465)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives (Core, ITP Track or other)**</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Problems (PATH 601)</td>
<td>1-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunology Journal Club (required this semester)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis proposal and advancement to candidacy within 9 months*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar II (PATH 512)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives (Core, ITP Track or other)**</td>
<td>4-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Problems (PATH 601) or Dissertation Ph.D. (PATH 701)</td>
<td>1-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunology Journal Club (required this semester)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis proposal defense and advancement to candidacy must be completed**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>9-17</td>
<td>6-16</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Pathology Seminar I (PATH 511)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701)**</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Immunology Journal Club (required this semester)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar II (PATH 512)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701)**</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Immunology Journal Club (required this semester)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>2-10</td>
<td>2-10</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Pathology Seminar I (PATH 511)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701)**</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Immunology Journal Club (required this semester)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar II (PATH 512)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701)**</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Immunology Journal Club (required this semester)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>2-10</td>
<td>2-10</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Pathology Seminar I (PATH 511)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701)**</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Immunology Journal Club (required this semester)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar II (PATH 512)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701)**</td>
<td>1-9</td>
<td></td>
</tr>
</tbody>
</table>
Immunology Journal Club (required this semester)

Experimental Pathology Seminar II (PATH 512) 1
Dissertation Ph.D. (PATH 701)*** 1-9

Immunology Journal Club (required this semester)
Year Total: 2-10 2-10

Fifth Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Pathology Seminar I (PATH 511)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701)***</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Immunology Journal Club (required this semester)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar II (PATH 512)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701)***</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Immunology Journal Club (required this semester)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>2-10</td>
<td>2-10</td>
</tr>
</tbody>
</table>

Total Units in Sequence: 44-127

* Alternate courses for MSTP students: IBIS 401-404. MSTP students in the ITP do not need to take CBIO 453 Cell Biology I, CBIO 455 Molecular Biology I or PATH 510 Basic Pathologic Mechanisms. PATH 416 Fundamental Immunology is required for MSTP students in the ITP unless they have sufficient prior immunology background as determined by the ITP Chair and curriculum coordinators (e.g. Drs. Harding and Nedrud).

^ Alternate course is MSTP 400 Research Rotation in Medical Scientist Training Program for MSTP students and PATH 601 Special Problems for direct admit students.

** PATH 520 Basic Cancer Biology and the Interface with Clinical Oncology + PATH 521 Special Topics in Cancer Biology and Clinical Oncology is included as a Track Elective for ITP students.

Cancer Biology Training Program (CBTP)

First Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology I (CBIO 453)*</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Biology I (CBIO 455)*</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Rotation in Biomedical Sciences Training Program (BSTP 400)*</td>
<td>0-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mentor and track chosen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Pathologic Mechanisms (PATH 510)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Cancer Biology and the Interface with Clinical Oncology (PATH 520)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Topics in Cancer Biology and Clinical Oncology (PATH 521)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Pathology Seminar I (PATH 511)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBTP Track Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives (Core, CBTP track or other)**</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Problems (PATH 601)</td>
<td>1-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis proposal defense and advancement to candidacy with next 9 months*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar II (PATH 512)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives (Core, CBTP track or other)**</td>
<td>4-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Problems (PATH 601) or Dissertation Ph.D. (PATH 701)</td>
<td>1-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis proposal defense and advancement to candidacy must be completed**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>8-16</td>
<td>6-16</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Pathology Seminar I (PATH 511)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701)***</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar II (PATH 512)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701)***</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>2-10</td>
<td>2-10</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Pathology Seminar I (PATH 511)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701)***</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar II (PATH 512)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701)***</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>2-10</td>
<td>2-10</td>
</tr>
</tbody>
</table>

Fifth Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Pathology Seminar I (PATH 511)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701)***</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar II (PATH 512)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Important: Students should take the following steps to reduce charges to their mentor and department: After advance to candidacy, it is no longer necessary to register for 9 credits per semester to maintain full-time student status. In the first semester after advancement to candidacy, students should register only for the number of credits of PATH 701 Dissertation Ph.D. needed to bring their total number of accumulated credits of PATH 701 to 9 by the end of the semester (and should register for no other courses). In subsequent semesters, students should register for only 1 credit of PATH 701 (and no other courses), except that in the final semester registration should be for the number of credits of PATH 701 needed to complete a total of 18 credits by the end of the semester. **Exception:** It is important to maximize the number of PATH 701 credits that can be completed during periods where training grant support is available. If the student is on the NIH T32 training grant of NRSA award or other funding mechanism that supports this level of tuition, registration should be for the full 9 credits during semesters when grant support for tuition will be available, until a total of 18 credits of PATH 701 is accumulated, after which registration should be for only 1 credit of PATH 701 each semester until graduation. Even prior to advancing to candidacy, if a student has completed 36 "foundation" credits of graduate courses (at least 24 of which must be graded courses), the student should enroll in as many credits of PATH 701 as possible up to a maximum of 6 credits with the remaining credits to be graded courses or PATH 601. In the semester in which the student advances to candidacy, any PATH 601 credits for that semester that are beyond the 36 "foundation" credits should be converted to PATH 701 by petition to Graduate Studies. Students registering for PATH 601, PATH 651 or PATH 701 must indicated their thesis advisor as the Instructor. If a Class Section does not exist with your Thesis Advisor as Instructor, please see the Student Affairs Coordinator to add the Section in order for you to register.

NOTE: Schedule beyond year 5 will generally be the same as year 5.

Courses

PATH 316. Fundamental Immunology. 4 Units.

Introductory immunology providing an overview of the immune system, including activation, effector mechanisms, and regulation. Topics include antigen-antibody reactions, immunologically important cell surface receptors, cell-cell interactions, cell-mediated immunity, innate versus adaptive immunity, cytokines, and basic molecular biology and signal transduction in B and T lymphocytes, and immunopathology. Three weekly lectures emphasize experimental findings leading to the concepts of modern immunology. An additional recitation hour is required to integrate the core material with experimental data and known immune-mediated diseases. Five mandatory 90 minute group problem sets per semester will be administered outside of lecture and recitation meeting times. Graduate students will be graded separately from undergraduates, and 22 percent of the grade will be based on a critical analysis of a recently published, landmark scientific article. Offered as BIOL 316, BIOL 416, CLBY 416, PATH 316 and PATH 416. Prereq: BIOL 215 and BIOL 215L.
PATH 390. Undergraduate Research in Cancer Biology, Immunology, or Pathology. 1 - 3 Units.
Students undertake a research project directly related to ongoing research in the investigator’s/instructor’s laboratory. Written proposal outlining research topic, a schedule of meetings and format and length of final written report to be prepared prior to registration for credit. Recommended preparation: One year of college chemistry and consent of instructor.

PATH 405. Discussions in Molecular Immunology (Health and Disease). 2 Units.
Targeted student population would be undergraduate (Biology major), PhD, MD, or MD/PhD students interested in emerging research on the mechanisms of molecular immunology and effects on health and defects in disease. Readings will be assigned, and students will come to class prepared for discussions. P/NP grades will be based on these discussions. 5 or fewer students will be selected for this class. Prereq: PATH 416 or equivalent. Offered as BIOL 316, BIOL 416, CLBY 416, PATH 316 and PATH 416. Prereq: Graduate standing and consent of instructor.

PATH 406. Basic Cancer Biology and the Interface with Clinical Oncology. 3 Units.
This is a graduate-level introductory course in cancer biology taught through the Departments of Pharmacology and Pathology. This course will give students a broad overview of current basic cancer biology, highlight recent advances in cancer therapeutics, and provide a clinical perspective of the pathogenesis and treatment of common cancers. Classes will be of lecture and discussion format, and will also include student discussion of journal research articles to develop critical thinking in cancer research and experimental design as well as presentation/communication skills. About 1 to 3 students per class will be scheduled to lead the presentation and discussion of the selected journal articles. However, all students will be required to read the material in advance and be ready for discussion. Topics will cover growth factor action and signal transduction, oncogenes, tumor suppressor genes, DNA damage, apoptosis, cancer immunology, cancer stem cells, metastasis, angiogenesis, chemotherapy, radiation therapy, targeted therapeutics, photodynamic therapy, targeting cancer stem cells, chemoprevention, and clinical aspects of cancers of the breast, prostate, lymphatic tissue, and colon. Course grades for PHRM/PATH 520 (Ph.D. track): will be determined by class participation/presentation (40%), an original research grant proposal (35%) and written and oral critiques of two research proposals (25%). Course grades for PHRM/PATH 406 (M.S. and non-degree track): will be determined by class participation/presentation (40%), a literature review term paper (35%) and oral defense of term paper with course directors (25%). Presentations/Participation: Instructors will complete a standardized evaluation form to provide you uniform feedback in a timely manner. Required Reading: Assigned reviews, original articles (in blackboard) Recommended Reading: The Biology of Cancer (2nd Edition), by Robert A. Weinberg Garland Science, copyright 2014 Recommended Preparation: A course in Cell Biology. A course in Molecular Biology. Offered as PATH 406, PATH 520, PHRM 406 and PHRM 520.

PATH 410. Aging and the Nervous System. 1 Unit.
Lectures and discussion on aspects of neurobiology of aging in model systems; current research on Alzheimer's, Parkinson's, and Huntington's diseases.

PATH 415. Cytoskeleton and Disease. 1 Unit.
Discussion of recent papers that have added to knowledge of normal cytoskeletal functions and their alterations in disease.

PATH 416. Fundamental Immunology. 4 Units.
Introductory immunology providing an overview of the immune system, including activation, effector mechanisms, and regulation. Topics include antigen-antibody reactions, immunologically important cell surface receptors, cell-cell interactions, cell-mediated immunity, innate versus adaptive immunity, cytokines, and basic molecular biology and signal transduction in B and T lymphocytes, and immunopathology. Three weekly lectures emphasize experimental findings leading to the concepts of modern immunology. An additional recitation hour is required to integrate the core material with experimental data and known immune mediated diseases. Five mandatory 90 minute group problem sets per semester will be administered outside of lecture and recitation meeting times. Graduate students will be graded separately from undergraduates, and 22 percent of the grade will be based on a critical analysis of a recently published, landmark scientific article. Offered as BIOL 316, BIOL 416, CLBY 416, PATH 316 and PATH 416. Prereq: Graduate standing and consent of instructor.

PATH 417. Cytokines: Function, Structure, and Signaling. 3 Units.
Regulation of immune responses and differentiation of leukocytes is modulated by proteins (cytokines) secreted and/or expressed by both immune and non-immune cells. Course examines the function, expression, gene organization, structure, receptors, and intracellular signaling of cytokines. Topics include regulatory and inflammatory cytokines, colony stimulating factors, chemokines, cytokine and cytokine receptor gene families, intracellular signaling through STAT proteins and tyrosine phosphorylation, clinical potential, and genetic defects. Lecture format using texts, scientific reviews and research articles. Recommended preparation: PATH 416 or equivalent. Offered as BIOL 417, CLBY 417, and PATH 417.

PATH 418. Tumor Immunology. 3 Units.
Interactions between the immune system and tumor cells. Topics include the historical definition of tumor specific transplantation antigens, immune responses against tumor cells, the effects of tumor cell products on host immune responses, molecular identification of tumor specific transplantation antigens and recent advances in the immunotherapy of human cancers. Prereq: PATH 416.

PATH 420. Topics in Evolution and Medicine. 3 Units.
The course will be based primarily on the textbook, as well as additional readings to supplement this lucide but relatively brief introduction to the field. Topics to be covered include the overview of the relevance of evolution to medicine; human demography, history and disease; basic and evolutionary genetics; cystic fibrosis; life history trade-offs and the evolutionary biology of aging; cancer; host-pathogen interactions and co-evolution; somatic cell mutation, selection, and evolution in health and disease (not in textbook); sexually transmitted diseases; malaria; gene culture co-evolution; and man-made diseases. Recommended Preparation: Undergraduate knowledge of genetics, biochemistry, cell biology, microbiology, and immunology is advisable. Prior consultation and permission from the Course Director is strongly advised.
PATH 422. Current Topics in Cancer. 3 Units.
The concept of cancer hallmarks has provided a useful guiding principle in our understanding of the complexity of cancer. The hallmarks include sustaining proliferative signaling, evading growth suppressors, enabling replicative immortality, activating invasion and metastasis, inducing angiogenesis, resisting cell death, deregulating cellular energetics, avoiding immune destruction, tumor-promoting inflammation, and genome instability and mutation. The objectives of this course are to (1) examine the principles of some of these hallmarks, and (2) explore potential therapies developed based on these hallmarks of cancer. This is a student-driven and discussion-based graduate course. Students should have had some background on the related subjects and have read scientific papers in their prior coursework. Students will be called on to present and discuss experimental design, data and conclusions from assigned publications. There will be no exams or comprehensive papers but students will submit a one-page critique (strengths and weaknesses) of one of the assigned papers prior to each class meeting. The course will end with a full-day student-run symposium on topics to be decided jointly by students and the course director. Grades will be based on class participation, written critiques, and symposium presentations. Offered as BIOC 420, MBIO 420, PATH 422, and PHRM 420. Prereq: CIBIO 453 and CIBIO 455.

PATH 430. Oxidative Stress and Disease Pathogenesis. 1 Unit.
Oxidative stress and free radicals are implicated in a number of disease processes including aging, arthritis, emphysema, Alzheimer’s disease and cancer. Lecture course with discussion of recent studies concerning the formation and destructive mechanisms of free radicals in the context of various disease processes. Students read assigned papers and discuss these in class.

PATH 432. Current Topics in Vision Research. 3 Units.
Vision research is an exciting and multidisciplinary area that draws on the disciplines of biochemistry, genetics, molecular biology, structural biology, neuroscience, and pathology. This graduate level course will provide the student with broad exposure to the most recent and relevant research currently being conducted in the field. Topics will cover a variety of diseases and fundamental biological processes occurring in the eye. Regions of the eye that will be discussed include the cornea, lens, and retina. Vision disorders discussed will include age-related macular degeneration, retinal ciliopathies, and diabetic retinopathy. Instructors in the course are experts in their field and are members of the multidisciplinary visual sciences research community here at Case Western Reserve University. Students will be exposed to the experimental approaches and instrumentation currently being used in the laboratory and in clinical settings. Topics will be covered by traditional lectures, demonstrations in the laboratory and the clinic, and journal club presentations. Students will be graded on their performance in journal club presentations (40%), research proposal (40%), and class participation (20%). Offered as NEUR 432, PATH 432, PHRM 432 and BIOC 432.

PATH 444. Neurodegenerative Diseases:Pathological,Cell. & Molecular Perspectives. 3 Units.
This course, taught by several faculty members, encompasses the full range of factors that contribute to the development of neurodegeneration. Subjects include pathological aspects, neurodegeneration, genetic aspects, protein conformation and cell biology in conditions such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis and prion diseases. Students read assigned primary literature and present and discuss these in class.

PATH 450. Interdisciplinary Musculoskeletal Research: Selected Topics and Grant Writing Workshop. 3 Units.
This is an introductory graduate course in MSK research topics, grant writing, and reviewing skills. During this course, each student will be introduced to diverse multidisciplinary topics in MSK research and will write a research grant on a MSK topic of his/her choice that is not regurgitation of their mentor’s grant. Students will also participate in editing and reviewing the proposals of their classmates. Proposals can form the basis of fellowship applications (F30/F31). For predocs, your department/program may allow the proposal to form the basis for the written component of your preliminary examination. Recommended Preparation: Current engagement in musculoskeletal research.

PATH 460. Introduction to Microarrays. 3 Units.
Microarray technology is an exciting new technique that is used to analyze gene expression in a wide variety of organisms. The goal of this course is to give participants a hands-on introduction to this technology. The course is intended for individuals who are preparing to use this technique, including students, fellows, and other investigators. This is a hands-on computer-based course, which will enable participants to conduct meaningful analyses of microarray data. Participants will gain an understanding of the principles underlying microarray technologies, including: theory of sample preparation, sample processing on microarrays, familiarity with the use of Affymetrix Microarray Suite software and generation of data sets. Transferring data among software packages to manipulate data will also be discussed. Importation of data into other software (GeneSpring and DecisionSite) will enable participants to mine the data for higher-order patterns. Participants will learn about the rationale behind the choice of normalization and data filtering strategies, distance metrics, use of appropriate clustering choices such as K-means, Hierarchical, and Self Organizing Maps. Offered as BIOC 460, PATH 460 and CNCR 460.

PATH 465. Advanced Immunobiology. 4 Units.
This course will cover fundamental (innate and adaptive responses, antigen recognition, cell activation, etc.) and applied (immune evasion, autoimmunity, allergy, transplantation, vaccines, etc.) immunology topics, highlighting the most important and recent advancements found in the primary literature. Lectures will be derived largely from the primary literature, but will also include modern techniques and fundamental background knowledge to enhance the learning environment for the immunology concepts presented. Course organization consists of two lectures per week by the immunology faculty, midterm and final examinations, and an oral presentation. Enrolled students have the option of concurrent enrollment in PATH 466 Writing for Immunologists. Prereq: PATH 416

PATH 466. Proposal Writing for Immunologists. 1 Unit.
This course is an introduction to research proposal writing and evaluation for immunology graduate students. One of the most important aspects of being an active investigator in academia, biotechnology, or pharmaceutical industries is being a skilled communicator of one’s ideas. This course is designed to teach these practical writing skills and will include lectures and discussions of key writing strategies. Throughout the semester, students will write a research proposal on a topic outside of their thesis research focus (but it can be related), present their ideas in front of the class, and take part in an end-of-semester review panel of the proposals of their classmates. Enrollment requires concurrent enrollment in PATH 465 Advanced Immunobiology and instructor permission. Prereq: PATH 416. Coreq: PATH 465.
PATH 475. Cell and Molecular Foundations of Pathology. 3 Units.
This course is designed for M.S. students in the Pathology Graduate Program, and is an introductory course covering normal cell and molecular biology as well as cell physiology. Additional topics to be discussed in the course will include cell structure and function, as well as correlates to cellular and molecular pathology. Recommended Preparation: Should have undergrad-level cell biology and biochemistry.

PATH 480. Logical Dissection of Biomedical Investigations. 3 Units.
PATH 480 is an upper level graduate course encompassing discussion and critical appraisal of both published and pre-published research papers, book chapters, commentaries and review articles. Emphasis will be placed on evaluating the logical relationships connecting hypotheses to experimental design and experimental data to conclusions drawn.
Thus, the course will aim to develop students’ capacities for independent thinking and critical analysis. Half of the course will be devoted to an analysis of fundamental conceptual issues pertaining to immunology, but this material will be applicable to a wide variety of fields. The other half of the course will be devoted to the analysis of papers that have been submitted for publication (with the students acting as primary reviewers of these papers). Our expectation is that this course will have practical relevance for students by providing them with methods to review their own prepublication manuscripts and eliminate common errors. It should also give students the tools to question wildly held beliefs in diverse biomedical fields. Recommended preparation is completion of the C3MB curriculum and 2nd year or higher graduate school training. Previous exposure to immunology and molecular biology will be helpful but not required.

PATH 481. Immunology of Infectious Diseases. 3 Units.
This course centers on mechanisms of immune defense, immune escape and disease pathogenesis caused by important human pathogens. Some of the infectious diseases covered in this course include AIDS, TB and Malaria. Most topics focus on immunology of viral, bacterial, protozoan and fungal infections. Topics will also include aspects of epidemiology and global health. Classes will consist of literature review of current scientific articles, faculty lectures and student presentations. Grades will be determined by exams, class presentations, participation, and short reports. Graduate students will also be asked to write a brief research proposal. PATH 481 involves faculty from: Division of Infectious Diseases and HIV Medicine, Center for Global Health & Diseases, Department of Pathology. Prereq: PATH 416.

PATH 488. Yeast Genetics and Cell Biology. 3 Units.
This seminar course provides an introduction to the genetics and molecular biology of the yeasts S. cerevisiae and S. pombe by a discussion of current literature focusing primarily on topics in yeast cell biology. Students are first introduced to the tools of molecular genetics and special features of yeasts that make them important model eukaryotic organisms. Some selected topics include cell polarity, cell cycle, secretory pathways, vesicular and nuclear/cyttoplasmic transport, mitochondrial import and biogenesis, chromosome segregation, cytoskeleton, mating response and signal transduction. Offered as CLBY 488, GENE 488, MBIO 488, and PATH 488.

PATH 510. Basic Pathologic Mechanisms. 4 Units.
An interdisciplinary introduction to the fundamental principles of molecular and cellular biology as they relate to the pathologic basis of disease. Lectures, laboratories, conferences.

PATH 511. Experimental Pathology Seminar I. 1 Unit.
Weekly discussions of current topics and research by students, staff and distinguished visitors.

PATH 512. Experimental Pathology Seminar II. 1 Unit.
Weekly discussions of current topics and research by students, staff and distinguished visitors.

PATH 520. Basic Cancer Biology and the Interface with Clinical Oncology. 3 Units.
This is a graduate-level introductory course in cancer biology taught through the Departments of Pharmacology and Pathology. This course will give students a broad overview of current basic cancer biology, highlight recent advances in cancer therapeutics, and provide a clinical perspective of the pathogenesis and treatment of common cancers. Classes will be of lecture and discussion format, and will also include student discussion of journal research articles to develop critical thinking in cancer research and experimental design as well as presentation/communication skills. About 1 to 3 students per class will be scheduled to lead the presentation and discussion of the selected journal articles. However, all students will be required to read the material in advance and be ready for discussion. Topics will cover growth factor action and signal transduction, oncogenes, tumor suppressor genes, DNA damage, apoptosis, cancer immunology, cancer stem cells, metastasis, angiogenesis, chemotherapy, radiation therapy, targeted therapeutics, photodynamic therapy, targeting cancer stem cells, chemoprevention, and clinical aspects of cancers of the breast, prostate, lymphatic tissue, and colon. Course grades for PHRM/PATH 520 (Ph.D. track): will be determined by class participation/presentation (40%), an original research grant proposal (35%) and written and oral critiques of two research proposals (25%). Course grades for PHRM/PATH 406 (M.S. and non-degree track): will be determined by class participation/presentation (40%), a literature review term paper (35%) and oral defense of term paper with course directors (25%). Presentations/Participation: Instructors will complete a standardized evaluation form to provide you uniform feedback in a timely manner. Required Reading: Assigned reviews, original articles (in blackboard) Recommended Reading: The Biology of Cancer (2nd Edition), by Robert A. Weinberg Garland Science, copyright 2014 Recommended Preparation: A course in Cell Biology. A course in Molecular Biology. Offered as PATH 406, PATH 520, PHRM 406 and PHRM 520.

PATH 521. Special Topics in Cancer Biology and Clinical Oncology. 1 Unit.
This one credit hour course in Cancer Biology is intended to give students an opportunity to do independent literature research while enrolled in PHRM 520/PATH 520. Students must attend weekly Hematology/Oncology seminar series and write a brief summary of each of the lectures attended. In addition, students must select one of the seminar topics to write a term paper which fully reviews the background related to the topic and scientific and clinical advances in that field. This term paper must also focus of Clinical Oncology, have a translational research component, and integrate with concepts learned in PHRM 520/PATH 520. Pharmacology students must provide a strong discussion on Therapeutics, while Pathology students must provide a strong component on Pathophysiology of the disease. Recommended preparation: CBIO 453 and CBIO 455, or concurrent enrollment in PHRM 520 or PATH 520. Offered as PATH 521 and PHRM 521.

PATH 523. Histopathology of Organ Systems. 3 Units.
Comprehensive course covering the underlying basic mechanisms of injury and cell death, inflammation, immunity, infection, and neoplasia followed by pathology of specific organ systems. Material will include histological ('structure') and physiological ('function') aspects related to pathology (human emphasis). Recommended preparation: ANAT 412 or permission of instructor. Offered as ANAT 523 and PATH 523.
PATH 524. Cell Biology of Neurodegenerative Disorders. 3 Units.
PATH 524 is a 3 credit hour introductory course on neurodegenerative disorders intended for Master’s and first and second-year medical students. This course attempts to bridge the gap between molecular mechanisms at the cellular level with disease presentation and therapeutic options for neurodegenerative disorders of protein misfolding and metal mis-metabolism. The course will cover topics related to Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Amyotrophic lateral sclerosis, Multiple sclerosis, Prion diseases, disorders of iron and copper metabolism, and other disorders of interest to the students. The class will meet once every week, and following an introductory lecture, the students will discuss relevant scientific reports from recent literature. Students are expected to participate actively in class discussion, and write a 5-6 page research proposal following NIH guidelines for the final exam. The students are expected to present and defend their proposal in class. Grading criteria: Class participation (70%), final paper and presentation (30%).

PATH 525. Protein Misfolding and Human Disease: Molecular Basis and Clinical Implications. 3 Units.
This is a graduate-level seminar course that familiarizes the students with human diseases resulting from aberrations in protein folding, processing, and turnover. Contribution of associated inflammation and heavy metal mis-metabolism will be discussed where appropriate. Specific examples include, but are not limited to, Alzheimer’s Disease, Parkinson’s Disease, Prion disorders multiple sclerosis, amyotrophic lateral sclerosis, Huntington’s Disease, and others based on popular demand. The students will be expected to discuss relevant research publications in an interactive format. Grading will be based on class participation and an R21 grant proposal on the subject of their choice that does not overlap with their current area of research. Recommended Preparation: Concurrent enrollment in PATH 526, on grant-writing skills, is highly recommended but not required. Offered as PATH 525 and CLBY 525.

PATH 526. Introduction to Scientific Grant Writing. 1 Unit.
PATH 526 is a graduate-level course that will familiarize students with grant writing and reviewing skills. The students will be exposed to material pertaining to different grant opportunities, the grant review process, and strategies to maximize your chances of success. Grading will be based on class participation and step-wise preparation of a R21 grant proposal on a topic of your choice that does not overlap with your current area of research. Coreq: PATH 525.

PATH 601. Special Problems. 1 - 18 Units.
Research on the nature and causation of disease and on host factors which tend to protect against disease. Special courses and tutorials in subspecialty areas of general and/or systemic anatomical and/or clinical pathology.

PATH 650. Independent Study. 1 - 9 Units.
Laboratory rotation experience in a selected faculty research laboratory designed to introduce the M.S. student to all aspects of modern laboratory research including the design, execution and analysis of original experimental work.

PATH 651. Thesis M.S.. 1 - 18 Units.
PATH 701. Dissertation Ph.D.. 1 - 9 Units.
Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.

Department of Pharmacology
Room W-321, School of Medicine
http://pharmacology.case.edu/

Phone: 216.368.4617
Krzysztof Palczewski, PhD, Chair
krzysztof.palczewski@case.edu

The Department of Pharmacology offers training leading to MS, PhD or MD/PhD degrees for highly qualified post-undergraduate candidates committed to academic research careers in the biomedical sciences. Adequate preparation in the biological sciences, mathematics, organic chemistry, and physics or physical chemistry is a prerequisite for admission.

Multidisciplinary training, carried out by faculty in pharmacology and other basic science departments, emphasizes molecular, cellular, physiological, and clinical aspects of the pharmacological sciences. Areas of faculty expertise include drug/xenobiotic metabolism; receptor-ligand interactions, and biochemical reaction mechanisms; cell biology of signaling pathways; structure-function of membrane components; endocrine and metabolic regulation; cell surface and nuclear receptors, hormonal regulation of gene expression; cancer biology and therapeutics, bacterial and viral pathogenesis, neuroscience/neuropharmacology, and drug resistance.

Students who desire the combined MD/PhD degrees are admitted to the Medical Scientist Training Program (MSTP; please see separate listing in this publication). These students participate in the two-year integrated preclinical curriculum of the School of Medicine (University Program), which features clinical correlation of basic biologic concepts. Combined degree students who select the PhD in pharmacology undertake a series of advanced courses, research rotations, preliminary examinations and dissertation research in the same manner as that described for the PhD program.

Facilities
The Department of Pharmacology occupies about 25,000 net square feet distributed among several locations, namely the School of Medicine Harland Goff Wood Building and the adjacent Wood Research Tower, as well as facilities in the West Quad Bldg. Facilities include extensive chromatographic and tissue culture facilities, a transgenic mouse laboratory, imaging and confocal microscopy equipment, and ready access to specialized research techniques, including various aspects of recombinant DNA and hybridoma technology, in situ hybridization histochemistry, fluorescence cell sorting, NMR and mass spectroscopy, X-ray crystallography, and cryo electron microscopy.

Masters Degrees
Although training efforts by the Department of Pharmacology are primarily directed toward the award of the PhD degree, training for the MS degree is offered also in a variety of contexts. For example, research assistants in the Department who seek educational advancement may pursue the MS degree via Plan A (thesis) or Plan B (coursework only). Medical students who seek to specialize in Pharmacology during the scholarly research component of their preclinical program may pursue the MS degree. Employees in the Biotechnology Industry may seek advanced training in Pharmacology by pursuing the MS degree at Case. Finally, a PhD candidate who is unable to complete the PhD requirements for extraordinary reasons may petition to have earned credits transferred to fulfill MS degree requirements.

Masters Plan B (Coursework, MS direct admit)
This program is aimed at students who seek a Master’s Degree but do not intend to specialize in research following their Master’s work. To satisfy the requirement for a Comprehensive Exam for the MS Degree, students
register for 1 credit of EXAM 600 during their final semester and sit for a integrative essay question-style examination on the content of the required coursework. A total of 30 credit hours are required (see below).

The advancement of understanding and practice of therapeutics is based on research. Therefore all students in degree programs in Pharmacology are expected to become involved in independent research and scholarship. Registration for PHRM 601 Independent Study and Research requires a pre-arrangement with a faculty mentor who will oversee the combination of study and bench research and proscribe the basis for satisfactory performance, including oral and written reports. With pre-approval of the Departmental Director of Graduate Studies, a student's study plan may substitute additional specific advanced courses to replace PHRM 601 Independent Study and Research credits.

Sample Plan of Study for Plan B

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology I (CBIO 453)</td>
<td>3</td>
</tr>
<tr>
<td>Molecular Biology I (CBIO 455)</td>
<td>3</td>
</tr>
<tr>
<td>Principles of Pharmacology I: The Molecular Basis of Therapeutics (PHRM 401)</td>
<td>3</td>
</tr>
<tr>
<td>Principles of Pharmacology II: The Physiological Basis of Therapeutics (PHRM 402)</td>
<td>3</td>
</tr>
<tr>
<td>Independent Study and Research (PHRM 601)</td>
<td>2</td>
</tr>
</tbody>
</table>

Year Total: 6
Units: 8

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacology Seminar Series (PHRM 511)</td>
<td>0 - 1</td>
</tr>
<tr>
<td>PHRM Elective</td>
<td>3</td>
</tr>
<tr>
<td>Independent Study and Research (PHRM 601)</td>
<td>2</td>
</tr>
<tr>
<td>Pharmacology Seminar Series (PHRM 511)</td>
<td>0 - 1</td>
</tr>
<tr>
<td>PHRM Elective</td>
<td>3</td>
</tr>
<tr>
<td>Independent Study and Research (PHRM 601)</td>
<td>3</td>
</tr>
<tr>
<td>Master’s Comprehensive Exam (EXAM 600)</td>
<td>1</td>
</tr>
</tbody>
</table>

Year Total: 5-6
Units: 9

Total Units in Sequence: 34

Masters Plan A (Research, direct admit)

In addition to the course requirements below, candidates for this degree are required to submit an acceptable written thesis based on their original research, and register for at least 9 credit hours of PHRM 651 Thesis M.S. (master's dissertation research). The acceptability of the thesis will be determined by an oral examination administered by the student's Thesis Advisory Committee. This committee must be chaired by a member of the primary Faculty of Pharmacology, and it should include the research mentor and two other faculty members (total of four faculty members, two from the Department of Pharmacology). As above, a minimum of 27 credit hours are required. For these students, passing the final exams in PHRM 401 Principles of Pharmacology I: The Molecular Basis of Therapeutics and PHRM 402 Principles of Pharmacology II: The Physiological Basis of Therapeutics satisfies the requirement for a Comprehensive Exam for the MS Degree.

Required courses for Plan A

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology I (CBIO 453)</td>
<td>3</td>
</tr>
<tr>
<td>Molecular Biology I (CBIO 455)</td>
<td>3</td>
</tr>
<tr>
<td>Thesis M.S. (PHRM 651)</td>
<td>1</td>
</tr>
<tr>
<td>Principles of Pharmacology I: The Molecular Basis of Therapeutics (PHRM 401)</td>
<td>3</td>
</tr>
<tr>
<td>Principles of Pharmacology II: The Physiological Basis of Therapeutics (PHRM 402)</td>
<td>3</td>
</tr>
<tr>
<td>Thesis M.S. (PHRM 651)</td>
<td>3</td>
</tr>
</tbody>
</table>

Year Total: 7
Units: 9

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacology Seminar Series (PHRM 511)</td>
<td>1</td>
</tr>
<tr>
<td>PHRM Elective</td>
<td>3</td>
</tr>
<tr>
<td>Thesis M.S. (PHRM 651)</td>
<td>5</td>
</tr>
<tr>
<td>Pharmacology Seminar Series (PHRM 511)</td>
<td>1</td>
</tr>
<tr>
<td>PHRM Elective</td>
<td>3</td>
</tr>
<tr>
<td>Thesis M.S. (PHRM 651)</td>
<td>5</td>
</tr>
</tbody>
</table>

Year Total: 9
Units: 9

Total Units in Sequence: 34

MD/MS Biomedical Sciences - Pharmacology

For Program Admissions information and MD requirements, see MD Dual Degree Programs (p. 26). A sample plan of study for the Pharmacology track is below.

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Biological Sciences I (IBIS 401)</td>
<td>1 - 9</td>
</tr>
<tr>
<td>Integrated Biological Sciences II (IBIS 402)</td>
<td>1 - 9</td>
</tr>
<tr>
<td>Independent Study and Research (PHRM 601) (Optional)</td>
<td>3</td>
</tr>
</tbody>
</table>

Year Total: 1-9
Units: 1-9

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Biological Sciences III (IBIS 403)</td>
<td>1 - 9</td>
</tr>
<tr>
<td>Principles of Pharmacology I: The Molecular Basis of Therapeutics (PHRM 401)</td>
<td>3</td>
</tr>
<tr>
<td>Pharmacology Seminar Series (PHRM 511)</td>
<td>1</td>
</tr>
<tr>
<td>Principles of Pharmacology II: The Physiological Basis of Therapeutics (PHRM 402)</td>
<td>3</td>
</tr>
</tbody>
</table>

Advanced Elective Course

complimentary to research focus 3
On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500)

Year Total: 5-13 6

Third Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent Study and Research (PHRM 601)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Pharmacology Seminar Series (PHRM 511)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pharmacology Seminar Series (PHRM 511)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Independent Study and Research (PHRM 601)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Exam in Biomedical Investigation (IBIS 600)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical School Curriculum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical School Curriculum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fifth Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical School Curriculum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical School Curriculum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Units in Sequence: 37-61

PhD in Pharmacology

Students seeking the PhD degree in Pharmacology are admitted into the Department of Pharmacology through the administrative structure of Biomedical Sciences Training Program (http://casemed.case.edu/bstp) which provides an introduction to many related training areas within the biomedical field during the first year. Alternatively, admission may be through the Medical Scientist Training Program (MSTP) (http://mstp.case.edu/default.asp).

The PhD program is divided into three phases. The first phase allows students to follow an integrated first-year sequence of course work that involves a core curriculum in cell and molecular biology. In addition, the first year includes three research rotations that allow the students to sample areas of research and become familiar with faculty members and their laboratories. Selection of a specific training program and thesis advisor is made before the end of the first year. The second phase involves a two part course in intensive Pharmacology study, oral presentations and laboratory experience, which cumulates in a comprehensive written exam designed to challenge students to apply key concepts in new context.

After advancing to PhD candidacy by passing the comprehensive written exam, students select one of four advanced tracks in Pharmacology.

Choice among the tracks is based on the area of research expertise of the thesis advisor and the student's interest in specific coursework. The four tracks are: Cancer Therapeutics, Membrane Biology and Pharmacology, Molecular Pharmacology and Cell Regulation, and Translational Therapeutics.

The PhD degree is awarded to students who complete a research project leading to two original and meritorious scientific contributions that are submitted for publication to leading journals in the field of study; at least one manuscript must be accepted for publication before scheduling the PhD thesis defense. Completion of the PhD degree will also require 36 hours of coursework (24 hours of which are graded) and 18 hours of PHRM 701 Dissertation Ph.D.

Core course requirements for the PhD in Pharmacology

The first year consists of the Core curriculum in Cell Biology and Molecular Biology (CBIO 453 Cell Biology I, CBIO 455 Molecular Biology I) and research rotations, as well as a scientific ethics course (15 credit hours). This is included with the additional 15 formal course credit hours which are required in Pharmacology as listed and then described below.

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHRM 400 Research Experience in Pharmacology</td>
<td>0 - 1</td>
<td></td>
</tr>
<tr>
<td>CBIO 453 Cell Biology I</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CBIO 455 Molecular Biology I</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>PHRM 401 Principles of Pharmacology I: The Molecular Basis of Therapeutics</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>PHRM 402 Principles of Pharmacology II: The Physiological Basis of Therapeutics</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>PHRM 511 Pharmacology Seminar Series</td>
<td>0 - 1</td>
<td></td>
</tr>
<tr>
<td>Two advanced electives (from the Advanced Track offerings)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Prelim I Comprehensive Examination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHRM 525 Topics in Cell and Molecular Pharmacology</td>
<td>0 - 18</td>
<td></td>
</tr>
<tr>
<td>Total Units</td>
<td></td>
<td>18-38</td>
</tr>
</tbody>
</table>

Plan of Study

§ Please also see Graduate Studies Academic Requirements for Doctoral Degrees (http://bulletin.case.edu/schoolofgraduatestudies/academicrequirements)

First Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology I (CBIO 453)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Molecular Biology I (CBIO 455)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Research Rotation 2,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent Study and Research (PHRM 601)</td>
<td></td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Selection of Thesis Advisor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles of Pharmacology I: The Molecular Basis of Therapeutics (PHRM 401)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Principles of Pharmacology II: The Physiological Basis of Therapeutics (PHRM 402)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Independent Study and Research (PHRM 601)</td>
<td></td>
<td></td>
<td>1-9</td>
</tr>
</tbody>
</table>
Pharmacology Seminar Series (PHRM 511) 0 - 1
On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500) 1
Year Total: 7-15 7-16 1

Second Year

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Advanced Track Elective 1
Independent Study and Research (PHRM 601) 1-9
Pharmacology Seminar Series (PHRM 511) 0 - 1
Prelim I (During January, Year 2) 0 - 1
Admission to candidacy

Prelim II Thesis Proposal (by Sept. 30, Yr 3) 2

Total Units in Sequence: 26-80

* Rotation 1 takes place during Summer prior to First Year Fall Semester.

Courses

PHRM 301. Undergraduate Research. 1 - 18 Units.

PHRM 309. Principles of Pharmacology. 3 Units.

Principles of Pharmacology introduces the basic principles that underlie all of Pharmacology. The first half of the course introduces, both conceptually and quantitatively, drug absorption, distribution, elimination and metabolism (pharmacokinetics) and general drug receptor theory and mechanism of action (pharmacodynamics). Genetic variation in response to drugs (pharmacogenetics) is integrated into these basic principles. The second half of the course covers selected drug classes chosen to illustrate these principles. Small group/recitation sessions use case histories to reinforce presentation of principles and to discuss public perceptions of therapeutic drug use. Graduate students will be expected to critically evaluate articles from the literature and participate in a separate weekly discussion session. Recommended preparation for PHRM 409: Undergraduate degree in science or permission of instructor. Offered as PHRM 309 and PHRM 409. (CHEM 223 and CHEM 224), or (CHEM 323 and CHEM 324), or (EBME 201 and EBME 202), or (BIOL 116 and BIOL 117).

PHRM 315. Nuclear Receptors in Health and Disease. 3 Units.

This course focuses on hormone-gene interactions mediated by the ligand-inducible transcription factors termed nuclear hormone receptors. The class will address the mechanisms of action, regulatory features, and biological activities of several nuclear receptors. The usage of nuclear receptors as therapeutic targets in disease states such as cancer, inflammation, and diabetes will also be discussed. The course aims to teach students to critically evaluate primary literature relevant to nuclear hormone receptors biology, and to reinforce presentation/discussion skills. Grades for undergraduates will be based on midterm, final exam; grades for graduates will be based on midterm, final exam, and presentation of a recently published research article related to the role of nuclear receptors in health and disease. Offered as PHRM 315, BIOC 315, PHRM 415 and BIOC 415.

PHRM 340. Science and Society Through Literature. 3 Units.

This course will examine the interaction of scientific investigation and discovery with the society it occurred in. What is the effect of science on society and, as importantly, what is the effect of society on science? An introduction will consider the heliocentric controversy with focus on Galileo. Two broad areas, tuberculosis and the Frankenstein myth, will then be discussed covering the period 1800-present. With tuberculosis, fiction, art and music will be examined to understand the changing views of society towards the disease, how society’s perception of tuberculosis victims changed, and how this influenced their treatments and research. With Frankenstein, the original novel in its historical context will be examined. Using fiction and film, the transformation of the original story into myth with different connotations and implications will be discussed. Most classes will be extensive discussions coupled with student presentations of assigned materials. Offered as PHRM 340, BETH 440, PHRM 440, and HSTY 440.

PHRM 400. Research Experience in Pharmacology. 0 - 1 Units.

Research rotation in pharmacology.

PHRM 401. Principles of Pharmacology I: The Molecular Basis of Therapeutics. 3 Units.

This core course focuses on the chemical and biochemical properties of therapeutic agents and molecular mechanisms of therapeutic action, including kinetic and thermodynamic principles of enzyme catalysis and drug-receptor interactions. Moreover, emphasis is placed on fundamental principles of pharmacokinetics, including the absorption, distribution, metabolism, and excretion of drugs. Mathematical concepts needed to understand appropriate administration of drugs and maintaining therapeutic concentrations of drugs in the body are discussed. A second broad area of emphasis is on fundamental principles of pharmacodynamics, including drug-receptor theory, log dose-response relationships, therapeutic index, receptor turnover, and signal transduction mechanisms. The primary learning objective is to develop a self-directed, critical approach to the evaluation and design of experimental research in the broad context of receptor interactions with endogenous ligands and therapeutic agents in the context of disease models. This is a team-coordinated course involving session organized by faculty to facilitate student-directed learning experiences including discussion of study questions, problem solving applications, and primary literature presentations. A two-part laboratory exercise introduces experimental methodologies widely applied during the study of molecular interactions between therapeutic agents and receptor targets to reinforce fundamental principles of drug action. This 3-credit hour course meets 3 hr per week during the spring semester of year 1.
PHRM 402. Principles of Pharmacology II: The Physiological Basis of Therapeutics. 3 Units.
This course focuses on human physiology of organ systems including the central nervous system, cardiovascular system, and those systems (gastrointestinal, hepatic, and renal) that are involved in determining the pharmacokinetics or time course of drug action in vivo. A second major emphasis is placed on disease-based sessions where normal physiology, pathophysiology, and key drug classes to treat pathophysiologies are discussed. The students learn key concepts in endocrine pathologies, inflammatory disorders, pulmonary diseases, infectious diseases, and cancer. The main learning objectives are for the student to gain an understanding of basic principles of modern pharmacology and physiology and to build self-directed learning skills. This is a highly interactive course in which faculty lectures are minimized. A heavy emphasis is placed on student-directed learning experiences including presentation and discussion of primary literature, problem solving applications, small group discussion and team-based learning. This 3-credit hour course meets 3 hr per week during the fall semester of year 2.

PHRM 403. Public and Professional Views of Modern Therapeutics. 3 Units.
This course will present the students with headline news stories from the popular press along with pertinent published articles from the scientific literature. The object is to engage the students in critical evaluation of the scientific literature and news reports to discern the scientific basis for decisions such as removal of drugs from the market. The course will focus on topics such as Cox-2 Inhibitors and Heart Disease, Antidepressant Use for Adolescents, and Parkinson’s Disease and Stem Cell Therapy, among others. Evaluation will be based on participation in student-led discussion sessions, weekly topical quizzes, and on written critiques of the primary literature.

PHRM 406. Basic Cancer Biology and the Interface with Clinical Oncology. 3 Units.
This is a graduate-level introductory course in cancer biology taught through the Departments of Pharmacology and Pathology. This course will give students a broad overview of current basic cancer biology, highlight recent advances in cancer therapeutics, and provide a clinical perspective of the pathogenesis and treatment of common cancers. Classes will be of lecture and discussion format, and will also include student discussion of journal research articles to develop critical thinking in cancer research and experimental design as well as presentation/communication skills. About 1 to 3 students per class will be scheduled to lead the presentation and discussion of the selected journal articles. However, all students will be required to read the material in advance and be ready for discussion. Topics will cover growth factor action and signal transduction, oncogenes, tumor suppressor genes, DNA damage, apoptosis, cancer immunology, cancer stem cells, metastasis, angiogenesis, chemotherapy, radiation therapy, targeted therapeutics, photodynamic therapy, targeting cancer stem cells, chemoprevention, and clinical aspects of cancers of the breast, prostate, lymphatic tissue, and colon. Course grades for PHRM/PATH 520 (Ph.D. track): will be determined by class participation/presentation (40%), an original research grant proposal (35%) and written and oral critiques of two research proposals (25%). Course grades for PHRM/PATH 406 (M.S. and non-degree track): will be determined by class participation/presentation (40%), a literature review term paper (35%) and oral defense of term paper with course directors (25%). Presentations/Participation: Instructors will complete a standardized evaluation form to provide you uniform feedback in a timely manner. Required Reading: Assigned reviews, original articles (in blackboard) Recommended Reading: The Biology of Cancer (2nd Edition), by Robert A. Weinberg Garland Science, copyright 2014 Recommended Preparation: A course in Cell Biology. A course in Molecular Biology. Offered as PATH 406, PATH 520, PHRM 406 and PHRM 520.

PHRM 409. Principles of Pharmacology. 3 Units.
Principles of Pharmacology introduces the basic principles that underlie all of Pharmacology. The first half of the course introduces, both conceptually and quantitatively, drug absorption, distribution, elimination and metabolism (pharmacokinetics) and general drug receptor theory and mechanism of action (pharmacodynamics). Genetic variation in response to drugs (pharmacogenetics) is integrated into these basic principles. The second half of the course covers selected drug classes chosen to illustrate these principles. Small group/recitation sessions use case histories to reinforce presentation of principles and to discuss public perceptions of therapeutic drug use. Graduate students will be expected to critically evaluate articles from the literature and participate in a separate weekly discussion session. Recommended preparation for PHRM 409: Undergraduate degree in science or permission of instructor. Offered as PHRM 309 and PHRM 409.

PHRM 412. Membrane Transport Processes. 3 Units.
Membranes and membrane transporters are absolutely required for all cells to take up nutrient, maintain membrane potential and efflux toxins. This course will consider the classification and structure of membrane transport proteins and channels, examine the common mechanistic features of all systems and the specific features of different classes of transporter. Understanding the physiological integration of transport processes into cell homeostasis and consideration of transporters and channels as drug targets will be a goal. Course format is minimal lecture, primarily student presentations of primary literature papers. Offered as PHOL 412 and PHRM 412. Prereq: CBIO 453 and CBIO 455.
PHRM 415. Nuclear Receptors in Health and Disease. 3 Units.
This course focuses on hormone-gene interactions mediated by the
ligand-inducible transcription factors termed nuclear hormone receptors.
The class will address the mechanisms of action, regulatory features,
and biological activities of several nuclear receptors. The usage of
nuclear receptors as therapeutic targets in disease states such as
cancer, inflammation, and diabetes will also be discussed. The course
aims to teach students to critically evaluate primary literature relevant
to nuclear hormone receptors biology, and to reinforce presentation/
discussion skills. Grades for undergraduates will be based on midterm,
final exam; grades for graduates will be based on midterm, final exam,
and presentation of a recently published research article related to the
role of nuclear receptors in health and disease. Offered as PHRM 315,
BIOL 315, PHRM 415 and BIOL 415.

PHRM 420. Current Topics in Cancer. 3 Units.
The concept of cancer hallmarks has provided a useful guiding principle
in our understanding of the complexity of cancer. The hallmarks include
sustaining proliferative signaling, evading growth suppressors, enabling
replicative immortality, activating invasion and metastasis, inducing
angiogenesis, resisting cell death, deregulating cellular energetics,
avoiding immune destruction, tumor-promoting inflammation, and
genome instability and mutation. The objectives of this course are to
(1) examine the principles of some of these hallmarks, and (2) explore
potential therapies developed based on these hallmarks of cancer. This
is a student-driven and discussion-based graduate course. Students
should have had some background on the related subjects and have read
scientific papers in their prior coursework. Students will be called on to
present and discuss experimental design, data and conclusions from
assigned publications. There will be no exams or comprehensive papers
but students will submit a one-page critique (strengths and weaknesses)
of one of the assigned papers prior to each class meeting. The course
will end with a full-day student-run symposium on topics to be decided
jointly by students and the course director. Grades will be based on class
participation, written critiques, and symposium presentations. Offered
as BIOL 420, MBIO 420, PATH 422, and PHRM 420. Prereq: CBIO 453 and
CBIO 455.

PHRM 430. Advanced Methods in Structural Biology. 1 - 6 Units.
The course is designed for graduate students who will be focusing on
one or more methods of structural biology in their thesis project. This
course is divided into 3-6 sections (depending on demand). The topics
offered will include X-ray crystallography, nuclear magnetic resonance
spectroscopy, optical spectroscopy, mass spectrometry, cryo-electron
microscopy, and computational and design methods. Students can select
one or more modules. Modules will be scheduled so that students can
take all the offered modules in one semester. Each section is given in 5
weeks and is worth 1 credit. Each section covers one area of structural
biology at an advanced level such that the student is prepared for
graduate level research in that topic. Offered as BIOL 430, CHEM 430,
PHOL 430, and PHRM 430.

PHRM 432. Current Topics in Vision Research. 3 Units.
Vision research is an exciting and multidisciplinary area that draws on
the disciplines of biochemistry, genetics, molecular biology, structural
biology, neuroscience, and pathology. This graduate level course
will provide the student with broad exposure to the most recent and
relevant research currently being conducted in the field. Topics will
cover a variety of diseases and fundamental biological processes
occurring in the eye. Regions of the eye that will be discussed include the
cornea, lens, and retina. Vision disorders discussed include age-related
macular degeneration, retinal ciliopathies, and diabetic retinopathy.
Instructors in the course are experts in their field and are members of
the multidisciplinary visual sciences research community here at Case Western Reserve University. Students will be exposed to the
experimental approaches and instrumentation currently being used in the
laboratory and in clinical settings. Topics will be covered by traditional
lectures, demonstrations in the laboratory and the clinic, and journal
club presentations. Students will be graded on their performance in
journal club presentations (40%), research proposal (40%), and class
participation (20%). Offered as NEUR 432, PATH 432, PHRM 432 and
BIOL 432.

PHRM 440. Science and Society Through Literature. 3 Units.
This course will examine the interaction of scientific investigation and
discovery with the society it occurred in. What is the effect of science
on society and, as importantly, what is the effect of society on science?
An introduction will consider the heliocentric controversy with focus on
Galileo. Two broad areas, tuberculosis and the Frankenstein myth, will
then be discussed covering the period 1800-present. With tuberculosis,
fiction, art and music will be examined to understand the changing views
of society towards the disease, how society’s perception of tuberculosis
victims changed, and how this influenced their treatments and research.
With Frankenstein, the original novel in its historical context will be
examined. Using fiction and film, the transformation of the original
story into myth with different connotations and implications will be
discussed. Most classes will be extensive discussions coupled with
student presentations of assigned materials. Offered as PHRM 340,
BETH 440, PHRM 440, and HSTY 440.

PHRM 446. Cell Signaling. 3 Units.
This is an advanced lecture/journal/discussion format course that covers
cell signaling mechanisms. Included are discussions of neurotransmitter-
gated ion channels, growth factor receptor kinases, cytokine receptors,
G protein-coupled receptors, steroid receptors, heterotrimeric G proteins,
ras family GTPases, second messenger cascades, protein kinase
cascades, second messenger regulation of transcription factors,
microtubule-based motility, actin/myosin-based motility, signals for
regulation of cell cycle, signals for regulation of apoptosis. Offered as
CLBY 466, PHOL 466 and PHRM 466.

PHRM 475. Protein Biophysics. 3 Units.
This course focuses on in-depth understanding of the molecular
biophysics of proteins. Structural, thermodynamic and kinetic aspects of
protein function and structure-function relationships will be considered
at the advanced conceptual level. The application of these theoretical
frameworks will be illustrated with examples from the literature and
integration of biophysical knowledge with description at the cellular and
systems level. The format consists of lectures, problem sets, and student
presentations. A special emphasis will be placed on discussion of original
publications. Offered as BIOL 475, CHEM 475, PHOL 475, PHRM 475, and
NEUR 475.

PHRM 511. Pharmacology Seminar Series. 0 - 1 Units.
Current topics of interest in the pharmacologist sciences.
PHRM 513. Structural Journal Club. 1 Unit.
Current topics of interest in structural biology, and protein biophysics. Offered as PHOL 513 and PHRM 513.

PHRM 520. Basic Cancer Biology and the Interface with Clinical Oncology. 3 Units.
This is a graduate-level introductory course in cancer biology taught through the Departments of Pharmacology and Pathology. This course will give students a broad overview of current basic cancer biology, highlight recent advances in cancer therapeutics, and provide a clinical perspective of the pathogenesis and treatment of common cancers. Classes will be of lecture and discussion format, and will also include student discussion of journal research articles to develop critical thinking in cancer research and experimental design as well as presentation/communication skills. About 1 to 3 students per class will be scheduled to lead the presentation and discussion of the selected journal articles. However, all students will be required to read the material in advance and be ready for discussion. Topics will cover growth factor action and signal transduction, oncogenes, tumor suppressor genes, DNA damage, apoptosis, cancer immunology, cancer stem cells, metastasis, angiogenesis, chemotherapeutics, radiation therapy, targeted therapeutics, photodynamic therapy, targeting cancer stem cells, chemoprevention, and clinical aspects of cancers of the breast, prostate, lymphatic tissue, and colon. Course grades for PHRM/PATH 520 (Ph.D. track): will be determined by class participation/presentation (40%), an original research grant proposal (35%) and written and oral critiques of two research proposals (25%). Course grades for PHRM/PATH 406 (M.S. and non-degree track): will be determined by class participation/presentation (40%), a literature review term paper (35%) and oral defense of term paper with course directors (25%). Presentations/Participation: Instructors will complete a standardized evaluation form to provide you uniform feedback in a timely manner. Required Reading: Assigned reviews, original articles (in blackboard) Recommended Reading: The Biology of Cancer (2nd Edition), by Robert A. Weinberg Garland Science, copyright 2014 Recommended Preparation: A course in Cell Biology. A course in Molecular Biology. Offered as PATH 406, PATH 520, PHRM 406 and PHRM 520.

PHRM 521. Special Topics in Cancer Biology and Clinical Oncology. 1 Unit.
This one credit hour course in Cancer Biology is intended to give students an opportunity to do independent literature research while enrolled in PHRM 520/PATH 520. Students must attend weekly Hematology/Oncology seminar series and write a brief summary of each of the lectures attended. In addition, students must select one of the seminar topics to write a term paper which fully reviews the background related to the topic and scientific and clinical advances in that field. This term paper must also focus of Clinical Oncology, have a translational research component, and integrate with concepts learned in PHRM 520/PATH 520. Pharmacology students must provide a strong discussion on Therapeutics, while Pathology students must provide a strong component on Pathophysiology of the disease. Recommended preparation: CBIO 453 and CBIO 455, or concurrent enrollment in PHRM 520 or PATH 520. Offered as PATH 521 and PHRM 521.

PHRM 525. Topics in Cell and Molecular Pharmacology. 0 - 18 Units.
Individual library research project under the guidance of a pharmacology sponsor. Projects will reflect the research interest of the faculty sponsor, including molecular endocrinology, neuropharmacology, receptor activation and signal transduction, molecular mechanisms of enzyme action and metabolic regulation.

PHRM 526. Grant Writing Tutorial. 1 - 3 Units.
Students will be expected to provide critiques of a grant proposal to bring to a workshop. At the workshop, a faculty review panel will discuss the grant proposal and provide critiques to illustrate the key components that are necessary for any grant proposal, and the specific items that enhance the quality of the proposal or detract from it. The students will be able to compare what they emphasized in their critiques to what the expert panel focused on. After completing the workshop, each student will prepare a proposal based on their thesis topic; this document will be scored, and the student will also be evaluated for an oral defense of the proposal.

PHRM 527. Pathways to Personalized Medicine. 3 Units.
This is a course of independent study designed to take the student from the bedside to the bench and back again. Students will select a problem from a list of important therapeutic issues related to variability in drug responsiveness and design a research program to elucidate its molecular, biochemical, genetic and pathophysiological basis. The resulting research proposal is expected to be multidimensional and include molecular, cellular, whole animal and clinical investigations. To guide the process students will assemble a mentoring group including at least one member of the Translational Therapeutics Track Faculty, a clinician working in the clinical realm in which the problem originates and a basic scientist with relevant experience. The written proposal will be defended orally. Recommended preparation: 1st year Pharm Graduate required courses.

PHRM 528. Contemporary Approaches to Drug Discovery. 3 Units.
This course is designed to teach the students how lead compounds are discovered, optimized, and processed through clinical trials for FDA approval. Topics will include: medicinal chemistry, parallel synthesis, drug delivery and devices, drug administration and pharmacokinetics, and clinical trials. A special emphasis will be placed on describing how structural biology is used for in silico screening and lead optimization. This component will include hands-on experience in using sophisticated drug discovery software to conduct in silico screening and development of drug libraries. Each student will conduct a course project involving in silico screening and lead optimization against known drug targets, followed by the drafting of an inventory disclosure. Another important aspect of this course will be inclusion of guest lectures by industrial leaders who describe examples of success stories of drug development. Offered as BIOG 528, PHOL 528, PHRM 528, and SYBB 528.

PHRM 555. Current Proteomics. 3 Units.
This course is designed for graduate students across the university who wish to acquire a better understanding of fundamental concepts of proteomics and hands-on experience with techniques used in current proteomics. Lectures will cover protein/peptide separation techniques, protein mass spectrometry, bioinformatics tools, and biological applications which include quantitative proteomics, protein modification proteomics, interaction proteomics, structural genomics and structural proteomics. Laboratory portion will involve practice on the separation of proteins by two-dimensional gel electrophoresis, molecular weight measurement of proteins by mass spectrometry, peptide structural characterization by tandem mass spectrometry and protein identification using computational tools. The instructors’ research topics will also be discussed. Recommended preparation: CBIO 453 and CBIO 455. Offered as PHRM 555 and SYBB 555.
PHRM 600. Preparation for Qualifying Exam. 1 Unit.
Students pursuing the M.S. or Ph.D. degrees in Pharmacology are required to prepare systematically for the comprehensive qualifying exam by reviewing the concepts of cellular and molecular biology and pharmacology. The qualifier is comprised of a two-part written exam administered simultaneously to all eligible students. It is designed to evaluate their understanding of concepts presented in the various core courses. It also assesses their skills in critical reading of research articles and design of experiments. The division into two parts allows each student to receive feedback on deficient areas and work toward improvement on the second segment. Eligibility: Students may register for the exam when they have fulfilled two criteria: (a) Successful completion (grade B or better) in all of the Core Courses, and an overall GPA of 3.0 or better. (b) Satisfactory performance in all research rotations and consistent research effort in the thesis laboratory as documented formally by the Ph.D. mentor. No student on probation may sit for the Qualifying Exam (Prelim I). Prereq: CBIO 453, CBIO 455, PHRM 401 and PHRM 402.

PHRM 601. Independent Study and Research. 1 - 18 Units.

PHRM 651. Thesis M.S.. 1 - 18 Units.

PHRM 701. Dissertation Ph.D.. 1 - 9 Units.
Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.

Physician Assistant Program

Master of Science in Physician Assistant Studies

Cynthia Booth Lord, MHS, PA-C
PA Program Director

David Shafran, MD, MA
Director of Admissions

PAProgram@case.edu or 216.368.0575
https://case.edu/medicine/physician-assistant/

CWRU PA Program Curriculum Overview

The Case Western Reserve University PA program is a 102 credit-hour professional degree program that spans the course of 27 months. The program is a generalist program preparing learners to be leaders in PA practice in a variety of clinical settings. This intensive full-time graduate curriculum awards a Master of Science in Physician Assistant Studies (MSc in Physician Assistant Studies) from the School of Medicine upon completion. The curriculum, which must be successfully completed in order to meet program requirements for graduation, enables graduates to sit for the PA National Certifying Examination (administered by the National Commission on Certification of Physician Assistants) and obtain a state license.

The educational philosophy of the PA program emphasizes the practice of evidence-based, patient-centered medical care as well as accountability to patients, society and the profession through experiential learning and active community involvement. The first 15 months of the program are didactic in nature, divided into four semesters. This is followed by 12 months of clinical instruction comprised of twelve, four-week clinical rotations. Early clinical exposure is accomplished through pre-clinical clerkships in the first year. The PA program begins each year in May and ends in August. Students are recruited from the CASPA system.

The program design utilizes a hybrid blend of learning methodologies and styles including:

- Asynchronous learning
- Clinical simulations
- Case-based learning and clinical correlations
- Experiential learning in the community-the community is the “learning lab” of the PA program. Wellness, prevention, professionalism, communication skills and philanthropy are best taught directly in the community with patients in their own environment.
- Early clinical exposure/Pre-clinical clerkships-by the beginning of November of their first year, PA students are placed in clinical sites in the community for one half day a week to practice their clinical skills and begin to acculturate to the clinical environment and learn how to function on a team. The focus of this experience is to hone the students’ clinical skills in history, physical exam, oral presentation, medical documentation, communication skills and professionalism. It also serves as an early critical-thinking activity.
- Medical writing across the curriculum (MWAC) is introduced in the didactic phase through student reflections and progress in the clinical phase to scientific poster, hot topic and oral case presentations.

Organization and sequencing of coursework is both horizontally and vertically integrated facilitating a connected flow of systems and conditions, creating a curricular thread intended to enhance the development of critical thinking and problem solving. Planned redundancies help build a strong pre-clinical knowledge base. Through demonstrations, case discussions and simulation activities, students learn critical thinking and how to synthesize information to formulate and implement a patient management plan. Simulation activities allow the students to participate in scenarios that closely approximate real life patient encounters and, through a team based approach (small group), create their care plans. Hands on activities enhance the student’s ability to develop their critical thinking and technical skills. Experiential learning through community engagement introduces students to some of the concepts of team-based care and population health.

Physician Assistant Program Plan of Study- 27 Months

Didactic Curriculum Summer Semester I, Fall Semester I, and Spring Semester I

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Summer</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundations of Clinical Medicine-Principles of Interviewing (PAST 401)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostic Methods-Clinical Lab (PAST 403)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Correlations (PAST 404)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional Issues for PA’s-History & Roles of the PA I (PAST 411)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadaver dissection-based human anatomy with histology and physiologic correlations (PAST 410)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Diagnosis (PAST 402)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Microbiology & Infectious Disease (PAST 405)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 401</td>
<td>Foundations of Clinical Medicine-Principles of Interviewing</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 402</td>
<td>Physical Diagnosis</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 403</td>
<td>Diagnostic Methods-Clinical Lab.</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 404</td>
<td>Clinical Correlations</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 405</td>
<td>Medical Microbiology & Infectious Disease</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Courses

PAST 401. Foundations of Clinical Medicine-Principles of Interviewing. 3 Units.

The general purpose of this course is to teach the physician assistant student the skills necessary to conduct a clinical/medical interview with a patient and to be able to present the information to other health care professionals in both an oral and written form. This course, which is designed as small, group seminars, will focus on the skills necessary to question patients in a directed fashion and to listen to the patient with concern and empathy. Instruction will emphasize what data is needed in a complete medical history as well as the focused interview, the proper technique for gathering information, and the format for presentation of the data. Instructional techniques will include role-playing, small group discussion, and observation and critique by instructors, other students and simulated patient models. Prereq: Students must be in Physician Assistant Program.

PAST 402. Physical Diagnosis. 4 Units.

This lecture/discussion/laboratory course presents and explores the techniques for performing a complete and competent physical examination, understanding the pathophysiology presented by the patient, and organizing and reporting the findings in both written and oral format. Synthesis of historical and physical presentations for an accurate evaluation of the patient will be emphasized. The problem-oriented physical examination and special examination tools and techniques will be presented. Instructional techniques will include small group discussion, practical experience with other students and faculty, and the observation and critique of physical examination skills by faculty. Prereq: Students must be in Physician Assistant Program.

PAST 403. Diagnostic Methods-Clinical Lab. 1 Unit.

This course is designed to introduce the student to clinical laboratory medicine. Lectures are designed to review the various types of laboratory tests, acquisition and handling of specimens, normal values as well as interpretation of results and correlation with clinical conditions. Prereq: Students must be in Physician Assistant Program.

PAST 404. Clinical Correlations. 1 Unit.

This seminar course places emphasis on internal organs with clinical correlation to anatomic conditions. Content will include basis concepts of genetics, embryology, the comparison of normal and abnormal structural relationships and the demonstration of how these things relate to health and disease. Students will review on-line genetics learning modules and meet in small seminar groups to review anatomical clinical correlates. Prereq: Students must be in Physician Assistant Program.

PAST 405. Medical Microbiology & Infectious Disease. 2 Units.

This course is the study of microorganisms and the diseases they cause in man. It includes consideration of infectious disease microorganisms including their biochemical, serological and virulence characteristics, and clinical manifestations. An organ system approach is used to examine the fundamentals of pathogenicity, host response, epidemiological aspects of infectious disease, as well as clinical manifestations, diagnosis and treatment of infections with clinical correlations. Prereq: Students must be in Physician Assistant Program.
PAST 406. Ethics in Healthcare Delivery. 1 Unit.
This course is an overview of the discipline of medical ethics presenting the study and application of relevant principles, insights, and understandings of modern medical practice. The course includes a brief overview of ethical theories which lay the foundation for subsequent investigation into specific ethical problems found in medical science and technology. The purpose of the course is to provide a framework which enables the student to reason clearly and effectively about the ethics involved in medical science and technology. The course assumes no prior knowledge of philosophical ethics or medical science. A framework of ethical decision making is introduced and practiced using realistic medical cases via a Medical Ethics Committee. Prereq: Students must be in Physician Assistant Program.

PAST 407. Clinical Procedures. 4 Units.
The purpose is to prepare these future clinicians for clinical management of health and disease by preparing them for common clinical procedures. These will include basic and advanced surgical skills, basic laboratory skills, common out-patient procedures, common emergency procedures, and interpretation of electrocardiographs and common radiologic tests. Prereq: Students must be in Physician Assistant Program.

PAST 410. Cadaver dissection-based human anatomy with histology and physiologic correlations. 6 Units.
This course will provide students with a sound understanding of the normal human body as a foundation for subsequent pursuing biomedical careers. A combination of daily lectures and laboratories integrates cadaver dissection-based gross anatomy with the associated histology, embryology, neuroanatomy and basic physiology. This course is well-suited to all biomedical careers, including pre-clinical and biomedical undergraduates, post-baccalaureate, pre-clinical master of science graduate programs, plus medical and dental students seeking additional training in the anatomical sciences. It will meet any of the anatomy-oriented prerequisites being implemented for medical and dental school applications, including those preferring or requiring a cadaver-based experience. The assessments will include a combination of written and cadaver-based practical questions. Offered as ANAT 410 and PAST 410. Prereq: Students must be in Physician Assistant Program.

PAST 411. Professional Issues for PA's-History & Roles of the PA I. 1 Unit.
This one semester course explores through lecture and discussion the factors affecting the development of the profession and role socialization with emphasis on history, regulations and organizations governing PA practice. An overview of clinical responsibilities, team based practice, population health and the PAs role, licensing and credentialing practices will be presented and discussed. Prereq: Students must be in Physician Assistant Program.

PAST 412. Professional Issues for Physician Assistants II. 2 Units.
In this three course series students will explore factors affecting the development of the profession, the status of the PA in the U.S. healthcare system and current issues in clinical practice including practice-based improvement and systems-based practice. Through lecture and discussion, this series prepares the student for the transition from classroom to clinical training and clinical practice. Emphasis is given to the responsibilities that come with being a professional, professionalism and practicing quality improvement. Prereq: Students must be in Physician Assistant Program.

PAST 413. Professional Issues for Physician Assistants III. 2 Units.
In this three course series students will explore factors affecting the development of the profession, the status of the PA in the U.S. healthcare system and current issues in clinical practice including practice-based improvement and systems-based practice. Through lecture and discussion, this series prepares the student for the transition from classroom to clinical training and clinical practice. Emphasis is given to the responsibilities that come with being a professional, professionalism and practicing quality improvement. Prereq: Students must be in Physician Assistant Program.

PAST 420. Pharmacology I. 2 Units.
In this two course series, (PAST 421 Pharmacology II) students will be provided with a basic introduction to the principles of pharmacology and to drug classes of particular relevance to the physician assistant. Information concerning drug doses and calculations used in determining doses will be included in this course and PAST 421 Pharmacology. Prereq: Students must be in Physician Assistant Program.

PAST 421. Pharmacology II. 3 Units.
In this two course series (PAST 420 Pharmacology), physician assistant students will be provided with foundational knowledge of the therapeutic uses and effects of drugs. The indications, contraindications and adverse effects of prototypical drugs are covered. Drug dependence and addiction are also discussed. This course also includes a problem-based learning component which will enhance students’ teamwork and clinical reasoning skills by examining and analyzing case scenarios in small groups. Prereq: Students must be in Physician Assistant Program.

PAST 430. Principles of Internal Medicine. 7 Units.
This one semester lecture/discussion course provides students with a detailed study of the etiology, pathophysiology, signs, symptoms, diagnosis and treatment of various disorders encountered in internal medicine. A broad array of diseases in cardiology, dermatology, endocrinology, gastroenterology, gerontology, hepatology, hematology, oncology, urology, nephrology, neurology, pulmonology and rheumatology are explored. Prereq: Students must be in Physician Assistant Program.

PAST 431. Principles of Clinical Medicine-Surgery & Emergency Medicine. 4 Units.
This one semester lecture course presents the fundamentals of surgical disease and care of the acutely injured and ill patients. The purpose is to familiarize the student with the etiology, anatomy, pathophysiology, clinical manifestations and appropriate diagnosis and treatment of selected surgical conditions and conditions encountered in the surgical subspecialty and emergency medical settings. Prereq: Students must be in Physician Assistant Program.

PAST 432. Principles of Clinical Medicine-OB/GYN. 3 Units.
This lecture/case presentation course gives the student an overview of commonly encountered obstetric and gynecologic disorders. Anatomy and physiology of the human reproduction system are examined, including the changes in pregnancy, prenatal care, medical and surgical complications of pregnancy, pre- and postpartum care. Common gynecologic conditions, methods and effectiveness of contraception, cancer detection methods and the diagnosis and treatment of sexually transmitted infections in the female are explored. Prereq: Students must be in Physician Assistant Program.
PAST 433. Principles of Clinical Medicine-Pediatrics. 3 Units.
This course introduces the student to a unique, complex and challenging field of pediatrics. It emphasizes aspects of general pediatrics and provides a foundation for those students who elect to further study the health care of infants, children and adolescents. This course addresses issues unique to childhood and adolescence by focusing on human developmental biology, and by emphasizing the impact of family, community, and society on child health and well-being. Additionally, it focuses on the impact of disease and its treatment on the developing human, and emphasizes growth and development, principles of health supervision, and recognition of common health problems. Prereq: Students must be in Physician Assistant Program.

PAST 434. Principles of Clinical Medicine-Behavioral Medicine. 2 Units.
This one semester course gives students an overview of some of the most important areas in behavioral psychiatry. This course is an overview of basic psychiatric concepts and focuses on assessing patients who manifest psychological symptoms. Topics include diagnosis and treatment of anxiety disorders, mood disorders, common child and adolescent disorders, somatoform and factitious disorders, psychotic disorders, sleep disorders, adjustment and personality disorders, and drug and alcohol abuse and addresses forensic issues in behavioral health. Prereq: Students must be in Physician Assistant Program.

PAST 440. Pre-Clinical Clerkships I. 1 Unit.
This course/clerkship provides the student with clinical experience at clinical sites in the didactic year utilizing what was learned in Foundations of Clinical Medicine (Interviewing and Physical Diagnosis class/lab). During the pre-clinical time at program designated sites, students will continue to develop and apply their history and physical exam skills, interpersonal skills, oral presentation and medical documentation skills. For expanding skills and creating relationships within the community, this course also encompasses community service, experiential learning and interprofessional education activities. This course/clerkship will help to better prepare students to gain experience and develop confidence in approaching patients prior to entering the clinical year. Prereq: Students must be in Physician Assistant Program.

PAST 441. Pre-Clinical Clerkships II. 1 Unit.
This course/clerkship provides the student with clinical experience at clinical sites in the didactic year utilizing what was learned in Foundations of Clinical Medicine (Interviewing and Physical Diagnosis class/lab). During the pre-clinical time at program designated sites, students will continue to develop and apply their history and physical exam skills, interpersonal skills, oral presentation and medical documentation skills. For expanding skills and creating relationships within the community, this course also encompasses community service, experiential learning and interprofessional education activities. This course/clerkship will help to better prepare students to gain experience and develop confidence in approaching patients prior to entering the clinical year. Prereq: Students must be in Physician Assistant Program.

PAST 450. Culture and Health. 2 Units.
This lecture/discussion course provides students with a detailed understanding of the societal and individual prejudices, preconceptions, and biases that enter into the clinical interaction and how to develop appropriate responses and coping strategies. This course provides the student with common psychosocial problems encountered by health professionals today. Students explore issues related to sexuality, cultural competency, multicultural health, cross-cultural communication, and healthcare disparities. Prereq: Students must be in Physician Assistant Program.

PAST 451. Introduction to Public Health. 1 Unit.
This course will introduce students to concepts of public health and provide experience in public health by completion of a mentored project with a local health department. The course will enhance the student’s knowledge of the history and philosophy of public health, the Healthy People 2020 initiatives and the social determinants of health and how they can be impacted. Teaching methodologies will include online modules from the Association for Prevention Teaching and Research and discussion along with the mentored public health project. Prereq: Students must be in Physician Assistant Program.

PAST 452. Introduction to Evidence Based Medicine. 2 Units.
This course is intended to provide learners with a basic understanding of the principles of epidemiology, biostatistics and evidence-based medicine. The course involves analysis of prospective and retrospective studies, cross-sectional studies and experimental epidemiology. It will focus on epidemiological scenarios that relate to both infectious disease and chronic disease. In addition, the course will provide the student with a basic understanding of the application of statistical techniques to the biological and health sciences and to demonstrate their areas of application. Emphasis will be placed on probability laws, sampling and parameter estimation, test of hypothesis, correlation, regression and analysis of variance. Finally, students will be introduced to the basic concepts of evidence-based medicine, information mastery, and critical appraisal of the medical literature. Prereq: Students must be in Physician Assistant Program.

PAST 453. Medical Spanish Elective. 1 Unit.
This course will teach students the basics of Spanish as it applies to the medical field such as physical examinations, emergencies, common diseases within the Latino population, and specializations. By familiarizing students with conversational Spanish and medical Spanish, this course will enable students to apply their learning to real-world situations, to assist in communications, and ultimately to break down the barrier between doctors and patients. Prereq: Students must be in Physician Assistant Program.

PAST 454. Research Methods Elective. 1 Unit.
This lecture course introduces students to research design and scientific inquiry and provides them with the skills necessary for interpretation and critical evaluation of the medical literature. It includes a brief review of important statistical principles and methods and their application to problems in medicine and health. Prereq: Students must be in Physician Assistant Program.

PAST 477. Human Physiology. 4 Units.
This lecture/seminar experience is meant to enhance the students' fundamental knowledge in human physiology with an emphasis on physiologic concepts in relationship to health, disease and illnesses. The course will provide students with an understanding of the function, regulation and integration of the major organ systems. Offered as PAST 477 and PHOL 477. Prereq: Students must be in Physician Assistant Program.
PAST 500. Clinical Residency: Emergency Medicine Rotation. 3 Units.
This clinical rotation is designed to expose the student to the wide variety of problems encountered in the hospital-based emergency room setting in both the fast track and acute care sides of the emergency department. The rotation experience includes the medical/surgical management of patients of all ages (infant to geriatric) with presenting problems that may be of a life threatening nature. The formulation and understanding of the many and varied medical problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, and the development of a plan. The student will also be exposed to and perform diagnostic and therapeutic procedures. These experiences will be under appropriate supervision. Prereq: Students must be in Physician Assistant Program.

PAST 501. Clinical Residency: Family Medicine. 3 Units.
This clinical rotation is designed to give the student an understanding of family medicine/primary care medicine as practiced in office and/or clinic in an outpatient setting. The student will work with patients from a variety of social, economic and cultural backgrounds across the lifespan. They will experience continuity of care while assessing, diagnosing, monitoring, managing, referring and educating patients. The student will be exposed to both acute and chronic problems as well as the psychosocial problems that are encountered in this setting. Students may encounter and participate in the care of patients of all ages: pediatric, adolescent, adult and geriatric populations. The formulation and understanding of the many and varied medical problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem. Prereq: Students must be in Physician Assistant Program.

PAST 502. Clinical Residency: Geriatrics. 3 Units.
This clinical rotation is designed to give the student an understanding of geriatric medicine. The understanding of the many and varied medical and psychosocial problems in geriatric patients is accomplished via the accurate collection of data through a complete history and physical examination, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem. Teaching rounds and lectures may be used to introduce concepts of geriatric medicine. Prereq: Students must be in Physician Assistant Program.

PAST 503. Clinical Residency: Internal Medicine Rotation. 3 Units.
This clinical rotation is designed to provide the student with an understanding of the wide variety of problems encountered in hospital-based internal medicine. The formulation and understanding of the many and varied medical problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problems. Students are assigned to medical teams during their rotation. Teaching rounds and lectures are used to introduce concepts of internal medicine. Prereq: Students must be in Physician Assistant Program.

PAST 504. Clinical Residency: Obstetrics & Gynecology. 3 Units.
This clinical rotation is designed to expose the student to the variety of problems encountered in women's health care. The focus of the learning experience is on recognition and management of common gynecological illnesses, sexually transmitted infections, family planning, birth control, and cancer of the female reproductive system and breast. Obstetrical focus is on pregnancy, labor and delivery, and postpartum care. The student will also have an exposure to the surgical management of gynecological and obstetric problems. Teaching rounds and lectures may be used to introduce concepts of obstetrics and gynecology. Prereq: Students must be in Physician Assistant Program.

PAST 505. Clinical Residency: Pediatrics. 3 Units.
This clinical rotation is designed to emphasize care of the child from birth to adolescence. The focus of the learning experience is on recognition and management of common childhood illnesses, assessment of variations of normal growth and development, and the counseling of parents regarding immunizations, preventative health care visits, growth and development, nutrition, injury prevention and common psychosocial problems. The formulation and understanding of the many and varied medical problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem. Teaching rounds and lectures may be used to introduce concepts of pediatrics. Prereq: Students must be in Physician Assistant Program.

PAST 506. Clinical Residency: Behavioral and Mental Health. 3 Units.
This clinical rotation is designed to give the student an understanding of the psycho-social and behavioral components of health, disease, and disability. The student will be exposed to a variety of mental illnesses and disabilities and will also be able to recognize and categorize psychiatric disorders along with the therapeutic modalities used in their treatment. The formulation and understanding of the varied psychiatric problems is accomplished via the accurate collection of data through a complete history and mental status exam, interpretation of diagnostic testing when appropriate, formulation of a problem list, and the development of a plan for each presenting problem. Emphasis is placed on early recognition, intervention, and psychiatric referral and/or consultation. Teaching rounds and lectures are used to introduce concepts of psychiatric medicine. Prereq: Students must be in Physician Assistant Program.

PAST 507. Clinical Residency: Surgery. 3 Units.
This clinical rotation is designed to expose the student to the varied population with surgically manageable disease from adolescence to geriatrics. The formulation and understanding of the varied medical problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan. The focus of the learning experience is on the pre-operative evaluation and preparation of the patients for surgery, procedures and assisting during the intra-operative period, and the care of patients post-operatively. The student will be exposed to both emergent and non-emergent surgical management of patients. The student may be assigned to surgical teams during his/her rotation. Teaching rounds and lectures are used to introduce concepts of surgical care. Prereq: Students must be in Physician Assistant Program.
PAST 508. Clinical Residency: Primary Care Elective. 3 Units.
This clinical rotation is designed to give the student an understanding of family medicine/primary care medicine as practiced in office and/or clinic in an outpatient setting. The student will work with patients from a variety of social, economic and cultural backgrounds across the lifespan. They will experience continuity of care while assessing, diagnosing, monitoring, managing, referring and educating patients. The student will be exposed to both acute and chronic problems as well as the psychosocial problems that are encountered in this setting. Students may encounter and participate in the care of patients of all ages: pediatric, adolescent, adult and geriatric populations. The formulation and understanding of the many and varied medical problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem. Prereq: Students must be in Physician Assistant Program.

PAST 509. Clinical Residency: Inpatient Medicine Elective. 3 Units.
This clinical rotation is designed to provide the student with an understanding of the wide variety of problems encountered in hospital-based internal/surgical medicine. The formulation and understanding of the many and varied medical and/or surgical problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem. Students are assigned to medical teams during their rotation. Teaching rounds and lectures are used to introduce concepts of hospital based medicine. Prereq: Students must be in Physician Assistant Program.

PAST 510. Clinical Residency: Elective. 3 Units.
This elective clinical rotation is designed to provide the student with the knowledge and skills in an area of interest. Students will gain an understanding of the variety of problems encountered in a medical or surgical sub-specialty discipline. The formulation and understanding of the many and varied medical and/or surgical sub-specialty problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem including pharmacologic and non-pharmacologic management. Acquisition of these skills helps facilitate the PA student to progress through the clinical rotation with increasing complexity of clinical experiences, building confidence, competence and compassion. In addition to gaining clinical skills specific to the specialty of the rotation, the student will also continue to develop skills in systematic medical problem solving and patient management abilities, establish or reinforce patterns of independent learning, self-evaluation, interprofessional relationships and communication skills. Elective rotation sites are chosen based on practice characteristics that are important for the PA student within this rotation. These may include practice location, patient populations, and availability of specific experiences and procedures. Prereq: Students must be in Physician Assistant Program.

PAST 511. Clinical Residency: Elective. 3 Units.
This elective clinical rotation is designed to provide the student with the knowledge and skills in an area of interest. Students will gain an understanding of the variety of problems encountered in a medical or surgical sub-specialty discipline. The formulation and understanding of the many and varied medical and/or surgical sub-specialty problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem including pharmacologic and non-pharmacologic management. Acquisition of these skills helps facilitate the PA student to progress through the clinical rotation with increasing complexity of clinical experiences, building confidence, competence and compassion. In addition to gaining clinical skills specific to the specialty of the rotation, the student will also continue to develop skills in systematic medical problem solving and patient management abilities, establish or reinforce patterns of independent learning, self-evaluation, interprofessional relationships and communication skills. Elective rotation sites are chosen based on practice characteristics that are important for the PA student within this rotation. These may include practice location, patient populations, and availability of specific experiences and procedures. Prereq: Students must be in Physician Assistant Program.

PAST 600. Capstone Quality Improvement Project & Comprehensive Examination. 3 Units.
The Quality Improvement (QI) Project (PAST 600 Capstone) is one of two major components of the capstone of the PA program (Comprehensive Examination is the second component of PAST 600 Capstone). The goal of this component of the PAST 600 Capstone course is to introduce the fundamentals of patient safety, evaluation of quality and quality measures and principals of quality improvement to PA students. The Capstone Quality Improvement project will be conducted during PAST 508-Primary Care Elective. Prereq: Students must be in Physician Assistant Program.

Department of Physiology and Biophysics
Room E-524, School of Medicine
http://physiology.case.edu/
Phone: 216.368.2084
Walter F. Boron, MD, PhD, Chair
walter.boron@case.edu

Bart Jarmusch (bbj2@case.edu), Manager of Graduate Education

The Department of Physiology and Biophysics at Case is a multidisciplinary department that takes great pride in its history of conducting research and training graduate students. The department includes 20 Primary and 33 Secondary faculty members, more than 25 post-doctoral associates, and over 300 full-time PhD, MD/PhD, and Master of Science degree students. The training programs are designed to provide a mentored training environment that maximizes faculty-student interaction.

As outlined below, the department offers PhD, MD/PhD and Master of Science degrees. These programs are tailored to prepare students for successful careers in biomedical, pharmaceutical and industrial research. The department offers multiple graduate-level programs, each of which uses state-of-the-art molecular, cell biology, and biophysical approaches to study physiological questions at a variety of different
organizational levels. The goal is to provide an outstanding training opportunity. The major goals of the PhD and Tech Masters programs are to provide students with a broad knowledge base in organ systems and integrated physiology and in-depth expertise and outstanding research potential in the fields of cellular and molecular physiology and molecular and cellular biophysics. These goals are accomplished using a series of foundation and advanced topic courses, skill development courses, laboratory rotations and thesis research. The MS in Medical Physiology program is a post-baccalaureate program designed to help students prepare for admission to medical, dental, pharmacy, or veterinary school or for opportunities to work in the biotechnology industry.

Masters Degrees

The Master’s Program in Medical Physiology is designed for students with at least a bachelor’s degree in a chemical, physical, or biological science who are seeking advanced training in the physiological sciences, typically in preparation for admission to a professional medical program (e.g. Medical School, Dental School). The program is flexible in duration. It can take as little as 1 year (2 semesters, 9 months) to complete the required 30 credit hours of coursework. However, students who wish to decompress the program can take 14 months or more to complete the requirements. Core courses and flexible electives allow students to focus their work in key areas of medical physiology, including anatomy, biochemistry, or pharmacology. Graduates of the Medical Physiology Master’s Program also can pursue careers in basic and clinical research, research administration, teaching or management in academia, the pharmaceutical and biotechnology industries, private research institutions, government science or regulatory agencies, or medicine and health care.

MS Medical Physiology - Type B Non-Thesis Option

<table>
<thead>
<tr>
<th>First Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical Physiology I (PHOL 481)</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Translational Physiology I (PHOL 483)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology and Biophysics Department Seminar for Medical Physiology Students (PHOL 498C)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Physiology II (PHOL 482)</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Translational Physiology II (PHOL 484)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent Study (PHOL 451)</td>
<td>1 - 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology MSMP Seminar B (Spring Semester) (PHOL 498D)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>16</td>
<td>15-32</td>
<td></td>
</tr>
</tbody>
</table>

Total Units in Sequence: 31-48

MS Physiology - Type A Thesis Option

The Department of Physiology and Biophysics encourages research staff members to expand their critical research knowledge and skills by enrolling in our Master’s of Science in Physiology and Biophysics program. This Tech Master’s Program, is specifically designed for staff working full time. Each employer has their own policy on allowing staff to take classes and enroll in graduate programs. CWRU’s policy is to allow staff, with their supervisor’s permission, to take up to 6 credit hours per term, with tuition being covered by CWRU as part of the employee benefit package. Staff are expected to make up the time they spend in class during the day after hours.

<table>
<thead>
<tr>
<th>First Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversations on Protein Structure and Function (PHOL 456)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory Research Rotation (PHOL 505)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Membrane Physiology (PHOL 468)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology and Biophysics Department Seminar (PHOL 498A)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Signaling (PHOL 466)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology of Organ Systems (PHOL 480)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory Research Rotation (PHOL 505)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology Seminar B (Spring Semester) (PHOL 498B)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>7</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

Total Units in Sequence: 20

MD/MS Biomedical Investigation - Physiology Track

This track offers training in physiology and biomedical laboratory technology, including emphasis on mentored independent research training which includes both laboratory experience and formal course work in modern laboratory methodology and instrumentation.

Students in Physiology and Biotechnology track must complete:

PHOL 498A	Physiology and Biophysics Department Seminar	1
PHOL 498B	Physiology Seminar B (Spring Semester)	1
PHOL 601	Research	1
IBIS 600	Exam in Biomedical Investigation	0
And 9 credits from the following course list:		
PHOL 456	Conversations on Protein Structure and Function	2
PHOL 466	Cell Signaling	3
PHOL 468	Membrane Physiology	3
PHOL 480	Physiology of Organ Systems	4
PHOL 530	Technology in Physiological Sciences	3

PhD in Physiology and Biophysics

The Physiology and Biophysics Graduate Program provides comprehensive training leading to the PhD degree and MD/PhD degrees. This program has three tracks of study with emphasis on Cell and Molecular Physiology, Structural Biology and Biophysics, and Organ Systems Physiology. Admissions to the Physiology and Biophysics program may be obtained in the integrated Biomedical Sciences Training Program (http://casemed.case.edu/bstp), by direct admission to the department or via the MSTP (http://mstp.case.edu/default.asp) program.

To earn a PhD in Physiology and Biophysics, a student must complete rotations in at least three laboratories followed by selection of a
research advisor, and complete Core and Elective coursework including responsible conduct of research as described in the course of study, below. Students who previously completed relevant coursework, for example with a MS, may petition to complete alternative courses. Each graduate program follows the overall regulations established and described in CWRU Graduate Studies and documented to the Regents of the State of Ohio. Completion of the PhD degree will require 36 hours of coursework (24 hours of which are graded) and 18 hours of PHOL 701 Dissertation Ph.D..

In addition, each student must successfully complete a qualifier examination for advancement to candidacy in the form of a short grant proposal with oral defense. The qualifier is generally completed in the summer after year two. During the dissertation period, students are expected to meet twice a year with the thesis committee, present seminars in the department, and fulfill journal publication requirements. At the completion of the program, successful defense of a doctoral dissertation is required. Throughout the doctoral training, students are expected to be enthusiastic participants in seminars, journal clubs, and research meetings in the lab and program.

Plan of Study for PhD in Cell and Molecular Physiology *

§ Please also see Graduate Studies Academic Requirements for Doctoral Degrees (http://bulletin.case.edu/schoolofgraduatestudies/academicrequirements)

<table>
<thead>
<tr>
<th>First Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology I (CBIO 453)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Membrane Physiology (PHOL 468)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory Research Rotation (PHOL 505)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conversations on Protein Structure and Function (PHOL 456)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology and Biophysics Departmental Seminar (PHOL 498A)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory Research Rotation (PHOL 505)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology of Organ Systems (PHOL 480)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology Seminar B (Spring Semester) (PHOL 498B)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory Research Rotation (PHOL 505)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Signaling (PHOL 466)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500)</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiology and Biophysics</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Departmental Seminar (PHOL 498A)</td>
<td></td>
<td></td>
<td>1-9</td>
</tr>
<tr>
<td>Research (PHOL 601)</td>
<td></td>
<td></td>
<td>1-9</td>
</tr>
<tr>
<td>Physiology Seminar B (Spring Semester) (PHOL 498B)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Research (PHOL 601)</td>
<td></td>
<td></td>
<td>1-9</td>
</tr>
<tr>
<td>Year Total:</td>
<td>2-10</td>
<td>2-10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiology and Biophysics</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Departmental Seminar (PHOL 498A)</td>
<td></td>
<td></td>
<td>1-9</td>
</tr>
<tr>
<td>Research (PHOL 601)</td>
<td></td>
<td></td>
<td>1-9</td>
</tr>
<tr>
<td>Physiology Seminar B (Spring Semester) (PHOL 498B)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Dissertation Ph.D. (PHOL 701)</td>
<td></td>
<td></td>
<td>1-9</td>
</tr>
</tbody>
</table>

| Total Units in Sequence: | 29-61 |

* After passing qualifying exam - full-time thesis research (701) - 18 total credit hours total

Plan of Study for PhD in Structural Biology and Biophysics *

<table>
<thead>
<tr>
<th>First Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology I (CBIO 453)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology and Biophysics</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Departmental Seminar (PHOL 498A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conversations on Protein Structure and Function (PHOL 456)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Membrane Physiology (PHOL 468)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein Biophysics (PHOL 475)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(PHOL 476)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology Seminar B (Spring Semester) (PHOL 498B)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory Research Rotation (PHOL 505)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiology and Biophysics</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Departmental Seminar (PHOL 498A)</td>
<td></td>
<td></td>
<td>1-9</td>
</tr>
<tr>
<td>Research (PHOL 601)</td>
<td></td>
<td></td>
<td>1-9</td>
</tr>
<tr>
<td>Physiology Seminar B (Spring Semester) (PHOL 498B)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Research (PHOL 601)</td>
<td></td>
<td></td>
<td>1-9</td>
</tr>
<tr>
<td>Year Total:</td>
<td>2-10</td>
<td>2-10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiology and Biophysics</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Departmental Seminar (PHOL 498A)</td>
<td></td>
<td></td>
<td>1-9</td>
</tr>
<tr>
<td>Dissertation Ph.D. (PHOL 701)</td>
<td></td>
<td></td>
<td>1-9</td>
</tr>
</tbody>
</table>
Program of Study for PhD in Organ Systems and Integrated Physiology *

First Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology I (CBIO 453)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conversations on Protein Structure and Function (PHOL 456)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Membrane Physiology (PHOL 468)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology and Biophysics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Departmental Seminar (PHOL 498A)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory Research Rotation (PHOL 505)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Physiology of Organ Systems (PHOL 480)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Physiology Seminar B (Spring Semester) (PHOL 498B)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Laboratory Research Rotation (PHOL 505)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cardiovascular Physiology (PHOL 514)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Cardio-Respiratory Physiology (PHOL 519)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Year Total:</td>
<td>10</td>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiology and Biophysics</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Departmental Seminar (PHOL 498A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research (PHOL 601)</td>
<td></td>
<td>1-9</td>
</tr>
<tr>
<td>Physiology Seminar B (Spring Semester) (PHOL 498B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research (PHOL 601)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>2-10</td>
<td>2-10</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiology and Biophysics</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Departmental Seminar (PHOL 498A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PHOL 701)</td>
<td></td>
<td>1-9</td>
</tr>
<tr>
<td>Physiology Seminar B (Spring Semester) (PHOL 498B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PHOL 701)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>2-10</td>
<td>2-10</td>
</tr>
</tbody>
</table>

Total Units in Sequence: 31-63

* After passing qualifying exam - full-time thesis research (701) - 18 total credit hours total

Courses

PHOL 351. Independent Study. 1 - 6 Units.
This course is a guided program of study in physiology textbooks, reviews, and original articles. Guided laboratory projects to reproduce and extend classical physiological experiments are offered to the undergraduate science major. This course is being offered in conjunction with the Graduate level course PHOL 451. Students are required to consult with the faculty member whose work they have interest in and plan their individual experience.

PHOL 401A. Physiology and Biophysics of Molecules and Cells. 2 Units.
Physiology and Biophysics of Molecules and Cells is a graduate-level introductory course designed to provide the fundamental principles of modern physiology, protein science and structural biology, and to prepare students for advanced courses in the biomedical sciences. The course is divided into 2 blocks that can be taken independently as PHOL 401A or PHOL 401B (2 credit hrs each) during the Spring semester of each year. The first block will cover the structure and function of proteins and lipids, and the organization of cellular membranes. Topics will include primary, secondary, tertiary and quaternary protein structure and analysis, enzyme kinetics, allostery and cooperativity, lipid membrane organization and domain structure, and protein-protein and protein-lipid interactions. The second block will cover molecular pathways and processes critical for cellular homeostasis, function, and signaling. Topics will include molecular mechanisms of transport across biological membranes and cellular compartments, ionic basis of the resting membrane potential, action potential generation and propagation, osmosis and Gibbs-Donnan equilibria, regulation of voltage-gated channels and electrogenic transporters, cellular pH regulation, and the biophysics of epithelial transport. Format will be a combination of lecture, discussion-based problem sets, journal paper presentations, and computer lab exercises and demonstrations. Grading will be based on performance on two essay-type exams administered in the middle and at the end of each block (80%), and on class participation (20%).
PHOL 401B. Physiology and Biophysics of Molecules and Cells. 2 Units.
Physiology and Biophysics of Molecules and Cells is a graduate-level introductory course designed to provide the fundamental principles of modern physiology, protein science and structural biology, and to prepare students for advanced courses in the biomedical sciences. The course is divided into 2 blocks that can be taken independently as PHOL 401A or PHOL 401B (2 credit hrs each) during the Spring semester of each year. The first block will cover the structure and function of proteins and lipids, and the organization of cellular membranes. Topics will include primary, secondary, tertiary and quarternary protein structure and analysis, enzyme kinetics, allostery and cooperativity, lipid membrane organization and domain structure, and protein-protein and protein-lipid interactions. The second block will cover molecular pathways and processes critical for cellular homeostasis, function, and signaling. Topics will include molecular mechanisms of transport across biological membranes and cellular compartments, ionic basis of the resting membrane potential, action potential generation and propagation, osmosis and Gibbs-Donnan equilibria, regulation of voltage-gated channels and electrogenic transporters, cellular pH regulation, and the biophysics of epithelial transport. Format will be a combination of lecture, discussion-based problem sets, journal paper presentations, and computer lab exercises and demonstrations. Grading will be based on performance on two essay-type exams administered in the middle and at the end of each block (80%), and on class participation (20%).

PHOL 402. Physiological Basis for Disease. 4 Units.
Physiological Basis for Disease is a graduate-level introductory course designed to provide the fundamental physiology of a select group of organ systems and examples of how the molecular basis of disease affects physiological function of these systems. As such PHOL 402 will prepare students for future study in advanced biomedical sciences courses. Select diseases of the endocrine, central nervous, pulmonary, cardiac and renal systems will be covered. The course is 4 credit hours and will be given in the Fall semester of each year. The format will be a combination of lecture and journal paper presentations and discussion. Grading will be based on five short answer/essay examinations given at the end of each section (50%), class participation (30%) and a final presentation (20%).

PHOL 410. Basic Oxygen & Physiological Function. 2 Units.
On-line lecture only course which explores the significance and consequences of oxygen and oxygen metabolism in living organisms. Topics to be covered include transport by blood tissues, oxygen toxicity, and mitochondrial metabolism. Emphasis will be placed on mammalian physiology with special reference to brain oxidative metabolism and blood flow as well as whole body energy expenditure and oxidative stress related to disease. The course will cover additional spans of physiology, nutrition and anatomy. Offered as NTRN 410 and PHOL 410.

PHOL 412. Membrane Transport Processes. 3 Units.
Membranes and membrane transporters are absolutely required for all cells to take up nutrient, maintain membrane potential and efflux toxins. This course will consider the classification and structure of membrane transport proteins and channels, examine the common mechanistic features of all systems and the specific features of different classes of transporter. Understanding the physiological integration of transport processes into cell homeostasis and consideration of transporters and channels as drug targets will be a goal. Course format is minimal lecture, primarily student presentations of primary literature papers. Offered as PHOL 412 and PHRM 412. Prereq: CBIO 453 and CBIO 455.

PHOL 419. Applied Probability and Stochastic Processes for Biology. 3 Units.
Applications of probability and stochastic processes to biological systems. Mathematical topics will include: introduction to discrete and continuous probability spaces (including numerical generation of pseudo random samples from specified probability distributions), Markov processes in discrete and continuous time with discrete and continuous sample spaces, point processes including homogeneous and inhomogeneous Poisson processes and Markov chains on graphs, and diffusion processes including Brownian motion and the Ornstein-Uhlenbeck process. Biological topics will be determined by the interests of the students and the instructor. Likely topics include: stochastic ion channels, molecular motors and stochastic ratchets, actin and tubulin polymerization, random walk models for neural spike trains, bacterial chemotaxis, signaling and genetic regulatory networks, and stochastic predator-prey dynamics. The emphasis will be on practical simulation and analysis of stochastic phenomena in biological systems. Numerical methods will be developed using a combination of MATLAB, the R statistical package, MCell, and/or URDME, at the discretion of the instructor. Student projects will comprise a major part of the course. Offered as BIOL 319, EECS 319, MATH 319, SYBB 319, BIOL 419, EBME 419, MATH 419, PHOL 419, and SYBB 419.

PHOL 430. Advanced Methods in Structural Biology. 1 - 6 Units.
The course is designed for graduate students who will be focusing on one or more methods of structural biology in their thesis project. This course is divided into 3-6 sections (depending on demand). The topics offered will include X-ray crystallography, nuclear magnetic resonance spectroscopy, optical spectroscopy, mass spectrometry, cryo-electron microscopy, and computational and design methods. Students can select one or more modules. Modules will be scheduled so that students can take all the offered modules in one semester. Each section is given in 5 weeks and is worth 1 credit. Each section covers one area of structural biology at an advanced level such that the student is prepared for graduate level research in that topic. Offered as BIOC 430, CHEM 430, PHOL 430, and PHRM 430.

PHOL 451. Independent Study. 1 - 18 Units.
Guided program of study using physiology textbooks, research reviews, and original research articles. An independent laboratory research project may also be included.

PHOL 456. Conversations on Protein Structure and Function. 2 Units.
The goal of this course is to supplement the short and basic presentation of Proteins in C3MB by lectures and discussions for students with backgrounds in physical-chemical sciences or students who already have a good basic background in protein science. The course presents an overview of Protein structure/function. Following an introduction to the principles of protein structure, the physical basis of protein folding and stability, and a brief overview of structural and bioinformatics approaches to protein analysis is presented. Typically two lecture/discussion style presentations are followed by a student lead journal club on recent high profile papers. The way the Journal club is done is that one student presents a paper (background and figures in powerpoint slides) while presentation of the main figures is shared between the class. Papers and Figures will be assigned by instructor. Typically two papers will be presented per session. Offered as PHOL 456 and BIOL 457.
PHOL 466. Cell Signaling. 3 Units.
This is an advanced lecture/journal/discussion format course that covers cell signaling mechanisms. Included are discussions of neurotransmitter-gated ion channels, growth factor receptor kinases, cytokine receptors, G protein-coupled receptors, steroid receptors, heterotrimeric G proteins, ras family GTPases, second messenger cascades, protein kinase cascades, second messenger regulation of transcription factors, microtubule-based motility, actin/myosin-based motility, signals for regulation of cell cycle, signals for regulation of apoptosis. Offered as CLBY 466, PHOL 466 and PHRM 466.

PHOL 467. Topics in Evolutionary Biology. 3 Units.
The focus for this course on a special topic of interest in evolutionary biology will vary from one offering to the next. Examples of possible topics include theories of speciation, the evolution of language, the evolution of sex, evolution and biodiversity, molecular evolution. ANAT/ANTH/EEPS/PHIL/PHOL 467/BIOL 468 will require a longer, more sophisticated term paper, and additional class presentation. Offered as ANTH 367, BIOL 368, EEPS 367, PHIL 367, ANAT 467, ANTH 467, BIOL 468, EEPS 467, PHIL 467 and PHOL 467.

PHOL 468. Membrane Physiology. 3 Units.
This student-guided discussion/journal course focuses on biological membranes. Topics discussed include thermodynamics and kinetics of membrane transport, oxidative phosphorylation and bioenergetics, electro-physiology of excitable membranes, and whole and single channel electrophysiology, homeostasis and pH regulation, volume and calcium regulation. Offered as CLBY 468 and PHOL 468.

PHOL 475. Protein Biophysics. 3 Units.
This course focuses on in-depth understanding of the molecular biophysics of proteins. Structural, thermodynamic and kinetic aspects of protein function and structure-function relationships will be considered at the advanced conceptual level. The application of these theoretical frameworks will be illustrated with examples from the literature and integration of biophysical knowledge with description at the cellular and systems level. The format consists of lectures, problem sets, and student presentations. A special emphasis will be placed on discussion of original publications. Offered as BIOC 475, CHEM 475, PHOL 475, PHRM 475, and NEUR 475.

PHOL 477. Human Physiology. 4 Units.
This lecture/seminar experience is meant to enhance the students' fundamental knowledge in human physiology with an emphasis on physiologic concepts in relationship to health, disease and illnesses. The course will provide students with an understanding of the function, regulation and integration of the major organ systems. Offered as PAST 477 and PHOL 477.

PHOL 478. Lifestyle Medicine. 3 Units.
While the current acute care model of medicine focuses on disease and treatment of individual organ systems by specialists, 50-60% of the public use complementary and alternative medicine (CAM), which focuses on prevention rather than disease. In CAM, damage caused by Western diets is avoided with low fat, vegetarian, or vegan diets, and with herbs and supplements. Damage mediated by emotional responses to stress is counteracted with relaxation practices such as yoga, meditation or hypnosis. In support of CAM, NIH-funded research performed over the past decade has shown that 70-90% of chronic diseases such as obesity, atherosclerosis, and cancer result from lifestyle. Moreover, mechanisms of lifestyle-induced disease as well as mechanisms by which these can be prevented or reversed by CAM practices have been described. This course examines interrelationships between lifestyle, health and disease and influences of CAM practices in terms of physiological health. Topics include evidence that Western diets, chronic emotional stress resulting from pervasive environmental, societal, workplace, financial, or relationship issues, and changes in circadian rhythms resulting from behaviors such as not getting enough sleep or working night-shifts facilitate disease by inducing cellular events that include epigenetic modification, changes in gene expression, and decreased telomere length. Mechanisms by which CAM practices prevent or reverse these lifestyle-mediated changes are also covered. In addition, the course considers the broader issue of how economic and political pressures are forcing rapid changes in healthcare and the influence that lifestyle-based approaches is likely to have on evolving delivery models, healthcare costs, and public health policies. The course is presented over a period of 8 weeks during the summer session. It is heavily discussion-based delivered in the form of slide presentations, discussions of the literature, video segments, and experiential relaxation instructions. Grading is based on class discussion and a written discussion paper.

PHOL 479. Clinical Reasoning: Applied Medical Physiology. 3 Units.
Physicians, detectives, scientists and mechanics all use deductive reasoning with multiple hypotheses to solve problems. The primary objective of this course is to help students apply their knowledge of medical physiology to solving clinical problems. The second objective is to develop an overall view of the clinical reasoning process as a problem-solving method. This will be done primarily through problem-based case studies of patients with cardiovascular, pulmonary and renal disease. Case studies will be supplemented by video presentations of patient history and physical exam, and student-led presentations. Prereq: PHOL 482 and PHOL 484.
PHOL 480. Physiology of Organ Systems. 4 Units.

Our intent is to expand the course from the current 3 hours per week (1.5 hour on Monday and Wednesday) to 4 hours per week (1.5 hours on Monday and Wednesday plus 1 hour on Friday). Muscle structure and function, Myasthenia gravis and Sarcopenia; Central Nervous System, (Synaptic Transmission, Sensory System, Autonomic Nervous System, CNS circuits, Motor System, Neurodegenerative Diseases, Paraplegia and Nerve Compression); Cardiovascular Physiology (Regulation of pressure and flow; Circulation, Cardiac Cycle, Electrophysiology, Cardiac Function, Control of Cardiovascular function, Hypertension); Hemorrhag, Cardiac Hypertrophy and Fibrillation; Respiratory Physiology (Gas Transport and Exchange, Control of Breathing, Acid/base regulation, Cor Pulmonaris and Cystic Fibrosis, Sleeping apnea and Emphysema); Renal Physiology (Glomerular Filtration, Tubular Function/transport, Glomerulonephritis, Tubulopaties); Gastro-Intestinal Physiology (Gastric motility, gastric function, pancreas and bile function, digestion and absorption, Liver Physiology; Pancreatitis, Liver Disease and cirrhosis); Endocrine Physiology (Thyroid, Adrenal glands, endocrine pancreas, Parathyroid, calcium sensing receptor, Cushing and diabetes, Reproductive hormones, eclampsia); Integrative Physiology (Response to exercise, fasting and feeding, aging). For all the classes, the students will receive a series of learning objectives by the instructor to help the students address and focus their attention to the key aspects of the organ physiology (and physiopathology). The evaluation of the students will continue to be based upon the students' participation in class (60% of the grade) complemented by a mid-term and a final exam (each one accounting for 20% of the final grade). Offered as BIOL 480 and PHOL 480.

PHOL 481. Medical Physiology I. 6 Units.

Physiology is the dynamic study of life. It describes the vital functions of living organisms and their organs, cells, and molecules. For some, physiology is the function of the whole person. For many practicing clinicians, physiology is the function of an individual organ system. For others, physiology may focus on the cellular principles that are common to the function of all organs and tissues. Medical physiology deals with the human body functions, which depends on how the individual organ systems function, which depends on how the component cells function, which in turn depends on the interactions among subcellular organelles and countless molecules. Thus, it requires an integrated understanding of events at the level of molecules, cells, and organs. Medical Physiology I is a lecture course (3, 2 hr. lectures/week). It is the first of a two-part, comprehensive survey of physiology that is divided into five blocks: Block 1 covers the physiology of cells and molecules, signal transduction, basic electrophysiology, and muscle physiology; Block 2 covers the nervous system; Block 3 covers the cardiovascular system, and; Block 4 covers the respiratory system. Grading in the course will be based on performance on multiple choice/short essay examinations administered at the end of each block with each examination weighted according to the number of lectures contained in that block.

PHOL 482. Medical Physiology II. 6 Units.

Physiology is the dynamic study of life. It describes the vital functions of living organisms and their organs, cells, and molecules. For some, physiology is the function of the whole person. For many practicing clinicians, physiology is the function of an individual organ system. For others, physiology may focus on the cellular principles that are common to the function of all organs and tissues. Medical physiology deals with the human body functions, which depends on how the individual organ systems function, which depends on how the component cells function, which in turn depends on the interactions among subcellular organelles and countless molecules. Thus, it requires an integrated understanding of events at the level of molecules, cells, and organs. Medical Physiology II is a lecture course (3, 2hr. lectures/week). It is the second of a two-part, comprehensive survey of physiology that is divided into five blocks: Block 5 covers the physiology of the urinary system; Block 6 covers the gastrointestinal system; Block 7 covers the endocrine system; Block 8 covers reproduction; and Block 9 covers the physiology of everyday life. Grading in the course will be based on performance on multiple choice/short essay examinations administered at the end of each block with each examination weighted according to the number of lectures contained in that block.

PHOL 483. Translational Physiology I. 3 Units.

Physiology is the dynamic study of life, describing the vital functions of living organisms and their organs, cells, and molecules. For some clinicians, physiology is the function of an individual organ system. For others, it focuses on the cellular principles that are common to the function of all organs and tissues. Medical physiology deals with the human body functions, which depends on individual organ systems function, which depends on cellular function, which in turn depends on molecular interactions. Translational Physiology I will explore examples of how the latest basic research in physiology and biophysics is being applied to the treatment of human disease. For example, while the students are studying the basic principles of cardiovascular physiology, they will also be investigating how these principles are being applied to treat/cure human cardiovascular disorders such as congestive heart failure, coronary artery disease, etc. Translational Physiology I is a lecture course (1, 2hr lecture/week, and 1, 1hr lecture/week) taught by clinical and basic science faculty. The 2 hour lecture will be given primarily by clinical faculty and is focused on applying physiological principles to clinical cases of pathophysiology. The 1 hour lecture will be given primarily by basic science faculty and will expose students to the process of translating fundamental basic science research to the clinic, that is bench-to-bedside. It is the first of a two-part course that follows the topics being simultaneously covered in the Medical Physiology I course. It is divided into 4 blocks: Block 1 covers the physiology of cells and molecules, signal transduction, basic electrophysiology, and muscle physiology; Block 2 covers the nervous system; Block 3 covers the cardiovascular system, and; Block 4 covers the respiratory system. Grading in the course will be based on performance on multiple choice examinations administered at the end of each block with each examination weighted according to the number of lectures contained in the block.
PHOL 484. Translational Physiology II. 3 Units.
Physiology is the dynamic study of life, describing the vital functions of living organisms and their organs, cells, and molecules. For some clinicians, physiology is the function of an individual organ system. For others, it focuses on the cellular principles that are common to the function of all organs and tissues. Medical physiology deals with how the human body functions, which depends on how the individual organ systems function, which depends on how the component cells function, which in turn depends on the interactions among subcellular organelles and countless molecules. Translational Physiology II will explore examples of how the latest basic research in physiology and biophysics is being applied to the treatment of human disease. For example, while the students are studying the basic physiology of the urinary system, they will also be investigating how these principles are being applied to treat/cure human kidney disorders such as renal failure, high blood pressure, glomerular disease, etc. Translational Physiology II is a lecture course (1, 2hr lecture/week, and 1, 1hr lecture/week) taught by clinical and basic science faculty. The 2 hour lecture will be given primarily by clinical faculty and is focused on applying physiological principles to clinical cases of pathophysiology. The 1 hour lecture will be given primarily by basic science faculty and will expose students to the process of translating fundamental basic science research to the clinic, that is bench-to-bedside. It is the second of a two-part course that follows topics being simultaneously covered in the Medical Physiology II course. It is divided into 4 blocks: Block 5 covers the physiology of the urinary system; Block 6 covers the gastrointestinal system and metabolism; Block 7 covers the endocrine system and reproduction, and, Block 8 covers the physiology of everyday life. Grading in the course will be based on performance on multiple choice examinations administered at the end of each block with each examination weighted according to the number of lectures contained in the block. Coreq: PHOL 482.

PHOL 485. Comparative & Evolutionary Physiology. 4 Units.
This course presents physiological concepts from the comparative and evolutionary perspective. Aspects of vertebrate and mammalian evolution will be considered with respect to the generation of adaptive advantages for organisms to changing environmental challenges since the Cambrian. Comparative physiological concepts include scaling, variations in nutrition, energy metabolism and work efficiency. The important influences of time, temperature, water and energy on mammalian biology will be presented. The course is a lecture based course that can be taken in person or on-line. Evaluations will be by regular quizzes, a mid-term and a final exam, all MCQ. Offered as PHOL 485 and ORIG 485.

PHOL 492. Clinical Reasoning II. 3 Units.
The objective of this course is to help students use principles of medical physiology to solve clinical problems. The second objective is to develop an overall view of clinical reasoning and improve critical thinking skills. The topics in Clinical Reasoning II are neurology, gastroenterology and endocrine/metabolic diseases. PHOL 479 Clinical Reasoning I, which covers cardiovascular, pulmonary and renal diseases, is not required. I anticipate that you will learn to: - Recognize physiologic mechanisms underlying abnormal physical findings, laboratory tests and imaging. - Use signs, symptoms, physical findings, laboratory tests and imaging to generate patient problem lists. - Develop and refine diagnostic hypotheses, i.e., differential diagnosis. - Understand the physiological basis of appropriate treatment plans. Prereq: PHOL 481.

PHOL 497. Journal Club in Structural Biology and Biophysics. 1 Unit.
Biweekly Journal club to engage faculty and students in discussion of recent high profile papers in structural biology and protein biophysics. Registered students have to present one entire paper on an assigned day and attend all seminars, as well as participate in discussion. Recommended Preparation: undergraduate biochemistry or equivalent.

PHOL 497A. Neurology Grand Rounds. 1 Unit.
This course is a weekly seminar series offered summer, fall, and spring semesters by the Department of Neurology at University Hospitals Case Medical Center. To earn a Passing grade in this course, students must attend at least 75% of the grand rounds offered by the Department of Neurology during the semester (signing in at the session) and submit to the course director within the week following the Grand Rounds, a one page report containing: 1) the name of the presenter and their professional affiliation; 2) the title of the presentation; 3) time and place of the Grand Rounds; 4) a one paragraph synopsis of the content of the presentation. Recommended Preparation: Pass the NBME Subject Exam in Physiology and Neurophysiology. Prereq: PHOL 481, PHOL 482, PHOL 483, PHOL 484, PHOL 498A and PHOL 498B.

PHOL 497B. Neurology Grand Rounds. 1 Unit.
This course is a weekly seminar series offered summer, fall, and spring semesters by the Department of Neurology at University Hospitals Case Medical Center. To earn a Passing grade in this course, students must attend at least 75% of the grand rounds offered by the Department of Neurology during the semester (signing in at the session) and submit to the course director within the week following the Grand Rounds, a one page report containing: 1) the name of the presenter and their professional affiliation; 2) the title of the presentation; 3) time and place of the Grand Rounds; 4) a one paragraph synopsis of the content of the presentation. Recommended Preparation: Pass the NBME Subject Exam in Physiology and Neurophysiology. Prereq: PHOL 481, PHOL 482, PHOL 483, PHOL 484, PHOL 497A, PHOL 498A and PHOL 498B.

PHOL 497C. Clinical Nephrology Conference. 1 Unit.
Clinical Nephrology Conference (CNC) at MetroHealth Medical Center, Dept. Medicine, Division of Nephrology. This course must be taken at least once and can be taken up to 2 times for a total of 2 credit hours. For the 15-week semester, students are responsible for attending and reporting on 12 of the scheduled CNC. For each CNC, the student must submit to the course director (Dr. Liedtke) within the week following the CNC, a one page report stating: a. The name of the presenter and their professional affiliation b. The title of the presentation c. Time and place of the CNC d. A one paragraph synopsis of the content of the presentation. For the 15-week semester, students are responsible for attending and reporting on 12 of the scheduled CNC. For each CNC, the student must submit to the course director (Dr. Liedtke) within the week following the CNC, a one page report stating: a. The name of the presenter and their professional affiliation b. The title of the presentation c. Time and place of the CNC d. A one paragraph synopsis of the content of the presentation. Recommended Preparation: Pass the NBME Subject Exam in Physiology and Neurophysiology. Prereq: PHOL 481, PHOL 482, PHOL 483, PHOL 484, PHOL 498A and PHOL 498B.

PHOL 497D. Clinical Nephrology Conference. 1 Unit.
Clinical Nephrology Conference (CNC) at MetroHealth Medical Center, Dept. Medicine, Division of Nephrology. This course must be taken at least once and can be taken up to 2 times for a total of 2 credit hours. For the 15-week semester, students are responsible for attending and reporting on 12 of the scheduled CNC. For each CNC, the student must submit to the course director (Dr. Liedtke) within the week following the CNC, a one page report stating: a. The name of the presenter and their professional affiliation b. The title of the presentation c. Time and place of the CNC. A one paragraph synopsis of the presentation. The course director is responsible for assigning the grades for this course. Recommended Preparation: Pass the NBME Subject Exam in Physiology and Neurophysiology. Prereq: PHOL 481, PHOL 482, PHOL 483, PHOL 484, PHOL 498A and PHOL 498B.
PHOL 497E. Pulmonary Grand Rounds. 1 Unit.
Students are responsible for attending 10 of 15 sessions for that semester. Pulmonary Science Grand Rounds (adult pulmonology) and Pediatric Basic Science Seminar Series are convened Friday mornings at UH Case Medical Center at 8:00 am and 9:00 am, respectively. For each session attended, the student must submit to the course director (Dr. Liedtke) within the week following the session, a one page report stating: a. name of the presenter and their professional affiliation, b. title of the presentation, c. time and place of the session, and d. one paragraph synopsis of the presentation. The course director is responsible for assigning the grades for this course. Prereq: PHOL 481, PHOL 482, PHOL 483, PHOL 484, PHOL 498A, and PHOL 498B.

PHOL 497F. Pulmonary Grand Rounds. 1 Unit.
This course must be taken once and can be taken up to 2 times for a total of 2 credit hours. Students are responsible for attending 10 of 15 sessions for that semester. Pulmonary Science Grand Rounds (adult pulmonology) and Pediatric Basic Science Seminar Series are convened Friday mornings at UH Case Medical Center at 8:00 am and 9:00 am, respectively. For each session attended, the student must submit to the course director (Dr. Liedtke) within the week following the session, a one page report stating: a. name of the presenter and their professional affiliation, b. title of the presentation, c. time and place of the session, and d. one paragraph synopsis of the presentation. The course director is responsible for assigning the grades for this course. Prereq: PHOL 481, PHOL 482, PHOL 483, PHOL 484, PHOL 498A, and PHOL 498B.

PHOL 498A. Physiology and Biophysics Departmental Seminar. 1 Unit.
Weekly one-hour reviews by invited speakers of their research. Students present literature reviews or summaries of their research.

PHOL 498B. Physiology Seminar B (Spring Semester). 1 Unit.
Weekly one-hour reviews by invited speakers of their research. Offered spring semester.

PHOL 498C. Physiology and Biophysics Department Seminar for Medical Physiology Students. 1 Unit.
Weekly one-hour research reviews offered by various speakers, upon invitation. Students will present literature reviews or summaries of their own research throughout the course. Grades will be determined by quizzes based on the research presented.

PHOL 498D. Physiology MSMP Seminar B (Spring Semester). 1 Unit.
Weekly one-hour research reviews offered by various speakers, upon invitation. Students will present literature reviews or summaries of their own research throughout the course. Grades will be determined by quizzes based on the research presented. Offered spring semester.

PHOL 505. Laboratory Research Rotation. 1 Unit.
Six week experience in a selected faculty research laboratory designed to introduce the student to all aspects of modern laboratory research including the design, execution and analysis of original experimental work. Recommended preparation: Consent of instructor and scheduled laboratory.

PHOL 513. Structural Journal Club. 1 Unit.
Current topics of interest in structural biology, and protein biophysics. Offered as PHOL 513 and PHRM 513.

PHOL 514. Cardiovascular Physiology. 3 Units.
The goal of this course is to provide the student with a solid foundation in cardiovascular physiology and pathophysiology. The course will begin by providing a solid foundation in the structure, phenotype and function of cardiac and vascular muscle. In addition, electrophysiology and metabolism will be addressed. Both basic physiology and more advanced topics, such as pathophysiology, will be covered using a journal club format. (Twice weekly; 1.5hrs/class.) Student participation is required.

PHOL 519. Cardio-Respiratory Physiology. 3 Units.
This course is designed to integrate systemic, cellular and molecular aspects of cardio-respiratory systems in physiological and pathophysiological states. The course requires prior knowledge of basic physiology of the cardiovascular systems. Extensive student participation is required. Instructors provide a brief overview of the topic followed by presentation and critical appraisal of recent scientific literature by students.

PHOL 528. Contemporary Approaches to Drug Discovery. 3 Units.
This course is designed to teach the students how lead compounds are discovered, optimized, and processed through clinical trials for FDA approval. Topics will include: medicinal chemistry, parallel synthesis, drug delivery and devices, drug administration and pharmacokinetics, and clinical trials. A special emphasis will be placed on describing how structural biology is used for in silico screening and lead optimization. This component will include hands-on experience in using sophisticated drug discovery software to conduct in silico screening and the development of drug libraries. Each student will conduct a course project involving in silico screening and lead optimization against known drug targets, followed by the drafting of an inventory disclosure. Another important aspect of this course will be inclusion of guest lectures by industrial leaders who describe examples of success stories of drug development. Offered as BIO 528, PHOL 528, PHRM 528, and SYBB 528.

PHOL 530. Technology in Physiological Sciences. 3 Units.
This lecture/discussion/journal course focuses on techniques in the physiological sciences. Topics include spectroscopy, microscopy, and electrophysiology. The theory and practice are covered with an emphasis on examples taken from the scientific literature.

PHOL 537. Microscopy-Principles and Applications. 3 Units.
This course provides an introduction to various types of light microscopy, digital and video imaging techniques, and their applications to biological and biomedical sciences via lectures and hands-on experience. Topics covered include geometrical and physical optics; brightfield, darkfield, phase contrast, DIC, fluorescence and confocal microscopes; and digital image processing. Offered as GENE 537, MBIO 537, and PHOL 537.

PHOL 601. Research. 1 - 18 Units.
Cellular physiology laboratory research activities that are based on faculty and student interests.

PHOL 610. Oxygen and Physiological Function. 3 Units.
Lecture/discussion course which explores the significance and consequences of oxygen and oxygen metabolism in living organisms. Topics to be covered include oxygen transport by blood tissues, oxygen toxicity, and mitochondrial metabolism. Emphasis will be placed on mammalian physiology with special reference to brain oxidative metabolism and blood flow as well as whole body energy expenditure and oxidative stress related to disease. The course will cover additional spans of physiology, nutrition and anatomy. Offered as ANAT 610, NTRN 610, and PHOL 610.
PHOL 614. Sleep Physiology - Neurobiology of Sleep/Wake. 3 Units.
Participants in this course will gain an understanding of the neural mechanisms contributing to the states of sleep and wakefulness. Contemporary theories regarding why humans need to sleep will be reviewed. We will also review how perturbations within specific neurotransmitter systems become manifest as sleep related disorders and the pharmacological interventions used to normalize activity within those neural pathways. Prereq: PHOL 481 and PHOL 482 or requisites not met permission.

PHOL 620A. Clinical Observer: Neurology Service. 2 Units.
This course is a 2 week intensive experience offered summer, fall, and spring semesters on a schedule set by the Department of Neurology at University Hospitals Case Medical Center. Students are expected to be present and observe at all of the times set forth by the house staff and attending, generally a 40 hour week minimum. The Objective of the course is to provide the students with the experience of observing patient care provided by 3rd year medical students on a clinical rotation under direct supervision by house staff and attending on an active acute Neurology Service. The PGY-2 Neurology Resident and PGY-3 Chief Resident will always be available for immediate supervision. Students round as Clinical Observers with the CWRU medical students according to their daily schedule. They will learn the basics of neurological history-taking, neurological examination, neurodiagnostic studies, and neurological therapeutics. Didactic sessions covering a wide range of neurologic and neurosurgical topics are covered by faculty members from both departments. The lectures cover the gamut of neurological and neurosurgical disease processes and treatments. Neurosurgery lectures include such topics as cerebrovascular disease, brain tumors, hydrocephalus, spinal disorders, and head trauma as well as doctor-patient communication. Unlike the medical students on the rotation, a Clinical Observer will only observe procedures and will not actively take part in any health care - he/she will act strictly as an observer, but will act as a physiological consultant to the team responsible for providing basic science input to the clinical cases. Prereq: PHOL 481, PHOL 482, PHOL 483, PHOL 484, PHOL 498A and PHOL 498B.

PHOL 620C. Clinical Observer: Epilepsy Service. 2 Units.
This course is a 2 week intensive experience offered summer, fall, and spring semesters on a schedule set by the Department of Neurology at University Hospitals Case Medical Center. Students are expected to be present and observe at all of the times set forth by the house staff and attending, generally a 40 hour week minimum. The Objective of the course is to provide the students with the experience of observing patient care provided by 3rd year medical students on a clinical rotation under direct supervision by house staff and attending on an active acute Neurology Service. The PGY-2 Neurology Resident and PGY-3 Chief Resident will always be available for immediate supervision. Students round as Clinical Observers with the CWRU medical students according to their daily schedule. They will learn the basics of neurological history-taking, neurological examination, neurodiagnostic studies, and neurological therapeutics. Didactic sessions covering a wide range of neurologic and neurosurgical topics are covered by faculty members from both departments. The lectures cover the gamut of neurological and neurosurgical disease processes and treatments. Neurosurgery lectures include such topics as cerebrovascular disease, brain tumors, hydrocephalus, spinal disorders, and head trauma as well as doctor-patient communication. Unlike the medical students on the rotation, a Clinical Observer will only observe procedures and will not actively take part in any health care - he/she will act strictly as an observer, but will act as a physiological consultant to the team responsible for providing basic science input to the clinical cases. Prereq: PHOL 481, PHOL 482, PHOL 483, PHOL 484, PHOL 498A and PHOL 498B.

PHOL 620B. Clinical Observer: Stroke Service. 2 Units.
This course is a 2 week intensive experience offered summer, fall, and spring semesters on a schedule set by the Department of Neurology at University Hospitals Case Medical Center. Students are expected to be present and observe at all of the times set forth by the house staff and attending, generally a 40 hour week minimum. The Objective of the course is to provide the students with the experience of observing patient care provided by 3rd year medical students on a clinical rotation under direct supervision by house staff and attending on an active acute Neurology Service. The PGY-2 Neurology Resident and PGY-3 Chief Resident will always be available for immediate supervision. Students round as Clinical Observers with the CWRU medical students according to their daily schedule. They will learn the basics of neurological history-taking, neurological examination, neurodiagnostic studies, and neurological therapeutics. Didactic sessions covering a wide range of neurologic and neurosurgical topics are covered by faculty members from both departments. The lectures cover the gamut of neurological and neurosurgical disease processes and treatments. Neurosurgery lectures include such topics as cerebrovascular disease, brain tumors, hydrocephalus, spinal disorders, and head trauma as well as doctor-patient communication. Unlike the medical students on the rotation, a Clinical Observer will only observe procedures and will not actively take part in any health care. He/she will act strictly as an observer, but will act as a physiological consultant to the team responsible for providing basic science input to the clinical cases. Prereq: PHOL 481, PHOL 482, PHOL 483, PHOL 484, PHOL 498A and PHOL 498B.

PHOL 620D. Clinical Observer: Neurology (Neuromuscular). 2 Units.
This course is a 2 week intensive experience offered summer, fall, and spring semesters on a schedule set by the Department of Neurology at University Hospitals Case Medical Center. Students are expected to be present and observe at all of the times set forth by the house staff and attending, generally a 40 hour week minimum. The Objective of the course is to provide the students with the experience of observing patient care provided by 3rd year medical students on a clinical rotation under direct supervision by house staff and attending on an active acute Neurology Service. The PGY-2 Neurology Resident and PGY-3 Chief Resident will always be available for immediate supervision. Students round as Clinical Observers with the CWRU medical students according to their daily schedule. They will learn the basics of neurological history-taking, neurological examination, neurodiagnostic studies, and neurological therapeutics. Didactic sessions covering a wide range of neurologic and neurosurgical topics are covered by faculty members from both departments. The lectures cover the gamut of neurological and neurosurgical disease processes and treatments. Neurosurgery lectures include such topics as cerebrovascular disease, brain tumors, hydrocephalus, spinal disorders, and head trauma as well as doctor-patient communication. Unlike the medical students on the rotation, a Clinical Observer will only observe procedures and will not actively take part in any health care. He/she will act strictly as an observer, but will act as a physiological consultant to the team responsible for providing basic science input to the clinical cases. Prereq: PHOL 481, PHOL 482, PHOL 483, PHOL 484, PHOL 498A and PHOL 498B.
PHOL 621. Clinical Nephrology Observer. 4 Units.
This course is a total of 4 week intensive experience offered on the School of Medicine elective schedule. Students will round with fellow and Medicine residents rotating during the elective on a daily basis starting with morning work rounds. Attending rounds generally begin in the afternoon. The student is restricted to a total of 15 hrs/week on clinical rounds. The student is expected to read appropriate or assigned text, journal and internet resources for necessary background reading; the time spent on these resources do not count toward the 15 hrs/week for rounds. The fellow or attending physician on the service will recommend to the course director (Dr. Liedtke) whether the student earned a Pass or Fail in the course based upon attendance, professional demeanor, active participation, and knowledge of the area. The course director is responsible for assigning the grades for this course. CITI training must be completed prior to enrollment. Prereq: PHOL 481, PHOL 482, PHOL 483, PHOL 484, PHOL 498A, PHOL 498B.

PHOL 622. Pediatric Pulmonology Observation. 2 Units.
Pediatric Pulmonology Observation (must be approved). 2 credit hours. Location: University Hospital, Rainbow Babies & Children Hospital. This course is an intensive experience with 2 weeks offered on the elective schedule detailed in Appendix A and 1 week with attending physician reading PFTs. For 2 weeks, students will round with attending staff and medical students according to their daily schedule at Rainbow Babies & Children Hospital, Pulmonary Division, starting with morning work rounds. Attending rounds generally begin in the afternoon. The student will not have direct patient contact. The student is expected to read appropriate or assigned text, journal and internet resources for necessary background reading. Students will journal their daily experience. Students will write a paper relating basic physiology to a case identified during rounds; the Director (Dr. Liedtke) will grade the paper. The attending physician on the service will recommend to the course director (Dr. Liedtke) based upon attendance, professional demeanor, active participation, and knowledge of the area. The course director is responsible for assigning the grades for this course. Dr. Ross Meyers will serve as the student’s mentor and assign students to services. Prereq: PHOL 481, PHOL 482, PHOL 483, PHOL 484, PHOL 498A, and PHOL 498B.

PHOL 623. Adult Pulmonology Observation. 2 Units.
Adult Pulmonology AOC (must be approved). 2 credit hours. Location: University Hospital and VA Hospital. This course is an intensive experience with 2 weeks offered on the elective schedule detailed in Appendix A and 1 week with attending physician reading PFTs to evaluate 25 adult PFT, 6 exercise tests, and 6 methacholine challenges. For 2 weeks, students will round with attending staff and medical students according to their daily schedule at University Hospital starting with morning work rounds. Attending rounds generally begin in the afternoon. The student will not have direct patient contact. The student is expected to read appropriate or assigned text, journal and internet resources for necessary background reading. Students will journal their daily experience. Students will write a paper relating basic physiology to a case identified during rounds; the Director (Dr. Liedtke) will grade the paper. The attending physician on the service will recommend to the course director (Dr. Liedtke) based upon attendance, professional demeanor, active participation, and knowledge of the area. The course director is responsible for assigning the grades for this course. Dr. (TBN) will serve as the student’s mentor and assign students to services. Prereq: PHOL 481, PHOL 482, PHOL 483, PHOL 484, PHOL 498A, and PHOL 498B.

PHOL 651. Thesis M.S.. 1 - 18 Units.
PHOL 701. Dissertation Ph.D.. 1 - 9 Units.
Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.
216.368.2286 - fax
nickalaus.koziura@case.edu (drabousky@case.edu)

Statistics is the science of data and a discipline that provides tools for making decisions under conditions of uncertainty. Biostatistics addresses all aspects of statistics that arise from medical and health-related sciences, and is an essential component of most medical, biological, and health care. The study of biostatistics includes design and analysis of both experimental studies, such as clinical trials, and observational studies; the theory of probability and statistics; mathematical and statistical modeling; and knowledge of the methodology used to evaluate the properties of statistical procedures. It also includes a competency in computing, which encompasses programming, statistical software use, and database management. Modern Biostatistics is a dynamic field of study and an integral part of medical and public health research. Those who earn the MS in Biostatistics are equipped for careers in government, industry and academic research centers or to enter doctoral programs in biostatistics.

There are four tracks our students can choose from: Biostatistics, Genomics & Bioinformatics, Health Care Analytics, and Social & Behavioral Science.

The mission of the Masters Program in Biostatistics is to enroll and train outstanding students in the core discipline of biostatistics. The faculty and students in this program are committed to teaching and learning the theory, methodology and application of the essential and modern statistical methods used in the biomedical and related sciences.

Core Courses for this Program:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQHS 414</td>
<td>Data Management and Statistical Programming</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 431</td>
<td>Statistical Methods I</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 432</td>
<td>Statistical Methods II</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 453</td>
<td>Categorical Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 490</td>
<td>Epidemiology: Introduction to Theory and Methods</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 602</td>
<td>Practicum (Internship/Practicum)</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 602</td>
<td>Practicum (Introduction to Biostatistical Consulting)</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Units: 19

Biostatistics Track:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQHS 435</td>
<td>Survival Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 480</td>
<td>Introduction to Mathematical Statistics</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 499</td>
<td>Longitudinal Data Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

Select 1 of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQHS 471</td>
<td>Machine Learning & Data Mining</td>
<td>3</td>
</tr>
<tr>
<td>STAT 426</td>
<td>Multivariate Analysis and Data Mining</td>
<td>3</td>
</tr>
</tbody>
</table>

Genomics and Bioinformatics Track:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQHS 471</td>
<td>Machine Learning & Data Mining</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 451</td>
<td>A Data-Driven Introduction to Genomics and Human Health</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 452</td>
<td>Statistical Methods for Genetic Epidemiology</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 457</td>
<td>Current Issues in Genetic Epidemiology: Design and Analysis of Sequencing Studies</td>
<td>3</td>
</tr>
</tbody>
</table>

Health Care Analytics:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQHS 435</td>
<td>Survival Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 515</td>
<td>Secondary Analysis of Large Health Care Data Bases</td>
<td>3</td>
</tr>
</tbody>
</table>

Select 2 of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQHS 459</td>
<td>Longitudinal Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 500</td>
<td>Design and Analysis of Observational Studies</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 450</td>
<td>Clinical Trials and Intervention Studies</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 471</td>
<td>Machine Learning & Data Mining</td>
<td>3</td>
</tr>
</tbody>
</table>

Social and Behavioral Sciences Track:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQHS 459</td>
<td>Longitudinal Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MPHP 482</td>
<td>Qualitative and Mixed Methods in Public Health</td>
<td>3</td>
</tr>
<tr>
<td>NURS 632</td>
<td>Advanced Statistics: Structural Equation Modeling</td>
<td>3</td>
</tr>
<tr>
<td>PSCL 412</td>
<td>Measurement of Behavior</td>
<td>3</td>
</tr>
</tbody>
</table>

Plentiful research opportunities exist within the department and numerous research centers across the university, and extend to the adjoining University Hospitals, to the nearby Cleveland Clinic, to Cleveland's MetroHealth Medical Center, and to similar entities across the United States and internationally.

Concurrently, students will master the rigorous scientific and analytic methods necessary to be at the forefront of efforts to not only describe, but effectively evaluate and improve the population's health, and contribute to both the society and the biostatistics profession. Student- and faculty-led seminars provide an ongoing mechanism for keeping abreast of current literature and identifying important areas of research and collaborative opportunities. The Department operates within a strong interdisciplinary framework involving faculty within the department, the school of medicine, and across the entire university, as well as leaders in health care institutions and health oriented organizations and agencies throughout the wider community.

Graduates from accredited universities and colleges will be considered for admission to the department. All applicants must satisfy both CWRU and department requirements for graduate admission. The MS program in Biostatistics consists of a 16-credit core curriculum, plus a 12 credit major and a 3 credit internship or practicum.

General Requirements

Students must satisfy the requirements of the School of Graduate Studies as stated here, as well as those outlined by the Biostatistics program. The MS program in Biostatistics offers "Plan B", as defined by the CWRU School of Graduate Studies. For Plan B, the student must successfully submit and pass their written internship/practicum project.

Minor in Public Health

Questions and Information:

Nickalaus Koziura, Ed.M.
Undergraduate Minor in Public Health
Case Western Reserve University
10900 Euclid Avenue, W-G74
Cleveland, Ohio 44106-4945
216.368.3128 - phone
216.368.2286 - fax
nickalaus.koziura@case.edu (drabousky@case.edu)
The impact of public health and the need for the general public to know more is periodically highlighted during crises such as epidemics and pandemics like Zika, Ebola, and Avian Flu. Education in public health is not only necessary for those entering the public health workforce, but is a critical complementary subject for all those considering a career in a health related field.

The Undergraduate Minor in Public Health is a 15 credit program that exposes students to the field of public health. This minor is designed to equip students with the core concepts of Public Health and is highly collaborative with many departments to provide a robust option for students who are pre-health or pursuing medical anthropology, medical sociology, mental health, global health, or nutrition and health promotion.

Required Courses (9 Credits):

- **MPHP 101** Introduction to Public Health 3
- **MPHP 301** Introduction to Epidemiology 3
- **ONE of the following courses in Global Health**
 - **INTH 301** Fundamentals of Global Health 3
 - **ANTH 359** Introduction to International Health 3

Electives (6 credits from one of the following areas):

Global Health
- **INTH 301** Fundamentals of Global Health 3
- **BETH 315B** International Bioethics Policy and Practice: Public Health in the Netherlands 3
- **ANTH 359** Introduction to International Health 3
- **ANTH 354** Health and Healing in East Asia 3
- **ANTH 323** AIDS: Epidemiology, Biology, and Culture 3
- **BIOL 352** Ecology and Evolution of Infectious Diseases 3

Medical Anthropology
- **ANTH 354** Health and Healing in East Asia 3
- **ANTH 326** Power, Illness, and Inequality: The Political Economy of Health 3
- **ANTH 328** Medical Anthropology and Public Health 3
- **ANTH 338** Maternal Health: Anthropological Perspectives on Reproductive Practices and Health Policy 3
- **ANTH 359** Introduction to International Health 3
- **ANTH 215** Health, Culture, and Disease: An Introduction to Medical Anthropology 3
- **ANTH 323** AIDS: Epidemiology, Biology, and Culture 3

Medical Sociology
- **SOCL 264** Body, Culture and Disability 3
- **SOCL 311** Health, Illness, and Social Behavior 3
- **SOCL 344** Health Disparities 3
- **SOCL 345** Sociology of Mental Illness 3
- **SOCL 365** Health Care Delivery 3

Mental Health
- **PSCL 315** Social Psychology 3
- **PSCL 317** Health Psychology 3
- **PSCL 321** Abnormal Psychology 3
- **PSCL 344** Developmental Psychopathology 3
- **SOCL 345** Sociology of Mental Illness 3

Nutrition and Health Promotion
- **NTRN 341** Food as Medicine: How what we eat influences how we feel, think, and our health status 3
- **NTRN 343** Dietary Patterns 3
- **NTRN 328** Child Nutrition, Development and Health 3
- **MPHP 313** Health Education, Communication, and Advocacy 3

Master of Public Health (MPH)

Questions and Information:

Lisa Miller, MA, CHES
Master of Public Health Program
Case Western Reserve University
10900 Euclid Avenue, W-G74
Cleveland, Ohio 44106-4945
216.368.3128 - phone
216.368.2286 - fax
lxm384@case.edu (drabousky@case.edu)

A Master of Public Health degree is designed to prepare students to address the broad mission of public health, defined as “enhancing health in human populations, through organized community effort,” utilizing education, research and community service. Public health practitioners are prepared to identify and assess the health needs of different populations, and then to plan, implement and evaluate programs to meet those needs. It is the task of the public health practitioner to protect and promote the wellness of humankind. The master of public health program prepares students to enhance health in human populations through organized community effort. Graduates are qualified to work in local and state health departments, universities and colleges, hospitals, ambulatory medical centers, non-profit organizations, and the insurance and pharmaceutical industries. The program seeks to attract a rich mix of students, including those pursuing degrees in medicine, nursing, dentistry, law, social work, anthropology, bioethics, management and other fields, as well as students holding undergraduate degrees.

The CWRU MPH Program has a two-year curriculum requiring 42 credit hours. Twenty-one credits are accumulated in seven core required courses, representing the fundamental domains of public health: biostatistics, epidemiology, environmental health sciences, health services administration, public health history and social and behavioral sciences. Students receive nine credits for three courses in the major of their choice, three credits for one elective course, and nine credits for the “Culminating Experience,” a 3 credit public health field practicum and a 6 credit capstone project. Previous experience or education pertaining to public health may increase the student’s flexibility in course selection. Students may also enroll part-time and take courses over a three to five year period.

Requirements: Course List

Core required courses (21 credits)
- **MPHP 403** Research & Evaluation Methods 3
- **MPHP 405** Statistical Methods in Public Health 3
- **MPHP 406** History and Philosophy of Public Health 3
- **MPHP 411** Introduction to Health Behavior 3
- **MPHP 429** Introduction to Environmental Health 3
- **MPHP 439** Public Health Management and Policy 3
- **MPHP 483** Introduction to Epidemiology for Public Health Practice 3

Culminating Experience
Concentrations

Currently, five different concentrations (a.k.a. tracks) are offered by the CWRU MPH Program: Population Health Research, Global Health, Health Policy & Administration, Health Promotion & Disease Prevention, and Health Informatics. Each concentration has a required course or courses (in addition to the core required courses), plus selective offerings to be combined for a total of 9 credit hours in major coursework. Students develop a Capstone project relevant to the concentration area to expand and apply the knowledge of the subject. Individual emphasis will differ from student to student within each concentration.

MPH students can also choose to expand the emphasis and depth of their program of study by electing to do a double concentration plan of study. For the double concentration, the student chooses two areas (two concentrations) of equal emphasis and takes 3 courses in each area (this requires the student to take a minimum of 48 credit hours). The student's Capstone project must embrace and integrate both emphases, and no double-counting of credits can take place. Students choosing to do the double concentration plan of study should also work closely with an advisor to ensure optimal course selection and foster the evolution of a successful Capstone project.

Population Health Research Concentration
Coordinator - Mendel Singer, PhD, MPH

Learning Objectives:

- Working knowledge of epidemiologic principles, terminology, and tools
- Working knowledge of the primary analytic methods employed in both prospective and retrospective studies relating to population health
- Understand the most common study designs used in public health and/or clinical research
- Gain familiarity with some of the key advanced concepts in one of the subspecialties of population health (e.g. epidemiology, health services research, outcomes research.

Global Health Concentration
Coordinator - Daniel Tisch, PhD, MPH

Learning Objectives:

- Develop a global perspective on health and diseases
- Learn to design, execute, analyze, and evaluate global health research or projects
- Acquire skills to understanding and communicate meaningfully with colleagues from distant fields of global health
- Learn to integrate multiple objectives in global health across academic and applied disciplines
- Understand ethical and regulatory issues for global health research
Select two out of the following three courses as required major courses:

- **INTH 401** Fundamentals of Global Health 3
- **MPHP 447** Global Health: Outbreak Investigation in Real-Time 3
- **MPHP 484** Global Health Epidemiology 1.5 - 3

Select remaining major course from below:

- **MPHP 467** Comparative and Cost Effectiveness Research 1
- **MPHP 475** Management of Disasters Due to Nature, War, or Terror 3
- **MPHP 510** Health Disparities 3
- **ANTH 461** Urban Health 3
- **ANTH 480** Medical Anthropology and Global Health I 3
- **ANTH 481** Medical Anthropology and Global Health II 3
- **ANTH 511** Seminar in Anthropology and Global Health: Topics 3
- **LAW 4101** International Law 3
- **LAW 5123** International Trade Law and Policy 3
- **MGMT 460** Managing in a Global Economy 3

Health Care Policy & Administration Concentration

Coordinator - TBA

Learning Objectives:

To improve population health through leadership by developing knowledge, ability and skills to lead care improvement, including:

- Knowledge of social science through theories and how they can be used to understand the organization of health care (health economics, sociology, organization theory, social psychology)
- To understand the role of the manager, organizational control and design, relationships with professional workers, adaptation to change and public accountability
- To understand and be able to use management techniques including quality improvement, small group leadership, budgeting, cost effectiveness, and decision supports
- Able to analyze a public health problem, recommend solutions, make a public presentation, and carry out improvements

Required major course:

- **MPHP 468** The Continual Improvement of Healthcare: An Interdisciplinary Course 3

Select remaining major courses from the list below:

- **MPHP 421** Health Economics and Strategy 3
- **MPHP 456** Health Policy and Management Decisions 3
- **MPHP 467** Comparative and Cost Effectiveness Research 1
- **MPHP 475** Management of Disasters Due to Nature, War, or Terror 3
- **MPHP 510** Health Disparities 3
- **MPHP 532** Health Care Information Systems 3
- **POSC 483** Health Policy and Politics in the United States 3
- **HSMC 420** Health Finance 3
- **LAW 5205** Public Health Law 2
- **BETH 417** Introduction to Public Health Ethics 3

Health Promotion & Disease Prevention Concentration

Coordinator - Erika Trapl, PhD

Learning Objectives:

- Describe models and theories of health behavior as they relate to health promotion and disease prevention
- Identify multi-factorial causes of health behavior and disease
- Demonstrate knowledge and skills necessary to support behavior change
- Apply principles and practice of effective health communication
- Describe development, implementation, and evaluation of programs that promote healthy lifestyle and behaviors

Required major course:

- **MPHP 433** Community Interventions and Program Evaluation 3

Select remaining major courses from the list below:

- **MPHP 413** Health Education, Communication, and Advocacy 3
- **POHS 423** Dissemination and Implementation Science for Health Promotion 3
- **MPHP 464** Obesity and Cancer: Views from Molecules to Health Policy 3
- **MPHP 475** Management of Disasters Due to Nature, War, or Terror 3
- **MPHP 485** Adolescent Development 3
- **MPHP 510** Health Disparities 3
- **ANTH 461** Urban Health 3
Intensive Research Pathway
The MPH is not a research degree, yet many use it as a springboard for a career in research. Some continue on for a PhD in a related field, such as Epidemiology. Others look for jobs as research assistants and compete for these jobs with people who have obtained a research master's degree – often at a disadvantage due to their limited number (and level) of advanced research methods courses. The MPH degree offers a broad foundation in public health and experience in community settings and has great value both as a secondary degree (e.g. MD/MPH) and as a primary terminal degree. Yet even within the framework of an MPH degree, more can be done to accommodate those intending to pursue a career in research, either directly or by first pursuing a PhD. In addition to better preparing these students for research careers and PhD programs, students wishing to continue for a PhD (at CWRU or elsewhere) can, with by doing the IRP, get more credit towards their PhD degrees.

The goal is to create a unique hybrid that combined the benefits of a research level Master's degree with the broader professional public health training of the MPH degree. This optional program of study can be completed with any of the MPH concentrations by completing the course list below (33 credits) plus any of the 9 credit concentration sequences

- MPH 406 History and Philosophy of Public Health 3
- MPH 411 Introduction to Health Behavior 3
- MPH 439 Public Health Management and Policy 3
- MPH 650 Public Health Practicum 3
- MPH 652 Public Health Capstone Experience 6
- PQHS 414 Data Management and Statistical Programming 3
- PQHS 431 Statistical Methods I 3
- PQHS 432 Statistical Methods II 3
- PQHS 465 Design and Measurement in Population Health Sciences 3
- PQHS 490 Epidemiology: Introduction to Theory and Methods 3
- Concentration Course Sequence 9

Total Units 42

PhD Epidemiology and Biostatistics
Questions and Information:

Nickalaus Koziura, EdM
Master of Science - Biostatistics
Case Western Reserve University
10900 Euclid Avenue, W-G74
Cleveland, Ohio 44106-4945
216.368.3128 - phone
216.368.2286 - fax
nickalaus.koziura@case.edu (drabousky@case.edu)

The PhD Program in Epidemiology and Biostatistics draws on the core disciplines of biostatistics and epidemiology to support students in developing the knowledge, skills and competencies needed to assume positions of leadership with the ultimate goal of advancing population health. Students accepted into the PhD program will master the rigorous scientific and analytic methods necessary to be at the forefront of efforts to not only describe, but effectively evaluate and improve the public's health. The Department operates within a strong interdisciplinary framework involving faculty within the department, the school of medicine, and across the entire university, as well as leaders in health care and public health institutions and health oriented organizations and agencies locally, regionally, nationally, and internationally.

The educational mission of the Department of Epidemiology and Biostatistics PhD Program is to train students using an integrated approach that draws broadly from the population and quantitative health sciences. These include global, population, public, and community health, biostatistics, epidemiology, health behavior and prevention, genomic epidemiology, bioinformatics, and computational biology. This training provides the foundation for trainees to play integral roles in successfully solving our most pressing health problems.

To develop into the research leaders expected of our graduates, each student will take a common set of first and second year courses that provides extensive exposure to each of the areas noted above. By the end of their first year students will choose a mentor and laboratory in which to do their dissertation work. Research areas span all of the above and often combine these approaches with the expectation that cross-disciplinary studies will result in more complete solutions to complex public health problems.

As part of their training all students will develop both the breadth and depth of skills and competencies needed to perform cutting edge research as well as integrated expertise in specific areas of particular relevance to their program of research. These will be developed through a combination of didactic coursework as well as individualized training within research teams led by their mentor.

A key component of our training program is to engage students in as many collaborative roles as practical. This will serve the important goal of giving each student a means to understand how to study the multiple determinants of health risk and outcomes, including biological and non-biological (environmental and social) influences, and the variation and disparity in outcomes.

Exposure to cutting edge research will be facilitated by our department-wide seminar that includes talks by world-leading experts both from off- and on-campus. As part of their training all students will participate in these seminars, including as speakers. This will help develop the necessary communication skills that is expected of successful researchers.

Graduates from accredited universities and colleges will be considered for admission to the department. All applicants must satisfy both CWRU and department requirements for graduate admission. Upon acceptance into the PhD program, each student will be assigned an academic advisor, who will guide the student through department and graduate school regulations, assist him or her in designing the initial planned program of study, and track the student's progress toward degree completion.

Research and training will be guided by a committee of faculty including the student's research advisor. The research advisor will have the major responsibility for facilitating, guiding, and advising the student in his or her research, but this will be done in consultation with the faculty committees. A Mentoring committee, selected after first year of Ph.D. training, will help students select courses and educational goals most useful for their research interests. This committee will be replaced at the end of the second year by a Dissertation committee that will play an important role in guiding the student's research project.

On completion of all Core Curriculum course requirements, students take a qualifying examination that is necessary to remaining and advancing in
the program. Exceptions to required courses based on prior course work will be decided on a case by case basis.

Curriculum

The Doctor of Philosophy degree in Epidemiology and Biostatistics in the Department of Population and Quantitative Health Sciences comprises 42 credits from the following components:

- Core Curriculum (22 credits)
- Electives (20 credits)
- Department Research Seminar (6 semesters)
- Passing the Qualifying Exam
- Dissertation Research (18 credits)

Core Curriculum

The Core Curriculum is designed to provide PhD students with a strong foundation in epidemiology and biostatistics and related areas - the fields that comprise population and quantitative health sciences - and the methodological and analytic training to conduct a rigorous, high quality research in the student’s selected specialization or concentration.

Core required courses include: Statistical Methods I & II, Introduction to Public Health, Introduction to Epidemiology, Design and Measurement in Population Health Sciences, Integrated Thinking in Population and Quantitative Health Sciences I & II, and Communicating in Population Health Science I & II.

Electives

Electives are chosen in consultation with the student’s mentor and mentoring committee.

Seminars (0 credits)

Attending research seminars is integral to our graduate program and student's professional development. Students are required to attend weekly research seminars. These seminars provide a forum for students to develop skills in scientific presentation, thought and communication, and balance general and concentration-specific speakers and topics. Meeting locations may vary from week to week depending upon the speaker. Each student is required to attend in person six semesters of seminars. All students are required to present once a year during research seminars after their first year in the program.

Qualifying Exam

Following the completion of the core required courses at the end of their second year, students will take an oral exam based on required coursework that involves analyses of a novel data set. This will include a description of the results, their interpretation and a short proposal on alternative or future research directions based on these findings. Students will be given two attempts to pass this examination. A second failure will result in dismissal from the program.

Dissertation (18 credits)

After passing the qualifying examination and completing second year coursework, students will select a dissertation committee and develop a thesis proposal, based on anticipated research for their dissertation. This will be presented to the student’s Dissertation committee that will evaluate the written document and an oral defense of the document. This will be completed no later than the end of the fall semester of the third year. Successful completion of this exam will move the student to candidacy. Each student will be allowed two attempts to pass the oral defense of the proposal.

Students are required to complete 18 credits of dissertation (EPBI 701) prior to graduation.

MPHP Courses

MPHP 101. Introduction to Public Health. 3 Units.
The purpose of this course is to introduce students to the science and art of public health through understanding historical and current issues through public health case histories and controversies. Students will be introduced to social, behavioral, cultural, and environmental influences on population health. Emphasis is placed on social justice as a central component of public health, with an overview of health inequity and commitment to vulnerable populations. Core public health practices relating to health promotion program design, community assessment and improvement planning, health communication, health policy and enforcement, and health behavior change will be featured. The course will promote understanding of health care and public health systems domestically and globally, including preparedness for and response to public health emergencies.

MPHP 301. Introduction to Epidemiology. 3 Units.
This course begins with the exploration of the history, philosophy and uses of epidemiology. It then moves to the basic descriptive functions of epidemiology such as condition, frequency and severity. Data is used to describe qualitatively and quantitatively diseases and injuries in a population. Applications include identifying patterns of disease and injury over time and geography. The course then moves to analytical epidemiology with focus on estimation, inference, bias, confounding and adjustment in the determination of what factors are associated with, or cause disease or injury. The different kinds of study designs are introduced including ecologic, cross-sectional, case-control, retrospective and prospective cohort, and experimental designs such as clinical trials. Students are introduced to evidence-based public health with analysis of harm, benefit and cost, and intervention effectiveness. The course concludes with applications to policy, covering outbreak investigation/testing/screening, public health policy and special epidemiologic applications including molecular and genetic epidemiology, environmental health and safety, unintentional injury and violence prevention and behavioral sciences. Recommended preparation: A course in statistics taken before or concurrently with MPHP 301.

MPHP 306. History and Philosophy of Public Health. 3 Units.
The purpose of this course is to introduce students to the science and art of public health through an understanding of the history and philosophies that represent its foundation. Students will learn about the essentials of public health through an understanding historical and current issues and the past and present, in order to better understand solutions for the future. Offered as MPHP 306 and MPHP 406. Prereq: Enrollment limited to juniors and seniors only.

MPHP 313. Health Education, Communication, and Advocacy. 3 Units.
Historical, sociological, and philosophical factors that have influenced definitions and the practice of health education and health promotion are studied. Advanced concepts in health communication theory will also be explored. This course is designed to educate, motivate, and empower undergraduate and graduate students to become advocates for their own health, the health of their peers, and the health of the community. Offered as MPHP 313 and MPHP 413.
MPHP 403. Research & Evaluation Methods. 3 Units.
This course is designed to provide an overview of research and evaluation methods for first-year MPH students. Through lecture, discussion, and application exercises, students are introduced to the principles and processes of research and evaluation methods in public health, including formulation of research questions, aims and hypotheses and evaluation goals and objectives; literature review; development/selection of conceptual and theoretical models; quantitative, qualitative and evaluation project management; and application of ethical principles and protection of human subjects in public health research and evaluation.

MPHP 405. Statistical Methods in Public Health. 3 Units.
This one-semester survey course for public health students is intended to provide the fundamental concepts and methods of biostatistics as applied predominantly to public health problems. The emphasis is on interpretation and concepts rather than calculations. Topics include descriptive statistics; vital statistics; sampling; estimation and significance testing; sample size and power; correlation and regression; spatial and temporal trends; small area analysis; statistical issues in policy development. Examples of statistical methods will be drawn from public health practice. Use of computer statistical packages will be introduced. Prereq: Enrollment limited to MPH students (Plan A or Plan B) and EPBI students only. All others require instructor consent.

MPHP 406. History and Philosophy of Public Health. 3 Units.
The purpose of this course is to introduce students to the science and art of public health through an understanding of the history and philosophies that represent its foundation. Students will learn about the essentials of public health and applications of those precepts throughout history and in the present. The course will examine public health case histories and controversies from the past and present, in order to better understand solutions for the future. Offered as MPHP 306 and MPHP 406. Prereq: Enrollment limited to MPH students (Plan A or Plan B) and EPBI students or instructor consent.

MPHP 411. Introduction to Health Behavior. 3 Units.
Using a biopsychosocial perspective, an overview of the measurement and modeling of behavioral, social, psychological, and environmental factors related to disease prevention, disease management, and health promotion is provided. Offered as PQHS 411 and MPHP 411. Prereq: Enrollment limited to MPH students (Plan A or Plan B) and EPBI students or consent.

MPHP 413. Health Education, Communication, and Advocacy. 3 Units.
Historical, sociological, and philosophical factors that have influenced definitions and the practice of health education and health promotion are studied. Advanced concepts in health communication theory will also be explored. This course is designed to educate, motivate, and empower undergraduate and graduate students to become advocates for their own health, the health of their peers, and the health of the community. Offered as MPHP 313 and MPHP 413.

MPHP 421. Health Economics and Strategy. 3 Units.
The purpose of this course is to develop the analytical skills necessary for understanding how the U.S. health care sector operates, how it has evolved, the forces at work behind perceived deficiencies (in quality and cost control), and the impact of alternative policy proposals. Special attention is giving to recent developments in the healthcare marketplace, and the strategic considerations they create for providers and insurers. These issues are addressed through the lens of microeconomic theory. Under this framework, outcomes result from the interaction of decisions made by participants in the healthcare economy (e.g. patients, providers, insurers, government), with those decisions governed by the preferences, incentives and resource constraints facing each decision-maker. Principles of microeconomics will be reviewed as necessary to ensure consistent understanding of basic concepts. The course is designed to appeal to a broad audience, particularly students interested in healthcare management, public health, medical innovation, health law, and public policymaking. Offered as HSMC 421 and MPHP 421.

MPHP 429. Introduction to Environmental Health. 3 Units.
This survey course will introduce students to environmental and occupational health topics including individual, community, population, and global issues. Students will develop an understanding of the human health impacts of physical, biological, and chemical agents in the environment and workplace including basic principles of toxicology. Presentation of concepts including risk assessment, communication and management as well as discussion of environmental and occupational practices, policies and regulations that promote public and population health is included.

MPHP 431. Statistical Methods I. 3 Units.
Application of statistical techniques with particular emphasis on problems in the biomedical sciences. Basic probability theory, random variables, and distribution functions. Point and interval estimation, regression, and correlation. Problems whose solution involves using packaged statistical programs. First part of year-long sequence. Offered as ANAT 431, BIOL 431, CRSP 431, PQHS 431 and MPHP 431.

MPHP 432. Statistical Methods II. 3 Units.
Methods of analysis of variance, regression and analysis of quantitative data. Emphasis on computer solution of problems drawn from the biomedical sciences. Design of experiments, power of tests, and adequacy of models. Offered as BIOL 432, PQHS 432, CRSP 432 and MPHP 432. Prereq: PQHS/EPBI 431 or equivalent.

MPHP 433. Community Interventions and Program Evaluation. 3 Units.
This course prepares students to design, conduct, and assess community-based health interventions and program evaluation. Topics include assessment of need, evaluator/stakeholder relationship, process vs. outcome-based objectives, data collection, assessment of program objective achievement based on process and impact, cost-benefit analyses, and preparing the evaluation report to stakeholders. Recommended preparation: PQHS/EPBI 490, PQHS/EPBI 431, or MPHP 405. Offered as PQHS 433 and MPHP 433. Prereq: MPHP 411.
MPHP 439. Public Health Management and Policy. 3 Units.
This course is designed to introduce students to the basics of health policy-making and includes a background on the basic structure and components of the US Health Care System (such as organization, delivery and financing). It will also cover introductory concepts in public health management, including the role of the manager, organizational design and control, and accountability. We will address relevant legal, political and ethical issues using case examples. At the end of the course, students will understand how health policy is developed and implemented in various contexts, and the challenges facing system-wide efforts at reform. This is a required course for the MPH degree. Grades will be based on a series of assignments. Prereq: Enrollment limited to MPH students (Plan A or Plan B) and EPBI Students or instructor consent.

MPHP 447. Global Health: Outbreak Investigation in Real-Time. 3 Units.
This course provides a trans-cultural, trans-disciplinary, multimedia learning experience by analyzing historical and real-time data from the annual dengue endemics and sporadic epidemics in Puerto Rico and Brazil. A rigorous problem-centered training in the epidemiology, prevention, treatment, and control of infectious diseases using real-time and historical surveillance data of endemic and epidemic Dengue in Bahia, Brazil. This is an advanced epidemiology course in which core material will be primarily taught through reading assignments, class discussion, group projects, and class presentations. The course will utilize the online web-based communication and learning technology to create a single classroom between the CWRU and international partners with unique and complementary skills. In addition to joint classroom lectures across sites, student groups will also perform smaller-scale videoconference meetings for assigned group projects, thus creating strong international connections for the students, faculty, and our institutions. Note: Due to the complexities of time zones for this international course, the course will begin at 8:00a.m. until the U.S.A. adjusts clocks for Daylight Savings Time (unlike Brazil). Therefore, classes after the second week of March will begin at 9:00a.m. Offered as PQHS 447, INTH 447 and MPHP 447.

MPHP 450. Clinical Trials and Intervention Studies. 3 Units.
Issues in the design, organization, and operation of randomized, controlled clinical trials and intervention studies. Emphasis on long-term multicenter trials. Topics include legal and ethical issues in the design; application of concepts of controls, masking, and randomization; steps required for quality data collection; monitoring for evidence of adverse or beneficial treatment effects; elements of organizational structure; sample size calculations and data analysis procedures; and common mistakes. Recommended preparation: PQHS/EPBI 431 or consent of instructor. Offered as PQHS 450 and MPHP 450.

MPHP 451. A Data-Driven Introduction to Genomics and Human Health. 3 Units.
This course introduces the foundational concepts of genomics and genetic epidemiology through four key principles: 1) Teaching students how to query relational databases using Structure Query Language (SQL); 2) Exposing students to the most current data used in genomics and bioinformatics research, providing a quantitative understanding of biological concepts; 3) Integrating newly learned concepts with prior ones to discover new relationships among biological concepts; and 4) providing historical context to how and why data were generated and stored in the way they were, and how this gave rise to modern concepts in genomics. Offered as PQHS 451, GENE 451, and MPHP 451.

MPHP 456. Health Policy and Management Decisions. 3 Units.
This seminar course combines broad health care policy issue analysis with study of the implications for specific management decisions in organizations. This course is intended as an applied, practical course where the policy context is made relevant to the individual manager. Offered as HSMC 456 and MPHP 456.

MPHP 460. Introduction to Health Services Research. 3 Units.
This survey course provides an introduction to the field of Health Services Research and an overview of key health services research concepts and methods, including conceptual frameworks and models; outcomes research; risk adjustment; disparities in health care; policy/health care systems; cost and cost-effectiveness; quality of life, process improvement; patient satisfaction; patient safety; health economics; statistical modeling techniques; and qualitative research methods. Offered as PQHS 460 and MPHP 460.

MPHP 464. Obesity and Cancer. Views from Molecules to Health Policy. 3 Units.
This course will provide an overview of the components of energy balance (diet, physical activity, resting metabolic rate, dietary induced thermogenesis) and obesity, a consequence of long term positive energy balance, and various types of cancer. Following an overview of energy balance and epidemiological evidence for the obesity epidemic, the course will proceed with an introduction to the cellular and molecular biology of energy metabolism. Then, emerging research on biologically plausible connections and epidemiological associations between obesity and various types of cancer (e.g., colon, breast) will be presented. Finally, interventions targeted at decreasing obesity and improving quality of life in cancer patients will be discussed. The course will be cooperatively-taught by a transdisciplinary team of scientists engaged in research in energy balance and/or cancer. Didactic lectures will be combined with classroom discussion of readings. The paper assignment will involve application of course principles, lectures and readings. Offered as PQHS 464 and MPHP 464.

MPHP 466. Promoting Health Across Boundaries. 3 Units.
This course examines the concepts of health and boundary spanning and how the synergy of the two can produce new, effective approaches to promoting health. Students will explore and analyze examples of individuals and organizations boundary spanning for health to identify practice features affecting health, compare and contrast practices and approaches, and evaluate features and context that promote or inhibit boundary spanning and promoting health. Offered as MPHP 466, PQHS 466, SOCI 466, NURS 466 and BETH 466. Prereq: Graduate student status or instructor consent.
MPHP 467. Comparative and Cost Effectiveness Research. 1 Unit.
Comparative effectiveness research is a cornerstone of healthcare reform. It holds the promise of improved health outcomes and cost containment. This course is presented in a convenient 5-day intensive format in June. There are reading assignments due prior to the 1st session. Module A, Days 1-2: Overview of comparative effectiveness research (CER) from a wide array of perspectives: individual provider, institution, insurer, patient, government, and society. Legal, ethical and social issues, as well as implications for population and public health, including health disparities will also be a component. Module B, Day 3: Introduction to the various methods, and their strengths, weaknesses and limitations. How to read and understand CER papers. Module C, Days 4-5: Cost-Effectiveness Analysis. This will cover costing, cost analysis, clinical decision analysis, quality of life and cost-effectiveness analysis for comparing alternative health care strategies. Trial version of TreeAge software will be used to create and analyze a simple cost-effectiveness model. The full 3-credit course is for taking all 3 modules. Modules A or C can be taken alone for 1 credit. Modules A and B or Modules B and C can be taken together for a total of 2 credits. Module B cannot be taken alone. If taking for 2 or 3 credits, some combination of term paper, project and/or exam will be due 30 days later. Offered as PQHS 467 and MPHP 467.

MPHP 468. The Continual Improvement of Healthcare: An Interdisciplinary Course. 3 Units.
This course prepares students to be members of interprofessional teams to engage in the continual improvement in health care. The focus is on working together for the benefit of patients and communities to enhance quality and safety. Offered as PQHS 468, MPHP 468, and NURS 468.

MPHP 475. Management of Disasters Due to Nature, War, or Terror. 3 Units.
The purpose of this course is to make participants aware of the special needs of children and families in disaster situations and understand public health approaches to address these needs. The learning objectives for this course are: 1) Identify the most important problems and priorities for children in disaster situations, 2) Identify the organizations most frequently involved in providing assistance in disaster situations and define their roles and strengths, 3) Describe the reasons why children are among the most vulnerable in disaster events, 4) Conduct emergency nutritional assessments for children, 5) Develop health profiles on displaced children and plan interventions based on results, 6) Define common psychosocial issues of children and the means to address them, 7) List basic points of international law including the Geneva Convention that relate to all persons involved in disaster situations, 8) List important security issues, 9) Appreciate ethical issues involved in disaster situations and employ skills of cross cultural communication, 10) Recognize and respond to special issues for children involved in biological and chemical terrorist attacks.

MPHP 477. Internship at Health-Related Government Agencies. 3 Units.
This independent study course will incorporate a one-semester-long internship at health-related government agencies (Ohio Department of Health, Ohio Department of Job and Family Services, or Cleveland City Health Department). The choice of the agency will depend on the student’s academic interests and research goals. The objective is to develop a level of familiarity with the organizational and operational aspects of such agencies, and to gain an understanding of agencies’ and bureaus’ interactions with the legislative body, as well as the processes of developing, implementing, managing, and monitoring health initiative. The instructor and the liaison persons at the agencies will be responsible for planning structured encounters of interns with key administrators and policy makers, and to select a research project, based on the intern’s research interests and the agencies’ research priorities. Interns will be required to submit a draft of the report to the instructor at the end of the semester. The approved, final report will be submitted to the agency. The project will be evaluated for its methodological soundness and rigor. Students will be required to be at the agency one day a week. Recommended preparation: PQHS/EPBI 515.

MPHP 482. Qualitative and Mixed Methods in Public Health. 3 Units.
Understanding complex public health issues requires both qualitative and quantitative inquiry. The exploration of the perceptions and experiences of people is as essential as analyzing the relationships among variables. Often, the integration of the two methods is required in order to effectively address the significant health issues faced by today’s society. It is the purpose of this course to facilitate a meaningful and substantive learning process around engaging in, and critically analyzing, qualitative and mixed methods research in public health. This includes gaining first-hand experience in research design and collecting, managing, analyzing, and interpreting data for the purposes of making data-driven program and policy recommendations. In addition, students will have the opportunity to engage with local professionals engaged in qualitative and mixed methods research.

MPHP 483. Introduction to Epidemiology for Public Health Practice. 3 Units.
This course is designed to introduce the basic principles and methods of epidemiology. Epidemiology has been referred to as the basic science for public health. Application of epidemiologic principles is critical to disease prevention, as well as in the development and evaluation of public policy. The course will emphasize basic methods (study design, measures of disease occurrence, measures of association, and causality) necessary for epidemiologic research. It is intended for students who have a basic understanding of the principals of human disease as well as statistics. Prereq: Must be an MPHP Plan A or MPHP Plan B, or EPBI student in order to enroll in the course.
MPHP 484. Global Health Epidemiology. 1 - 3 Units.
This course provides a rigorous problem-centered training in the epidemiology, prevention, treatment, and control of infectious diseases and, more generally, global health. This is an advanced epidemiology that embraces an active learning environment. Students are expected to invest time out of the classroom reading and working with classmates. Classes will be conducted with discussions, debates, group projects, and group presentations. By taking this course, students will develop a framework for interpreting, assessing, and performing epidemiologic research on issues of global importance. The course will be divided into three modules: 1) Global Health Epidemiology 2) Helminth Epidemiology, and 3) Epidemiology of Disease Elimination. Each module is worth 1 credit hour and may be taken separately. Each module will have a separate project and/or exam. The final exam time will be used for group presentations and panel discussion. Active class participation is required through discussions, case studies, and group projects. Offered as PQHS 484, INTH 484, and MPHP 484.

MPHP 485. Adolescent Development. 3 Units.
Adolescent Development can be viewed as the overriding framework for approaching disease prevention and health promotion for this age group. This course will review the developmental tasks of adolescence and identify the impact of adolescent development on youth risk behaviors. It will build a conceptual and theoretical framework through which to address and change adolescent behavior to promote health.

MPHP 490. Epidemiology. Introduction to Theory and Methods. 3 Units.
This course provides an introduction to the principles of epidemiology covering the basic methods necessary for population and clinic-based research. Students will be introduced to epidemiologic study designs, measures of disease occurrence, measures of risk estimation, and casual inference (bias, confounding, and interaction) with application of these principles to specific fields of epidemiology. Classes will be a combination of lectures, discussion, and in-class exercises. It is intended for students who have a basic understanding of the principals of human disease and statistics. Offered as PQHS 490 and MPHP 490. Prereq or Coreq: PQHS/EPBI 431 or Requisites Not Met permission.

MPHP 494. Infectious Disease Epidemiology. 3 Units.
This course focuses on tuberculosis (TB) and HIV epidemiology, including perspectives on these diseases in the US and globally. It is a follow-up to PQHS/MPHP 484: Global Health Epidemiology, but these courses do not necessarily need to be taken in sequence. This is an advanced course, focusing on methods and approaches in epidemiology and public health. Offered as PQHS 494, INTH 494 and MPHP 494. Prereq: PQHS/EPBI 490.

MPHP 499. Independent Study. 1 - 18 Units.

MPHP 510. Health Disparities. 3 Units.
This course aims to provide theoretical and application tools for students from many disciplinary backgrounds to conduct research and develop interventions to reduce health disparities. The course will be situated contextually within the historical record of the United States, reviewing social, political, economic, cultural, legal, and ethical theories related to disparities in general, with a central focus on health disparities. Several frameworks regarding health disparities will be used for investigating and discussing the empirical evidence on disparities among other subgroups (e.g., the poor, women, uninsured, disabled, and non-English speaking populations) will also be included and discussed. Students will be expected to develop a research proposal (observational, clinical, and/or intervention) rooted in their disciplinary background that will incorporate materials from the various perspectives presented throughout the course, with the objective of developing and reinforcing a more comprehensive approach to current practices within their fields. Offered as CRSP 510, PQHS 510, MPHP 510, NURS 510, and SASS 510.

MPHP 532. Health Care Information Systems. 3 Units.
This course covers concepts, techniques and technologies for providing information systems to enhance the effectiveness and efficiency of health care organizations. Offered as HSMC 432 and MPHP 532.

MPHP 540. Operational Aspects of Global Health and Emergency Response. 3 Units.
Among professional in the medical field and the field of public health, there is a gap in knowledge, structure and research in best practices surrounding emergency response. This gap results from the limited number of training programs in the United States that focus on this very specialized field and the limited number of academic partnerships with international non-governmental organizations (NGOs). This course helps remedy this gap by introducing public health students and international emergency medicine fellows to the overall structure and operations of international humanitarian coordination systems, types of emergency response, morbidity and mortality associated with various emergencies, and the actors and institutions involved. The course highlights, through reading, workshops, and examples, the real world issues that must be faced and overcome in the field during emergency response operations.

MPHP 650. Public Health Practicum. 1 - 3 Units.
The Public Health Practicum is an integral component of the MPH curriculum, allowing students to apply, develop, and refine their conceptual knowledge and skills as part of a planned, supervised, and evaluated community-based experience. The Practicum is designed to move students beyond the walls of academia, to understand the political, economic, social, and organizational contexts within which public health activities are conducted. To complete the Practicum, students must complete three credits of MPHP 650, dedicating at least 120 hours to a substantial public health experience, and attend Community Health Research and Practice (CHRP) group meetings. Prereq: Complete at least 9 credit hours in the MPH program and be in good academic standing.

MPHP 652. Public Health Capstone Experience. 1 - 9 Units.
Public health field practicum, involving a placement at a community-based field site, and a Master's essay. The field placement will provide students with the opportunity to apply the knowledge and skills acquired through their Master of Public Health academic program to a problem involving the health of the community. Students will learn to communicate with target groups in an effective manner; to identify ethical, social, and cultural issues relating to public health policies, research, and interventions; to identify the process by which decisions are made within the agency or organization; and to identify and coordinate use of resources at the placement site. The Master's essay represents the culminating experience required for the degree program and may take the form of a research thesis, an evaluation study, or an intervention study. Each student is required to formally present the experience and research findings. In any semester in which a student is registered for MPHP 652 credit, it is required that the student attend the Community Health Research and Practice (CHRP) group at a minimum of two sessions per 3 credits. CHRP is held once a week for approximately an hour and a half for the duration of fall, spring, and summer semesters. MPHP 652 credit is available only to Master of Public Health students.
MPHP 655. Dual Degree Field Practicum II. 3 Units.
This course is designed to be taken by MSSA/MPH joint degree students as the second field period of their master's program. It consists of a field practicum and participation in professional development opportunities. The Field Practicum is an integral component of the MSSAS and MPH curriculums, allowing students to apply, develop, and refine their conceptual knowledge and skills as part of a planned, supervised, and evaluated community-based experience. The Practicum is designed to move students beyond the walls of academia, to understand the political, economic, social, and organizational contexts within which social work and public health activities are conducted. These collective experiences provide students with a forum to develop skills, integrate and operationalize the values and ethics inherent in professional practice, and confront social injustice as self-reflective, competent developing practitioners. (EPAS Program Objective M6 and EPAS Content Area 4.7) The overall goal of this course is to provide graduate level MSSA/MPH joint degree students with field related opportunities to continue to develop foundation level competencies in the eight MSSAS abilities by helping students apply knowledge of social work and public health theory, skills, values and ethics acquired in the classroom in an agency setting. Offered as MPHP 655 and SASS 655.

MPHP 656. Dual Degree Field Capstone III. 3 Units.
The Public Health Capstone Project is an integral component of the MPH curriculum, allowing students to apply, develop, and refine their conceptual knowledge and skills as part of a planned, mentored, and evaluated public health scholarly project. This course is designed to be taken by advanced level students. It consists of a 288 hour field based Capstone experience and participation in 12 hours of professional development opportunities. The overall goal of this course is designed to move students beyond the walls and constraints of the classroom, to understand the political, economic, social, and organizational contexts within which public health and social work activities are conducted. It is also designed to provide graduate level dual degree students with field related opportunities to begin to develop advanced level competencies in the eight abilities by helping students apply knowledge of social work theory, skills, values and ethics acquired in the classroom in an agency setting. Offered as MPHP 656 and SASS 655.

PQHS Courses

PQHS 411. Introduction to Health Behavior. 3 Units.
Using a biopsychosocial perspective, an overview of the measurement and modeling of behavioral, social, psychological, and environmental factors related to disease prevention, disease management, and health promotion is provided. Offered as PQHS 411 and MPHP 411. Prereq: Enrollment limited to MPH students (Plan A or Plan B) and EPBI students or consent.

PQHS 414. Data Management and Statistical Programming. 3 Units.
This is an online course that offers no in-person meetings. This course serves as a general introduction to the use of computer systems in epidemiologic investigations and biostatistical applications. Students will develop a conceptual understanding of data types, basic data structures, relational database systems and data normalization, data warehousing, control statements, and programming logic. Further, students will develop basic scripting skills and will learn to read in, manipulate, and perform basic descriptive analyses on research data using the SAS programming language. Primary emphasis in this course is on developing the knowledge and familiarity required to work with data in a statistical programming context. Basic familiarity with statistics is beneficial, as this course does not teach inferential statistical analysis in detail, but it is not vital to learning the course material.

PQHS 415. Statistical Computing and Data Analytics. 3 Units.
Statistical computing is an essential part of modern statistical training. This course emphasizes on statistical and data analytic problem solving skills, covers elements of statistical computing and, special topics in modern data analytics. This includes numerical methods for statistics, stochastic simulation, symbolic and graphical computation, plus special topics in resampling methods, EM algorithms, Gibbs Sampling/MCMC, projection pursuit, Laplace approximation, parallel computing, and selected methods for big and high dimensional data. The course will use R/plus predominantly. However, interface of R with another high level programming language such as C, C++, Fortran, JAVA or Python will be essential for Big Data and intensive computation. Some Matlab, Mathematica, and graphviz will be used for symbolic and graphical computation. Prerequisite: Knowledge in statistics, equivalent to that in either STAT 325/425, or STAT 345/445, or PQHS/EPBI 431, or PQHS/EPBI 431, or by permission. Experience with at least one programming language is required: R/plus, Matlab, C/C++, Fortran, JAVA, or Python. Prereq: STAT 312, STAT 325, STAT 425, STAT 345, STAT 445, PQHS/EPBI 431 or PQHS/EPBI 481.

PQHS 423. Dissemination and Implementation Science for Health Promotion. 3 Units.
This graduate-level course introduces concepts, skills, and methods for systematically disseminating and implementing evidence-based interventions for population health promotion. The course includes a focus on developing partnerships and transdisciplinary research teams, applying theories and frameworks to guide dissemination and implementation (D & I) science, examining research methods and designs appropriate for conducting D & I research at different and multiple levels of intervention (e.g., clinical, community, policy), and exploring channels for effectively communicating evidence to inform decision-making and practice in diverse contexts. Recommended preparation: PQHS/EPBI 411 or grad. level behavioral theory equivalent; PQHS/EPBI 490 or MPHP 483 or graduate level research methods equivalent.
PQHS 431. Statistical Methods I. 3 Units.
Application of statistical techniques with particular emphasis on problems in the biomedical sciences. Basic probability theory, random variables, and distribution functions. Point and interval estimation, regression, and correlation. Problems whose solution involves using packaged statistical programs. First part of year-long sequence. Offered as ANAT 431, BIOL 431, CRSP 431, PQHS 431 and MPHP 431.

PQHS 432. Statistical Methods II. 3 Units.
Methods of analysis of variance, regression and analysis of quantitative data. Emphasis on computer solution of problems drawn from the biomedical sciences. Design of experiments, power of tests, and adequacy of models. Offered as BIOL 432, PQHS 432, CRSP 432 and MPHP 432. Prereq: PQHS/EPBI 431 or equivalent.

PQHS 433. Community Interventions and Program Evaluation. 3 Units.
This course prepares students to design, conduct, and assess community-based health interventions and program evaluation. Topics include assessment of need, evaluator/stakeholder relationship, process vs. outcome-based objectives, data collection, assessment of program objective achievement based on process and impact, cost-benefit analyses, and preparing the evaluation report to stakeholders. Recommended preparation: PQHS/EPBI 490, PQHS/EPBI 431, or MPHP 405. Offered as PQHS 433 and MPHP 433.

PQHS 435. Survival Data Analysis. 3 Units.
Basic concepts of survival analysis including hazard function, survival function, types of censoring; non-parametric models; extended Cox models: time dependent variables, piece-wise Cox model, etc.; sample size requirements for survival studies. Prereq: PQHS/EPBI 432.

PQHS 436. Essence of Multilevel Statistical Modeling, Including Repeated Measures Analysis. 1 Unit.
A brief introduction to statistical models to handle studies having observational units (cases) at multiple levels (hierarchies). In particular, cases are often nested within groups, such as distinct communities, healthcare centers, or schools. Because the cases are not independent, conventional statistical methods assuming single-level data such as ordinary least squares regression are not appropriate. Multilevel designs allow examination of the effects of both individual (micro-level) factors as well as of higher level (macro or contextual) factors, and their interactions, on outcomes of interest. Longitudinal and other repeated measures analyses are a special case of multilevel modeling where the repeated measurements are nested within subjects or cases. Methods covered include use of linear mixed models, including random coefficient regression models, for continuous normally distributed outcomes, and generalized linear mixed modeling techniques for binary and count outcomes. Marginal regression modeling using generalized estimating equations (GEE) techniques, is introduced and contrasted to the use of mixed models. Examples and use of software (primarily SAS) are stressed in order to develop a strong conceptual understanding of the models. Prereq: PQHS/EPBI 432 or Requisites Not Met permission.

PQHS 437. Essence of Classical Multivariate Analysis. 1 Unit.
A brief introduction to classical multivariate analysis methods: data visualization, two-group discriminant analysis via Hotelling's test, principal components and exploratory factor analysis, cluster analysis. Examples and wise use of software R are stressed in order to develop a strong conceptual understanding of the methods. This course joins PQHS 436 and 438 as the three-step "essence" series in advanced statistical methods required for the PhD in Population Health Science. Prereq: PQHS/EPBI 432 or Requisites Not Met permission.

PQHS 438. Essence of Structural Equation Modeling. 1 Unit.
Brief introduction to classic "linear structural relations" (LISREL) formulation of structural equation models: Building them to address specific research aims. Fitting and assessing the goodness of the fit. Prudent interpretations. Examples and wise use of software are stressed in order to develop a strong conceptual understanding. This course joins PQHS 436 and 437 as the three-step "essence" series in advanced statistical methods required for the PhD in Population Health Science. Prereq: PQHS/EPBI 432 or Requisites Not Met permission.

PQHS 440. Introduction to Population Health. 3 Units.
Introduces graduate students to the multiple determinants of health including the social, economic and physical environment, health services, individual behavior, genetics and their interactions. It aims to provide students with the broad understanding of the research development and design for studying population health, the prevention and intervention strategies for improving population health and the disparities that exist in morbidity, mortality, functional and quality of life. Format is primarily group discussion around current readings in the field; significant reading is required.

PQHS 444. Communicating in Population Health Science Research. 2 Units.
Doctoral seminar on writing journal articles to report original research, and preparing and making oral and poster presentations. The end products are ready-to-submit manuscripts and related slide and poster presentations for the required first-year research project in the PhD program in the Department of Epidemiology and Biostatistics. While this course provides a nucleus for this endeavor, students work intensively under the supervision of their research mentors, who guide all stages of the work including providing rigorous editorial support. Seminar sessions are devoted to rigorous peer critiques of every stage of the projects and to in-depth discussions of assigned readings. Recommended preparation: PhD students in the Department of Biostatistics and Epidemiology. Non-PhD EPBI students permitted if space available. Fluency in English writing (e.g., in accord with the Harbrace College Handbook). Prereq: PQHS/EPBI 431 and PQHS/EPBI 490. Coreq: PQHS/EPBI 432.

PQHS 445. Research Ethics in Population Health Sciences. 0 Unit.
This zero credit course is a required add-on for PhD students in EPBI. Students will register and fulfill all requirements for IBMS 500 "Being a Professional Scientist". The purpose of PQHS 445 is to address specialized population health topics not covered by IBMS 500, including international research, human genomics, and/or big data/electronic medical records. There will be no meetings/lectures for this course. Students will complete a short written assignment due at the end of the semester.
PQHS 447. Global Health: Outbreak Investigation in Real-Time. 3 Units.
This course provides a trans-cultural, trans-disciplinary, multimedia learning experience by analyzing historical and real-time data from the annual dengue endemics and sporadic epidemics in Puerto Rico and Brazil. A rigorous problem-centered training in the epidemiology, prevention, treatment, and control of infectious diseases using real-time and historical surveillance data of endemic and epidemic Dengue in Bahia, Brazil. This is an advanced epidemiology course in which core material will be primarily taught through reading assignments, class discussion, group projects, and class presentations. The course will utilize the online web-based communication and learning technology to create a single classroom between the CWRU and international partners with unique and complementary skills. In addition to joint classroom lectures across sites, student groups will also perform smaller-scale videoconference meetings for assigned group projects, thus creating strong international connections for the students, faculty, and our institutions. Note: Due to the complexities of time zones for this international course, the course will begin at 8:00a.m. until the U.S.A. adjusts clocks for Daylight Savings Time (unlike Brazil). Therefore, classes after the second week of March will begin at 9:00a.m. Offered as PQHS 447, INTH 447 and MPH 447. Prereq: PQHS/EPBI 490.

PQHS 450. Clinical Trials and Intervention Studies. 3 Units.
Issues in the design, organization, and operation of randomized, controlled clinical trials and intervention studies. Emphasis on long-term multicenter trials. Topics include legal and ethical issues in the design; application of concepts of controls, masking, and randomization; steps required for quality data collection; monitoring for evidence of adverse or beneficial treatment effects; elements of organizational structure; sample size calculations and data analysis procedures; and common mistakes. Recommended preparation: PQHS/EPBI 431 or consent of instructor. Offered as PQHS 450 and MPHP 450.

PQHS 451. A Data-Driven Introduction to Genomics and Human Health. 3 Units.
This course introduces the foundational concepts of genomics and genetic epidemiology through four key principles: 1) Teaching students how to query relational databases using Structure Query Language (SQL); 2) Exposing students to the most current data used in genomics and bioinformatics research, providing a quantitative understanding of biological concepts; 3) Integrating newly learned concepts with prior ones to discover new relationships among biological concepts; and 4) providing historical context to how and why data were generated and stored in the way they were, and how this gave rise to modern concepts in genomics. Offered as PQHS 451, GENE 451, and MPHP 451. Prereq: PQHS/EPBI 431 and PQHS/EPBI 490 or Requisites Not Met permission.

PQHS 452. Statistical Methods for Genetic Epidemiology. 3 Units.
Analytic methods for evaluating the role of genetic factors in human disease, and their interactions with environmental factors. Statistical methods for the estimation of genetic parameters and testing of genetic hypotheses, emphasizing maximum likelihood methods. Models to be considered will include such components as genetic loci of major effect, polygenic inheritance, and environmental, cultural and developmental effects. Topics will include familial aggregation, segregation and linkage analysis, ascertainment, linkage disequilibrium, and disease marker association studies. Recommended preparation: PQHS/EPBI 431 and PQHS/EPBI 451.

PQHS 453. Categorical Data Analysis. 3 Units.
Categorical data are often encountered in many disciplines including in the fields of clinical and biological sciences. Analysis methods for analyzing categorical data are different from the analysis methods for continuous data. There is a rich a collection of methods for categorical data analysis. The elegant "odds ratio" interpretation associated with categorical data is a unique one. This online course will cover cross-sectional categorical data analysis theories and methods. From this course students will learn standard categorical data analysis methods and its applications to the biomedical and clinical studies. This particular course will focus mostly on statistical methods for categorical data analysis arising from various fields of studies including clinical studies; those who take it will come from a wide variety of disciplines. The course will include video lectures, group discussion and brainstorming, homework, simulations, and collaborative projects on real and realistic problems in human health tied directly to the student’s own professional interests. Focus will be given to logistic regression methods. Topics include (but not limited to) binary response, multi-category response, count response, model selection and evaluation, exact inference, Bayesian methods for categorical data, and supervised statistical learning methods. This course stresses how the core statistical principles, computing tools, and visualization strategies are used to address complex scientific aims powerfully and efficiently, and to communicate those findings effectively to researchers who may have little or no experience in these methods. Recommended preparation: Advanced undergraduate students, and graduate students in Biostatistics or other quantitative sciences with a background in statistical methods (at least one statistics course, equivalent to the PQHS/EPBI 431 course experience).

PQHS 454. Population Genetics for Genetic Epidemiology. 3 Units.
Introduce concepts and classical results of mathematical population genetics, with emphasis on the influence of evolutionary forces and population history on contemporary human genetic variation. Survey empirical population variation and their implication for mapping complex traits. How to simulate population sequence data using coalescence models will also be emphasized.

PQHS 455. Current Issues in Genetic Epidemiology: Design and Analysis of Sequencing Studies. 3 Units.
Statistical methods to deal with the opportunities and challenges in Genetic Epidemiology brought about by modern sequencing technology. Some computational issues that arise in the analysis of large sequence data sets will be discussed. The course includes hands-on experience in the analysis of large sequence data sets, in a collaborative setting. Prereq: PQHS/EPBI 451 and PQHS/EPBI 452.

PQHS 456. Introduction to Health Services Research. 3 Units.
This survey course provides an introduction to the field of Health Services Research and an overview of key health services research concepts and methods, including conceptual frameworks and models; outcomes research; risk adjustment; disparities in health care; policy/health care systems; cost and cost-effectiveness; quality of life, process improvement; patient satisfaction; patient safety; health economics; statistical modeling techniques; and qualitative research methods. Offered as PQHS 460 and MPHP 460.
PQHS 464. Obesity and Cancer: Views from Molecules to Health Policy. 3 Units.
This course will provide an overview of the components of energy balance (diet, physical activity, resting metabolic rate, dietary induced thermogenesis) and obesity, a consequence of long term positive energy balance, and various types of cancer. Following an overview of energy balance and epidemiological evidence for the obesity epidemic, the course will proceed with an introduction to the cellular and molecular biology of energy metabolism. Then, emerging research on biologically plausible connections and epidemiological associations between obesity and various types of cancer (e.g., colon, breast) will be presented. Finally, interventions targeted at decreasing obesity and improving quality of life in cancer patients will be discussed. The course will be cooperatively-taught by a transdisciplinary team of scientists engaged in research in energy balance and/or cancer. Didactic lectures will be combined with classroom discussion of readings. The paper assignment will involve application of course principles, lectures and readings. Offered as PQHS 464 and MPHP 464.

PQHS 465. Design and Measurement in Population Health Sciences. 3 Units.
This course focuses on common design and measurement approaches used in population health sciences research. This course covers the preliminary considerations used in selecting qualitative, quantitative and mixed methods research approaches including an understanding of different philosophical worldviews, strategies of inquiry and methods and procedures for each approach. The course also includes an introduction to survey design and related concepts of latent variables, factor analysis and reliability and validity. Students will develop an in-depth knowledge of these design and measurement approaches through readings, lectures, group discussions and written and oral project presentations. Prereq: PQHS/EPBI 440, PQHS/EPBI 431, PQHS/EPBI 490, PQHS/EPBI 432, PQHS/EPBI 460, PQHS/EPBI 444 and PQHS/EPBI 445.

PQHS 466. Promoting Health Across Boundaries. 3 Units.
This course examines the concepts of health and boundary spanning and how the synergy of the two can produce new, effective approaches to promoting health. Students will explore and analyze examples of individuals and organizations boundary spanning for health to identify practice features affecting health, compare and contrast practices and approaches, and evaluate features and context that promote or inhibit boundary spanning and promoting health. Offered as MPHP 466, PQHS 466, SOCI 466, NURS 466 and BETH 466. Prereq: Graduate student status or instructor consent.

PQHS 467. Comparative and Cost Effectiveness Research. 1 Unit.
Comparative effectiveness research is a cornerstone of healthcare reform. It holds the promise of improved health outcomes and cost containment. This course is presented in a convenient 5-day intensive format in June. There are reading assignments due prior to the 1st session. Module A, Days 1-2: Overview of comparative effectiveness research (CER) from a wide array of perspectives: individual provider, institution, insurer, patient, government, and society. Legal, ethical and social issues, as well as implications for population and public health, including health disparities will also be a component. Module B, Day 3: Introduction to the various methods, and their strengths, weaknesses and limitations. How to read and understand CER papers. Module C, Days 4-5: Cost-Effectiveness Analysis. This will cover costing, cost analysis, clinical decision analysis, quality of life and cost-effectiveness analysis for comparing alternative health care strategies. Trial version of TreeAge software will be used to create and analyze a simple cost-effectiveness model. The full 3-credit course is for taking all 3 modules. Modules A or C can be taken alone for 1 credit. Modules A and B or Modules B and C can be taken together for a total of 2 credits. Module B cannot be taken alone. If taking for 2 or 3 credits, some combination of term paper, project and/or exam will be due 30 days later. Offered as PQHS 467 and MPHP 467.

PQHS 468. The Continual Improvement of Healthcare: An Interdisciplinary Course. 3 Units.
This course prepares students to be members of interprofessional teams to engage in the continual improvement in health care. The focus is on working together for the benefit of patients and communities to enhance quality and safety. Offered as PQHS 468, MPHP 468, and NURS 468.

PQHS 471. Machine Learning & Data Mining. 3 Units.
Vast amount of data are being collected in medical and social research and in many industries. Such big data generate a demand for efficient and practical tools to analyze the data and to identify unknown patterns. We will cover a variety of statistical machine learning techniques (supervised learning) and data mining techniques (unsupervised learning), with data examples from biomedical and social research. Specifically, we will cover prediction model building and model selection (shrinkage, Lasso), classification (logistic regression, discriminant analysis, k-nearest neighbors), tree-based methods (bagging, random forests, boosting), support vector machines, association rules, clustering and hierarchical clustering. Basic techniques that are applicable to many of the areas, such as cross-validation, the bootstrap, dimensionality reduction, and splines, will be explained and used repeatedly. The field is fast evolving and new topics and techniques may be included when necessary. Prereq: PQHS/EPBI 431.

PQHS 480. Introduction to Mathematical Statistics. 3 Units.
An introduction to statistical inference at an intermediate mathematical level. The concepts of random variables and distributions, discrete and continuous, are reviewed. Topics covered include: expectations, variance, moments, the moment generating function; Bernoulli, binomial, hypergeometric, Poisson, negative binomial, normal, gamma and beta distribution; the central limit theorem; Bayes estimation, maximum likelihood estimators, unbiased estimators, sufficient statistics; sampling distributions (chi-square, t) confidence intervals, Fisher information; hypothesis testing, uniformly most powerful tests and multi-decision problems. Prereq: MATH 122, MATH 124 or MATH 126.
PQHS 481. Theoretical Statistics I. 3 Units.
Topics provide the background for statistical inference. Random variables; distribution and density functions; transformations, expectation. Common univariate distributions. Multiple random variables; joint, marginal and conditional distributions; hierarchical models, covariance. Distributions of sample quantities, distributions of sums of random variables, distributions of order statistics. Methods of statistical inference. Offered as STAT 345, STAT 445, and PQHS 481. Prereq: STAT 345 or STAT 445 or PQHS/EPBI 431.

PQS 482. Theoretical Statistics II. 3 Units.
Point estimation; maximum likelihood, moment estimators. Methods of evaluating estimators including mean squared error, consistency, "best" unbiased and sufficiency. Hypothesis testing; likelihood ratio and union-intersection tests. Properties of tests including power function, bias. Interval estimation by inversion of test statistics, use of pivotal quantities. Application to regression. Graduate students are responsible for mathematical derivations, and full proofs of principal theorems. Offered as STAT 346, STAT 446 and PQHS 482. Prereq: STAT 345 or STAT 445 or PQHS/EPBI 481.

PQHS 484. Global Health Epidemiology. 1 - 3 Units.
This course provides a rigorous problem-centered training in the epidemiology, prevention, treatment, and control of infectious diseases and, more generally, global health. This is an advanced epidemiology that embraces an active learning environment. Students are expected to invest time out of the classroom reading and working with classmates. Classes will be conducted with discussions, debates, group projects, and group presentations. By taking this course, students will develop a framework for interpreting, assessing, and performing epidemiologic research on issues of global importance. The course will be divided into three modules: 1) Global Health Epidemiology 2) Helminth Epidemiology, and 3) Epidemiology of Disease Elimination. Each module is worth 1 credit hour and may be taken separately. Each module will have a separate project and/or exam. The final exam time will be used for group presentations and panel discussion. Active class participation is required through discussions, case studies, and group projects. Offered as PQHS 484, INTH 484, and MPHP 484.

PQHS 490. Epidemiology. Introduction to Theory and Methods. 3 Units.
This course provides an introduction to the principles of epidemiology covering the basic methods necessary for population and clinic-based research. Students will be introduced to epidemiologic study designs, measures of disease occurrence, measures of risk estimation, and casual inference (bias, confounding, and interaction) with application of these principles to specific fields of epidemiology. Classes will be a combination of lectures, discussion, and in-class exercises. It is intended for students who have a basic understanding of the principals of human disease and statistics. Offered as PQHS 490 and MPHP 490. Prereq or Coreq: PQHS/EPBI 431 or Requisites Not Met permission.

PQHS 494. Infectious Disease Epidemiology. 3 Units.
This course focuses on tuberculosis (TB) and HIV epidemiology, including perspectives on these diseases in the US and globally. It is a follow-up to PQHS/MPHP 484: Global Health Epidemiology, but these courses do not necessarily need to be taken in sequence. This is an advanced course, focusing on methods and approaches in epidemiology and public health. Offered as PQHS 494, INTH 494 and MPHP 494. Prereq: PQHS/EPBI 490.

PQHS 499. Independent Study. 1 - 18 Units.

PQHS 500. Design and Analysis of Observational Studies. 3 Units.
An observational study investigates treatments, policies or exposures and the effects that they cause, but it differs from an experiment because the investigator cannot control assignment. We introduce appropriate design, data collection and analysis methods for such studies, to help students design and interpret their own studies, and those of others in their field. Technical formalities are minimized, and the presentations will focus on the practical application of the ideas. A course project involves the completion of an observational study, and substantial use of the R statistical software. Topics include randomized experiments and how they differ from observational studies, planning and design for observational studies, adjustments for overt bias, sensitivity analysis, methods for detecting hidden bias, and focus on propensity score methods for selection bias adjustment, including multivariate matching, stratification, weighting and regression adjustments. Recommended preparation: a working knowledge of multiple regression, some familiarity with logistic regression, with some exposure to fitting regression models in R. Offered as CRSP 500 and PQHS 500.

PQHS 501. Research Seminar. 0 Unit.
This seminar series includes faculty and guest-lecturer presentations designed to introduce students to on-going research at the University and elsewhere. Seminars will emphasize the application of methods learned in class, as well as the introduction of new methods and tools useful in research.

PQHS 504. Seminar in Health Care Organization, Outcomes and Policy. 0 Unit.
This seminar is designed to enhance the professional development of students in the Health Care Organization, Outcomes and Policy concentration of the Department of Epidemiology and Biostatistics and provide them with practical information, experiences and guidance to foster their academic success. Students will 1) develop the ability to critically appraise the health services research literature; 2) gain experience in organizing and delivering oral presentations based on published literature and their own research endeavors; 3) be exposed to role models and receive coaching on career development through lecture and discussion involving experienced faculty from within and outside the division; 4) receive didactic training and hands-on experience with career-related tasks and skills such as grant writing and proposal evaluation, article review, and effective participation in professional meetings; and hear faculty from within and outside the department describe their research. The specific content of the seminar for any given semester will be determined jointly by HCOOP students and faculty. Enrollment is limited to students in the HCOOP division of the Department of Epidemiology and Biostatistics.

PQHS 505. Seminar in Global Health Epidemiology. 0 Unit.
This seminar series examines a broad range of topics related to infectious disease research in international settings. Areas of interest are certain to include epidemiology, bioethics, medical anthropology, pathogenesis, drug resistance, vector biology, cell and molecular biology, vaccine development, diagnosis, and socio-cultural factors contributing to or compromising effective health care delivery in endemic countries. Speakers will include a diverse group of regional faculty and post-doctoral trainees, as well as visiting colleagues from around the world. Students will be asked to read a journal article written by the speaker and then discuss this article with the speaker after their seminar.
PQHS 506. Seminar in Health Behavior and Prevention Research. 0 Unit.
This seminar is designed to enhance the academic and professional
development of students in the Health Behavior & Prevention Research
(HB&PR) concentration in the Department of Epidemiology and
Biostatistics. The seminar is comprised of a journal club style in which
current and classic research literature in health behavior and prevention
research is critically evaluated. Also, talks are given by students, faculty,
and invited guests. These activities give students the opportunity to
improve their ability to: 1) critically evaluate research literature in HB&PR;
2) lead effectively a discussion of a research article; and 3) organize and
deliver oral presentations based on published literature and their own
research endeavors. Some sessions are devoted to didactic training and
hands-on experience with career-related tasks and skills such as grant
writing, proposal evaluation, and manuscript review. The specific content
of the seminar for any given semester will be determined jointly by the
students and faculty in HB&PR. Enrollment is required of all PhD students
in the HB&PR concentration of the Department of Epidemiology and
Biostatistics; however is open to all interested students.

PQHS 510. Health Disparities. 3 Units.
This course aims to provide theoretical and application tools for students
from many disciplinary backgrounds to conduct research and develop
interventions to reduce health disparities. The course will be situated
contextually within the historical record of the United States, reviewing
social, political, economic, cultural, legal, and ethical theories related to
disparities in general, with a central focus on health disparities. Several
frameworks regarding health disparities will be used for investigating and
discussing the empirical evidence on disparities among other subgroups
(e.g., the poor, women, uninsured, disabled, and non-English speaking
populations) will also be included and discussed. Students will be
expected to develop research proposal (observational, clinical, and/or
intervention) rooted in their disciplinary background that will incorporate
materials from the various perspectives presented throughout the course,
with the objective of developing and reinforcing a more comprehensive
approach to current practices within their fields. Offered as CRSP 510,
PQHS 510, MPH 510, NURS 510, and SASS 510.

PQHS 515. Secondary Analysis of Large Health Care Data Bases. 3 Units.
Development of skills in working with the large-scale secondary data
bases generated for research, health care administration/billing, or other
purposes. Students will become familiar with the content, strength, and
limitations of several data bases; with the logistics of obtaining access to
data bases; the strengths and limitations of routinely collected variables;
methodologies for preparing and analyzing secondary data bases and
how to apply the techniques to initiate and complete empirical analysis.
Recommended preparation: PQHS/EPBI 414 or equivalent; PQHS/EPBI
431 or PQHS/EPBI 460 and PQHS/EPBI 461 (for HSR students).

PQHS 550. Meta-Analysis & Evidence Synthesis. 2 - 3 Units.
Systematic reviews use reproducible methods to systematically
search the literature and synthesize the results of a specific topic area.
Meta-analysis is a specific analytic technique used to pool results of
individual studies. Systematic reviews are useful ways to establish
one’s knowledge in a particular field of study, and can highlight gaps in
research which can be pursued in future work. They can also inform the
background of a grant. This course is designed to introduce students to
the methods of conducting a high quality systematic review and meta-
analysis of intervention studies. We will cover the design, methods, and
analytic techniques involved in systematic reviews. These concepts will
prepare students to conduct their own systematic review or evaluate
the systematic reviews of others. Sessions will be lectures, labs, and
presentations. Topics include developing a search strategy, abstracting
key data, synthesizing the results qualitatively, meta-analytic techniques,
grading the quality of studies, grading the strength of the evidence, and
manuscript preparation specific to systematic reviews and meta-analysis
of intervention studies. Caveat: If you would like to conduct a systematic
review of your own that can be published after the course ends, you
will need to have several other class members or colleagues willing to
work with you on the project. The systematic review should be on a topic
where you expect no more than 20-30 included studies in order to be able
to complete the review soon after the course ends. Offered as CRSP 550
and PQHS 550. Prereq: CRSP 401, PQHS/EPBI 431, MPH 405, NURS 532
or Requisites Not Met permission.

PQHS 601. Master's Project Research. 1 - 18 Units.
PQHS 602. Practicum. 1 - 3 Units.
This course focuses on the skills needed to become an effective
statistical consultant. The course objectives are: to learn the role of the
consulting statistician and the accompanying responsibilities and ethical
considerations, to develop the ability to interact with clients and elicit
the information required to provide consulting expertise, to learn general
strategies for approaching consulting problems that can be applied to
a wide range of problems in medical areas, and to develop expertise in
areas needed by the consulting biostatistician. These include database
architecture, data quality control, record keeping for potential audits,
statistical techniques, and report generation.

PQHS 651. Thesis M.S.. 1 - 18 Units.
PQHS 701. Dissertation Ph.D.. 1 - 9 Units.
Prereq: Predoctoral research consent or advanced to Ph.D. candidacy
milestone.

School of Medicine Faculty
School of Medicine
Full-Time Faculty

Anatomy
Thomas Brantley, MD; Assistant Professor
Darin Croft, PhD; Professor
Barbara Freeman, PhD; Assistant Professor
Michael Katz, MD PhD; Associate Professor
Hue-Lee Kaung, PhD; Associate Professor
Joseph Miller, PhD; Associate Professor
Scott Simpson, PhD; Professor
Bryan Singelyn, MS; Instructor
Susanne Wish-Baratz, PhD; Assistant Professor

Biochemistry
Amiya Banerjee, PhD; Professor
Barbara Bedogni, PhD; Associate Professor
Paul Carey, PhD; Professor
Hung-Ying Kao, PhD; Professor
William Merrick, PhD; Professor
Nelson Phillips, PhD; Associate Professor
Marianne Pusztai-Carey, PhD; Associate Professor
David Samols, PhD; Professor
Menachem Shoham, PhD; Associate Professor
Martin Snider, PhD; Associate Professor
Focco Van den Akker, PhD; Associate Professor
Michael Weiss, MD PhD; Professor
Yanwu Yang, PhD; Assistant Professor
Vivien Yee, PhD; Associate Professor

Bioethics
Eileen Anderson-Fye, EdD; Associate Professor
Mark Aulisio, PhD; Professor
Nicole Deming, JD; Assistant Professor
Monica Gerrek, PhD; Assistant Professor
Aaron Goldenberg, PhD; Associate Professor
Insoo Hyun, PhD; Associate Professor
Sana Loue, PhD; Professor
Patricia Marshall, PhD; Professor
Suzanne Rivera, PhD; Assistant Professor
Stuart Youngner, MD; Professor

Biomedical Engineering
A. Ajiboye, PhD; Assistant Professor
Eben Alsberg, PhD; Professor
James Anderson, MD PhD; Professor
James Basilion, PhD; Professor
Jeffrey Capadona, Ph.D.; Associate Professor
Colin Drummond, PhD MBA; Professor
Jeffrey Duerk, PhD; Professor
Dominique Durand, PhD; Professor

Steven Eppell, PhD; Associate Professor
Miklos Gratzl, MS; Associate Professor
Kenneth Gustafson, PhD; Associate Professor
Efstathios Karathanasis, PhD; Associate Professor
Robert Kirsch, PhD; Professor
Zheng-Rong Lu, PhD; Professor
Anant Madabhushi, PhD; Professor
Cameron McIntyre, PhD; Professor
P. Peckham, PhD; Professor
Andrew Rollins, PhD; Professor
Gerald Saidel, PhD; Professor
Nicole Seiberlich, PhD; Associate Professor
Anirban Sen, PhD; Associate Professor
Sam Senyo, PhD; Assistant Professor
Nicole Steinmetz, PhD; Associate Professor
Pallavi Tiwari, PhD; Assistant Professor
Dustin Tyler, PhD; Professor
Satish Viswanath, PhD; Assistant Professor
Horst von Recum, PhD; Professor
David Wilson, PhD; Professor
Xin Yu, Sc.D.; Professor

Division of General Medical Sciences
Donald Anthony, MD; Associate Professor
Kristian Baker, PhD; Associate Professor
Jill Barnholtz-Sloan, PhD; Professor
Kimberly Bell, PhD; Assistant Professor
Ronald Blanton, MD; Professor
Jeffery Coller, PhD; Professor
David Danielpour, PhD; Professor
Analisa DiFeo, PhD; Assistant Professor
Jonatha Gott, PhD; Associate Professor
Brian Grimberg, PhD; Assistant Professor
Kishore Guda, PhD; Assistant Professor
Karin Herrmann, Md PhD; Assistant Professor
Eckhard Jankowski, PhD; Professor
James Kazura, MD; Professor
Charles King, MD; Professor
Christopher King, MD PhD; Professor
Donny Licatalosi, PhD; Assistant Professor
Cynthia Lord, MS; Associate Professor
Ellen Luebbers, MD; Assistant Professor
Goutham Narla, MD PhD; Associate Professor
Klara Papp, PhD; Professor
Theodore Parran Jr., MD; Associate Professor
Clara Pelfrey, PhD; Associate Professor
Hilary Petersen, MS; Assistant Professor
John Pink, PhD; Assistant Professor
William Schiemann, PhD; Professor
Casey Schroeder, PhD; Assistant Professor
Vinay Varadan, PhD; Assistant Professor
Martina Veigl, PhD; Associate Professor
Monica Webb Hooper, PhD; Professor
Jo Ann Wise, PhD; Professor
Peter Zimmerman, PhD; Professor

Genetics and Genome Sciences

Drew Adams, PhD; Assistant Professor
David Buchner, PhD; Assistant Professor
Ronald Conlon, PhD; Associate Professor
Charis Eng, MD PhD; Professor
Carlos Gallego, MD; Assistant Professor
Ann Harris, PhD; Professor
Peter Harte, PhD; Professor
Maria Hatzoglou, PhD; Professor
Fulai Jin, PhD; Assistant Professor
Ahmad Khalil, PhD; Assistant Professor
Thomas La Framboise, PhD; Associate Professor
Shih-Hsing Leir, PhD; Assistant Professor
Yan Li, PhD; Assistant Professor
Hua Lou, PhD; Associate Professor
Guangbin Luo, PhD; Associate Professor
Anne Matthews, PhD; Professor
Shawn McCandless, MD; Professor
Alexander Miron, PhD; Associate Professor
Anna Mitchell, MD PhD; Associate Professor
Kurt Runge, PhD; Associate Professor
Helen Salz, PhD; Professor
Peter Scacheri, PhD; Professor
Ashleigh Schaffer, PhD; Assistant Professor
Paul Tesar, PhD; Associate Professor
Zhenghe Wang, PhD; Professor
Anthony Wynshaw-Boris, MD PhD; Professor
Arthur Zinn, MD PhD; Associate Professor

Molecular Biology & Microbiology

Susann Brady-Kalnay, PhD; Professor
Cathleen Carlin, PhD; Professor
Piet de Boer, PhD; Professor
Jonathan Karn, PhD; Professor
Alan Levine, PhD; Professor
Immaculate Nankya, MBBS PhD; Instructor
Liem Nguyen, PhD; Associate Professor
Tomoaki Ogino, PhD; Assistant Professor
Arne Rietsch, PhD; Associate Professor
Jacek Skowronski, MD PhD; Professor
Saba Valadkhan, MD PhD; Assistant Professor

Neurosciences

Heather Broihier, PhD; Associate Professor
Evan Deneris, PhD; Professor
David Friel, PhD; Associate Professor
David Katz, PhD; Professor
Polyxeni Philippidou, PhD; Assistant Professor
Jerry Silver, PhD; Professor
Benjamin Strowbridge, PhD; Professor
Bruce Trapp, PhD; Professor
Richard Zigmond, PhD; Professor

Nutrition

Hope Barkoukis, PhD; Associate Professor
Gurkan Bebek, PhD; Assistant Professor
Jen Bohon, PhD; Assistant Professor
Henri Brunengraber, MD PhD; Professor
School of Medicine Faculty

David Cavallo, Ph.D.; Assistant Professor
Mark Chance, Ph.D.; Professor
Colleen Croniger, Ph.D.; Associate Professor
Jean-Eudes Dazard, Ph.D.; Assistant Professor
Paul Ernsberger, Ph.D.; Associate Professor
Stephanie Harris, Ph.D.; Assistant Professor
Lynn Kam, Ph.D.; Assistant Professor
Janna Kiselar, Ph.D.; Assistant Professor
David Lodowski, Ph.D.; Assistant Professor
Danny Manor, PhD; Associate Professor
Masaru Miyagi, PhD; Associate Professor
Michelle Puchowicz, PhD; Associate Professor
Tamara Randall, MS RDN LD; Instructor
Joan Schenkel, MS; Instructor
Wuxian Shi, PhD; Assistant Professor
James Swain, PhD; Associate Professor
Cheryl Thompson, PhD; Assistant Professor
John Tilton, MD; Associate Professor
Rosanna Watowicz, PhD; Assistant Professor
Sichun Yang, PhD; Assistant Professor

Pathology
Derek Abbott, MD PhD; Professor
Stanley Adoro, PhD; Assistant Professor
Cheryl Cameron, Ph.D.; Instructor
Shu Guang Chen, PhD; Associate Professor
Brian Cobb, PhD; Professor
XingJun Fan, PhD; Assistant Professor
Pierluigi Gambetti, MD; Professor
Wendy Goodman, PhD; Instructor
Clive Hamlin, PhD; Associate Professor
Clifford Harding, MD PhD; Professor
Mark Jackson, PhD; Associate Professor
Mark Jones, PhD; Instructor
Qingzhong Kong, PhD; Associate Professor
M. Medof, MD PhD; Professor
Vincent Monnier, MD; Professor
Silvio Notari, PhD; Instructor
Theresa Pizarro, Ph.D; Professor
Parameswaran Ramakrishnan, PhD; Assistant Professor
Jiri Safar, MD; Professor
Rafick-Pierre Sekaly, PhD; Professor
David Sell, PhD; Assistant Professor
Supriya Shukla, PhD; Instructor
Neena Singh, MD, PhD; Professor
Man-Sun Sy, PhD; Professor
Alan Tartakoff, PhD; Professor
Wenzhang Wang, PhD; Instructor
Xinglong Wang, Ph.D.; Assistant Professor
Pamela Wearsch, PhD; Assistant Professor
Tsan Xiao, PhD; Associate Professor
Xiongwei Zhu, PhD; Professor
Nicholas Ziats, PhD; Professor
Wenquan Zou, MD PhD; Associate Professor

Pharmacology
Chris Dealwis, PhD; Associate Professor
W. John Durfee, DVM; Assistant Professor
Marcin Golczak, PhD; Assistant Professor
Yoshikazu Imanishi, PhD; Associate Professor
Beata Jasztrzebska, PhD; Assistant Professor
Ruth Keri, PhD; Professor
Philip Kiser, PhD; Assistant Professor
Paul MacDonald, PhD; Professor
Rachel Mann, PhD; Instructor
Jason Mears, PhD; Assistant Professor
Vera Moiseenkova-Bell, PhD; Associate Professor
Monica Montano, PhD; Professor
Marvin Nieman, PhD; Associate Professor
Krzysztof Palczewski, PhD; Professor
Phoebe Stewart, PhD; Professor
Derek Taylor, PhD; Associate Professor
Johannes von Lintig, PhD; Associate Professor
Amy Wilson-Delfosse, PhD; Professor
You-Wei Zhang, PhD; Associate Professor

Physiology & Biophysics
Walter Boron, MD PhD; Professor
Matthias Buck, PhD; Professor
Sudha Chakrapani, PhD; Associate Professor
George Dubyak, PhD; Professor
Christopher Ford, PhD; Associate Professor
Joan Fox, PhD; Professor
Jeffrey Garvin, PhD; Professor
Stephen Jones, PhD; Professor
Joseph LaManna, PhD; Professor
Fraser Moss, PhD; Instructor
Tingwei Mu, PhD; Assistant Professor
Rossana Occhipinti, PhD; Instructor
Xin Qi, Ph.D.; Associate Professor
Rajesh Ramachandran, PhD; Assistant Professor
Andrea Romani, MD PhD; Associate Professor
William Schilling, PhD; Professor
Corey Smith, PhD; Professor
Julian Stelzer, PhD; Associate Professor
Witold Surewicz, PhD; Professor
Kui Xu, MD; Instructor

Population & Quantitative Health Sciences
Jeffrey Albert, PhD; Professor
Paul Baaki, Ph.D. MBBC; Instructor
Elaine Borawski, PhD; Professor
Farren Briggs, PhD; Assistant Professor
William Bush, PhD; Assistant Professor
Mark Cameron, PhD; Assistant Professor
Jessica Cooke Bailey, PhD; Instructor
Dana Crawford, PhD; Associate Professor
Sara Debanne, PhD; Professor
Scott Frank, MD; Associate Professor
Darcy Freedman, MPH PhD; Associate Professor
Pingfu Fu, PhD; Associate Professor
Jonathan Haines, PhD; Professor
Robert Igo, PhD; Assistant Professor
Sudha Iyengar, PhD; Professor
Siran Koroukian, PhD; Associate Professor
Chun Li, PhD; Associate Professor
Ming Li, Ph.D.; Associate Professor
Nora Nock, PhD; Associate Professor
Alfred Rimm, PhD; Professor
Satya Sahoo, PhD; Associate Professor
Abdus Sattar, PhD; Associate Professor
Nicholas Schiltz, PhD; Instructor
Mark Schluchter, PhD; Professor
Ethan Singer, PhD; Associate Professor
Lynn Singer, PhD; Professor
James Spilsbury, PhD; Associate Professor
Catherine Stein, PhD; Associate Professor
Jiayang Sun, PhD; Professor
Daniel Tisch, PhD; Associate Professor
Erika Trapl, PhD; Assistant Professor
Scott Williams, PhD; Professor
Rong Xu, PhD; Associate Professor
Xiaofeng Zhu, PhD; Professor

University Hospitals

Full-Time Faculty

Anesthesiology & Perioperative Medicine
Soozan Abouhassan, MD; Assistant Professor
Peter Adamek, MD; Assistant Professor
Anjali Adur, MBBS; Assistant Professor
Jafer Ali, MD; Assistant Professor
Michael Altose, MD PhD; Assistant Professor
Shane Angus, MS; Assistant Professor
Gregory Applegate, DO; Assistant Professor
Faisal Arain, MBBS; Assistant Professor
Daniel Asher, MD; Assistant Professor
Edwin Avery, MD; Professor
Tracy Bartone, MD; Assistant Professor
Maura Berkelhamer, MD; Assistant Professor
Bradley Besson, MD; Instructor
Helmut Cascorbi, MD PhD; Professor
Ronald Cechner, PhD; Assistant Professor
Katya Chiong, MD; Assistant Professor
Kathleen Cho, MD; Assistant Professor
David Conger, MD; Assistant Professor
Dane Coyne, MD; Instructor
Barbara Dabb, MD; Assistant Professor
Xueqin Ding, MD PhD; Assistant Professor
David Dininny, MD; Assistant Professor
Susan Dumas, MD; Associate Professor
Paul Eisenberg, MD; Assistant Professor
Samantha Evankovich, CAA; Instructor
Carl Forrest, MD; Assistant Professor
Erin Furey, MD; Assistant Professor
Sherine Ghafoori, MD; Assistant Professor
David Glasser, MD; Assistant Professor
Mark Goldfinger, MD; Assistant Professor
Evan Goodman, MD; Assistant Professor
Raymond Graber, MD; Assistant Professor
Jeffrey Grass, MD; Professor
Adam Haas, MD; Assistant Professor
Brian Haskins, MS; Instructor
Salim Hayek, MD PhD; Professor
Mada Helou, MD; Assistant Professor
James Hill, MD; Assistant Professor
Irving Hirsch, MD; Assistant Professor
Jeffrey Hopcian, MD; Assistant Professor
Brian Johnson, MD; Assistant Professor
Abdallah Kabbara, MD; Assistant Professor
Pete Kaluszyk, M.Ed; Instructor
Al-Amin Khalil, MBBS; Assistant Professor
John Klick, MD; Associate Professor
Melinda Lawrence, MD; Assistant Professor
Doris Leone, MD; Assistant Professor
Lora Levin, MD; Assistant Professor
Agnes Lina, MD; Assistant Professor
Nicole Luther, MD; Instructor
Francis Lytle, MD; Assistant Professor
Kenneth Maloney, MS AA-C; Instructor
Marin Mannix, MD; Assistant Professor
Peter Matgouranis, MD; Assistant Professor
Heather McFarland, D.O.; Associate Professor
Behram Mehta, MD; Instructor
Sheryl Modlin, MD; Assistant Professor
Joti Mucci, MD; Assistant Professor
Girish Mulgaokar, MD; Assistant Professor
Howard Nearman, MD; Professor
Matthew Norcia, MD; Assistant Professor
Shelley Ohliger, MD; Assistant Professor
James Otworth, MD; Assistant Professor
Suriyamurthy Pillai, MD; Assistant Professor
Rodrina Pinto, D.O.; Assistant Professor
Andrew Plante, MD; Assistant Professor
James Reynolds, PhD; Associate Professor
Joseph Rifici, MA/MS; Assistant Professor
Eliot Ro, MD; Assistant Professor
Sara Robertson, MD; Instructor
Megan Rodgers McCormick, DO; Assistant Professor
James Rowbottom, MD; Professor
Kasia Rubin, MD; Associate Professor
Vinod Sahgal, MBBS; Professor
Vasu Sidagam, MBBS; Assistant Professor
Subhalakshmi Sivashankaran, MBBS; Assistant Professor
Paul Stephens, MD; Assistant Professor
John Stork, MD; Associate Professor
Paul Tripi, MD; Professor
Jeffrey Ustin, MD; Assistant Professor
David Wallace, O.D.; Assistant Professor
Donald Woods, MD; Instructor
Sherif Zaky, MBBS; Assistant Professor
Dermatology
Joshua Arbesman, MD; Assistant Professor
Elma Baron, MD; Professor
Jeremy Bordeaux, MD; Associate Professor
Douglas Buethe, MD; Assistant Professor
Kevin Cooper, MD; Professor
Danyelle Dawes, MD; Assistant Professor
Jessica Galvin, DO; Assistant Professor
Mahmoud Ghannoum, PhD; Professor
Kord Honda, MD; Associate Professor
Kefei Kang, MD; Associate Professor
Jay Klemme, MD; Assistant Professor
Ari Konheim, MD; Assistant Professor
Neil Korman, MD PhD; Professor
Kurt Lu, MD; Assistant Professor
Margaret Mann, MD; Associate Professor
Thomas McCormick, PhD; Associate Professor
Pranab Mukherjee, PhD; Associate Professor
Susan Nedorost, MD; Professor
Daniel Popkin, MD PhD; Assistant Professor
Nicole Ward, PhD; Associate Professor

Emergency Medicine
Dimyana Abdelmalek, MD; Instructor
Sean Abraham, DO; Assistant Professor
Adam Bonder, MD MBA; Instructor
Barry Brenner, MD; Professor
David Cheng, MD; Associate Professor
Stephanie Gaines, MD; Assistant Professor
Aaron Lareau, MD; Assistant Professor
Jennifer Li, MD; Assistant Professor
Jeffrey Luk, MD; Assistant Professor
Edmundo Mandac, MD; Assistant Professor
Michael May, MD; Assistant Professor
Amy Pound, MD; Assistant Professor
Jessica Resnick, MD; Assistant Professor
Susan Schardt, MD; Assistant Professor
Johnathan Sheele, MD; Assistant Professor
Yael Taub, MD; Assistant Professor
Justin Yax, D.O.; Assistant Professor

Family Medicine & Community Health
Louise Acheson, MD; Professor
Angela Bennett, MD; Assistant Professor
Sandy Chang, MD; Assistant Professor
Jason Chao, MD; Professor
Nicholas Cohen, MD; Assistant Professor
Kathy Cole-Kelly, MA/MS; Professor
Peter DeGolia, MD; Professor
Susan Flocke, PhD; Professor
Heidi Gullett, MD; Assistant Professor
Darrell Hulisz, MD; Associate Professor
Gail Jones, MD; Senior Instructor
Julie Keller, MD; Assistant Professor
Li Li, MD, PhD; Professor
Vanessa Maier, MD; Assistant Professor
Sybil Marsh, MD; Associate Professor
Lynda Montgomery, MD; Associate Professor
Masahiro Morikawa, MD; Professor
Karen Mulloy, DO; Associate Professor
Olusegun Odukoya, MD; Assistant Professor
Goutham Rao, MD; Professor
Johnie Rose, MD PhD; Assistant Professor
C. Kent Smith, MD; Professor
Kurt Stange, MD PhD; Professor
Irina Todorov, MD; Assistant Professor
Robert Truax, D.O.; Assistant Professor
Susan Wentz, MD; Assistant Professor
James Werner, PhD; Associate Professor

Medicine
Sahar Abdelmoneim, MBCh; Assistant Professor
Meer Ali, MBBS; Assistant Professor
Donald Anthony, MD PhD; Professor
Baha Arafah, MD; Professor
Keith Armitage, MD; Professor
Mauricio Arruda, MD; Associate Professor
Ali Askari, MD; Professor
Guilherme Attizzani, MD; Assistant Professor
Joseph Baar, MD PhD; Associate Professor
David Bajor, MD; Assistant Professor
Nathan Berger, MD; Professor
Hiram Bezerra, MD; Associate Professor
Joseph Bokar, MD PhD; Associate Professor
W. Henry Boom, MD; Professor
Paolo Caimi, MD; Associate Professor
Ivan Cakulev, MD; Assistant Professor
David Canaday, MD; Associate Professor
Teresa Carman, MD; Assistant Professor
Amitabh Chak, MD; Professor
Rajesh Chandra, MBBS; Associate Professor
Stanley Cohen, MD; Professor
Fabio Cominelli, MD PhD; Professor
Matthew Cooney, MD; Associate Professor
Brenda Cooper, MD; Professor
Gregory Cooper, MD; Professor
Marco Costa, MD PhD; Professor
Linda Cummings, MD; Assistant Professor
Michael Cunningham, MD; Assistant Professor
Maneesh Dave, MBBS; Assistant Professor
Marcos de Lima, MD; Professor
Jeffrey Deuliis, PhD; Assistant Professor
Thomas Dick, PhD; Professor
Clark Distelhorst, MD; Professor
Mirela Dobre, MD MPH; Assistant Professor
Afshin Dowlati, MD; Professor
Ismail Dreshaj, MD PhD; Assistant Professor
John Dumot, DO; Professor
Jennifer Eads, MD; Assistant Professor
Barry Effron, MD; Associate Professor
Chantal El Amm, MD; Assistant Professor
Nadine El Asmar, MD; Assistant Professor
George Farah, MD; Assistant Professor
Michel Farah, MD; Professor
Ashley Faulx, MD; Associate Professor
Pingfu Feng, MD PhD; Associate Professor
Stephen Fink, PhD; Assistant Professor
Rodney Folz, MD PhD; Professor
Michael Freeman, PhD; Instructor
Scott Fulton, MD; Assistant Professor
Saul Genuth, MD; Professor
Stanton Gerson, MD; Professor
Pierre Gholam, MD; Associate Professor
Joseph Gibbons, MD; Associate Professor
Michael Gibson, MD PhD; Associate Professor
Mahazarin Ginwalla, MBBS; Assistant Professor
Brooke Blessing, MD; Assistant Professor
Gowrishankar Gnanasekaran, MPH MBBS; Assistant Professor
Naveen Gopal, MD; Assistant Professor
Lloyd Greene, MD; Assistant Professor
Katarina Greer, MD; Assistant Professor
Barbara Gripshover, MD; Associate Professor
Carla Harwell, MD; Associate Professor
Douglas Hess, PhD; Associate Professor
Christina Hirsch, MD; Associate Professor
Christopher Hoimes, DO; Assistant Professor
Brian Hoit, MD; Professor
Thomas Hostetter, MD; Professor
Donald Hricik, MD; Professor
Anne Huml, MD; Instructor
Gerard Isenberg, MD; Associate Professor
Faramarz Ismail-Beigi, MD PhD; Professor
Mukesh K. Jain, MD; Professor
Trevor Jenkins, MD; Assistant Professor
John Johnson, MD; Professor
Richard Josephson, MD; Professor
Laure Kassem, MD; Assistant Professor
Jeffry Katz, MD; Professor
Jordan Kazakov, MD; Assistant Professor
Timothy Kern, PhD; Professor
Parisa Khatibi, MD; Assistant Professor
Yordanka Kirkova, MD; Assistant Professor
Aaron Kistemaker, MD; Assistant Professor
Christine Koniaris, MD; Assistant Professor
Henry Koon, MD; Associate Professor
Cassandra Kovach, MD; Assistant Professor
Smitha Krishnamurthi, MD; Associate Professor
Minh Lam, PhD; Assistant Professor
Colleen Lance, MD; Assistant Professor
Michael Lederman, MD; Professor
Richard Lee, MD; Associate Professor
Taryn Lee, MD; Assistant Professor
Debra Leizman, MD; Assistant Professor
Tracy Lemonovich, MD; Assistant Professor
Nathan Levitan, MD; Professor
Xudong Liao, PhD; Assistant Professor
Zhiyong Lin, PhD; Assistant Professor
Michelle Lisgaris, MD; Assistant Professor
Jane Little, MD; Professor
Christopher Longenecker, MD; Assistant Professor
Yuan Lu, MD; Assistant Professor
Judith Mackall, MD; Associate Professor
Ganapati Mahabaleshwar, PhD; Assistant Professor
Andrei Maiseyeu, PhD; Assistant Professor
Ehsan Malek, MD; Assistant Professor
Charles Malemud, PhD; Professor
Chitra Manickam, MBBS; Assistant Professor
Sanford Markowitz, MD PhD; Professor
Bradley Martin, MD; Instructor
Shigemi Matsuyama, PhD; Associate Professor
Maya Mattar, MD; Assistant Professor
Neal Meropol, MD; Professor
Leland Metheny, MD; Assistant Professor
Prasun Mishra, MBBS; Instructor
Sri Krishna Mohan, MBBS; Assistant Professor
Helen Moinova, PhD; Instructor
Hugo Montenegro, MD; Professor
Lalitha Nayak, MD; Assistant Professor
Lavinia Negrea, MD; Associate Professor
Guilherme Oliveira, MD; Associate Professor
Folashade Otegbeye, MBBch; Assistant Professor
Cynthia Owusu, MBBch; Associate Professor
Aparna Padiyar, MD; Assistant Professor
Ganesh Pantham, MD; Instructor
Reshmi Parameswaran, PhD; Assistant Professor
Sravanthi Parasa, MBBS; Assistant Professor
Mariana Petrozzi, MD; Assistant Professor
Anthony Post, MD; Associate Professor
Aaron Proweller, MD PhD; Associate Professor
Mahboob Rahman, MBBS; Professor
Sanjay Rajagopalan, MBBS; Clin Professor
Diana Ramirez-Bergeron, PhD; Associate Professor
Xiaoquan Rao, MD; Assistant Professor
Gayathri Ravi, MD; Assistant Professor
Amy Jo Ray, MD; Associate Professor
Laleh Razavi Nematollahi, MD; Assistant Professor
Jeffrey Renston, MD; Associate Professor
Monique Robinson, MBBS; Assistant Professor
Benigno Rodriquez, MD; Associate Professor
Alexander Rodriguez-Palacios, DMV PhD; Assistant Professor
Noah Rosenthal, MD; Assistant Professor
Rosetta Rowbottom, MD; Assistant Professor
Elie Saade, MD; Assistant Professor
Jayakumar Sahadevan, MBBS; Associate Professor
Robert Salata, MD; Professor
Joel Saltzman, MD; Assistant Professor
Nagaraju Sarabu, MBBS; Assistant Professor
Robert Schilz, O.D.; Associate Professor
Alvin Schmaier, MD; Professor
Seth Sclair, MD; Assistant Professor
Divya Seth, PhD; Instructor
Can Shi, PhD; Assistant Professor
Scott Sieg, PhD; Associate Professor
Richard Silver, MD; Professor
Paula Silverman, MD; Associate Professor
Daniel Simon, MD; Professor
Michael Simonson, PhD; Associate Professor
Mriganka Singh, MBBS; Assistant Professor
Jonathan Stamler, MD; Professor
Nathan Stehouwer, MD; Assistant Professor
Kingman Strohl, MD; Professor
Carlos Subauste, MD; Professor
Catalina Teba, MD; Assistant Professor
Lois Teston, MD; Assistant Professor
Patricia Thomas, MD; Professor
Sapna Thomas, MD; Assistant Professor
Myreen Tomas, MD; Assistant Professor
Ben Tomlinson, MD; Assistant Professor
Erik Van Lunteren, MD; Professor
Padmaja Veeramreddy, MBBS; Assistant Professor
Shaveta Vinayak, MD; Assistant Professor
Albert Waldo, MD; Professor
Yunmei Wang, PhD; Assistant Professor
Gregory Warren, MD; Assistant Professor
Van Warren, MD; Assistant Professor
Elizabeth Weinstein, MD; Assistant Professor
Patrick Whelan, MBBS; Assistant Professor
William Wolf, MD; Assistant Professor
Richard Wong, MBBS; Professor
Jonathan Wynbrandt, MD; Assistant Professor
Varija Yalamanchili, MD; Instructor
Michael Zacharias, DO; Assistant Professor
Jixin Zhong, PhD; Assistant Professor
David Zidar, MD PhD; Assistant Professor

Neurological Surgery
Nicholas Bambakidis, MD; Professor
Eli Bar, PhD; Assistant Professor
Edwin Capulong, MD; Assistant Professor
Alia Hdeib, MD; Assistant Professor
Seth Hoffer, MD; Assistant Professor
Manish Kasliwal, MBBS; Assistant Professor
Yu Luo, PhD; Associate Professor
Jonathan Miller, MD; Associate Professor
Warren Selman, MD; Professor
Andrew Sloan, MD; Professor
Jennifer Sweet, MD; Assistant Professor
Krystal Tomei, MD; Assistant Professor

Neurology
Hesham Abboud, MBBch; Assistant Professor
Shahram Aminai, MD; Assistant Professor
Rahila Ansari, MD; Assistant Professor
Brian Appleby, MD; Associate Professor
Fareeha Ashraf, MD; Assistant Professor
Lianhua Bai, MD PhD; Instructor
Christopher Bailey, PhD; Associate Professor
Marek Buczek, MD PhD; Assistant Professor
Robert Daroff, MD; Professor
Michael DeGeorgia, MD; Professor
Michael Devereaux, MD; Professor
Matthew Eccher, MD; Assistant Professor
Philip Fastenau, PhD; Professor
Guadalupe Fernandez-Baca Vaca, MBBS; Assistant Professor
Anthony Furlan, MD; Professor
Christopher Geiger, DO; Instructor
Gerald Grossman, MD; Assistant Professor
Steven Gunzler, MD; Assistant Professor
Mustafa Kahrman, MD; Assistant Professor
Bashar Katirji, MD; Professor
Camilla Kilbane, MD; Assistant Professor
Nuria Lacuey-Lecumberri, MD; Assistant Professor
Alan Lerner, MD; Professor
Samden Lhatoo, MBBS; Professor
Hans Luders, MD PhD; Professor
Maureen McEnery, PhD; Associate Professor
Daniel Miller, MD; Assistant Professor
Lindsay Miller, PhD; Assistant Professor
Paula Ogrocki, PhD; Assistant Professor
David Preston, MD; Professor
Svetlana Pundik, MD; Associate Professor
Ciro Ramos-Estebanez, MD PhD; Assistant Professor
Janice Robinson, MD; Assistant Professor
Lisa Rogers, D.O.; Professor
Komal Sawlani, MD; Instructor
Alessandro Serra, MD PhD; Assistant Professor
Aasef Shaikh, MBBS; Assistant Professor
Barbara Shapiro, MD PhD; Associate Professor
Cathy Sila, MD; Professor
Sophia Sundararajan, MD PhD; Associate Professor
Tanvir Syed, MD; Assistant Professor
Curtis Tatsuoka, PhD; Associate Professor
Stephanie Towns, Psy.D; Assistant Professor
Benjamin Walter, MD; Associate Professor
Peter Whitehouse, MD PhD; Professor
Wei Xiong, MD; Assistant Professor
Oral & Maxillofacial Surgery
Baseer Ahmad, MD; Assistant Professor
Danielle Alperin, OD; Senior Instructor
David Bardenstein, MD; Professor
Julie Belkin, MD; Assistant Professor
Beth Ann Benetz, MA/MS; Professor
Adriana Grigorian, MD; Assistant Professor
Pankaj Gupta, MD; Assistant Professor
Manasvee Kapadia, MD; Assistant Professor
Jonathan Lass, MD; Professor
Akiko Maeda, MD PhD; Assistant Professor
Michael Morgan, MD PhD; Assistant Professor
Faruk Orge, MD; Associate Professor
Paul Park, PhD; Associate Professor
Irina Pikuleva, PhD; Professor
Llwynel Raa, MD; Assistant Professor
Douglas Rhee, MD; Professor
Rony Sayegh, MD; Assistant Professor
Sara Schoeck, O.D.; Assistant Professor
Thomas Stokkermans, PhD; Assistant Professor
Loretta Szczotka-Flynn, O.D.; Professor
Patricia Taylor, PhD; Assistant Professor
Carol Toris, PhD; Professor
Amy Zhang, MD; Assistant Professor
Orthopaedics
Nicholas Ahn, MD; Professor
James Anderson, MD; Assistant Professor
Sean Cupp, MD; Assistant Professor
Jason Eubanks, MD; Assistant Professor
Steven Fitzgerald, MD; Assistant Professor
Robert Flannery, MD; Assistant Professor
Christopher Furey, MD; Associate Professor
Patrick Getty, MD; Associate Professor
Robert Gillespie, MD; Assistant Professor
Allison Gilmore, MD; Associate Professor
Donald Goodfellow, MD; Associate Professor
Zachary Gordon, MD; Assistant Professor
Edward Greenfield, PhD; Professor
Christina Hardesty, MD; Assistant Professor
Matthew Kraay, MD; Professor
Stephen Lacey, MD; Associate Professor
Raymond Liu, MD; Associate Professor
Kevin Malone, MD; Associate Professor
Randall Marcus, MD; Professor
Thomas McLaughlin, MD; Associate Professor
Shana Miskovsky, MD; Assistant Professor
George Ochenjele, MD; Assistant Professor
Michael Salata, MD; Associate Professor
John Shaffer, MD; Professor
Jochen Son-Hing, MD; Assistant Professor
John Sontich, MD; Associate Professor
George Thompson, MD; Professor
Brian Victoroff, MD; Associate Professor
James Voos, MD; Associate Professor
Robert Wetzel, MD; Assistant Professor
Guang Zhou, PhD; Assistant Professor

Otolaryngology Head & Neck Surgery
Kumar Alagramam, PhD; Associate Professor
James Arnold, MD; Professor
Martin Basch, PhD; Assistant Professor
Jonathan Baskin, MD; Associate Professor
Nipun Chhabra, MD; Assistant Professor
Nicole Fowler, MD; Assistant Professor
Pierre Lavertu, MD; Professor
Nicole Maronian, MD; Associate Professor
Brian McDermott, PhD; Associate Professor
Cliff Megerian, MD; Professor
Gail Murray, PhD; Associate Professor
Todd Otteson, MD; Associate Professor
Diana Ponsky, MD; Assistant Professor
Rod Rezaee, MD; Associate Professor
Kenneth Rodriguez, MD; Assistant Professor
Maroun Semaan, MD; Associate Professor
Jay Shah, MD; Assistant Professor
Ruben Stepanyan, PhD; Assistant Professor
Harvey Tucker, MD; Professor
Mark Weidenbecher, MD; Assistant Professor
Chad Zender, MD; Associate Professor
Qing Zheng, MD; Associate Professor

Pathology
James Anderson, MD PhD; Professor
Stefanie Avril, MD; Assistant Professor
Christina Bagby, D.O.; Assistant Professor
Philip Bomeisl, D.O.; Assistant Professor
Mark Cohen, MD; Professor
Marta Couce, MD PhD; Professor
Daniel Cowden, MD; Assistant Professor
Katharine Downes, MD; Associate Professor
Robin Elliott, MD; Assistant Professor
Kenneth Friedman, MD; Assistant Professor
Hannah Gilmore, MD; Associate Professor
Neil Greenspan, MD PhD; Professor
Holly Harper, MD; Assistant Professor
Michael Jacobs, MBBS; Professor
Wendy Liu, MD PhD; Assistant Professor
Gregory MacLennan, MD; Professor
Robert Maitta, MD PhD; Assistant Professor
Howard Meyerson, MD; Associate Professor
Claire Michael, MBBCH; Professor
Erika Moore, MD; Assistant Professor
Jaime Noguez, PhD; Assistant Professor
Miguel Quinones-Mateu, PhD; Associate Professor
Sanjita Ravishankar, MD; Assistant Professor
Raymond Redline, MD; Professor
Hollie Reeves, DO; Assistant Professor
Qinghu Ren, MBBS PhD; Assistant Professor
Daniel Rhoads, MD; Assistant Professor
Shahrazad Saab, MD; Assistant Professor
Navid Sadri, MD PhD; Assistant Professor
Christine Schmotzer, MD; Assistant Professor
Shashirekha Shetty, PhD; Assistant Professor
David Wald, MD PhD; Associate Professor
Jay Wasman, MD; Assistant Professor
Sarah White, MD; Assistant Professor
Joseph Willis, MBBS; Professor
Wei Xin, MD PhD; Associate Professor
Michael Yang, MD; Assistant Professor
Lan Zhou, MD PhD; Associate Professor

Pediatrics
Akinyi Adija, MD; Assistant Professor
Sanjay Ahuja, MBBS; Associate Professor
Atiye Akty, MD; Assistant Professor
Elizabeth Allen, MD; Associate Professor
Ingrid Anderson, MD; Assistant Professor
Jennifer Anderson, PhD; Assistant Professor
Maria Arruda, MD; Associate Professor
Jill Azok, MD; Assistant Professor
Erin Babbitt, Psy.D; Assistant Professor
Ann Mary Bacevice, MD; Associate Professor
Virginia Baez-Socorro, MD; Assistant Professor
Jill Baley, MD; Professor
Christine Barry, PhD; Associate Professor
Matthew Bartley, MD; Assistant Professor
Nancy Bass, MD; Associate Professor
Monika Bhola, MBBS; Associate Professor
Martin Bocks, MD; Associate Professor
Aparna Bole, MD; Assistant Professor
Tracey Bonfield, PhD; Associate Professor
Denise Bothe, MD; Associate Professor
Mireille Boutry, MD; Associate Professor
Susan Bowen, PhD; Assistant Professor
Susannah Briskin, MD; Associate Professor
Elizabeth Brooks, MD PhD; Assistant Professor
Kimberly Burkhart, PhD; Assistant Professor
Karen Camasso, MD; Assistant Professor
Laura Caserta, MD; Assistant Professor
James Chmiel, MD; Professor
Marie Clark, MD; Assistant Professor
Jason Clayton, MD PhD; Assistant Professor
Alberto Costa, MD PhD; Professor
Calvin Cotton, PhD; Professor
Daniel Craven, MD; Assistant Professor
Maricruz Crespo, MD; Assistant Professor
Moira Crowley, MD; Associate Professor
Robert Cunningham, MD; Professor
Deanna Dahl-Grove, MD; Associate Professor
Jignesh Dalal, MD; Professor
Mari Dallas, MD; Associate Professor
Pamela Davis, MD PhD; Professor
Michael Dell, MD; Professor
Arlene Dent, MD; Associate Professor
Ankita Desai, MD; Assistant Professor
Katherine Dickman Dobbs, MD; Instructor
Elizabeth Diekroger, MD; Assistant Professor
Amy DiMarino, DO; Assistant Professor
Leslie Dingeldein, MD; Assistant Professor
Sahera Dirajal-Fargo, DO; Assistant Professor
Andrew Dodgen, MD; Assistant Professor
Mitchell Drumm, PhD; Professor
Amy Edwards, MD; Assistant Professor
Rachel Egler, MD; Associate Professor
Frank Esper, MD; Assistant Professor
Jonathan Fanaroff, MD; Professor
Ryan Farrell, MD; Assistant Professor
Stephanie Ford, MD; Assistant Professor
Erin Frank, MD; Assistant Professor
Lydia Furman, MD; Professor
Benjamin Gaston, MD; Professor
Thomas Gerken, PhD; Professor
Edward Gilmore, MD PhD; Assistant Professor
Deborah Gold, MD; Assistant Professor
Jessica Goldstein, MD; Assistant Professor
Katherine Griswold, MD; Assistant Professor
Richard Grossberg, MD; Associate Professor
Amy Grube, MD; Assistant Professor
Rose Gubitosi-Klug, MD PhD; Associate Professor
Reut Gurion, DO; Assistant Professor
Haitham Haddad, MD; Assistant Professor
Howard Hall III, PhD; Professor
Meeghan Hart, MD; Assistant Professor
Rebecca Hazen, PhD; Associate Professor
Anna Maria Hibbs, MD; Associate Professor
Craig Hodges, PhD; Assistant Professor
Jane Holan, MD; Assistant Professor
Claudia Hoyen, MD; Associate Professor
Alex Huang, MD PhD; Professor
Carolyn levers-Landis, PhD; Professor
Michael Jenkins, PhD; Assistant Professor
Eva Johnson, MD; Assistant Professor
Nicole Johnson, MD; Assistant Professor
Beth Kaminski, MD; Assistant Professor
Thomas Kelley, PhD; Professor
Amanda Kelly, MD; Professor
Leigh Kerns, MD; Associate Professor
Ali Khalili, MD; Assistant Professor
Brendan Kilbane, MD; Associate Professor
Grace Kim, MD; Assistant Professor
Kristin Kim, MD PhD; Assistant Professor
Any Kleinman, MD; Assistant Professor
Lawrence Kleinman, MPH MD; Professor
Michael Konstan, MD; Professor
Shanna Kralovic, D.O.; Assistant Professor
Margaret Kuper-Sasse, MD; Assistant Professor
Amanda Lansell, MD; Assistant Professor
Rina Lazebnik, MD; Professor
Sara Lee, MD; Assistant Professor
Ethan Leonard, MD; Associate Professor
John Letterio, MD; Professor
Stephen Lewis, PhD; Professor
Bridget LoParo, MD; Assistant Professor
Peter MacFarlane, PhD; Assistant Professor
Sarah MacLeish, MD; Assistant Professor
Eliane Malek, MD; Assistant Professor
Nadzeya Marozkina, MD PhD; Assistant Professor
Richard Martin, MBBS; Professor
Katherine Mason, MD; Associate Professor
Yousif Matloub, MD; Professor
Lolita McDavid, MD; Professor
Kimberly McBennett, MD PhD; Assistant Professor
Grace McComsey, MD; Professor
Scott McEwen, MD PhD; Assistant Professor
Laura Milgram, MD; Associate Professor
Kathryn Miller, MD; Assistant Professor
Jonathan Moses, MD; Assistant Professor
Katherine Myers, DO; Assistant Professor
Ross Myers, MD; Assistant Professor
Mary Nock, MD; Associate Professor
Robin Norris, MD MPH; Assistant Professor
Arielle Olicker, MD; Assistant Professor
Jun Tae Park, MD; Associate Professor
Irina Pateva, MD; Assistant Professor
Mary Patrinos, MD; Assistant Professor
Allison Payne, MD; Assistant Professor
Agne Petrosiute, MD; Assistant Professor
Connie Piccone, MD; Assistant Professor
Sarah Plummer, MD; Assistant Professor
Keith Ponitz, MD; Assistant Professor
Thomas Raffay, MD; Assistant Professor
Michael Reed, MD; Professor
Angela Robinson, MD; Assistant Professor
Erica Roesch, MD; Assistant Professor
Nancy Roizen, MD; Professor
Sarah Ronis, MD; Assistant Professor
Regina Rosace, MD; Assistant Professor
Jerri Rose, MD; Associate Professor
Carol Rosen, MD; Professor
Kristie Ross, MD; Associate Professor
Alexandre Rotta, MD; Professor
Kathryn Ruda Wessell, DO; Assistant Professor
Ramy Sabe, MBBS; Assistant Professor
Mark Scher, MD; Professor
Tasa Seibert, MD; Assistant Professor
Thomas Sferra, MD; Associate Professor
Asim Shahid, MD; Assistant Professor
Steven Shein, MD; Assistant Professor
Jill Shivapour, MD; Assistant Professor
Katherine Slain, DO; Assistant Professor
Christopher Snyder, MD; Associate Professor
Mary Solomon, D.O.; Associate Professor
David Speicher, MD; Associate Professor
Richard Speicher, MD; Associate Professor
Judy Splawski, MD; Associate Professor
Duncan Stearns, MD; Assistant Professor
Melanie Stempowski, MD; Assistant Professor
Allayne Stephens, MD; Assistant Professor
Noam Stern, MD; Assistant Professor
Robert Stern, MD; Professor
Eileen Stork, MD; Professor
Anne Stormorken, MD; Associate Professor
James Strainic, MD; Assistant Professor
Steven Strausbaugh, MD; Associate Professor
Robyn Strosaker, MD; Associate Professor
Rachel Tangen, PhD; Assistant Professor
Brittany Tass, DO; Assistant Professor
H. Taylor, PhD; Professor
Philip Toltzis, MD; Professor
Maria Tomaszewska, MD; Assistant Professor
Andrea Trembath, MD; Assistant Professor
Naveen Uli, MBBS; Associate Professor
Anuradha Viswanathan, MBBS; Assistant Professor
Beth Vogt, MD; Associate Professor
Kristin Voos, MD; Associate Professor
Michele Walsh, MD; Professor
Michiko Watanabe, PhD; Professor
Deanne Wilson-Costello, MD; Professor
Max Wiznitzer, MD; Professor
Jamie Wood, MD; Associate Professor
Martha Wright, MD; Professor
Gulgun Yalcinkaya, MD; Assistant Professor
Qin Yao, MD; Associate Professor
Regina Yaskey, MD; Assistant Professor
Dianna Yip, DO; Assistant Professor
Khalequ Zaman, PhD; Assistant Professor
Teresa Zimmerman, MD; Assistant Professor
Joan Zoltanski, MD; Assistant Professor

Plastic Surgery
Devra Becker, MD; Associate Professor
Amir Ghaznavi, MD; Assistant Professor
David Rowe, MD; Assistant Professor
Hooman Soltanian, MD; Associate Professor

Psychiatry
Francoise Adan, MD; Assistant Professor
Abidemi Adegbola, MD; Senior Instructor
Jaina Amin, MD; Assistant Professor
Luis Amunategui, PhD; Assistant Professor
Joseph Bedosky, PhD; Assistant Professor
Jennifer Brandstetter, MD; Assistant Professor
Ashley Braun-Gabelman, PhD; Assistant Professor
Joseph Calabrese, MD; Professor
Vincent Caringi, MD; Assistant Professor
Cathleen Cerny, MD; Associate Professor
Kathleen Clegg, MD; Associate Professor
Danette Conklin, PhD; Assistant Professor
Richard Corradi, MD; Professor
Christina Delos-Reyes, MD; Associate Professor
Philipp Dines, MD PhD; Associate Professor
Lois Friedman, PhD; Professor
Mary Gabriel, MD; Assistant Professor
Stephen Ganocy, PhD; Assistant Professor
Keming Gao, MD PhD; Professor
Sara Goldman, MD; Senior Instructor
David Hahn, MD; Assistant Professor
Marcie Hall, MD; Assistant Professor
Steven Hamppl, PhD; Assistant Professor
Elizabeth Harris, PhD; Senior Instructor
Susan Hatters-Friedman, MD; Associate Professor
John Heather, MD; Assistant Professor
John Hertzer, MD; Assistant Professor
Andrew Hunt, MD; Assistant Professor
Jeffrey Janata, PhD; Professor
Gunnur Karakurt, PhD; Assistant Professor
Edward Kilbane, MD; Assistant Professor
Susan Kimmel, MD; Assistant Professor
Leslie Koblenz, MD; Assistant Professor
Margaret Kotz, D.O.; Professor
Jeanne Lackamp, MD; Associate Professor
Jennifer Levin, PhD; Associate Professor
David Liebenthal, PhD; Assistant Professor
Joseph Locala, MD; Associate Professor
Charles Luther, MD; Assistant Professor
Sarah Lytle, MD; Assistant Professor
Matig Mavissakalian, MD; Professor
Nora McNamara, MD; Assistant Professor
Molly McVoy, MD; Assistant Professor
Paul Minnillo, PhD; Assistant Professor
Clare Mitchell, PhD; Assistant Professor
Farah Munir, D.O.; Assistant Professor
Sarah Nagle-Yang, MD; Assistant Professor
Matthew Newton, DO; Senior Instructor
Stephen Noffsinger, MD; Associate Professor
Susan Padrino, MD; Associate Professor
Maria Pagano, PhD; Associate Professor
Mayur Pandya, D.O.; Assistant Professor
Stephanie Pope, MD; Senior Instructor
Luis Ramirez, MD; Professor
Phillip Resnick, MD; Professor
Michelle Romero, DO; Assistant Professor
Robert Ronis, MD; Professor
Stephen Ruedrich, MD; Professor
Patrick Runnels, MD; Associate Professor
Martha Sajatovic, MD; Professor
Deepika Sastry, MD; Assistant Professor
Thomas Scheidemantel, MD; Senior Instructor
Martha Schinagle, MD; Assistant Professor
Rebecca Schlachet, D.O.; Assistant Professor
Edwin Shirley, PhD; Assistant Professor
Priya Shrestha, MBBS; Senior Instructor
Rajeet Shrestha, MBBS; Assistant Professor
Susan Stagno, MD; Professor
Robert Stansbrey, MD; Assistant Professor
Thomas Swales, PhD; Assistant Professor
Megan Testa, MD; Assistant Professor
Karen Tien, PhD; Assistant Professor
Sara West, MD; Assistant Professor
Cheryl Wills, MD; Assistant Professor
Solomon Zaraa, MD; Assistant Professor

Radiation Oncology
Ande Bao, PhD; Assistant Professor
Chee-Wai Cheng, PhD; Professor
Valdir Colussi, PhD; Associate Professor
Jennifer Dorth, MD; Assistant Professor
Rodney Ellis, MD; Associate Professor
Paul Geis, PhD; Assistant Professor
Janice Lyons, MD; Associate Professor
Mitchell Machtay, MD; Professor
David Mansur, MD; Associate Professor
Louis Novak, MD; Assistant Professor
Gisele Pereira, PhD; Assistant Professor
Taron Podder, PhD; Associate Professor
Jason Sohn, PhD; Professor
Bryan Traughber, MD; Assistant Professor
Barry Wessels, PhD; Professor
Min Yao, MD PhD; Professor
Jiankui Jake Yuan, PhD; Assistant Professor
Junran Zhang, MD PhD; Assistant Professor
Yuxia Zhang, MS; Instructor
Yiran Zheng, PhD; Assistant Professor
Radiology
Mohammed Al-Natour, MBBS; Assistant Professor
Norbert Avril, MD; Professor
Nami Azar, MD; Associate Professor
Barbara Bangert, MD; Professor
James Basilion, PhD; Professor
Sheila Berlin, MD; Associate Professor
Ruth Ceulemans, MD; Assistant Professor
Yong Chen, PhD; Instructor
Michael Coffey, MD; Assistant Professor
Niki Constantinou, MD; Assistant Professor
Jon Davidson, MD; Assistant Professor
Jeffrey Duerk, PhD; Professor
Agata Exner, PhD; Professor
Peter Faulhaber, MD; Professor
Chris Flask, PhD; Associate Professor
Kianoush Gilani, MD; Assistant Professor
Robert Gilkeson, MD; Professor
Jayakrishna Gollamudi, MD; Assistant Professor
Mark Griswold, PhD; Professor
Vikas Gulani, MD PhD; Associate Professor
John Haaga, MD; Professor
M. Hayeri, MD; Assistant Professor
Robert Jones, MD; Assistant Professor
David Jordan, PhD; Associate Professor
Efstathios Karathanasis, PhD; Associate Professor
Nina Klein, MD; Assistant Professor
Christos Kosmas, MD; Assistant Professor
Charles Lanzieri, MD; Professor
Zhenghong Lee, PhD; Professor
Holly Marshall, MD; Assistant Professor
Eric McLoney, MD; Assistant Professor
Lina Mehta, MD; Associate Professor
Raymond Muzic, PhD; Professor
Dean Nakamoto, MD; Professor
Ameya Nayate, MD; Assistant Professor
Anne Nicklas-Coffey, MD; Assistant Professor
James O'Donnell, MD; Professor
Raj Paspulati, MBBS; Professor
Indravadan Patel, MD; Assistant Professor
Tanmay Patel, MD; Assistant Professor
Ramya Pham, MD; Assistant Professor
Donna Plecha, MD; Associate Professor
Mark Robbin, MD; Professor
Pablo Ros, MD PhD; Professor
Carlos Sivit, MD; Professor
Jeffrey Sunshine, MD PhD; Professor
Christopher Sutter, MD; Assistant Professor
Sidhartha Tavri, MBBS; Assistant Professor
Pauravi Vasavada, MD; Assistant Professor
Esben Vogelius, MD; Assistant Professor
Yanming Wang, PhD; Professor
Jenny Wang-Peterman, MD; Assistant Professor
Leo Wolansky, MD; Professor
Chunying Wu, PhD; Instructor
Peter Young, MD; Assistant Professor
Reproductive Biology
Karen Ashby, MD; Associate Professor
Corinne Bazella, MD; Assistant Professor
Erica Berggren, MD; Assistant Professor
Megan Billow, DO; Assistant Professor
Jamie Byler, MD; Assistant Professor
Jane Corteville, MD; Associate Professor
Nancy Cossler, MD; Associate Professor
Sherif El-Nashar, MBBS; Associate Professor
Angelina Gangestad, MD; Associate Professor
Kimberly Gecsi, MD; Associate Professor
Marjorie Gecsi, MD; Associate Professor
David Hackney, MD; Associate Professor
Tyler Katz, MD; Assistant Professor
Sheryl Kingsberg, PhD; Professor
Margaret Larkins-Pettigrew, MD; Associate Professor
Susan Lasch, MD; Assistant Professor
Noam Lazebnik, MD; Professor
James Liu, MD; Professor
Sangeeta Mahajan, MD; Associate Professor
Melissa March, MD; Assistant Professor
Tia Melton, MD; Assistant Professor
Sam Mesiano, PhD; Professor
Christa Nagel, MD; Assistant Professor
John Nakayama, MD; Assistant Professor
Ellie Ragsdale, MD; Assistant Professor
Roya Rezaee, MD; Assistant Professor
Neal Rote, PhD; Professor
Maria Shaker, MD; Assistant Professor
George Van Buren, MD; Assistant Professor
Steven Waggoner, MD; Professor
Martin Wieczorek, MD; Assistant Professor
Honor Wolfe, MD; Professor
Kristine Zanotti, MD; Associate Professor
Lulu Zhao, MD; Assistant Professor

Surgery
Mujjahid Abbas, MD; Assistant Professor
Mark Aeder, MD; Associate Professor
John Ammori, MD; Assistant Professor
Henry Baele, MD; Assistant Professor
Edward Barksdale, MD; Professor
Bradley Champagne, MD; Associate Professor
Ronald Charles, MD; Assistant Professor
Keith Clancy, MD; Associate Professor
Salil Deo, MBBS; Assistant Professor
Jill Dietz, MD; Associate Professor
Michael Dingeldein, MD; Assistant Professor
Heidi Elliott, MD; Assistant Professor
Jeffrey Hardacre, MD; Associate Professor
Karem Harth, MD; Assistant Professor
Vanessa Ho, MD MPH; Assistant Professor
Vanessa Humphreville, MD; Assistant Professor
Vikram Kashyap, MD; Professor
Leena Khaitan, MD; Associate Professor
Anne Kim, MD; Assistant Professor
Julian Kim, MD; Professor
Philip Linden, MD; Associate Professor
Jeffrey Marks, MD; Professor
Benjamin Medalion, MD; Professor
Eiichi Miyasaka, MD; Assistant Professor
Yuri Novitsky, MD; Professor
Raymond Onders, MD; Professor
Soon Park, MD; Professor
Marjie Persons, MD; Associate Professor
Jeffrey Peters, MD; Professor
Alexis Powell, MD; Assistant Professor
Harry Reynolds, MD; Associate Professor
Jason Robke, MD; Assistant Professor
Tomasz Rogula, MD PhD; Associate Professor
Joseph Sabik, MD; Professor
Edmund Sanchez, MD; Associate Professor
Steve Schomisch, PhD; Assistant Professor
Robert Shenk, MD; Associate Professor
Christopher Siegel, MD PhD; Associate Professor
Scott Steele, MD; Professor
Sharon Stein, MD; Associate Professor
Emily Steinhagen, MD; Assistant Professor
Christopher Towe, MD; Assistant Professor
Joseph Trunzo, MD; Assistant Professor
Aisha Violette, MD; Assistant Professor
Scott Wilhelm, MD; Associate Professor
Virginia Wong, MD; Assistant Professor

Urology
Robert Abouassaly, MD; Associate Professor
Riccardo Autorino, MD PhD; Associate Professor
Donald Bodner, MD; Professor
Edward Cherullo, MD; Professor
Christopher Gonzalez, MD; Professor
Magdalena Grabowska, PhD; Assistant Professor
Sanjay Gupta, PhD; Professor
Adonis Hijaz, MD; Professor
Simon Kim, MD; Associate Professor
Humberto Laydner, MD; Assistant Professor
Lee Ponsky, MD; Professor
Jonathan Ross, MD; Professor
Lynn Woo, MD; Assistant Professor

MetroHealth Medical Center
Full-Time Faculty

Anesthesiology
Brendan Astley, MD; Assistant Professor
Michael Bassett, MD; Assistant Professor
Norman Bolden, MD; Associate Professor
Anthony Chang, MD; Assistant Professor
Samuel DeJoy, MD; Assistant Professor
Cynthia Dietrich, O.D.; Assistant Professor
Jennifer Eisman, MD; Senior Instructor
Preeti Gandhi, MBBS; Assistant Professor
Maureen Harders, MD; Assistant Professor
Michael Howkins, O.D.; Senior Instructor
Anil Jagetia, MD; Assistant Professor
Matthew Joy, MD; Assistant Professor
Kelly Lebak, MD; Senior Instructor
Charles Lind, MD; Assistant Professor
Jessica Lovich-Sapola, MD; Associate Professor
Maria Loy, MD; Assistant Professor
Arnold Morscher, MD; Assistant Professor
Alfred Pinchak, MD PhD; Assistant Professor
Cristian Prada, MD; Senior Instructor
Kanwaljit Sidhu, MD; Assistant Professor
Tejbir Sidhu, MBBS; Assistant Professor
Charles Smith, MD; Professor
Augusto Torres, MD; Assistant Professor
Karl Wagner, MD; Assistant Professor

Dermatology
Jonathan Bass, MD; Associate Professor
David Crowe, MD; Assistant Professor
Bryan Davis, MD; Professor
Pamela Davis, MD; Assistant Professor
Katherine DiSano, MD; Assistant Professor
Julie Dong-Kondas, MD; Assistant Professor
Lisa Gelles, MD; Assistant Professor
Christine Jaworsky, MD; Professor
Marjorie Montanez-Wiscovich, MD PhD; Assistant Professor
Arlene Rosenberg, MD; Assistant Professor
Stephen Somach, MD; Associate Professor
Abel Torres, MD JD; Professor
Harry Winfield, MD; Assistant Professor

Emergency Medicine
Thayne Alred, MD; Assistant Professor
Bryan Baskin, DO; Assistant Professor
Craig Bates, MD; Assistant Professor
Susan Brown, MD; Senior Instructor
Thomas Collins, MD; Associate Professor
Rita Cydulka, MD; Professor
Lynn Dezelon, MD; Assistant Professor
Emily Dodge, MD; Assistant Professor
David Effron, MD; Assistant Professor
Charles Emerman, MD; Professor
George Eversman, MD; Assistant Professor
Boris Garber, O.D.; Assistant Professor
Jonathan Glauser, MD; Professor
Yitzchak Glick, MD; Assistant Professor
Robert Jones, D.O.; Associate Professor
Rahi Kapur, MD; Assistant Professor
Sara Laskey, MD; Assistant Professor
Thomas Lukens, MD PhD; Associate Professor
Katherine Manzon, MD; Assistant Professor
Alix Mitchell, MD; Assistant Professor
Maya Myslenski, MD; Assistant Professor
Sandra Najarian, MD; Assistant Professor
Thomas Noeller, MD; Associate Professor
Megha Panda, DO; Assistant Professor
Joan Papp, MD; Assistant Professor
Jeffrey Pennington, MD; Senior Instructor
Joseph Piktel, MD; Assistant Professor
Kristen Schmidt, MD; Assistant Professor
Jon Schrock, MD; Associate Professor
Jonathan Siff, MD; Associate Professor
Matthew Tabbut, MD; Assistant Professor
Joseph Tagliaferro, DO; Senior Instructor
Melissa Tscheiner, MD; Assistant Professor
Nicole Wallis, MD; Assistant Professor
Thomas Waters, MD; Assistant Professor
Sandra Werner, MD; Associate Professor
Lance Wilson, MD; Associate Professor
Aaron Wolfe, DO; Assistant Professor
Christopher Wyatt, MD; Assistant Professor

Family Medicine
Christine Alexander, MD; Associate Professor
Christine Antenucci, MD; Assistant Professor
Nathan Beachy, MD; Senior Instructor
Eric Berko, PhD; Assistant Professor
James Campbell, MD; Professor
Meaghan Combs, MD; Assistant Professor
Mary Corrigan, MD; Assistant Professor
Colin Crowe, MD; Assistant Professor
Jaividhya Dasarathy, MBBS; Associate Professor
Jaspinder Dhillon, MD; Instructor
Michelle Dietz, MD; Instructor
Gaby El-Khoury, MD; Assistant Professor
Christine Fischer, MD; Assistant Professor
Wayne Forde, MD; Assistant Professor
Eric Friess, MD; Assistant Professor
Kenneth Frisof, MD; Assistant Professor
Fassil Gemechu, MD; Assistant Professor
Christopher Gillespie, MD; Instructor
Jessica Griggs, DO; Instructor
Joseph Labastille, MD; Assistant Professor
Melanie Leu, MD; Assistant Professor
Sheng Liu, MD; Assistant Professor
Mary Massie-Story, MD; Assistant Professor
James Misak, MD; Assistant Professor
Rainer Ng, DO; Assistant Professor
Michael Raddock, MD; Assistant Professor
FNU Rajesh, MBBS; Assistant Professor
Tamer Said, MD; Assistant Professor
Rebecca Schroeder, MD; Instructor
Michael Seidman, MD; Assistant Professor
Hemalatha Senthilkumar, MBBS; Instructor
Anita Singh, MBBS; Assistant Professor
Douglas Van Auken, MD; Assistant Professor
Amy Zack, MD; Assistant Professor

Medicine
Sajat Agarwal, MBBS; Assistant Professor
Rakhshanda Akram, MBBS; Assistant Professor
Lisa Allshouse, MD; Instructor
Ashish Aneja, MBBS; Assistant Professor
Maria Antonelli, MD; Assistant Professor
Imad Asaad, MD; Assistant Professor
Dennis Auckley, MD; Professor
Ann Avery, MD; Associate Professor
Stanley Ballou, MD; Associate Professor
Charles Bark, MD; Assistant Professor
Jeffery Becker, MD; Assistant Professor
Mary Behmer, MD; Assistant Professor
Martine Binstock, MD; Assistant Professor
Shari Bolen, MD; Associate Professor
Maya Breitman, PhD; Instructor
Leslie Bruggeman, PhD; Professor
Debora Bruno, MD; Assistant Professor
Jorge Calles-Escandon, MD; Professor
Patricia Campbell, MD; Assistant Professor
Aleece Caron, PhD; Assistant Professor
Grace Cater, MD; Assistant Professor
Randall Cebul, MD; Professor
Paul Cisarik, MD; Assistant Professor
Alfred Connors, MD; Professor
Ottorino Costantini, MD; Associate Professor
JohnBuck Creamer, MD; Assistant Professor
Catherine Curley, MD; Associate Professor
Joseph Daprano, MD; Assistant Professor
Neal Dawson, MD; Professor
Hallie DeChant, MD; Assistant Professor
Juan del Rincon Jarero, MD; Assistant Professor
Isabelle Deschenes, PhD; Professor
Alberto Diaz, MD; Assistant Professor
Mark Dunlap, MD; Professor
Marina Duran-Castillo, MD; Assistant Professor
Carolyn Dziwis, MD; Assistant Professor
Douglas Einstadter, MD; Professor
Matthew Eisen, MD; Assistant Professor
Rasha El-Rifai, MBBS; Assistant Professor
Catherine Fallick, MD; Assistant Professor
Ronnie Fass, MD; Professor
Edward Feldman, MD; Assistant Professor
Roy Ferguson, MD; Associate Professor
Robert Finkelhor, MD; Associate Professor
James Finley, MD PhD; Associate Professor
Jidong Fu, MD PhD; Assistant Professor
Thomas Fuller, MD; Assistant Professor
Sanjay Gandhi, MD; Associate Professor
George Gelehrter, MD; Assistant Professor
Ellen Gelles, MD; Assistant Professor
Michele Geraci, MD; Assistant Professor
Susan Gifford, MD; Assistant Professor
Sandra Glagola, D.O.; Senior Instructor
Peter Greco, MD; Associate Professor
Douglas Gunzler, PhD; Assistant Professor
Maryanne Haddad, D.O.; Assistant Professor
Jennifer Hanrahan, D.O.; Associate Professor
Tariq Haqqi, MD; Professor
Michael Harrington, MD; Associate Professor
Michelle Hecker, MD; Assistant Professor
Paul Hergenroeder, MD; Assistant Professor
Corrilynn Hileman, MD; Assistant Professor
John Hodgson, MD; Professor
Edward Horwitz, MD; Assistant Professor
Michael Infeld, MD; Associate Professor
Alok Jain, MBBS; Assistant Professor
David Jones, MD; Senior Instructor
David Kaelber, MD PhD; Professor
Robert Kalayjian, MD; Associate Professor
Elizabeth Kaufman, MD; Professor
Karen Kea, MD; Instructor
Hicham Khallafi, MD; Assistant Professor
Tariq Khan, MBBS; Assistant Professor
Meera Kondapaneni, MBBS; Assistant Professor
Vidya Krishnan, MD; Associate Professor
David Kuentz, O.D.; Assistant Professor
Ravindra Kulasekere, PhD; Assistant Professor
Nilima Kumar, MBBS; Assistant Professor
Karen Kutoloski, O.D.; Assistant Professor
Annette Kyprianou, MD; Assistant Professor
Mildred Lam, MD; Professor
Kenneth Laurita, PhD; Associate Professor
Peter Laye, MD; Assistant Professor
Michael Lewis, MD; Assistant Professor
William Lewis, MD; Professor
Nora Lindheim, MD; Associate Professor
Thomas Love, PhD; Professor
Lindsey Magnelli, MA/MS; Instructor
Marina Magrey, MBBS; Associate Professor
Paul Manning, D.O.; Instructor
David Mansour, MD; Assistant Professor
David Margolius, MD; Assistant Professor
Laurie McCreery, MD PhD; Assistant Professor
Michael McFarlane, MD; Professor
Maya Merheb, MD; Senior Instructor
Hui Miao, PhD; Assistant Professor
Thomas Murphy, MD; Associate Professor
Henry Ng, MD; Associate Professor
Gregory Norris, MD; Associate Professor
Jane Nwaonu, MBBS; Assistant Professor
Timothy O’Brien, MD; Associate Professor
Melissa Osborn, MD; Associate Professor
Elizabeth O’Toole, MD; Professor
John O’Toole, MD; Associate Professor
Holly Perzy, MD; Associate Professor
Adam Perzynski, PhD; Assistant Professor
Alice Petrulis, MD; Professor
James Pile, MD; Associate Professor
Suma Prakash, MD; Assistant Professor
Kathleen Quealy, MD; Assistant Professor
Rupesh Raina, MD; Senior Instructor
Thammi Ramanan, MD; Assistant Professor
Chingleput Ranganathan, MBBS; Assistant Professor
Anita Redahan, MBBS; Senior Instructor
Steven Ricanati, MD; Associate Professor
Jeffrey Rosenberg, MD; Assistant Professor
Aleksandr Rovner, MD; Associate Professor
Martin Ryan, MD; Instructor
Georges Saab, MD; Associate Professor
Sasan Sakiani, MD; Assistant Professor
Dalbir Sandhu, MBBS; Assistant Professor
Raja Shekhar Sappati-Biyyani, MBBS; Assistant Professor
Jeffrey Schelling, MD; Professor
David Schnell, MD; Assistant Professor
Larisa Schwartzman, MD; Assistant Professor
John Sedor, MD; Professor
Eileen Seeholzer, MD; Associate Professor
Ashwini Sehgal, MD; Professor
Ziad Shaman, MD; Associate Professor
Marcia Silver, MD; Professor
Nora Singer, MD; Professor
Edward Sivak, MD; Professor
Brenda Smith, MD; Assistant Professor
Michael Snell, MD; Assistant Professor
Philip Spagnuolo, MD; Associate Professor
Joseph Sudano, PhD; Assistant Professor
Yasir Tarabichi, MD; Assistant Professor
Kathryn Teng, MD; Associate Professor
John Thornton, MD; Associate Professor
Vilma Torres, MD; Professor
Michelle Treasure, MD; Assistant Professor
Nisheet Waghray, MD; Assistant Professor
Rehan Waheed, MD; Assistant Professor
E. Walker, MD; Assistant Professor
Bingcheng Wang, PhD; Professor
Edward Warren, MD; Associate Professor
Peter Wiest, MD; Associate Professor
Sherrie Williams, MD; Associate Professor
M. Wolfe, MD; Professor
Yisheng Yang, MD PhD; Assistant Professor
Cheung Yue, MD; Associate Professor
Ohad Ziv, MD; Assistant Professor

Neurological Surgery
Robert Geertman, MD PhD; Assistant Professor
Michael Kelly, MD; Assistant Professor
Matt Likavec, MD; Associate Professor
James Liu, MD; Assistant Professor

Neurology
Joseph Hanna, MD; Associate Professor
LingLing Rong, MD; Assistant Professor
Marc Winkelman, MD; Associate Professor

Orthopaedics
Blaine Bafus, MD; Assistant Professor
Laurel Beverley, MD MPH; Assistant Professor
Harry Hoyen, MD; Associate Professor
Michael Keith, MD; Professor
Kevin Kilgore, PhD; Professor
Ari Levine, MD; Assistant Professor
Brendan Patterson, MD; Professor
Ronald Triolo, PhD; Professor
Heather Vallier, MD; Professor
Glenn Wera, MD; Assistant Professor
John Wilber, MD; Professor
Roger Wilber, MD; Assistant Professor

Otolaryngology Head & Neck Surgery
Catherine Henry, MD; Assistant Professor
Steven Houser, MD; Associate Professor
Freedom Johnson, MD; Assistant Professor
David Ludlow, MD; Assistant Professor
Gia Marotta, MD; Assistant Professor
David Stepnick, MD; Associate Professor

Pathology
Salman Ayub, MBBS; Assistant Professor
Timothy Beddow, MD; Assistant Professor
Dan Cai, MBBS; Assistant Professor
Michael Ip, PhD; Associate Professor
Lawrence Kass, MD; Professor
Amer Khiyami, MD; Assistant Professor
Vikram Palamalai, MBBS PhD; Assistant Professor
Rania Rayes, MD; Assistant Professor
Joram Sawady, MD; Assistant Professor
Joseph Tomashefski, MD; Professor

Pediatrics
Pamella Abghari, MD; Assistant Professor
Nazha Abughali, MD; Professor
David Bar-Shain, MD; Associate Professor
David Birnkrant, MD; Professor
Hulya Bukulmez, MD; Assistant Professor
Susan Carlin, MD; Associate Professor
Kobkul Chotikanatis, MD; Assistant Professor
Marc Collin, MD; Associate Professor
Kathryn Corrigan, MD; Assistant Professor
Carol Crowe, MD; Associate Professor
Ajuah Davis, MD; Instructor
Irene Dietz, MD; Assistant Professor
Chantal Dothey, MD; Assistant Professor
Mark Feingold, MD; Associate Professor
Philip Fragassi, MD; Assistant Professor
Abdulla Ghori, MBBS; Associate Professor
Sharon Groh-Wargo, PhD; Professor
Reema Gulati, MBBS; Assistant Professor
Nada Haddad, MD; Assistant Professor
Maria Herran, MD; Assistant Professor
Irwin Jacobs, MD; Assistant Professor
Kristin Kaelber, MD PhD; Assistant Professor
Harry Kiefer, MD; Instructor
Deepak Kumar, MBBS; Associate Professor
Catherine Lipman, MD; Senior Instructor
Maroun Mhanna, MD; Professor
John Moore, MD; Professor
Rocio Moran, MD; Assistant Professor
Robert Needlman, MD; Professor
Margarita Neyman, MD; Assistant Professor
Andre Prochoroff, MD; Assistant Professor
Mammen Puliyel, MBBS; Assistant Professor
Elie Rizkallah, MD; Assistant Professor
Susan Santos, MD; Assistant Professor
Prem Shekhawat, MBBS; Associate Professor
Margaret Stager, MD; Associate Professor
Terry Stancin, PhD; Professor
Dennis Super, MD; Professor
Kumar Swamy, MD; Assistant Professor
Namita Swarup, MD; Assistant Professor
Biju Thomas, MBBS; Assistant Professor

Physical Medicine & Rehabilitation
James Begley, MD; Assistant Professor
Dennis Bourbeau, PhD; Assistant Professor
Steven Brose, DO; Assistant Professor
John Chae, MD; Professor
Gary Clark, MD; Professor
Travis Cleland, DO; Assistant Professor
Anthony DiMarco, MD; Professor
Elizabeth Dreben, PhD; Assistant Professor
Kermit Fox, MD; Assistant Professor
Michael Harris, MD; Assistant Professor
Mary Kristina Henzel, MD PhD; Assistant Professor
Shu Huang, MD; Associate Professor
Jihad Jaffer, MD; Assistant Professor
Clay Kelly, MD; Assistant Professor
Jayme Knutson, PhD; Associate Professor
Shamsi Lashgari-Saegh, MD; Assistant Professor
Daniel Malkamaki, MD; Assistant Professor
Melvin Mejia, MD; Assistant Professor
Patrick Murray, MD; Associate Professor
Kyung Nam, MD; Assistant Professor
Gregory Nemunaitis, MD; Professor
King Ogbogu, MD; Assistant Professor
Mary Roach, PhD; Assistant Professor
Jill Schleifer-Schneggenburger, MD; Assistant Professor
Kalyani Shah, MBBS; Assistant Professor
Lynne Shefler, MD; Assistant Professor
Seema Sikka, MD; Assistant Professor
Kip Smith, PhD; Assistant Professor
Daniel Tran, MD; Assistant Professor
Mary Vargo, MD; Associate Professor
Richard Wilson, MD; Associate Professor

Psychiatry
Melissa Armstrong-Brine, PhD; Assistant Professor
Olufunke Fajobi, MBBS; Instructor
Shira Fass, PhD; Assistant Professor
Gabriela Feier, MD; Assistant Professor
Anita Gantner, PhD; Assistant Professor
Howard Gottesman, MD; Assistant Professor
Lendita Haxhiu-Erhardt, MD; Assistant Professor
Ewald Horwath, MD; Professor
Florence Kimbo, MD; Assistant Professor
Nikhil Koushik, PhD; Assistant Professor
Katy Lalone, MD; Assistant Professor
Mallika Lavakumar, MD; Assistant Professor
Nanet Lopez-Cordova, PhD; Assistant Professor
Raman Marwaha, MBBS; Assistant Professor
Mary Miller, MD PhD; Assistant Professor
Marsheena Murray, Ph.D.; Assistant Professor
Britt Nielsen, MA/MS; Associate Professor
Shirley Ratner, PhD; Instructor
Kathleen Segraves, PhD; Associate Professor
Lisa Shah, PhD; Assistant Professor
Robert Smith, PhD; Assistant Professor
Rajesh Tampi, MBBS; Professor
Vikram Vaka, MD; Assistant Professor
Robert Weiss, MD; Assistant Professor
James Yokley, PhD; Assistant Professor

Radiology
William Baughman, MD; Assistant Professor
Erol Beytas, MD; Assistant Professor
Adam Blum, MD; Assistant Professor
Ignacio Chiong, MD; Assistant Professor
Christina Clemow, MD; Assistant Professor
Rachna Dutta, MD; Assistant Professor
Christine Eckhauser, MD; Assistant Professor
Robert Ferguson, MD; Professor
Andrew Goldberg, MD; Associate Professor
Vikas Jain, MD; Assistant Professor
Timothy Kasprzak, MD; Assistant Professor
Donn Kirschenbaum, MD; Assistant Professor
Alexander Kondow, MD; Assistant Professor
Anthony Minotti, MD; Associate Professor
Dubravka Oravec, MD; Assistant Professor
Avram Pearlstein, MD; Assistant Professor
Mark Rzeszotarski, PhD; Professor
Jill Schieda, MD; Assistant Professor
Rajiv Shah, MD; Assistant Professor
Stephen Tamarkin, MD; Assistant Professor
Lee Tseng, MD; Assistant Professor

Reproductive Biology
Kavita Arora, MD; Assistant Professor
Jennifer Bailit, MD; Professor
Marie Blossom, MD; Assistant Professor
Patrick Catalano, MD; Professor
Edward Chien, MD; Professor
Joel Escobedo, MD PhD; Assistant Professor
Thomas Frank, MD; Associate Professor
Kelly Gibson, MD; Assistant Professor
Sara Gradisar, MD; Assistant Professor
Paula Hendryx, MD; Assistant Professor
Sarah Kane, MD; Assistant Professor
Gregory Kitagawa, MD; Assistant Professor
Justin Lappen, MD; Assistant Professor
Sofia Lieser, MD; Instructor
Sally MacPhedran, MD; Assistant Professor
Jeffrey Mangel, MD; Associate Professor
Brian Mercer, MD; Professor
Stephen Myers, D.O.; Associate Professor
Perrie O’Tierney-Ginn, PhD; Assistant Professor
Robert Pollard, MD; Assistant Professor
Ahmad Razi, MD; Assistant Professor
Kimberly Resnick, MD; Assistant Professor
Barbara Rhoads, MD; Assistant Professor
Peter Rose, MD; Professor
Dianne Schubeck, MD; Assistant Professor
Abdelwahab Shalodi, MBBCh; Associate Professor
Linda-Dalal Shiber, MD; Assistant Professor
Phillip Shuffer, MD; Assistant Professor
Bradley Stetzer, D.O.; Associate Professor
Maureen Suster, MD; Assistant Professor

William Todia, MD; Associate Professor
Steven Weight, MD; Assistant Professor

Surgery
John Alexander, MD; Associate Professor
Bruce Averbook, MD; Professor
Elisa Bala, MD; Assistant Professor
Sergio Bardaro, MD; Assistant Professor
Bernard Boulanger, MD; Professor
Christopher Brandt, MD; Professor
Jeffrey Claridge, MD; Professor
John Como, MD; Professor
Kristen Conrad-Schnetz, DO; Assistant Professor
Firouz Daneshgari, MD; Professor
Joseph Golob, MD; Assistant Professor
Kevin Grimes, MD; Assistant Professor
Ann Hanna-Mitchell, PhD; Assistant Professor
Megan Holmes, O.D.; Senior Instructor
Roderick Jordan, MD; Assistant Professor
Natalie Joseph, MD; Associate Professor
Bram Kaufman, MD; Associate Professor
Anjay Khandelwal, MBBS; Assistant Professor
Laura Kreiner, MD; Assistant Professor
Benjamin Li, MD; Professor
Guiming Liu, MD PhD; Assistant Professor
Mark Malangoni, MD; Professor
Edward Mansour, MD; Professor
Amy McDonald, MD; Assistant Professor
Christopher McHenry, MD; Professor
Daniel Medalie, MD; Assistant Professor
Mireilla Moise, MD; Assistant Professor
Carvell Nguyen, MD PhD; Assistant Professor
Nimitt Patel, MD; Assistant Professor
Paul Priebe, MD; Associate Professor
William Roscoe, D.O.; Assistant Professor
Rupa Shah, MD; Assistant Professor
Susan Sharpe, MD; Assistant Professor
School of Medicine Faculty

Christopher Smith, MD; Assistant Professor
John Spirnak, MD; Professor
Thomas Steinemann, MD; Professor
Jean Stevenson, MD; Associate Professor
Melissa Times, MD; Assistant Professor
Ali Totonchi, MD; Assistant Professor
Charles Yowler, MD; Professor

Cleveland Clinic Lerner College of Medicine

Full-Time Faculty

Anesthesiology
Basem Abdelmalak, MD; Professor
Hinda Abramoff, DO; Assistant Professor
Andrej Alfirevic, MD; Associate Professor
Maged Argalious, MBBS; Professor
Mohamed Attala, MB, Bch; Professor
Rafi Avitsian, MD; Professor
Sabri Barsoum, MBBCh; Assistant Professor
Charles Bashour, MD; Associate Professor
Sekar Bhavani, MBBS; Assistant Professor
Robert Bolash, MD; Assistant Professor
David Brown, MD; Professor
Michelle Capdeville, MD; Associate Professor
Jianguo Cheng, MD PhD; Professor
Miguel Cruz, MD; Assistant Professor
Kenneth Cummings, MD; Assistant Professor
Jacek Cywinski, MD; Associate Professor
D. Doyle, MD PhD; Professor
Andra Duncan, MD; Associate Professor
Hesham Abdelaziz Elsharkawy, MBB.CH; Assistant Professor
Wael Esa, MBBCCH PhD; Assistant Professor
Ehab Farag, MBBS; Professor
Ursula Galway, MBBCCh; Assistant Professor
John George, MD; Assistant Professor
Girgis Girgis, MBBS DO; Assistant Professor
Alexandru Gottlieb, MD; Associate Professor
Jennifer Hargrave, DO; Assistant Professor
Samuel Irefin, MD; Associate Professor
Ashish Khanna, MBBS; Assistant Professor
Andrea Kurz, MD; Professor
Daniel Leizman, MD; Assistant Professor
Michael Licina, MD; Professor
Sandra Machado, MD; Assistant Professor
Negmeldeen Mamoun, MD; Assistant Professor
Donn Marciniak, MD; Assistant Professor
Edward Mascha, PhD; Associate Professor
Marco Maurtua, MD; Assistant Professor
Anand Mehta, MBBS; Assistant Professor
Nagy Mekhail, MBBS; Professor
Michael O’Connor, DO; Assistant Professor
Jerome O’Hara, MD; Professor
Brian Parker, MD; Associate Professor
Silvia Perez-Prootto, MD; Assistant Professor
Nadeem Rahman, MD; Assistant Professor
Shobana Rajan, MBBS; Assistant Professor
Antonio Ramirez, MD; Assistant Professor
Robert Ratzlaff, DO; Assistant Professor
Michael Roizen, MD; Professor
Ellen Rosenquist, MD; Assistant Professor
Kurt Ruetzler, MD; Assistant Professor
Leif Saager, MD; Associate Professor
Shiva Sale, MBBS; Assistant Professor
Peter Schoenwald, MD; Associate Professor
Daniel Sessler, MD; Professor
Roshni Sreedharan, MBBS; Assistant Professor
Khalfoun Tarakji, MD MPH; Assistant Professor
John Tetzlaff, MD; Professor
Alparslan Turan, MD; Professor
Guangxiang (Joe) Yu, MD; Assistant Professor
Mark Zahniser, MD; Assistant Professor

Family Medicine
Robert Bales, MD; Assistant Professor
Alan Cadesky, MD; Associate Professor
Kendalle Cobb, MD; Assistant Professor
Lisa DeSantis, MD; Assistant Professor
Laura Dorr-Lipold, MD; Assistant Professor
Cory Fisher, DO; Assistant Professor
Donald Ford, MD; Assistant Professor
Charles Garven, MD; Assistant Professor
Robert Kelly, MD; Associate Professor
Aphrodite Papadakis, MD; Assistant Professor
Richard Pressler, MD; Assistant Professor
Michael Rabovsky, MD; Assistant Professor
Kelly Raj, DO; Assistant Professor
Sandra Snyder, D.O.; Assistant Professor
Jessica Strasburg, MD; Assistant Professor
Amber Tully, MD; Assistant Professor
Carl Tyler, MD; Associate Professor
Harneet Walia, MD; Assistant Professor
Brian Wells, MD PhD; Assistant Professor
Samina Yunus, MBBS; Assistant Professor

Medicine
Mohamed Abazeed, MD PhD; Assistant Professor
Ume Abbas, MBBS; Assistant Professor
Loutfi Aboussouan, MD; Associate Professor
Jame Abraham, MBBS; Professor
David Adelstein, MD; Professor
Anjali Advani, MD; Associate Professor
Manmeet Ahluwalia, MBBS; Professor
Francisco Almeida, MD; Assistant Professor
Murat Altinay, MD; Assistant Professor
Sudha Amarnath, MD; Assistant Professor
Amit Anand, MBBS; Professor
Joshua Augustine, MD; Associate Professor
Moises Auron, MD; Associate Professor
Maja Babic, MD; Assistant Professor
Charles Bae, MD; Assistant Professor
Salim Balik, PhD; Assistant Professor
Sarah Banks, PhD; Assistant Professor
John Bartholomew, MD; Professor
Joseph Baskin, MD; Assistant Professor
Pelin Batur, MD; Assistant Professor
Jocelyn Bautista, MD; Assistant Professor
Scott Bea, Psy.D; Assistant Professor
Robert Bermel, MD; Assistant Professor
Mandeep Bhargava, MBBS; Associate Professor
Saurin Bhatt, MD; Instructor
Saundra Bierer, PhD; Associate Professor
Lyla Blake-Gumbs, MD; Assistant Professor
Brian Bolwell, MD; Professor
Aaron Bonner-Jackson, PhD; Assistant Professor
Andrei Brateanu, MD; Assistant Professor
Kyle Brizendine, MD; Assistant Professor
Karen Broer, PhD; Assistant Professor
David Bronson, MD; Professor
Laura Buccini, MPH; Assistant Professor
George Budd, MD; Professor
Marie Budev, DO; Professor
Bartolome Burguera, MD PhD; Professor
Robyn Busch, PhD; Assistant Professor
Leonard Calabrese, O.D.; Professor
Daniel Cantillon, MD; Associate Professor
William Carey, MD; Professor
Hetty Carraway, MD; Associate Professor
Caroline Casserly, MD; Assistant Professor
Neal Chaisson, MD; Assistant Professor
Samuel Chao, MD; Associate Professor
Soumya Chatterjee, MBBS; Associate Professor
Georgiana Cheng, MD; Senior Instructor
Sheen Cherian, MBBS; Assistant Professor
Humberto Choi, MD; Assistant Professor
Mina Chung, MD; Professor
Jay Ciezki, MD; Professor
Eric Cober, MD; Assistant Professor
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeffrey Cohen, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Colleen Colbert, PhD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Patrick Collier, MBBC;</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Devon Conway, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Edward Copelan, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Miriam Cremer, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Gail Cresci, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Jeffrey Cummings, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Jarrod Dalton, Ph.D.</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Dhiman Dani, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Srinivasan Dasarathy, MBBS;</td>
<td>Professor</td>
</tr>
<tr>
<td>Elliott Dassenbrook, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Mellar Davis, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Hamed Daw, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Chad Deal, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Robert Dean, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Sevag Demirjian, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Milind Desai, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Abhishek Deshpande, MBBS; PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Toufik Djemil, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Jessica Donato, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Steve Dorsey, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Abhijit Duggal, MBBS;</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Hien Duong, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Raed Dweik, MBBS;</td>
<td>Professor</td>
</tr>
<tr>
<td>Ignacio Echenique, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>John Ehrlinger, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Stephen Ellis, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Rakesh Engineer, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Marc Ernstoff, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Serpil Erzurum, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Bassam Estfan, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Ronan Factora, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Tatiana Falcone, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Hany Farag, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Maan Fares, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Samar Farha, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Michael Faux, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Hubert Fernandez, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Baruch Fertel, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Anne Flamm, JD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Catherine Fleisher, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Darlene Floden, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Nancy Foldvary-Schaefer, D.O.;</td>
<td>Professor</td>
</tr>
<tr>
<td>Paul Ford, PhD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Cecile Foshee, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Robert Fox, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Kathleen Franco-Bronson, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Thomas Fraser, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Jennifer Frontera, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Frederick Frost, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Margo Funk, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Scott Gabbard, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>John Gale, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Nestor Galvez-Jimenez, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Jorge Garcia, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Samita Garg, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Surafel Gebreselassie, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Aaron Gerds, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Timothy Gilligan, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Andrew Godley, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Joao Gomes, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Steven Gordon, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Heather Gornik, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Eiran Gorodeski, MD M.P.H;</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Carmen Gota, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Kush Goyal, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Aric Greenfield, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>John Greskovich, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Ajay Gupta, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Mona Gupta, MBBS;</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Abdo Haddad, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Rula Hajj-Ali, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Betty Hamilton, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Amir Hamrahian, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Ibrahim Hanouneh, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Brian Harte, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Leslie Heinberg, PhD</td>
<td>Professor</td>
</tr>
<tr>
<td>Gustavo Heresi, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Carrie Hersh, DO</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Robert Heyka, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>James Hicks, Ph.D.</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Brian Hill, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Roberts Hobbs, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Gary Hoffman, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Joel Holland, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Nathan Houchens, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Eileen Hsich, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Le Hua, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Kelly Huffman, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Alan Hull, PhD</td>
<td>Professor</td>
</tr>
<tr>
<td>M. Husni, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Muhammad Hussain, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Fredric Hustey, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Lamia Ibrahim, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Sally Ibrahim, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Peter Imrey, PhD</td>
<td>Professor</td>
</tr>
<tr>
<td>J. Isaacson, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Rafi Israeli, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Wael Jaber, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Karen James, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Lara Jehi, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Christine Jellis, MBBS PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Jason Jerry, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Xavier Jimenez, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Xian Jin, MD PhD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Binu John, MBBS</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Stacey Jolly, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Nikhil Joshi, MBBS</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Vidyasagar Kalahasti, MBBS</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Matt Kalaycio, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Venkatesh Kambhampati, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Sheru Kansal, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Samir Kapadia, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Matthew Karafa, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Sangeeta Kashyap, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Takhar Kasumov, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Michael Kattan, PhD</td>
<td>Professor</td>
</tr>
<tr>
<td>Roop Kaw, MBBS</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Lanea Keller, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Hermann Kessler, MD PhD</td>
<td>Professor</td>
</tr>
<tr>
<td>Atul Khasnis, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Sumita Khatri, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Alok Khorana, MBBS</td>
<td>Professor</td>
</tr>
<tr>
<td>Monica Khot, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Do Gyun Kim, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Donald Kirby, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Allan Klein, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Elia Margarita Knight, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Martin Kohn, PhD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Prakash Kotagal, MBBS</td>
<td>Professor</td>
</tr>
<tr>
<td>Shakuntala Kothari, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Robert Kotloff, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Christopher Kovacs, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Christine Koval, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Shlomo Koyfman, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Jennifer Kriegler, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Sudhir Krishnan, MBBS</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Amar Krishnaswamy, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Cynthia Kubu, PhD</td>
<td>Professor</td>
</tr>
<tr>
<td>Deborah Kwon, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Simon Lam, Pharm. D</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>David Lang, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Carol Langford, MD</td>
<td>Associate Professor</td>
</tr>
</tbody>
</table>
Maria Lansang, MD; Associate Professor
Bret Lashner, MD; Professor
Amanda Lathia, MD PhD; Assistant Professor
Richard Lederman, MD PhD; Professor
Yu-Shang Lee, PhD; Assistant Professor
Mandy Leonard, MA/MS; Assistant Professor
Kerry Levin, MD; Professor
Alan Lichtin, MD; Associate Professor
Vernon Lin, MD PhD; Professor
A. Lincoff, MD; Professor
Michael Lioudis, MD; Assistant Professor
Gwendolyn Lynch, MD; Assistant Professor
Sharon Mace, MD; Professor
Jaroslow Maciejewski, MD; Professor
Navneet Majhail, MBBS; Professor
Vinni Makin, MBBS; Assistant Professor
Donald Malone, MD; Professor
Brian Mandell, MD PhD; Professor
Edward Manno, MD; Professor
Kathryn Martinez, PhD; Assistant Professor
Jeanne Mattern, PhD; Assistant Professor
Steven Mawhorter, MD; Associate Professor
Mark Mayer, MD; Associate Professor
Kenneth Mayuga, MD; Assistant Professor
Daniel Mazanec, MD; Associate Professor
Arthur Mc Cullough, MD; Professor
Ali Mehdi, MD; Assistant Professor
Reena Mehra, MD; Professor
Atul Mehta, MBBS; Professor
Neil Mehta, MBBS; Professor
Elizabeth Menefee, MD; Assistant Professor
K.V. Menon, Md MBBS; Assistant Professor
Venugopal Menon, MBBS; Professor
Julie Merrell, PhD; Assistant Professor
Barbara Messinger-Rapport, MD PhD; Associate Professor
Deborah Miller, PhD; Professor
Justin Miller, PhD; Assistant Professor
Eduardo Mireles-Cabodevila, MD; Assistant Professor
Anita Misra-Hebert, MD; Assistant Professor
Kunjam Modha, MBBS; Assistant Professor
Alberto Montero, MD; Associate Professor
Halle Moore, MD PhD; Associate Professor
Sherif Mossad, MD; Professor
Erin Murphy, MD; Assistant Professor
Ahsan Moosa Naduvil Valappil, MBBS; Assistant Professor
Ravi Nair, MBBS; Professor
Nader Najafian, MD; Professor
Georges Nakhoul, MD; Assistant Professor
Sumeda Nandadasa, PhD; Instructor
Sankar Navaneethan, MBBS; Associate Professor
Aziz Nazha, MD; Assistant Professor
Kathleen Neuendorf, MD; Assistant Professor
Gennady Neyman, PhD; Assistant Professor
Kathrin Nicolacakis, MD; Assistant Professor
Craig Nielsen, MD; Associate Professor
Steven Nissen, MD; Professor
Amy Nowacki, PhD; Assistant Professor
Nancy Obuchowski, PhD; Professor
Daniel Ontaneda, MD; Assistant Professor
Robert O’Shea, MD; Assistant Professor
Malika Ouzidane, PhD; Assistant Professor
Armida Parala-Metz, MD; Assistant Professor
Malav Parikh, MBBS; Assistant Professor
Karen Parker, MD PhD; Assistant Professor
Mansour Parsi, MD; Assistant Professor
David Peereboom, MD; Professor
Dermot Phelan, MBBch PhD; Assistant Professor
Michael Phelan, MD; Associate Professor
Lilly Pien, MD; Associate Professor
Jagan Pillai, MBBS PhD; Assistant Professor
Ela Plow, PhD; Assistant Professor
Seth Podolsky, MD; Assistant Professor
Emilio Poggio, MD; Professor
Zoran Popovic, MD; Associate Professor
Lori Posk, MD; Assistant Professor
Jose Provencio, MD; Associate Professor
Peng Qi, PhD; Assistant Professor
John Queen, MD; Assistant Professor
Tomas Radivoyevitch, PhD; Assistant Professor
Alexander Rae-Grant, MD; Professor
Jeevanantham Rajeswaran, PhD; Assistant Professor
Jennifer Ramsey, MD; Assistant Professor
Stephen Rao, PhD; Professor
Anita Reddy, MD; Assistant Professor
Susan Rehm, MD; Professor
Mary Rensel, MD; Assistant Professor
Frederic Reu, MD; Assistant Professor
Curtis Rimmerman, MD; Associate Professor
Hernan Rincon-Choles, MD; Assistant Professor
Brian Rini, MD; Professor
Maged Rizk, MD; Assistant Professor
Michael Rocco, MD; Assistant Professor
Susannah Rose, PhD; Assistant Professor
Michael Rothberg, MD MPH; Professor
Richard Rudick, MD; Professor
Renato Samala, MD; Assistant Professor
Yogen Saunthararajah, MBBC; Professor
Michael Schaefer, MD; Associate Professor
Rachel Scheraga, MD; Assistant Professor
Steven Schmitt, MD; Associate Professor
Jesse Schold, PhD; Assistant Professor
Steven Schwartz, MD; Assistant Professor
Raul Seballos, MD; Assistant Professor
Sinziana Seicean, MD PhD MPH; Assistant Professor
Jennifer Sekeres, D PH; Assistant Professor
Mikkael Sekeres, MD; Professor
Marc Shapiro, MD; Assistant Professor
Abdullah Shatnawi, MBBS; Assistant Professor
Bo Shen, MBBS; Professor
Dale Shepard, MD PhD; Assistant Professor
Laura Shoemaker, DO; Assistant Professor
Nabin Shrestha, MBBS; Associate Professor
Andrea Sikon, MD; Associate Professor
James Simon, MD; Assistant Professor
Ronald Sobecks, MD; Associate Professor
Davendra Sohal, MBBS; Assistant Professor
Jennifer Solivas-Maluyao, MD; Assistant Professor
Brian Southern, MD; Assistant Professor
Abby Spencer, MD; Associate Professor
Timothy Spiro, MBBS; Assistant Professor
Randall Starling, MD; Professor
Kevin Stephens, MD; Associate Professor
Brian Stephany, MD; Assistant Professor
John Stephens, MD; Assistant Professor
Tyler Stevens, MD; Associate Professor
Stephen Stohlman, PhD; Professor
James Stoller, MD; Professor
Lael Stone, MD; Associate Professor
Le-Chu Su, MD PhD; Assistant Professor
John Suh, MD; Professor
Amy Sullivan, PSY.D.; Assistant Professor
Sanjeev Suri, MBBS; Assistant Professor
Gieres Sweis, Psy.D.; Assistant Professor
Alan Taege, MD; Assistant Professor
Glen Taksler, PhD; Assistant Professor
Jonathan Taliercio, DO; Assistant Professor
Wai Hong Tang, MD; Professor
Rawan Tarawneh, MD; Assistant Professor
Jinny Tavee, MD; Associate Professor
David Taylor, MD; Professor
Rahul Tendulkar, MD; Associate Professor
Stewart Tepper, MD; Professor
George Tesar, MD; Associate Professor
Holly Thacker, MD; Professor
Nimish Thakore, MD; Assistant Professor
Atul Thakur, MBBS; Assistant Professor
Nirossah Thruchelvam, MBBS; Assistant Professor
George Thomas, MBBS; Assistant Professor
Leslie Tolle, MD; Assistant Professor
Adriano Tonelli, MD; Assistant Professor
Gabor Toth, MD; Associate Professor
Chung-Jyi Tsai, MD PhD; Associate Professor
Wayne Tsuang, MD; Assistant Professor
Marisa Tungsiripat, MD; Assistant Professor
Jason Turowski, MD; Assistant Professor
E. Tuzcu, MD; Professor
Ken Uchino, MD; Associate Professor
Donald Underwood, MD; Associate Professor
John Vargo, MD; Associate Professor
Vamsidhar Velchetti, MBBS; Assistant Professor
Giselle Velez, MD; Assistant Professor
Vicente Velez, MD; Assistant Professor
Gregory Videtic, MD; Professor
Allison Vidimos, MD; Professor
Brinder Vij, MBBS; Assistant Professor
Jamile Wakim-Fleming, MD; Assistant Professor
Esteban Walker, PhD; Assistant Professor
Xiaofeng Wang, PhD; Professor
Zhong Wang, PhD; Assistant Professor
Oussama Wazni, MD; Professor
Judith Welsh, MD; Assistant Professor
Douglas Wilkinson, PhD; Assistant Professor
Bruce Wilkoff, MD; Professor
Susan Williams, MD; Associate Professor
Mary Willis, MD; Assistant Professor
Molly Wimbiscus, MD; Assistant Professor
Amy WinDover, PhD; Associate Professor
Jeffrey Wisnieski, MD; Professor
Leslie Wong, MD; Assistant Professor
Neil Woody, MD; Assistant Professor
Benjamin Young, MD; Assistant Professor
James Young, MD; Professor
Elham Yousef, MBBCH; Assistant Professor
Naichang Yu, PhD; Assistant Professor
Ziad Zaky, MBBCH; Assistant Professor
Nizar Zein, MD; Associate Professor
Tingliang Zhuang, PhD; Assistant Professor

Molecular Medicine
Solomon Afelik, PhD; Assistant Professor
Jay Alberts, PhD; Assistant Professor
Micheala Aldred, PhD; Associate Professor
Alexandru Almasan, PhD; Professor
Sanjay Anand, PhD; Assistant Professor
Suneel Apte, MBBS; Associate Professor
Abul Arif, PhD; Assistant Professor
Mark Aronica, MD; Assistant Professor
Kewal Asosingh, PhD; Assistant Professor
Kulwant Aulak, PhD; Assistant Professor
William Baldwin, MD PhD; Professor
Selva Baltan, MD PhD; Associate Professor
Smarajit Bandopadhyay, PhD; Assistant Professor
Lynn Bekria, PhD; Assistant Professor
Cornelia Bergmann, PhD; Professor
Kathleen Berkner, PhD; Associate Professor
Pallavi Bhattachar, PhD; Assistant Professor
Jonathan Brown, PhD; Assistant Professor
Sylvain Brunet, PhD; Assistant Professor
Tatiana Byzova, PhD; Assistant Professor
Anthony Calabro, PhD; Assistant Professor
Ritu Chakravarti, PhD; Assistant Professor
Unnikrishnan Chandrasekharan, PhD; Assistant Professor
Saurabh Chattopadhyay, PhD; Assistant Professor
HyeonJoo Cheon, PhD; Assistant Professor
Suzy Comhair, PhD; Associate Professor
James Crish, PhD; Assistant Professor
Margot Damaser, PhD; Professor
Riku Das, PhD; Assistant Professor
Dimitrios Davalos, PhD; Assistant Professor
Carol de la Motte, PhD; Assistant Professor
Kathleen Derwin, PhD; Assistant Professor
Joseph DiDonato, PhD; Assistant Professor
Donna Driscoll, MD; Professor
Ranjan Dutta, PhD; Assistant Professor
Thomas Egelhoff, PhD; Professor
Ahmet Erdemir, PhD; Assistant Professor
Robert Fairchild, PhD; Professor
James Finke, PhD; Professor
Claudio Fiocchi, MD; Professor
Aaron Fleischman, PhD; Assistant Professor
Paul Fox, PhD; Professor
Kiyotaka Fukamachi, MD PhD; Professor
Arnab Ghosh, PhD; Assistant Professor
Chaitali Ghosh, PhD; Assistant Professor
Candece Gladson, MD; Professor
Zihua Gong, MD PhD; Assistant Professor
Neetu Gupta, PhD; Assistant Professor
Dolores Hambardzumyan, PhD; Assistant Professor
Thomas Hamilton, PhD; Professor
Mohammad Haque, PhD; Assistant Professor
Saikh Haque, PhD; Assistant Professor
Vincent Hascall, PhD; Professor
Stanley Hazen, MD PhD; Professor
Masahiro Hitomi, MD PhD; Assistant Professor
George Hoppe, PhD; Assistant Professor
Janet Houghton, PhD; Professor
Dirk Hubmacher, PhD; Assistant Professor
Ritika Jaini, PhD; Assistant Professor
Damir Janigro, PhD; Professor
Marcia Jarrett, PhD; Assistant Professor
Jan Jensen, PhD; Associate Professor
Trine Jorgensen, PhD; Assistant Professor
Bong Jae Jun, PhD; Assistant Professor
Satish Kalhan, MBBS; Professor
Asha Kallianpur, MD; Associate Professor
James Kaltenbach, PhD; Professor
Zi Zhen Kang, PhD; Assistant Professor
Sadashiva Karnik, PhD; Professor
Sean Kessler, PhD; Assistant Professor
John Kirwan, PhD; Professor
Vijay Krishna, PhD; Assistant Professor
Vinod Labhasetwar, PhD; Professor
Bruce Lamb, PhD; Associate Professor
Justin Lathia, PhD; Assistant Professor
Mark Lauer, PhD; Assistant Professor
Jeongwu Lee, PhD; Assistant Professor
Veronique Lefebvre, PhD; Professor
Liraz Levi, PhD; Instructor
Bruce Levison, PhD; Assistant Professor
Wei Li, MD PhD; Assistant Professor
Xiaoxia Li, PhD; Professor
Yong Li, PhD; Professor
Zong-Ming Li, PhD; Professor
Feng Lin, PhD; Associate Professor
Daniel Lindner, MD PhD; Assistant Professor
Michelle Longworth, PhD; Assistant Professor
Lina Lu, MD; Associate Professor
Donal Luse, PhD; Professor
Judith Mack, PhD; Instructor
Alana Majors, PhD; Assistant Professor
Hideki Makishima, MD PhD; Assistant Professor
Edward Maytin, MD PhD; Assistant Professor
Saparna Mazumder, PhD; Assistant Professor
Keith McCrae, MD; Professor
Christine McDonald, PhD; Assistant Professor
Jocelyn McDonald, PhD; Assistant Professor
Thomas McIntyre, PhD; Professor
Ron Midura, PhD; Associate Professor
Booki Min, PhD; Assistant Professor
Saurav Misra, PhD; Assistant Professor
Christine Moravec, PhD; Assistant Professor
Richard Morton, PhD; Associate Professor
Timothy Moss, MD PhD; Assistant Professor
E. Murphy, PhD; Assistant Professor
Laura Nagy, PhD; Professor
Kunio Nakamura, PhD; Assistant Professor
Christine O'Connor, PhD; Assistant Professor
Mitchell Olman, MD; Professor
Richard Padgett, PhD; Professor
Dianne Perez, PhD; Associate Professor
Edward Plow, PhD; Professor
Eugene Podrez, MD PhD; Assistant Professor
Sathymangla Prasad, PhD; Associate Professor
Shiguang Qian, MD; Associate Professor
Jun Qin, PhD; Professor
Anand Ramamurthi, PhD; Associate Professor
Sujata Rao, PhD; Assistant Professor
Baisakhi Raychaudhuri, PhD; Assistant Professor
Ofer Reizes, PhD; Assistant Professor
Jeremy Rich, MD; Professor
Steven Rosenfeld, PhD; Professor
Sanjoy Roychowdhury, PhD; Assistant Professor
Takuya Sakaguchi, PhD; Assistant Professor
Ganes Sen, PhD; Professor
David Serre, PhD; Associate Professor
Nima Sharifi, MD; Professor
Robert Silverman, PhD; Professor
Jarnail Singh, PhD; Assistant Professor
Jonathan Smith, MD; Professor
Khalid Sossey-Alaoui, PhD; Assistant Professor
Olga Stenina, PhD; Assistant Professor
Dennis Stuehr, PhD; Professor
Eleni Stylianou, PhD; Assistant Professor
Hoonkyo Suh, PhD; Assistant Professor
Matthew Summers, PhD; Assistant Professor
Charles Tannenbaum, PhD; Assistant Professor
Dawn Taylor, PhD; Assistant Professor
Julie Tebo, PhD; Assistant Professor
Angela Ting, PhD; Associate Professor
Vincent Tuohy, PhD; Professor
Anna Valujsikih, PhD; Assistant Professor
Anette Van Boxel-Dezaire, PhD; Assistant Professor
David Van Wagoner, PhD; Associate Professor
D. Vince, PhD; Professor
Aimin Wang, PhD; Instructor
Li-Xin Wang, PhD; Assistant Professor
Qing Wang, PhD; Professor
Zeneng Wang, PhD; Assistant Professor
Oliver Wessely, PhD; Associate Professor
Philip Williams, PhD; Assistant Professor
Qingyu Wu, MD PhD; Professor
Ping Xia, PhD; Professor
Weiling Xu, MD; Assistant Professor
Riqiang Yan, PhD; Professor
Qing Yi, MD PhD; Professor
Jennifer Yu, MD PhD; Assistant Professor
Maciej Zborowski, PhD; Associate Professor
Bin Zhang, PhD; Associate Professor
Jianjun Zhao, MD; Assistant Professor

Neurological Surgery
Gene Barnett, MD; Professor
Edward Benzel, MD; Professor
William Bingaman, MD; Professor
Darlene Lobel, MD; Associate Professor
Andre Machado, MD PhD; Associate Professor
Mohammad Mohammadi, MD; Assistant Professor
Sean Nagel, MD; Assistant Professor
Kaine Onwuzulike, MD PhD; Assistant Professor
Peter Rasmussen, MD; Associate Professor
Pablo Recinos, MD; Assistant Professor
Violette Recinos, MD; Assistant Professor
Michael Steinmetz, MD; Professor
Michael Vogelbaum, MD PhD; Professor

Ophthalmology
Bela Anand-Apte, PhD; Professor
Amy Babiuch, MD; Assistant Professor
Vera Bonilha, PhD; Assistant Professor
John Crabb, PhD; Professor
Justis Ehlers, MD; Assistant Professor
Richard Gans, MD; Assistant Professor
Fatema Ghasia, MD; Assistant Professor
Stephanie Hagstrom, PhD; Associate Professor
Joe Hollyfield, PhD; Professor
Peter Kaiser, MD; Professor
Ronald Krueger, MD; Professor
Daniel Martin, MD; Professor
Shari Martyn, MD; Assistant Professor
Neal Peache, PhD; Professor
Brian Perkins, PhD; Associate Professor
Aleksandra Rachitskaya, MD; Assistant Professor
Edward Rockwood, MD; Associate Professor
Paul Rychwalski, MD; Associate Professor
Andrew Schachat, MD; Professor
Jonathan Sears, MD; Associate Professor
Annapurna Singh, MBBS; Associate Professor
Arun Singh, MD; Professor
Rishi Singh, MD; Associate Professor
K.P. Tam, PhD; Assistant Professor
Yuankai Tao, PhD; Assistant Professor
Elias Traboulsi, MD; Professor
Steven Wilson, MD; Professor
Minzhong Yu, PhD; Assistant Professor
Alex Yuan, MD PhD; Assistant Professor

Pathology
Fadi Abdul-Karim, MD; Professor
Daniela Allende, MD; Associate Professor
Mohammad Ansari, MBBS; Professor
Andrea Arrossi, MD; Assistant Professor
Suzanne Bakdash, MD; Assistant Professor
Steven Billings, MD; Professor
Christine Booth, MD; Associate Professor
David Bosler, MD; Assistant Professor
Benjamin Calhoun, Md PhD MBA; Assistant Professor
Andres Chiesa-Vottero, MD; Assistant Professor
Deborah Chute, MD; Assistant Professor
James Cook, MD PhD; Associate Professor
Claudiu Cotta, MD PhD; Assistant Professor
Kathryn Dyhdalo, MD; Assistant Professor
Tarik Elsheikh, MBBCH; Professor
Carol Farver, MD; Professor
John Goldblum, MD; Professor
Ilyssa Gordon, MD; Assistant Professor
Susan Harrington, Ph.D.; Assistant Professor
Eric Hsi, MD; Professor
Kandice Kottke-Marchant, MD PhD; Professor
Xiuli Liu, MD PhD; Associate Professor
Cristina Magi-Galluzzi, MD PhD; Professor
Megan Nakashima, MD; Assistant Professor
Marvin Natowicz, MD PhD; Professor
Sarah Ondrejka, DO; Assistant Professor
Jinesh Patel, MD; Assistant Professor
Deepa Patil, MD; Associate Professor
Thomas Plesec, MD; Assistant Professor
Richard Prayson, MD; Professor
Gary Procop, MD; Professor
Christopher Przybycin, MD; Assistant Professor
Jordan Reynolds, MD; Assistant Professor
Sandra Richter, MD; Associate Professor
E. Rodriguez, MD; Professor
Heesun Rogers, MD PhD; Assistant Professor
Andres Roma, MD; Associate Professor
J. Rowe, MD; Assistant Professor
Brian Rubin, MD PhD; Professor
Suneei Sapatnekar, MD PhD; Assistant Professor
Charles Sturgis, MD; Associate Professor
Carmela Tan, MD; Associate Professor
Bin Yang, MD PhD; Professor
Gabrielle Yeaney, MD; Associate Professor
Lisa Yerian, MD; Assistant Professor
Yaxia Zhang, MD PhD; Assistant Professor

Pediatrics
Jalal Abu-Shaweesh, MBBS; Associate Professor
Naim Alkhouri, MD; Assistant Professor
Vibha Anand, PhD; Assistant Professor
Nella Blyumin, MD; Assistant Professor
Gerard Boyle, MD; Associate Professor
Silvia Cardenas Zegarra, MD; Assistant Professor
John Carl, MD; Associate Professor
Rolly Chawla, MD; Assistant Professor
Anirudha Das, MBBS; Assistant Professor
Katherine Dell, MD; Professor
Francine Erenberg, MD; Assistant Professor
Angelika Erwin, MD PhD; Assistant Professor
Chidiebere Ezetendu, MBBS; Assistant Professor
Charles Foster, MD; Associate Professor
Thomas Frazier, PhD; Assistant Professor
Kimberly Giuliano, MD; Assistant Professor
Alex Golden, MD; Assistant Professor
Blanca Gonzalez, MD; Assistant Professor
Keshava Gowda, MBBS; Assistant Professor
Rishi Gupta, MBBS; Assistant Professor
Rabi Hanna, MD; Assistant Professor
Sabine Iben, MD; Assistant Professor
Halima Janjua, MBBS; Assistant Professor
Skyler Kalady, MD; Assistant Professor
Wasim Khasawneh, MBBS; Assistant Professor
Eric Kodish, MD; Professor

Rukmini Komarlu, MBBS; Assistant Professor
Nathan Kraynack, MD; Associate Professor
Sangeeta Krishna, MD; Assistant Professor
Katherine Lamparyk, PsyD; Assistant Professor
Sara Lappe, MD; Assistant Professor
Daniel Lebovitz, MD; Associate Professor
Yoav Littner, MD; Assistant Professor
M. Loner, MD; Assistant Professor
Michael Macknin, MD; Professor
Michael Manos, PhD; Assistant Professor
Raed Bou Matar, MD; Assistant Professor
Ajith Matthew, MD; Assistant Professor
Sumana Narasimhan, MBBS; Associate Professor
Hanan Nashed, MD; Assistant Professor
Sumit Parikh, MD; Associate Professor
Jennifer Peterson, MD; Assistant Professor
Shannon Phillips, MD; Assistant Professor
Giovanni Piedimonte, MD; Professor
Lourdes Prieto, MD; Associate Professor
NurJehan Quaraishy, MD; Assistant Professor
Fariba Rezaee, MD; Assistant Professor
Ricardo Rodriguez, MD; Associate Professor
Ellen Rome, MD; Professor
Camille Sabella, MD; Associate Professor
Brian Schroer, MD; Assistant Professor
Elaine Schulte, MD; Professor
David Shafran, MD; Assistant Professor
Roopa Thakur, MD; Assistant Professor
Christine Traul, MD; Assistant Professor
Wendy Van Ittersum, MD; Assistant Professor
Kathryn Weise, MD; Associate Professor
Gary Williams, MD; Assistant Professor
Johannes Wolff, MD; Professor
Elaine Wyllie, MD; Professor
Robert Wyllie, MD; Professor
Kenneth Zahka, MD; Professor
Radiology
Mark Baker, MD; Professor
Maria Bayona Molano, MD; Assistant Professor
Erik Beall, PhD; Assistant Professor
Pallab Bhattacharyya, PhD; Assistant Professor
Richard Brunken, MD; Professor
Manuel Cerqueira, MD; Professor
Christopher Coppa, MD; Assistant Professor
Patricia Delzell, MD; Assistant Professor
Frank DiFilippo, PhD; Associate Professor
Frank Dong, PhD; Associate Professor
Myra Kay Feldman, MD; Assistant Professor
Scott Flamm, MD; Professor
Michael Forney, MD; Assistant Professor
Namita Gandhi, MBBS; Assistant Professor
Ruffin Graham, MD; Assistant Professor
Brian Herts, MD; Professor
Hakan Ilaslan, MD; Associate Professor
Stephen Jones, MD PhD; Assistant Professor
Baljendra Kapoor, MBBS; Associate Professor
Karunakaravel Karuppasamy, MBBS; Assistant Professor
Katherine Koenig, PhD; Assistant Professor
Jason Lempel, MD; Assistant Professor
Daniel Lockwood, MD; Assistant Professor
Ihsan Mamoun, MBBS; Assistant Professor
Charles Martin, MD; Assistant Professor
Thomas Masaryk, MD; Professor
Gordon McLennan, MD; Professor
Michael Modic, MD; Professor
Melissa Myers, MD; Assistant Professor
Arthur Parsee, MD; Assistant Professor
Joshua Polster, MD; Associate Professor
Erick Remer, MD; Professor
Paul Ruggieri, MD; Professor
Ken Sakaie, PhD; Assistant Professor
Jean Schils, MD; Assistant Professor
Paul Schoenhagen, MD; Professor
Chirag Shah, MD; Associate Professor
Shetal Shah, MD; Assistant Professor
Wan Yong Shin, PhD; Assistant Professor
Sankaran Shrikanthan, MD; Assistant Professor
Leah Sieck, MD; Assistant Professor
Claus Simpfendorfer, MD; Assistant Professor
Naveen Subhas, MD; Associate Professor
Murali Sundaram, MBCh; Professor
Unni Udayasankar, MBBS; Assistant Professor
Neil Vachhani, MD; Assistant Professor
Joseph Veniero, MD; Assistant Professor
Surgery
Kareem Abu-Elmagd, MBCh; Professor
Ashok Agarwal, PhD; Professor
Usman Ahmad, MBBS; Assistant Professor
Diya Alaedeen, MD; Assistant Professor
Mariam AlHilli, MBCh; Assistant Professor
Ali Aminian, MD; Associate Professor
Kenneth Angermeier, MD; Professor
Samantha Anne, MD; Assistant Professor
Medhat Askar, MBCh; Professor
Federico Aucejo, MD; Associate Professor
Cynthia Austin, MD; Associate Professor
Faisal Bakaeen, MD; Professor
Robert Ballock, MD; Professor
Matthew Barber, MD; Professor
Wael Barsoum, MD; Professor
Bahar Bassiri Gharb, MD PhD; Assistant Professor
Kalman Bencsath, MD; Assistant Professor
Michael Benninger, MD; Professor
Eren Berber, MD; Professor
Ryan Berglund, MD; Assistant Professor
Steven Bernard, MD; Assistant Professor
Damien Billow, MD; Assistant Professor
Eugene Blackstone, MD; Professor
Michael Bloomfield, MD; Assistant Professor
Linda Bradley, MD; Professor
Stacy Brethauer, MD; Associate Professor
Paul Bryson, MD; Assistant Professor
Steven Campbell, MD PhD; Professor
Tony Capizzani, MD; Assistant Professor
Sricharan Chalikonda, MBBS; Associate Professor
Myung Brian Chang, DDS; Associate Professor
Daniel Clair, MD; Professor
Delos Cosgrove, MD; Professor
Meagan Costedio, MD; Assistant Professor
Joseph Crowe, MD; Professor
Robert DeBernardo, MD; Associate Professor
Conor Delaney, MBBS; Professor
Anthony DeRoss, MD; Assistant Professor
Nina Desai, PhD; Associate Professor
Teresa Diago Uso, MD; Assistant Professor
Brian Donley, MD; Professor
Richard Drake, PhD; Professor
Matthew Eagleton, MD; Professor
Jennifer Eaton, DO; Assistant Professor
Kenneth Edelman, MD; Assistant Professor
Kevin El-Hayek, MD; Assistant Professor
Jonathan Emery, MD; Assistant Professor
Tommaso Falcone, MD; Professor
Khaled Fareed, MBBC; Assistant Professor
Ruth Farrell, MD; Associate Professor
Lutul Farrow, MD; Associate Professor
Emil Fernando, MD; Clin Instructor
Stuart Flechner, MD; Professor
Rebecca Flyckt, MD; Assistant Professor
Todd Francis, MD PhD; Assistant Professor
Judith French, PhD; Assistant Professor
Michael Fritz, MD; Associate Professor
Masato Fujiki, MD PhD; Assistant Professor
John Fung, MD PhD; Professor
Brian Gastman, MD; Associate Professor
Inderjit Gill, MD; Associate Professor
A. Gillinov, MD; Associate Professor
Jeffrey Goldberg, MD; Professor
David Goldfarb, MD; Professor
Howard Goldman, MD; Professor
Ryan Goodwin, MD; Assistant Professor
Linda Graham, MD; Professor
Stephen Grobmyer, MD; Professor
Sharon Grundfest-Broniatowski, MD; Associate Professor
Sajal Gupta, MBBS; Assistant Professor
Brooke Gurland, MD; Assistant Professor
Raffi Gurunluoglu, MD; Professor
Kojo Hashimoto, MD; Associate Professor
John Henderson, MBBS; Professor
Richard Herman, MD; Assistant Professor
Carlos Higuera, MD; Assistant Professor
Michael Horan, MD PhD DDS; Assistant Professor
Emina Huang, MD; Professor
Tracy Hull, MD; Professor
Syed Hussain, MBBS; Assistant Professor
Joseph Iannotti, MD PhD; Professor
Samuel Ibrahim, MBBch; Assistant Professor
Oluwatosin Jaiyeoba, MBBS; Assistant Professor
Olivier Jegaden, MD; Professor
John Jelovsek, MD; Professor
Judy Jin, MD; Assistant Professor
J. Jones, MD; Professor
Matthew Kalady, MD; Professor
Jihad Kaouk, MD; Professor
Cathleen Khandelwal, MD; Assistant Professor
Ajai Khanna, MD PhD; Professor
Eric Klein, MD; Professor
Alan Kominsky, MD; Assistant Professor
Paul Krakovitz, MD; Associate Professor
Matthew Kroh, MD; Associate Professor
Steven Lietman, MD; Professor
Jeremy Lipman, MD; Associate Professor
David Liska, MD; Assistant Professor
Robert Lorenz, MD; Associate Professor
Sean Lyden, MD; Professor
David Magnuson, MD; Assistant Professor
Haider Mahdi, MBBS; Assistant Professor
Christian Massier, MD; Assistant Professor
Michael Matthew, MD; Assistant Professor
Jennifer McBride, PhD; Associate Professor
Margaret McKenzie, MD; Associate Professor
Amy Merlino, MD; Assistant Professor
Nathan Mesko, MD; Assistant Professor
Rosemarie Metzger, MD; Assistant Professor
Chad Michener, MD; Associate Professor
Tomislav Mihaljevic, MD; Professor
Kresimira Milas, MD; Professor
Charles Miller, MD; Professor
Claudio Milstein, PhD; Associate Professor
Anthony Miniaci, MD; Professor
Jamie Mitchell, MD; Assistant Professor
Nader Moazami, MD; Professor
Charles Modlin, MD; Associate Professor
Robert Molloy, MD; Assistant Professor
Y-Manoj Monga, MD; Professor
Drogo Montague, MD; Professor
Courtenay Moore, MD; Associate Professor
Matthew Moorman, MD; Assistant Professor
Trevor Murray, MD; Assistant Professor
George Muschler, MD; Professor
Craig Newman, PhD; Professor
Trina Pagano, MD; Assistant Professor
Francis Papay, MD; Professor
Marie Paraiso, MD; Professor
Richard Parker, MD; Professor
Uma Perni, MD; Assistant Professor
Bengt Pettersson, MD PhD; Professor
Jeffrey Ponsky, MD; Professor
Ajita Prabhu, MD; Assistant Professor
Cristiano Quintini, MD; Associate Professor
John Rabets, MD; Assistant Professor
Raymond Rackley, MD; Professor
Rajan Ramanathan, MD; Assistant Professor
Antonio Rampazzo, MD PhD; Assistant Professor
Mitchell Reider, MD; Assistant Professor
Feza Remzi, MD; Professor
Audrey Rhee, MD; Assistant Professor
Eric Ricchetti, MD; Assistant Professor
Beri Ridgeway, MD; Assistant Professor
Michael Rosen, MD; Professor
Steven Rosenblatt, MD; Assistant Professor
James Rosneck, MD; Assistant Professor
Elisa Ross, MD; Assistant Professor
Edmund Sabanegh, MD; Professor
Sambit Sahoo, MBBS PhD; Instructor
Paul Saluan, MD; Assistant Professor
Joseph Scharpf, MD; Associate Professor
Philip Schauer, MD; Professor
Mark Schickendantz, MD; Professor
Graham Schwarz, MD; Assistant Professor
Federico Seifarth, MD; Assistant Professor
William Seitz Jr., MD; Professor
Rakesh Sharma, PhD; Associate Professor
Daniel Shoskes, MD; Professor
Katherine Singh, MD; Assistant Professor
Allan Siperstein, MD; Professor
Sri Sivalingam, MD; Assistant Professor
Nicholas Smedira, MD; Professor
Christopher Smolock, MD; Assistant Professor
Sunita Srivastava, MD; Assistant Professor
Kim Stearns, MD; Assistant Professor
Robert Stein, MD; Associate Professor
Andrew Stephenson, MD; Associate Professor
Robyn Stewart, MD; Assistant Professor
Luca Stocchi, MD; Professor
Mark Stovsky, MD; Associate Professor
Rakesh Suri, MD D.Phil; Professor
Lars Svensson, MBCh; Professor
Roy Temes, MD; Associate Professor
Michael Tong, MD; Assistant Professor
Mary Uy-Kroh, MD; Assistant Professor
Michael Valente, MD; Assistant Professor
Stephanie Valente, DO; Assistant Professor
Sandip Vasavada, MD; Professor
R. Walsh, MD; Professor
Mark Walters, MD; Professor
Jane Wey, MD; Assistant Professor
Judith White, MD PhD; Associate Professor
Hadley Wood, MD; Associate Professor
Hui Zhu, MD; Assistant Professor
James Zins, MD; Professor
Massarat Zutshi, MBBS; Associate Professor

Robert Bonomo, MD; Professor
Dalal Chenouda, MD; Assistant Professor
Amanda Clark, MD; Assistant Professor
Niraj Desai, MD; Assistant Professor
Teresa Dolinar, MD; Assistant Professor
Curtis Donskey, MD; Professor
Corinna Falck-Ytter, MD; Associate Professor
Yngve Falck-Ytter, MD; Professor
Jihane Faress, MD; Assistant Professor
Douglas Flagg, MD; Assistant Professor
Jonathan Goldberg, MD; Assistant Professor
Edith Ho, MD; Assistant Professor
Thomas Homick, MD; Associate Professor
Karen Horowitz, MD; Professor
Jill Huded, MD; Assistant Professor
Anselma Intini, MD; Assistant Professor
Frank Jacono, MD; Associate Professor
Robin Jump, MD PhD; Assistant Professor
Ankush Kalra, MD; Instructor
Margaret Kinnard, MD; Associate Professor
Susan Kirsh, MD; Professor
Melissa Klein, MD; Assistant Professor
Thomas Knauss, MD; Associate Professor
Charles LoPresti, MD; Assistant Professor
Carole Macaron, MD; Assistant Professor
Gerald Maloney, D.O.; Associate Professor
Rami Manochakian, MD; Assistant Professor
Megan McNamara, MD; Associate Professor
Meisam Moghbelli, MD; Assistant Professor
Stephen Morris, MD; Instructor
Ronda Mourad, MD; Assistant Professor
Suzanne Muysondt, MD; Senior Instructor
Sally Namboodiri, MD; Assistant Professor
Arabi Naso, MD; Assistant Professor
Attila Nemeth, MD; Assistant Professor

Louis Stokes Cleveland VA Medical Center

Full-Time Faculty

Anesthesiology & Perioperative Medicine
Matthew Kellems, MD; Assistant Professor
Ali Mchaourab, MD; Associate Professor
Susan Raphaely, MD; Assistant Professor
Rachel Schlesinger, MD; Assistant Professor

Medicine
Ogechi Agwu, MD; Instructor
Murray Altoe, MD; Professor
Lisa Arfons, MD; Assistant Professor
David Aron, MD; Professor
Stephanie Ashraf, MD; Assistant Professor
Sarah Augustine, MD; Associate Professor
Atallah Baydoun, MD; Senior Instructor
David Blumenthal, MD; Assistant Professor
Ekundayo Bolaji, MBBS; Assistant Professor

Murray Altoe, MD; Professor
Lisa Arfons, MD; Assistant Professor
David Aron, MD; Professor
Stephanie Ashraf, MD; Assistant Professor
Sarah Augustine, MD; Associate Professor
Atallah Baydoun, MD; Senior Instructor
David Blumenthal, MD; Assistant Professor
Ekundayo Bolaji, MBBS; Assistant Professor

Robert Bonomo, MD; Professor
Dalal Chenouda, MD; Assistant Professor
Amanda Clark, MD; Assistant Professor
Niraj Desai, MD; Assistant Professor
Teresa Dolinar, MD; Assistant Professor
Curtis Donskey, MD; Professor
Corinna Falck-Ytter, MD; Associate Professor
Yngve Falck-Ytter, MD; Professor
Jihane Faress, MD; Assistant Professor
Douglas Flagg, MD; Assistant Professor
Jonathan Goldberg, MD; Assistant Professor
Edith Ho, MD; Assistant Professor
Thomas Homick, MD; Associate Professor
Karen Horowitz, MD; Professor
Jill Huded, MD; Assistant Professor
Anselma Intini, MD; Assistant Professor
Frank Jacono, MD; Associate Professor
Robin Jump, MD PhD; Assistant Professor
Ankush Kalra, MD; Instructor
Margaret Kinnard, MD; Associate Professor
Susan Kirsh, MD; Professor
Melissa Klein, MD; Assistant Professor
Thomas Knauss, MD; Associate Professor
Charles LoPresti, MD; Assistant Professor
Carole Macaron, MD; Assistant Professor
Gerald Maloney, D.O.; Associate Professor
Rami Manochakian, MD; Assistant Professor
Megan McNamara, MD; Associate Professor
Meisam Moghbelli, MD; Assistant Professor
Stephen Morris, MD; Instructor
Ronda Mourad, MD; Assistant Professor
Suzanne Muysondt, MD; Senior Instructor
Sally Namboodiri, MD; Assistant Professor
Arabi Naso, MD; Assistant Professor
Attila Nemeth, MD; Assistant Professor

Louis Stokes Cleveland VA Medical Center

Full-Time Faculty

Anesthesiology & Perioperative Medicine
Matthew Kellems, MD; Assistant Professor
Ali Mchaourab, MD; Associate Professor
Susan Raphaely, MD; Assistant Professor
Rachel Schlesinger, MD; Assistant Professor

Medicine
Ogechi Agwu, MD; Instructor
Murray Altoe, MD; Professor
Lisa Arfons, MD; Assistant Professor
David Aron, MD; Professor
Stephanie Ashraf, MD; Assistant Professor
Sarah Augustine, MD; Associate Professor
Atallah Baydoun, MD; Senior Instructor
David Blumenthal, MD; Assistant Professor
Ekundayo Bolaji, MBBS; Assistant Professor

Murray Altoe, MD; Professor
Lisa Arfons, MD; Assistant Professor
David Aron, MD; Professor
Stephanie Ashraf, MD; Assistant Professor
Sarah Augustine, MD; Associate Professor
Atallah Baydoun, MD; Senior Instructor
David Blumenthal, MD; Assistant Professor
Ekundayo Bolaji, MBBS; Assistant Professor
Phyllis Nsiah-Kumi, MD; Assistant Professor
Scott Ober, MD; Associate Professor
Jose Ortiz, MD; Associate Professor
Clifford Packer, MD; Professor
Muralidhar Pallaki, MD; Assistant Professor
Kristztina Papp-Wallace, PhD; Assistant Professor
Helen Pelecanos, MD; Assistant Professor
Federico Perez, MD; Assistant Professor
Mathilde Pioro, MD; Associate Professor
Sridi Ramamurthi, MBBS; Assistant Professor
Mary Ann Richmond, MD; Assistant Professor
Lyudmila Ryaboy, MD; Senior Instructor
Stephanie Sadlon, MD; Assistant Professor
Mohammad Shatat, MBBS; Assistant Professor
Marina Silveira, MD; Assistant Professor
Deepjot Singh, MBBS; Assistant Professor
Mamta Singh, MD; Associate Professor
Simran Singh, MD; Assistant Professor
Marion Skalweit, MD PhD; Associate Professor
Todd Smith, MD; Assistant Professor
Evi Stavrou, MD; Assistant Professor
Usa Stiefel, MD; Associate Professor
Puja Van Epps, MD; Assistant Professor
Roberto Viau Colindres, MBBS; Assistant Professor
Brook Watts, MD; Associate Professor
Laura Zajdel, MD; Senior Instructor
Jinhua Zhao, MD; Assistant Professor
Ning Zhou, MD; Instructor

Neurology
Amani Ramahi, MBBS; Assistant Professor
Ronald Riechers, MD; Associate Professor
Stephen Selkirk, MD PhD; Assistant Professor
John Stahl, MD PhD; Professor
Mark Walker, MD; Associate Professor

Pathology
Prema Gogate, MBBS; Assistant Professor
Medhat Hassan, MD PhD; Assistant Professor
Erica Steele, D.O.; Instructor

Psychiatry
Julie Aronoff, PhD; Senior Instructor
David Blank, MD; Assistant Professor
Linda Bond, MD; Assistant Professor
Alan Castro, MD; Senior Instructor
Peijun Chen, MD PhD; Associate Professor
Angel Hatchett, MD; Senior Instructor
Michael Ignatowski, MD; Assistant Professor
George Jaskiw, MD; Professor
George Jurjus, MD; Associate Professor
P. Konicki, MD; Associate Professor
Youssef Mahfoud, MD; Assistant Professor
Ana Martinez, MD; Assistant Professor
Richard Mason, MD; Senior Instructor
Elizabeth Pehek, PhD; Associate Professor
Fawad Taj, MBBS; Assistant Professor
Punit Vaidya, MD; Assistant Professor
Xiaoyan Zhang, MD; Senior Instructor

Radiology
Nannette Alvarado, MD; Assistant Professor
Ronnie Derrwaldt, DO; Assistant Professor
Craig George, MD; Assistant Professor
Preet Kang, MD; Assistant Professor
Vishala Reddy, MBBS; Assistant Professor

Surgery
Jaime Bedford, MD; Assistant Professor
Brian Cmolik, MD; Associate Professor
Yakov Elgudin, MD PhD; Assistant Professor
Suzanne Gozdanovic, MD; Assistant Professor
Jessie Jean-Claude, MD; Associate Professor
Eric Marderstein, MD; Assistant Professor
Joel Peerless, MD; Associate Professor
Gilles Pinault, MD; Assistant Professor

Ophthalmology & Visual Sciences
Edward Burney, MD; Professor
Michael Rosenbaum, MD; Assistant Professor
Diana Whittlesey, MD; Assistant Professor
Ray Wong, MD; Assistant Professor

Urology
Milton Lakin, MD; Associate Professor

School of Medicine Part-Time Faculty

Anatomy
Amanda Almon, MS; Adjunct Instructor
Robin Dhillon, MD; Clinical Senior Instructor
Betty Gatiff, BA; Adjunct Instructor
Christopher Hernandez, PhD; Adjunct Assistant Professor
Kathleen Jung, MS; Adjunct Assistant Professor
Bruce Latimer, PhD; Adjunct Associate Professor

Anesthesiology
Mohamed Abdalla, MD; Clinical Assistant Professor
Joseph Abdelmalak, MBBch; Clinical Assistant Professor
Ira Abels, MD; Clinical Assistant Professor
Avneep Aggarwal, MBBS; Clinical Assistant Professor
Benigno Aldana, MD; Clinical Assistant Professor
Adil Alhaddad, MD; Clinical Assistant Professor
Balaram Anandamurthy, MBBS; Clinical Assistant Professor
David Anthony, MD; Clinical Assistant Professor
John Apostolakis, MD; Clinical Assistant Professor
Rajappan Nair Arun Kumar, MBBS; Clinical Associate Professor
Amit Asopa, MBBS; Clinical Assistant Professor
Sabry Ayad, MD; Clinical Associate Professor
Sabry Ayad, MD; Clinical Professor
Charanjit Bahniwal, MBBS; Clinical Assistant Professor
Crawford Barnett, MD; Clinical Assistant Professor
Hersimren Basi, MD; Clinical Assistant Professor
Andrew Bauer, MD; Clinical Assistant Professor
Amanda Benson, MD; Clinical Assistant Professor
Philippe Berenger, MD; Clinical Assistant Professor
Alina Bodas, MD; Clinical Assistant Professor
Raymond Borkowski, MD; Clinical Assistant Professor
Vera Borzova, MD; Clinical Assistant Professor
Juan Botero, MD; Clinical Assistant Professor
Demetrios Bourdakos, MD; Clinical Assistant Professor
M. Bourdakos, MD; Clinical Assistant Professor
Thomas Bralliar, MD; Clinical Assistant Professor
Brian Burnbaum, MD; Clinical Assistant Professor
Sergio Bustamante, MD; Clinical Assistant Professor
Rafael Cabrales, MD; Clinical Assistant Professor
Liwanag Calibag, MD; Clinical Assistant Professor
Pilar Castro, MD; Clinical Assistant Professor
Praveen Chahar, MBBS; Clinical Assistant Professor
Luke Cheriyan, MBBS; Clinical Assistant Professor
Eric Chiang, MD; Clinical Assistant Professor
Daniel Clark, DO; Clinical Assistant Professor
Antonio Cooper, MD; Clinical Assistant Professor
Todd Csong, DO; Clinical Assistant Professor
Yael Dahan, MD; Clinical Assistant Professor
Emad Daoud, MBBch PhD; Clinical Assistant Professor
Gohar Dar, MB; Clinical Assistant Professor
Pierre de Villiers, MD; Clinical Assistant Professor
Jagan Devarajan, MBBS; Clinical Assistant Professor
Teresa Dews, MD; Clinical Associate Professor
Michael Dubinsky, DO; Clinical Assistant Professor
Zeyd Ebrahim, MBBS; Clinical Assistant Professor
yuriy Estrin, MD; Clinical Assistant Professor
Faith Factora, MD; Clinical Assistant Professor
Marc Feldman, MD; Clinical Assistant Professor
Lilith Feinberg, MD; Clinical Assistant Professor
Massimo Ferrigno, MD; Clinical Professor
Cherie Fisher, MD; Clinical Assistant Professor
Joseph Foss, MD; Clinical Associate Professor
Haissam Gameded, MBBch; Clinical Assistant Professor
Syeda Gardezi, MD; Clinical Assistant Professor
Joseph George, DO; Clinical Assistant Professor
Mariya Geube, MD; Clinical Assistant Professor
Mary Ghaly, MBBch; Clinical Assistant Professor
Tamer Ghaly, MD; Clinical Assistant Professor
Kenneth Saliba, DO; Clinical Assistant Professor
Jamal Sampson, MD; Clinical Assistant Professor
Samuel Samuel, MBBC; Clinical Assistant Professor
Dawn Schell, MD; Clinical Assistant Professor
John Seif, MBBC; Clinical Assistant Professor
George Semien, MD; Clinical Assistant Professor
Olusegun Senbore, MD; Clinical Assistant Professor
Paul Shin, MD; Clinical Assistant Professor
Adam Snavely, MD; Clinical Assistant Professor
Roshni Sreedharan, MBBS; Clinical Assistant Professor
Karen Steckner, MD; Clinical Assistant Professor
Coveda Stewart, MD; Clinical Assistant Professor
Wai Sung, MBBCB; Clinical Assistant Professor
Madiha Syed, MBBS; Clinical Assistant Professor
Kutaiba Tabbaa, MD; Clinical Assistant Professor
Michael Taylor, MD; Clinical Assistant Professor
Mihaela Tecuta, MD; Clinical Assistant Professor
Ihab Toma, MBBC; Clinical Assistant Professor
Christopher Trojanos, MD; Clinical Professor
Carlos Trombetta, MD; Clinical Assistant Professor
E. Tucker, MBBC; Clinical Assistant Professor
Belinda Udeh, PhD; Adjunct Assistant Professor
Chiedozie Udeh, MBBS; Clinical Assistant Professor
William Veber, MD; Clinical Assistant Professor
Ranga Venna, MBBS; Clinical Assistant Professor
Joseph Vincent, MBBS; Clinical Assistant Professor
Claudene Vlah, MD; Clinical Assistant Professor
Bruce Vrooman, MD; Clinical Assistant Professor
Mi Wang, MD; Clinical Assistant Professor
William Welches, DO, PhD; Clinical Assistant Professor
Robert Wilden, MD; Clinical Assistant Professor
Carleton Wu, MD; Clinical Assistant Professor
Sue Wu, MD; Clinical Assistant Professor
Ellen Wurm, MD; Clinical Assistant Professor
Catherine Yamat, MD; Clinical Assistant Professor
Roderick Yamat, MD; Clinical Assistant Professor
Steven Zelin, MD; Clinical Assistant Professor
Andrew Zura, MD; Clinical Assistant Professor
Raymond Zyck, MD; Clinical Assistant Professor

Anesthesiology & Perioperative Medicine

Sherryl Adamic, MS; Clinical Instructor
Katherine Ali, MS; Clinical Instructor
Arthur Arciaga, PhD; Adjunct Instructor
Victor Avella, MS; Clinical Instructor
James Baker, MS AA-C; Clinical Instructor
Zachary Barsman, MS; Clinical Instructor
Daniel Bates, MS; Clinical Instructor
George Bause, MD; Clinical Associate Professor
Brenda Beck, DO; Clinical Instructor
William Bell, MS; Clinical Instructor
Assia Benhacene, MD; Clinical Assistant Professor
Cole Bennett, MD; Clinical Assistant Professor
David Biel, MS; Clinical Instructor
Kayla Bober, MS; Clinical Instructor
Craig Brodsky, JD; Clinical Instructor
Lisa Brown, MD; Clinical Instructor
Thomas Bruno, BS; Clinical Instructor
Caitlin Burley, MS; Clinical Instructor
Kevin Busdiecker, BS; Clinical Instructor
Amy Cagle, MD; Clinical Instructor
Christopher Caldwell, MS; Clinical Instructor
Angela Capp, MS; Clinical Instructor
Christian Carozzo, MS; Clinical Instructor
Elizabeth Carvill, MS; Clinical Instructor
Davide Cattano, MD PhD; Clinical Instructor
Amrita Chadha, MBBS; Clinical Assistant Professor
Alyson Chepla, MS; Clinical Instructor
Matthew Ciotti, MS; Clinical Instructor
Lisa Clark, MS AA-C; Clinical Instructor
James Coleman, MD; Clinical Instructor
Charles Cowles, MD; Clinical Instructor
Sherry Cucci, MS; Clinical Instructor
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>John DeBin, MD PhD; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Charles deJarnette, MD; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Chris DeJelo, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Evan DeRenzo, PhD; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Arpan Desai, D.O.; Clinical Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Ross DeVoe, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>John Dombrowski, MD; Adjunct Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Janice Douglas, M PH; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Charles Duvall, MS; Clinical Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Rafael Espejo, MD; Clinical Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Quentin Fisher, MD; Adjunct Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>J. Flaherty, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Stephanie Geletka, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Vincent Gillen, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Roger Goomber, MD; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>John Gower, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Yelena Goyzman, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Maggie Green, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Laura Guidry-Grimes, MA; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Sam Gumbert, MD; Adjunct Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Gina Haber, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Rudy Hamad, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Sue Han, MD PhD; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Amanda Hardy, AA-C; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Joseph Harp, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Robert Harris, MD; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Scott Harvey, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Stephen Hunt, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Grace Hwang, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Kayla Imbrogno, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Camille Jansen, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Julie Johnson, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Christine Jordan, MD; Clinical Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Gareth Kantor, MBBS; Clinical Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Kellye Kaufman, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Shannon Kelly, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Mijn Kim, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Mark Kopel, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Anthony Koury, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Oksana Kozlovskaya, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Kevin Kunzelman, MS C-AA; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Samuel Lee, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Jesse Lester, MD; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Greg Lillvis, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Michael Lilly, M PH; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Ronald Lisan, MD; Clinical Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Jennifer Loomis, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Joseph Mader, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Ankit Maheshwari, MD; Clinical Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>William Marbury, AA-C; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Elenora Mazover, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Scott McAndrew, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Michael McDermott, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Matthew McKinney, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Gholam Meah, MBA; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Jaideep Mehta, MD; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Noopur Mehta, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Gregory Menendez, M PH; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Paul Menzel, AA-C; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Daniel Mesaros, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Deana Metri, AA-C; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Amanda Mohney, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Natalie Morello, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Kenneth Moss, MD; Clinical Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Hassan Nagem, MD; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Priya Neti, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Carol Ojuok, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Colleen O'Malia, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Omar Omar, MBBS; Clinical Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Ashish Patel, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Saral Patel, MS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Vishal Patel, MS; Clinical Instructor</td>
<td></td>
</tr>
</tbody>
</table>
Michael Patrick, MS; Clinical Assistant Professor
Layne Paviol, MS; Clinical Instructor
Joseph Peachman, MS; Clinical Instructor
Nicholas Pesa, MD; Clinical Instructor
Matthew Pinegar, MD; Adjunct Assistant Professor
Daniel Pistone, MS; Clinical Instructor
Scott Plunkett, MS; Clinical Instructor
Mariya Poretskiy, AA-C; Clinical Instructor
Dan Rankin, BS; Clinical Instructor
David Rapkin, MD; Clinical Assistant Professor
Fares Raslan, MD; Clinical Assistant Professor
Jeffrey Ratino, MS; Clinical Instructor
Leslie Ray, MS; Clinical Instructor
Chaity Roy, MS; Clinical Instructor
Sarah Russell, M PH; Clinical Instructor
Tiffany Sanchez, MS; Clinical Instructor
Bianca Shah, MS; Clinical Instructor
Pankaj Shah, MBBS; Clinical Instructor
Aaron Sikowitz, MS; Clinical Instructor
Marina Sincerepy, MS; Clinical Instructor
Gurbinder Singh, DO; Clinical Instructor
Maninder Singh, MD; Clinical Assistant Professor
Regina Skinner, MS; Clinical Instructor
Daniel Smaltz, MS; Clinical Instructor
Mohannad-Safa Sobhanie, MD; Clinical Assistant Professor
Christine Stachur, MD; Clinical Instructor
Alex Steed, MS; Clinical Instructor
Michael Steiner, MS; Clinical Instructor
Brian Sunderville, MS; Clinical Instructor
Kory Sutter, AA-C; Clinical Instructor
Robert Thall, MS; Clinical Instructor
Daphne Tolentino, MS; Clinical Instructor
Daniel Tolpin, MD; Clinical Instructor
Chad Toujague, MS; Clinical Instructor
Frank Trzaska, AA-C; Clinical Instructor
Erika Tully, MS; Clinical Instructor
Carie Twichell, MS; Clinical Instructor
Tosan Ugbeeye, MS; Clinical Instructor
Megan Varellas, MS C-AA; Clinical Instructor
Ilir Veizi, MD PhD; Clinical Assistant Professor
Donald Voltz, MD; Adjunct Assistant Professor
Bich Vuong, MS; Clinical Instructor
Mark Wheeler, BA; Clinical Instructor
Bradley Williams, MS; Clinical Instructor
Cheryl Wolkoff, BS; Clinical Instructor
Victoria Wompierski, MS; Clinical Instructor
Laura Wyatt, MS; Clinical Instructor
George Yung, MD; Clinical Instructor
David Zagorski, MA; Clinical Assistant Professor

Biochemistry
Michael Greenberg, PhD; Adjunct Instructor
Michael Harris, PhD; Adjunct Professor
Anton Komar, PhD; Adjunct Assistant Professor
Jonathan Whittaker, MBBS; Adjunct Associate Professor
Don Wickramasinghe, PhD; Adjunct Instructor

Bioethics
Sherri Broder, PhD; Adjunct Instructor
Nicole Burt, PhD; Adjunct Assistant Professor
Dena Davis, PhD; Adjunct Professor
Nancy Erdey, PhD; Adjunct Instructor
Bryn Esplin, JD; Adjunct Instructor
Jennifer Fishman, PhD; Adjunct Assistant Professor
Michael Flatt, MS; Adjunct Instructor
John Frye, PhD; Adjunct Instructor
Jason Gatlii, PhD; Adjunct Instructor
Robert Guerin, PhD; Adjunct Instructor
John Huss, PhD; Adjunct Assistant Professor
Eric Juengst, PhD; Adjunct Professor
Julia Knopes, MA; Adjunct Instructor
Maria Lopez de la Vieja, PhD; Adjunct Professor
Hilary Mabel, JD; Adjunct Instructor
Patricia Mayer, MD; Adjunct Instructor
Leah Wilson, MA; Adjunct Instructor
Tracy Wilson-Holden, MA; Adjunct Instructor

Biomedical Engineering
William Dupps, MD PhD; Adjunct Associate Professor
Luis Gonzalez, MD PhD; Adjunct Instructor
Elizabeth Hardin, PhD; Adjunct Assistant Professor
Thomas Hering, PhD; Adjunct Associate Professor
Vincent Hetherington, MD; Adjunct Assistant Professor
Jill Kawalec, PhD; Adjunct Assistant Professor
William Landis, PhD; Adjunct Professor
Aaron Nelson, MD; Adjunct Assistant Professor
Arden Nelson, PhD; Adjunct Assistant Professor
Mark Pagel, PhD; Adjunct Assistant Professor
Ravi Patel, MD PhD; Adjunct Instructor
Marc Penn, MD PhD; Adjunct Assistant Professor
Michael Southworth, BA/BS; Adjunct Instructor
Frans Van der Helm, PhD; Adjunct Professor
Gabriela Voskerician, PhD; Adjunct Assistant Professor

Dermatology
Nely Aldrich, MD; Clinical Instructor
Jennifer Bahner, MD; Clinical Assistant Professor
Jaye Benjamin, MD; Clinical Assistant Professor
David Bickers, MD; Adjunct Professor
Harold Blumenthal, MD; Clinical Assistant Professor
Robert Brody, MD; Clinical Assistant Professor
Carol Burg, MD; Clinical Assistant Professor
Anthony Castrovinci, MD; Clinical Associate Professor
Timothy Chang, MD; Clinical Assistant Professor
MaryMargaret Chren, MD; Adjunct Associate Professor
Renuka Diwan, MD; Clinical Assistant Professor
Faith Durden, MD; Clinical Assistant Professor
Craig Elmets, MD; Adjunct Professor
Conley Engstrom, MD; Clinical Assistant Professor
Robert Eppes, MD; Clinical Associate Professor
Monte Fox, O.D.; Clinical Instructor
Stanley Fox, MD; Clinical Assistant Professor
Meg Gerstenblith, MD; Clinical Assistant Professor
Esti Gumpertz, MD; Clinical Assistant Professor
Robert Haber, MD; Clinical Associate Professor
Cecilia Hamilton, MD; Clinical Assistant Professor
Curtis Hawkins, MD; Clinical Assistant Professor
Paul Hazen, MD; Clinical Professor
Stephen Helms, MD; Clinical Assistant Professor
Fred Hirsh, MD; Clinical Associate Professor
Jeremy Honaker, BS; Clinical Instructor
Alice Jeromin, MD; Adjunct Instructor
Amy Kassouf, MD; Clinical Assistant Professor
Leonard Katz, MD; Clinical Associate Professor
Malcolm Ke, MD; Adjunct Assistant Professor
Mushtaq Khan, MD; Clinical Assistant Professor
Louis Kish, MD; Clinical Senior Instructor
Chi-Sown Ko, MD; Clinical Assistant Professor
William Krug, MD; Clinical Assistant Professor
Jean Krutmann, MD; Adjunct Professor
George Kuffner, MD; Clinical Assistant Professor
Barry Lamkin, MD; Clinical Associate Professor
Lian-Jie Li, MD; Adjunct Assistant Professor
James Libecco, MD; Clinical Assistant Professor
Jenifer Lloyd, O.D.; Clinical Assistant Professor
Michael Mancuso, MD; Clinical Senior Instructor
Hans Merk, MD; Adjunct Professor
Beno Michel, MD; Clinical Professor
William Mirando, MD; Clinical Assistant Professor
Paradi Mirmirani, MD; Adjunct Assistant Professor
Eliot Mostow, MD; Clinical Associate Professor
Hasan Mukhtar, PhD; Adjunct Professor
Lydia Parker, MD; Clinical Instructor
Nina Petroff, MD; Clinical Senior Instructor
Rachel Redenius, MD; Clinical Assistant Professor
Marnita Sandifer, PhD; Adjunct Assistant Professor
Donald Schermer, MD; Clinical Associate Professor
Jeffrey Scott, MD; Clinical Assistant Professor
Seth Stevens, MD; Adjunct Assistant Professor
Hideaki Sugiyama, MD PhD; Adjunct Assistant Professor
Constance Sutter, MD; Clinical Instructor
Arthapol Tanphaichitr, MD; Clinical Assistant Professor
Steven Taub, MD; Clinical Assistant Professor
Karen Turgeon, MD; Clinical Assistant Professor
Marie Tuttle, MD; Clinical Assistant Professor
Janet Wieseltier, MD; Clinical Assistant Professor
Lynn Ryan Williams, MD; Clinical Instructor
Gary Wood, MD; Adjunct Professor

Division of General Medical Sciences
Barbara Baetz-Greenwalt, MD; Clinical Assistant Professor

Pedro Ballester, MD; Clinical Instructor
Hugh Black, DVM PhD; Adjunct Professor
Judith Briggs, MS; Clinical Assistant Professor
Michael Broder, MD; Adjunct Professor
Sarah Busch, PhD; Adjunct Assistant Professor
Carmen Cantemir-Stone, PhD; Adjunct Assistant Professor
Andrew Chacko, MD; Clinical Assistant Professor
Ruma-Cullen Christine, MS; Clinical Assistant Professor
Philip Cola, MA; Adjunct Assistant Professor
John Cole, MD; Clinical Assistant Professor
Pamela Conover, MD; Clinical Assistant Professor
Enrique Conterno, MBA; Adjunct Professor
Hiranmoy Das, PhD; Adjunct Assistant Professor
Robert Deans, PhD; Adjunct Assistant Professor
Robert DiLaura, MBA; Adjunct Assistant Professor
Barbara Driscol, RN; Clinical Assistant Professor
Geoffrey Duyk, MD PhD; Adjunct Professor
Lloyd Ellis, MD; Clinical Assistant Professor
Todd Fennimore, MPA; Adjunct Assistant Professor
Giovanni Ferrara, MBA; Adjunct Professor
Jane Finley, RN; Clinical Assistant Professor
Edward Fischer, MD; Clinical Assistant Professor
Mary Fisher-Bornstein, MS; Clinical Assistant Professor
Gilbert Fleming, MD; Adjunct Professor

Gail Fraizer, PhD; Adjunct Assistant Professor
Charles (Chad) Garven, MD; Clinical Instructor
W. Geho, MD PhD; Adjunct Professor
Ehsan Ghods, DO; Clinical Instructor
Charles Goldberg, MD; Clinical Assistant Professor
David Goldstein, D.O.; Adjunct Assistant Professor
Melanie Golembiewski, MD; Clinical Instructor
Peter Gottesfeld, MD; Clinical Assistant Professor
Nicholas Greco, PhD; Adjunct Assistant Professor
Allan Green, MD PhD JD; Adjunct Professor
Julie Hambleton, MD; Adjunct Professor
John Harrington, PhD; Adjunct Assistant Professor
Andrew Harris, MD; Clinical Assistant Professor
William Harte, PhD; Clinical Professor
Penny Holding, PhD; Adjunct Assistant Professor
Sharjeel Hooda, MD; Clinical Assistant Professor
Evan Howe, MD PhD; Clinical Instructor
Nancy Ivanek, MA PA-C; Clinical Assistant Professor
Neil Jacobson, MD; Clinical Assistant Professor
Charles Joiner, MD PhD; Clinical Associate Professor
Judith Karberg, RN; Clinical Assistant Professor
Brian Kaspar, PhD; Adjunct Assistant Professor
Charles Kegley, PhD; Adjunct Assistant Professor
Llew Keltner, MD PhD; Adjunct Professor
Sanjaya Khanal, MD; Clinical Instructor
Chandrasekhar Kothapalli, PhD; Adjunct Assistant Professor
Kenneth Kretchmer, MD; Clinical Assistant Professor
Richard Kuntz, MD; Adjunct Professor
Angelle LaBeaud, MD; Adjunct Assistant Professor
Steven Landau, MD; Adjunct Professor
Larry Lasky, MD; Adjunct Assistant Professor
Muriel Lederman, PhD; Adjunct Associate Professor
Moo-Yeal Lee, Ph.D.; Adjunct Assistant Professor
Nic Leipzig, PhD; Adjunct Assistant Professor
Reid Leonard, Ph.D.; Adjunct Professor
James Leverenz, MD; Clinical Assistant Professor
James Levine, MD PhD; Adjunct Professor
Michael Levinson, MD; Clinical Senior Instructor
James Lieberman, MD; Clinical Associate Professor
John Lisy, MS; Clinical Instructor
Indu Malhotra, PhD; Adjunct Instructor
James Malone, JD; Adjunct Assistant Professor
Robert Mays, PhD; Adjunct Assistant Professor
Nicanor Moldovan, PhD; Adjunct Assistant Professor
Briana Motley, PT; Adjunct Instructor
Lois Myeroff, PhD; Adjunct Instructor
Jose Otero, MD PhD; Adjunct Assistant Professor
Josanne Pagel, MS; Clinical Associate Professor
Elizabeth Painter, PsyD; Clinical Instructor
Robert Perry, BS; Adjunct Assistant Professor
Lawrence Posner, MD; Adjunct Professor
Maria Pujana, MD; Adjunct Instructor
James Rambasek, MD; Clinical Assistant Professor
Benjamin Reichstein, MD; Clinical Assistant Professor
Robert Reis, MD; Clinical Assistant Professor
Jennifer Roos-Greene, PhD; Adjunct Instructor
Gina Rosenfeld, MD; Clinical Assistant Professor
Amy Rosenfield, MD; Clinical Assistant Professor
Christine Ruma-Cullen, MSSA; Clinical Instructor
Amrou Salahieh, BS; Adjunct Professor
Stuart Schnider, MD PhD; Adjunct Assistant Professor
James Schoff, JD; Adjunct Professor
Nina Schwartz, MD; Clinical Assistant Professor
Robert Schwartz, MD; Clinical Assistant Professor
Elaine Scott, MD; Clinical Assistant Professor
Beth Sersig, MD; Clinical Assistant Professor
Howard Simon, MD; Clinical Assistant Professor
Julie Smith, PhD; Adjunct Assistant Professor
Julie Smith, PhD; Adjunct Assistant Professor
Kavitha Srighanthan, MD; Clinical Assistant Professor
Aundrea Stevenson, MD; Clinical Assistant Professor
Erica Stovsky, MD; Clinical Senior Instructor
Samantha Stubblefield, PhD; Adjunct Assistant Professor
Sakthis Raj Subramanian, MD; Clinical Assistant Professor
Mousab Tabbaa, MD; Clinical Assistant Professor
Ranjit Tamaskar, MBBS; Clinical Instructor
Hossein Tavana, PhD; Adjunct Assistant Professor
Ashdind Tavaria, MD; Clinical Instructor
Lori Taylor, Ph.D.; Adjunct Professor
Anthony Ting, PhD; Adjunct Assistant Professor
Peter Tippett, MD PhD; Adjunct Professor
George Topalsky, MD; Clinical Instructor
Gil Van Bokkelen, PhD; Adjunct Assistant Professor
M. Vanderhoof, MD; Clinical Instructor
Wouter Van’t Hof, PhD; Adjunct Assistant Professor
Julie Way, PT; Adjunct Instructor
Mary Weems, PhD; Adjunct Assistant Professor
Rebecca Willits, PhD; Adjunct Assistant Professor
Theodore Wilson, MSW; Clinical Assistant Professor
Yan Xu, PhD; Adjunct Associate Professor
Michael Yaffe, MD PhD; Adjunct Professor
Yun Yen, PhD; Adjunct Professor
David Yin, MD; Clinical Assistant Professor
Ge Christie Zhang, MD PhD; Adjunct Assistant Professor

Emergency Medicine
Anthony Daher, MD; Clinical Instructor
Howard Dickey-White, MD; Clinical Senior Instructor
Karen Douglass, MD; Clinical Instructor
Riley Grosso, MD; Clinical Instructor
Louis Horwitz, MD; Clinical Instructor
Robert Hughes, DO; Clinical Instructor
Andrea Kreiger, MD; Clinical Senior Instructor
Andrew Luxenberg, MD; Clinical Instructor
Richard Nelson, MD; Clinical Assistant Professor
Vicki Noble, MD; Clinical Assistant Professor
Erica Remer, MD; Clinical Instructor
Sheldon Rose, MD; Clinical Instructor
Marina Shpilko, MD; Clinical Assistant Professor
Imran Tahir, MBBS; Clinical Assistant Professor
Sarah Tehranisa, MD; Clinical Instructor
Sorapat Vijitakula, MD MPH; Clinical Instructor

Environmental Health Sciences
Dale Cowan, MD PhD; Clinical Professor
Kathleen Fagan, MD; Adjunct Assistant Professor
Marty Gelfand, JD; Adjunct Assistant Professor
Paul Howard, PhD; Adjunct Associate Professor
Arthur Varnes, PhD; Adjunct Assistant Professor
Iwona Yike, PhD; Adjunct Assistant Professor

Family Medicine
Antoinette Abou-Haidar, MD; Clinical Instructor
Iyabode Adebambo, MD; Clinical Associate Professor
Daniel Allan, MD; Clinical Assistant Professor
Dale Angerman, MD; Clinical Assistant Professor
Christopher Babiuch, MD; Clinical Assistant Professor
Dale Balkovec, DO; Clinical Assistant Professor
Matthew Baltes, DO; Clinical Senior Instructor
Emile Barreau, MD; Clinical Assistant Professor
Rochele Beachy, MD; Clinical Instructor
Eric Boose, MD; Clinical Assistant Professor
Cary Borland, DO; Clinical Assistant Professor
David Brill, D.O.; Clinical Assistant Professor
Jeffrey Brown, D.O.; Clinical Assistant Professor
Robert Cain, MD; Clinical Assistant Professor
Frank Cebul, MD; Clinical Assistant Professor
Jessica Chisholm, MD; Clinical Assistant Professor
Colleen Clayton, MD; Clinical Assistant Professor
Lisa Cloud, DO; Clinical Assistant Professor
Karen Cooper, DO; Clinical Assistant Professor
Mary Corbett, MD; Clinical Assistant Professor
Malini Desai, MD; Clinical Assistant Professor
Richard Devans, MD; Clinical Assistant Professor
Kimberly Dobler, MD; Clinical Assistant Professor
Kurtis Dornan, MD; Clinical Assistant Professor
Sean Downes, MD; Clinical Instructor

Himanshu Dubey, MBBS; Clinical Assistant Professor
David Eberlein, MD; Clinical Assistant Professor
Mark Elderbrock, MD; Clinical Assistant Professor
Kelly Fababe, MD; Clinical Assistant Professor
Andrew Franko, MD; Clinical Assistant Professor
Lauren Fuller, MD; Clinical Assistant Professor
Perry Funk, MD; Clinical Assistant Professor
Kimberly Garren-Hudson, DO; Clinical Assistant Professor
Jordan Garrison, DO; Clinical Assistant Professor
Richard Garwood, DO; Clinical Assistant Professor
Kenneth Goodman, MD; Clinical Assistant Professor
Michael Grusenmeyer, MD; Clinical Senior Instructor
Michael Hackett, MD; Clinical Assistant Professor
Ami Hall, DO; Clinical Assistant Professor
John Hanicak, MD; Clinical Assistant Professor
Evelyn Hemmingsen, MD; Clinical Assistant Professor
Natalie Hinchcliffe, DO; Clinical Assistant Professor
Kevin Hopkins, MD; Clinical Associate Professor
Susan Joy, MD; Clinical Assistant Professor
Anne Kaesgen, MD; Clinical Assistant Professor
Jason Komita, MD; Clinical Assistant Professor
Jeffery Kontak, MD; Clinical Assistant Professor
Richard Kratche, MD; Clinical Assistant Professor
William Lago, MD; Clinical Assistant Professor
Kevin Leisinger, MD; Clinical Assistant Professor
Anne Lombardo, D.O.; Clinical Assistant Professor
Rebecca Lowenthal, MD; Clinical Instructor
Lili Lustig, DO; Clinical Assistant Professor
Lisa Marsh, MD; Clinical Assistant Professor
Kevin McDaniel, MD; Clinical Assistant Professor
Dan Neides, MD; Clinical Associate Professor
Baran Onder, MD; Clinical Assistant Professor
Courtney Pearson, MD; Clinical Assistant Professor
Sarah Pickering Beers, MD; Clinical Assistant Professor
Tod Podl, MD; Clinical Assistant Professor
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>William Keck, MD</td>
<td>Adjunct Professor</td>
</tr>
<tr>
<td>Patricia Kellner, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>George Kikano, MD</td>
<td>Clinical Professor</td>
</tr>
<tr>
<td>Mark Komar, MD</td>
<td>Clinical Associate Professor</td>
</tr>
<tr>
<td>Pamela Lancaster, O.D.; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Isabelle Lane, DO MPH; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>David Lash, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Amy Lee, MD; Adjunct Associate Professor</td>
<td></td>
</tr>
<tr>
<td>Ga Geong Jenny Lee, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Elizabeth LeMaster, MD; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Lori Leonard, O.D.; Clinical Senior Instructor</td>
<td></td>
</tr>
<tr>
<td>Louis Leone, O.D.; Clinical Senior Instructor</td>
<td></td>
</tr>
<tr>
<td>Conrad Lindes, MD; Clinical Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Teresa Long, MD MPH; Adjunct Associate Professor</td>
<td></td>
</tr>
<tr>
<td>Charles MacCallum, MD; Clinical Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Mathew Mark, MD; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Richard Mc Burney, MD; Clinical Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Beth McLaughlin, MD; Clinical Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Sean McNeeley, MD; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Beena Minai, MBBS; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Paul Miotto, MD; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Nadia Momin, MD; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Sami Moufawad, MD; Clinical Senior Instructor</td>
<td></td>
</tr>
<tr>
<td>Lisa Navracruz, MD; Clinical Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Timothy Neely, DO; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Carol Noall, MD; Clinical Senior Instructor</td>
<td></td>
</tr>
<tr>
<td>Emily Ostrowski, MD; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Matthew Pawlicki, MD; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Michelle Platz, MD; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Michael Purdum, PhD; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Elizabeth Ranasinghe, MBBS; Clinical Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Susan Ratay, DO; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Ann Reichsman, MD; Clinical Associate Professor</td>
<td></td>
</tr>
<tr>
<td>Sophia Reljanovic, MD; Clinical Senior Instructor</td>
<td></td>
</tr>
<tr>
<td>Lee Resnick, MD; Clinical Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Mona Rizkallah, PhD; Adjunct Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Carl Robson, MD; Clinical Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Kim Robusto, O.D.; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Michael Rowane, O.D.; Clinical Associate Professor</td>
<td></td>
</tr>
<tr>
<td>Eileen Saffran, M SW; Clinical Senior Instructor</td>
<td></td>
</tr>
<tr>
<td>Juan Sanabria, MD; Adjunct Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>William Schultz, MD; Clinical Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Othman Shemisa, MD PhD; Clinical Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Amy Sheon, PhD MPH; Adjunct Associate Professor</td>
<td></td>
</tr>
<tr>
<td>Kornelia Solymos, MD; Clinical Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Grace Song, MD; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Nish Sooriyapalan, MD; Clinical Senior Instructor</td>
<td></td>
</tr>
<tr>
<td>Stephen Sroka, PhD; Adjunct Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Orest Stecyk, MD; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Sarah Sweeney, MD; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Hava Tabenkin, MD; Clinical Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Jay Taylor, MD; Clinical Senior Instructor</td>
<td></td>
</tr>
<tr>
<td>George Thomas, O.D.; Clinical Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>John Thomas, MD; Clinical Associate Professor</td>
<td></td>
</tr>
<tr>
<td>Philip Tomsik, MD; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>John Tumbush, O.D.; Clinical Senior Instructor</td>
<td></td>
</tr>
<tr>
<td>Robert Tupa, O.D.; Clinical Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Elizabeth Turbett, MD; Clinical Senior Instructor</td>
<td></td>
</tr>
<tr>
<td>James Turbett, MD; Clinical Senior Instructor</td>
<td></td>
</tr>
<tr>
<td>Sujaya Vijayakumar, MD; Clinical Senior Instructor</td>
<td></td>
</tr>
<tr>
<td>Barbara Vizy, MD; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Todd Wagner, MD; Clinical Senior Instructor</td>
<td></td>
</tr>
<tr>
<td>Heather Ways, MD; Clinical Senior Instructor</td>
<td></td>
</tr>
<tr>
<td>Richard Weinberger, MD; Clinical Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Edward White, MD; Clinical Associate Professor</td>
<td></td>
</tr>
<tr>
<td>Robert Whitehouse, MD; Clinical Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Colette Willins, MD; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Lawrence Wilson, MD; Clinical Senior Instructor</td>
<td></td>
</tr>
<tr>
<td>Karen Winter, MD; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>John Wirtz, MD; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Larry Witmer, O.D.; Clinical Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Ann Marie Witt, MD; Clinical Instructor</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Yaser Al-Marrawi, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Nadim Al-Mubarak, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Khalid Almuti, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Bayan Alsuleiman, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Jonathan Altschuler, MD</td>
<td>Adjunct Instructor</td>
</tr>
<tr>
<td>Ula Alwahab, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Zarmeneh Aly, MBBS</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Antoine Amado De Olazaval, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Michael Amalfitano, DO</td>
<td>Clinical Associate Professor</td>
</tr>
<tr>
<td>Perry Anarado, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Constantinos Anastassiades, MBBS</td>
<td>Adjunct Assistant Professor</td>
</tr>
<tr>
<td>Peter Anders, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Eric Anderson, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Philip Anderson, MD</td>
<td>Clinical Associate Professor</td>
</tr>
<tr>
<td>Steven Andresen, DO</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Georgia Anetzberger, PhD</td>
<td>Adjunct Assistant Professor</td>
</tr>
<tr>
<td>Mark Angel, MBBS</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Dana Angelini, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>John Anthony, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Anil Anumandla, MBBS</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Evamaria Anvari, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Philip Armada, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Sheila Armogida, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Amy Arnold, DO</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Kristen Arseneau, MS</td>
<td>Adjunct Instructor</td>
</tr>
<tr>
<td>Bruce Arthur, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Eric Arts, PhD</td>
<td>Adjunct Professor</td>
</tr>
<tr>
<td>Mehrdad Asgeri, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Nuzhat Ashai, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Craig Asher, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Mahi Ashwath, MBBS</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Arman Askari, MD</td>
<td>Clinical Associate Professor</td>
</tr>
<tr>
<td>Steven Assalita, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Stephen Avallone, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Omobayonle Ayanleke, MB BS</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Nabil Azar, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Haitham Azem, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Carolina Aziz, DO</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Saqib Aziz, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Samia Baaklini, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Elizabeth Babcox, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Benson Babu, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Emily Bacon, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Feras Bader, MBBS</td>
<td>Clinical Associate Professor</td>
</tr>
<tr>
<td>Jose Baez-Escudero, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Mohan Bafna, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Lee Baggott, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Imad Bagh, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Florian Bahr, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Mirza Baig, MBBS</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Christopher Bajzer, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Ewa Bak, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Vicki Baker, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Ehsan Balagamwala, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Harigopal Balaji, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Vijayalakshmi Balasubramanian, MBBS</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Cynthia Balina, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Cynthia Bamford, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>John Baniewicz, MD</td>
<td>Clinical Senior Instructor</td>
</tr>
<tr>
<td>Richard Banozic, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Jona Banzon, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Shideng Bao, PhD</td>
<td>Adjunct Assistant Professor</td>
</tr>
<tr>
<td>Bryan Baranowski, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Hassan Barazi, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Juan Barbastefano, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Angelo Barile, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>David Barnes, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Eric Baron, DO</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>John Baron, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Jill Barry, MD</td>
<td>Clinical Senior Instructor</td>
</tr>
<tr>
<td>Thomas Bartel, MD</td>
<td>Clinical Professor</td>
</tr>
<tr>
<td>Benico Barzilai, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Steven Bass, MD</td>
<td>Clinical Associate Professor</td>
</tr>
<tr>
<td>Bruno Bastos, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Sree Battu, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Jan Bautista, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Achilles Bebos, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Gerald Beck, PhD</td>
<td>Adjunct Associate Professor</td>
</tr>
<tr>
<td>Agustus Beck, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Janeen Beck Leon, MS</td>
<td>Adjunct Instructor</td>
</tr>
<tr>
<td>Leah Beegan, DO</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Michelle Beidelschies, PhD</td>
<td>Adjunct Assistant Professor</td>
</tr>
<tr>
<td>Tamar Bejanishvili, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Robert Bellamy, MD</td>
<td>Clinical Senior Instructor</td>
</tr>
<tr>
<td>Nancy Beller, MD</td>
<td>Clinical Senior Instructor</td>
</tr>
<tr>
<td>Rodolfo Benatti, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>William Benish, MD</td>
<td>Adjunct Assistant Professor</td>
</tr>
<tr>
<td>Nathaniel Bergman, DO</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Barbara Berman, MA</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Charles Bernick, Md, MPH</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>George Bernstein, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>George Bertalan, MD</td>
<td>Clinical Senior Instructor</td>
</tr>
<tr>
<td>David Berzon, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Michelle Beskid, DO</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Ajay Bhargava, MBBS</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Mudita Bhatia, MBBS</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Amit Bhatt, MBBS</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Jyoti Bhatt, MBBS</td>
<td>Clinical Senior Instructor</td>
</tr>
<tr>
<td>Mukesh Bhatt, MBBS</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Amrinder Bhatti, MBBS</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Adarsh Bhimraj, MBBS</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Abby Bifano, PhD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Akhil Bindra, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Iqbal Binoj, MBBS</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Paul Bishop, MSEE</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Raja Biyyani, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Craig Black, DO</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Gordon Blackburn, PhD</td>
<td>Adjunct Assistant Professor</td>
</tr>
<tr>
<td>James Blackburn, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Edmond Blades, MD</td>
<td>Clinical Associate Professor</td>
</tr>
<tr>
<td>Steven Blaha, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Henry Blair, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>David Bobak, MD</td>
<td>Adjunct Associate Professor</td>
</tr>
<tr>
<td>Timothy Bohn, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Cristiana Boieru, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Bradford Borden, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Adam Borland, PsyD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>William Boros, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Kevin Borst, DO</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Reena Bose, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Susan Boston, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Robert Botti, MD</td>
<td>Clinical Professor</td>
</tr>
<tr>
<td>Corinne Bott-Silverman, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Carine Bou-Abboud, MD</td>
<td>Clinical Senior Instructor</td>
</tr>
<tr>
<td>Dina Boutros, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Akram Boutros, MD</td>
<td>Clinical Professor</td>
</tr>
<tr>
<td>Rebecca Boxer, MD</td>
<td>Adjunct Assistant Professor</td>
</tr>
<tr>
<td>James Boyle, MD</td>
<td>Clinical Associate Professor</td>
</tr>
<tr>
<td>Dorothy Bradford, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Prabhjot Brar, MBBS</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Mauro Braun, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Tricia Bravo, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Dana Brendza, PsyD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Victoria Brobbey, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Barry Brooks, MD</td>
<td>Clinical Senior Instructor</td>
</tr>
<tr>
<td>Aaron Brown, DO</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Delorise Brown, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Daniel Brustein, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Aaron Brzezinski-Sourasky, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Janet Buccola, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Roy Buchinsky, MBBS</td>
<td>Clinical Senior Instructor</td>
</tr>
<tr>
<td>Julia Bucklan, DO</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Juan Bulacio, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Sherrie Bullard, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
</tbody>
</table>
Matt Bunyard, MD; Clinical Assistant Professor
Scott Burg, O.D.; Clinical Assistant Professor
Richard Burgess, MD PhD; Adjunct Professor
Stephen Burgun, MD; Clinical Assistant Professor
Carol Burke, MD; Clinical Assistant Professor
Brent Burkey, MD; Clinical Assistant Professor
Gerald Burma, MD PhD; Clinical Assistant Professor
Charles Burns, MD; Clinical Senior Instructor
Ronald Burwinkel, MD; Clinical Assistant Professor
Howard Bush, MD; Clinical Assistant Professor
Jason Buss, MD; Clinical Assistant Professor
Marzena Buzanowska, MD; Clinical Assistant Professor
Josaphat Byamugisha, PhD; Adjunct Instructor
Joseph Cacchione, MD; Clinical Assistant Professor
Cassandra Calabrese, DO; Clinical Instructor
Thomas Callahan, MD; Clinical Assistant Professor
Robert Cameron, MD; Clinical Professor
Joycelin Canavan, MBBCh; Clinical Assistant Professor
Louis Capponi, MD; Clinical Assistant Professor
Luzma Cardona, MD; Clinical Assistant Professor
Jennifer Carew, PhD; Adjunct Assistant Professor
Emily Carey, DO; Clinical Assistant Professor
Mark Carlson, MD; Adjunct Professor
Richard Cartabuke, MD; Clinical Assistant Professor
Christopher Cartellone, MD; Clinical Senior Instructor
Denise Carter-O’Gorman, M SW; Clinical Instructor
Shelby Cash, MD; Clinical Senior Instructor
Robert Castele, MD; Clinical Assistant Professor
Lon Castle, MD; Clinical Assistant Professor
Jonathan Castro, MD; Clinical Instructor
Fernando Castro-Pavia, MD; Clinical Assistant Professor
Thadeo Catacutan, MD; Clinical Assistant Professor
Carmel Celestin, MD; Clinical Assistant Professor
Derrick Cetin, DO; Clinical Assistant Professor
Prabheen Chahal, MBBS; Clinical Assistant Professor
Joumana Chaiban, MD; Clinical Assistant Professor
Saneka Chakravarty, MD; Clinical Assistant Professor
Kenneth Challener, MD; Clinical Instructor
Albert Chan, MD; Clinical Assistant Professor
Megan Chan, MD; Clinical Senior Instructor
Aparna Chandra Prakash, MBBS; Clinical Assistant Professor
Sudhakar Chandurkar, MBBS; Clinical Assistant Professor
Ann Chandy, MBBS; Clinical Instructor
Richard Chang, MD; Clinical Assistant Professor
Roger Charles, MBBS; Clinical Assistant Professor
Robert Chatburn, MS; Adjunct Professor
Abubaker Chaudhry, MD; Clinical Senior Instructor
Pulkit Chaudhury, MD; Clinical Instructor
Chakra Chaulagain, MD; Clinical Assistant Professor
Yong Chen, MD; Clinical Assistant Professor
Shih-Ann Chen, MD; Adjunct Professor
Anita Cheriyian, MBBS; Clinical Assistant Professor
Richard Chmielewski, MD; Clinical Assistant Professor
Jea Cho, MD; Clinical Assistant Professor
Donald Cho, MD; Clinical Assistant Professor
Michael Cho, PhD; Adjunct Associate Professor
Humberto Choi, MD; Clinical Instructor
Chirag Choudhary, MD; Clinical Assistant Professor
Elie Choufani, MD; Clinical Assistant Professor
Aneel Chowhdhry, MD; Clinical Assistant Professor
Saleem Chowdhry, MBBS; Clinical Assistant Professor
Lynn Chrismer, MD; Clinical Assistant Professor
Richard Christie, MD; Clinical Assistant Professor
Vivian Chukwuani, MD; Clinical Assistant Professor
Roy Chung, MBBS; Clinical Assistant Professor
Joseph Cicenia, MD; Clinical Assistant Professor
James Cireddu, MD; Clinical Assistant Professor
Robert Cirino, MD; Clinical Assistant Professor
Hadley Clarren, MD; Clinical Associate Professor
Joshua Clevenger, MD; Clinical Instructor
Michael Cline, DO; Clinical Assistant Professor
Ritika Coelho, MBBS; Clinical Instructor
Kathy Coffman, MD; Clinical Assistant Professor
Byron Coffman, MD; Clinical Senior Instructor
David Cogan, MD; Clinical Assistant Professor
Truwy Cohen, MD; Clinical Assistant Professor
Robert Colacarro, MD; Clinical Assistant Professor
Cristie Cole, JD; Clinical Assistant Professor
John Coletta, MD; Clinical Assistant Professor
Grant Comnick, DO; Clinical Assistant Professor
Jason Confino, MD; Clinical Assistant Professor
Camille Connelly, MD; Clinical Assistant Professor
Lloyd Cook, MD; Clinical Assistant Professor
William Cook, D.O.; Clinical Instructor
Cathy Cooper, MD; Clinical Assistant Professor
Joseph Cooper, DO; Clinical Assistant Professor
Mark Cooper, MD; Clinical Associate Professor
Dietmar Cordes, PhD; Clinical Assistant Professor
Victoria Cornette, MD; Clinical Assistant Professor
Diane Cornicelli, MD; Clinical Assistant Professor
James Coviello, MD; Clinical Senior Instructor
Edward Covington, MD; Clinical Assistant Professor
Kenneth Covinsky, MD; Adjunct Assistant Professor
Ronald Cowan, PhD; Clinical Senior Instructor
Todd Coy, DMD; Clinical Assistant Professor
Atanase Craciun, MD; Clinical Assistant Professor
Horia Craciun, MD; Clinical Assistant Professor
Richard Creger, PhD; Clinical Associate Professor
Frederick Creighton, MA; Adjunct Assistant Professor
Joshua Crites, PhD; Clinical Assistant Professor
Timothy Crone, MD; Clinical Assistant Professor
Carl Culley, MD; Clinical Assistant Professor
Daniel Culver, DO; Clinical Assistant Professor
Donelle Cummings, MD; Clinical Instructor
Noma Dakhil, MD; Clinical Assistant Professor
Roman Dale, MD; Clinical Assistant Professor
Vincent Dalessandro, D.O.; Clinical Assistant Professor
William Damm, MD; Clinical Assistant Professor
Patricia Dandache, MD; Clinical Assistant Professor
Hari Dandapantula, MBBS; Clinical Assistant Professor
Syma Dar, MD; Clinical Assistant Professor
Saurabh Das, MD; Clinical Assistant Professor
Manisha Das, MBBS; Clinical Instructor
Joel David, DO; Clinical Instructor
Kelly Davidson, MD; Clinical Assistant Professor
Eleanor Davidson, MD; Clinical Assistant Professor
Sara Davin, PsyD; Clinical Assistant Professor
Dennis Davis, DO; Clinical Assistant Professor
Xuan-Trang Day, MD; Clinical Assistant Professor
Jason de Roulet, MD; Clinical Assistant Professor
Pascual De Santis, MD; Clinical Assistant Professor
Diana Deitzer, DO; Clinical Assistant Professor
Irene Dejak, MD; Clinical Assistant Professor
Debra DeJoseph, MD; Clinical Senior Instructor
Sandra Dellaportas, MD; Clinical Assistant Professor
Julianne DeMartino, MD; Clinical Assistant Professor
Sameh Demian, MBBCh; Clinical Assistant Professor
Cristina Demian, MD; Clinical Instructor
Mariana DeMichele, MD; Clinical Assistant Professor
Ketan Deoras, MD; Clinical Assistant Professor
Bachar Dergham, MD; Clinical Assistant Professor
Lena Dergham, MD; Clinical Assistant Professor
Shailey Desai, MD; Clinical Assistant Professor
Neelesh Desai, MD; Clinical Assistant Professor
Paula Deuley, MD; Clinical Instructor
Pardha Devaki, MD; Clinical Instructor
Donald Dewald, MD; Clinical Assistant Professor
Cynthia Deyling, MD; Clinical Associate Professor
Megha Dhamne, MBBS; Clinical Instructor
Sukhmandeep Dhillon, MBBS; Clinical Assistant Professor
Jagmeet Dhingra, MD; Clinical Assistant Professor
Elliot Dickman, MD PhD; Clinical Assistant Professor
Buthayna Dinary, MD; Clinical Assistant Professor
Jane D’Isa-Smith, DO; Clinical Assistant Professor
Beth Dixon, Psy.D; Clinical Assistant Professor
Daignon Djigbenou, MD; Clinical Assistant Professor
Georgiana Dobbi, MD; Clinical Assistant Professor
Robert Dohar, O.D.; Clinical Instructor
Stephen Dombrowski, PhD; Clinical Assistant Professor
Michelle Dompenciel, MD; Clinical Assistant Professor
Jeremy Donaghue, MS; Adjunct Assistant Professor
Eoin Donnellan, MBBS; Clinical Instructor
John Donohue, MD; Clinical Assistant Professor
Anupama Doraiswamy, MBBS; Clinical Assistant Professor
Michelle Drerup, PsyD; Clinical Assistant Professor
Thomas Dresing, MD; Clinical Assistant Professor
Laurent Dreyfuss, DO; Clinical Assistant Professor
Raimantas Drublionis, MD; Clinical Instructor
Irene Druzina, MD; Clinical Senior Instructor
Kristi Dubinsky, DO; Clinical Assistant Professor
Pablo Dubon, MD; Clinical Assistant Professor
Siddharth Dugar, MBBS; Clinical Assistant Professor
Jean Louis Dupiton, MD; Clinical Assistant Professor
Donald Ebersbacher, MD; Clinical Instructor
Quteba Ebrahem, MD; Clinical Assistant Professor
Michelle Echevarria, MD; Clinical Assistant Professor
Margaret Eckstein, MD; Clinical Senior Instructor
Michael Eckstein, MD; Clinical Senior Instructor
Ahmad Edris, MD; Clinical Assistant Professor
Donald Eghobamien, MBBS; Clinical Senior Instructor
Donald Eicher, MD; Clinical Assistant Professor
Frank Eidelman, MD; Clinical Assistant Professor
Naseem Eisa, MD; Clinical Assistant Professor
Khalid Elamin, MBBS; Clinical Assistant Professor
Jung El-Mallawany, MD; Clinical Assistant Professor
Mohamed Elshazy, MD; Clinical Instructor
Paul Elson, PhD; Clinical Assistant Professor
G. Engeler, MD; Clinical Assistant Professor
Suzanne Engel-Kominsky, MD; Clinical Assistant Professor
Kristin Englund, MD; Clinical Assistant Professor
Donald Epstein, MD; Clinical Assistant Professor
Howard Epstein, MD; Clinical Assistant Professor
Itri Eren, MD; Clinical Assistant Professor
Tolga Erim, DO; Clinical Assistant Professor
Evelyn Erokwu, MD; Clinical Senior Instructor
Ruben Escurso, MD; Clinical Assistant Professor
Adetokunbo Esho, MBBS; Clinical Assistant Professor
Maria Espinosa, MD; Clinical Assistant Professor
Emad Estemalik, MD; Clinical Assistant Professor
Natalie Evans, MD; Clinical Assistant Professor
John Eyre, MD; Clinical Senior Instructor
Chete Eze-Niam, MBBS, MPH; Clinical Assistant Professor
Andre Fabien, MD; Clinical Assistant Professor
Matthew Faiman, MD; Clinical Assistant Professor
Gregg Faiman, MD; Clinical Instructor
Sandra Fakult, MD; Clinical Instructor
Bela Faltay, MD; Clinical Assistant Professor
James Fang, MD; Adjunct Professor
Mourad Fanous, MD; Clinical Senior Instructor
Paul Fantauzzo, DO; Clinical Assistant Professor
Sam Faradyan, MD; Clinical Assistant Professor
Naim Farhat, MD; Clinical Assistant Professor
Marwah Farooqui, DO; Clinical Instructor
Richard Fatica, MD; Clinical Assistant Professor
Ahmed Fayed, MBCh; Clinical Instructor
Steven Feinleib, MD; Clinical Assistant Professor
Lara Feldman, DO; Clinical Assistant Professor
Michael Felver, MD; Clinical Assistant Professor
Natalia Fendrikova Mahlay, MD; Clinical Assistant Professor
Stephan Ferenzcy, MD PhD; Clinical Assistant Professor
Anthony Fernandez, MD PhD; Clinical Assistant Professor
Ariel Fernandez, DO; Clinical Assistant Professor
James Fernandez, MD, PhD; Clinical Assistant Professor
Martina Ferraro, D.O.; Clinical Assistant Professor
Laura Ferreira Provenzano, MD; Clinical Assistant Professor
Jessica Fesler, MD; Clinical Instructor
Scott Feudo, MD; Clinical Instructor
George Feyda, MBA MD; Clinical Assistant Professor
Richard Figler, MD; Clinical Assistant Professor
Elizabeth Fine-Smilovitch, MD; Clinical Assistant Professor
James Finigan, MD; Adjunct Assistant Professor
Denise Finkelstein, MD; Clinical Instructor
Perry Fleisher, MD; Clinical Assistant Professor
Daniel Fleksher, MD; Clinical Instructor
Dallas Fleming, MD; Clinical Assistant Professor
Kimberlee Fong, DO; Clinical Assistant Professor
Farshad Forouzandeh, MD PhD; Clinical Assistant Professor
Richard Fortinsky, PhD; Adjunct Associate Professor
Fetnat Fouad, MBBCch; Clinical Assistant Professor
John Foulds, PhD; Adjunct Associate Professor
Adele Fowler, MD; Clinical Assistant Professor
Wilma Fowler-Bergfeld, MD; Clinical Associate Professor
Irving Franco, MD; Clinical Assistant Professor
Scott Francy, MD; Clinical Assistant Professor
Lucy Franjic, MD; Clinical Assistant Professor
Jason Frazier, DO; Clinical Assistant Professor
Hanna Freyle, MD; Clinical Assistant Professor
Samuel Friedlander, MD; Clinical Assistant Professor
Neil Friedman, MBBCch; Clinical Assistant Professor
Darci Friedman, MD; Clinical Instructor
Judah Friedman, MD; Clinical Assistant Professor
Lee Friedman, PhD; Adjunct Assistant Professor
Kenneth Fromkin, MD; Clinical Assistant Professor
Chieh-Lin Fu, MD; Clinical Assistant Professor
Keith Fuller, MD; Clinical Instructor
Jennifer Furin, MD PhD; Adjunct Assistant Professor
Rama Gajulapalli, MBBS; Clinical Assistant Professor
Diana Galindo, MD; Clinical Assistant Professor
Timothy Gallagher, MD; Clinical Assistant Professor
Esteban Gallego, MD; Clinical Assistant Professor
Jeffrey Galvin, MD; Clinical Assistant Professor
Larisa Gamerman, MD; Clinical Assistant Professor
Patricia Gannon, MD; Clinical Assistant Professor
Chitra Ganta, MBBS; Clinical Assistant Professor
Ari Garber, MD; Clinical Instructor
Camilo Garcia Garcia, MD; Clinical Instructor
Kittu Garg, MD; Clinical Assistant Professor
Will Garner, MD; Clinical Senior Instructor
Brian Garrity, DO; Clinical Instructor
Andrew Garrow, MD; Clinical Assistant Professor
Jose Gascon, MD; Clinical Assistant Professor
Gabriel Gavrilescu, MD; Clinical Assistant Professor
Jessica Geiger, MD; Clinical Assistant Professor
Pravin George, DO; Clinical Assistant Professor
Kevin Geraci, MD; Clinical Professor
Patria Gerardo, MD; Clinical Senior Instructor
Julie Gerberding, MD MPH; Adjunct Professor
Meana Gerges, MD; Clinical Assistant Professor
Riane Ghamrawi, Pharm D; Clinical Senior Instructor
Bartolomeo Giannattasio, MD; Clinical Assistant Professor
Dennis Gibson, MD; Clinical Assistant Professor
Philip Gigliotti, MD; Clinical Instructor
Leslie Gilbert, MD; Clinical Assistant Professor
Thomas Ginley, O.D.; Clinical Senior Instructor
Carolin Girgis, MD; Clinical Assistant Professor
Kim Gladden, MD; Clinical Assistant Professor
Michael Glasenapp, MD; Clinical Assistant Professor
Benjamin Glasener, MD; Clinical Instructor
Joel Godard, MD; Clinical Assistant Professor
Teresa Goebel, DO; Clinical Instructor
Naila Goenka, MD; Clinical Assistant Professor
Harold Goforth, MD; Clinical Assistant Professor
Laura Goldberg, MD; Clinical Assistant Professor
Robert Goldstein, MD; Adjunct Assistant Professor
Mladen Golubic, MD, PhD; Clinical Assistant Professor
Marcelo Gomes, MD; Clinical Assistant Professor
Lilian Gonsalves, MD; Clinical Professor
K.V. Gopalakrishna, MD; Clinical Professor
Amarendhar Gopireddy, MD; Clinical Assistant Professor
Joshua Gordon, MD; Clinical Assistant Professor
Revital Gorodeski-Baskin, MD; Clinical Assistant Professor
Archana Gorty, MD; Clinical Assistant Professor
Michal Gostkowski, DO; Clinical Assistant Professor
David Gottesman, MD; Clinical Assistant Professor
Ibrahima Goudiaby, DO; Clinical Instructor
Abby Goulder Abelson, MD; Clinical Assistant Professor
Thomas Graber, MD; Clinical Assistant Professor
Janice Granieri, MD; Clinical Assistant Professor
Stefan Gravenstein, MD MPH; Adjunct Professor
Neil Greenberg, PhD; Clinical Assistant Professor
Amy Greene, M.Div, D.Min, ACPE; Clinical Assistant Professor
Giesele Greene, MD; Clinical Assistant Professor
Thomas Gretter, MD; Clinical Assistant Professor
Brendan Griesmer, MD; Clinical Assistant Professor
Richard Grimm, DO; Clinical Assistant Professor
Petros Grivas, MD, PhD; Clinical Assistant Professor
Daniel Grobman, DO; Clinical Assistant Professor
Dennis Grossman, MD; Clinical Instructor
Ewa Gross-Sawicka, MD; Clinical Assistant Professor
Thomas Gruen, MD; Clinical Assistant Professor
Xiaorong Gu, PhD; Adjunct Assistant Professor
Vinay Gudena, MD; Clinical Assistant Professor
Debra Guerini, MD; Clinical Instructor
David Gugliotti, MD; Clinical Assistant Professor
John Gunstad, PhD; Adjunct Assistant Professor
Mohit Gupta, MBBS; Clinical Assistant Professor
Anjan Gupta, MD; Clinical Assistant Professor
Khodanpur Guruprasad, MD; Clinical Instructor
Terence Gutgsell, MD; Clinical Assistant Professor
James Gutierrez, MD; Clinical Assistant Professor
Charmaine Gutjahr, MD; Clinical Assistant Professor
Jorge Guzman, MD; Clinical Assistant Professor
Peter Haas, MD; Clinical Assistant Professor
Rory Hachamovitch, MD; Clinical Assistant Professor
Antoine Haddad, MD; Clinical Assistant Professor
Ghassan Haddad, MD; Clinical Instructor
Anas Hadeh, MD; Clinical Assistant Professor
Kristen Hagar, MD; Clinical Assistant Professor
Saptarsi Haldar, MD; Adjunct Associate Professor
Meghana Halkar, MBBS; Clinical Assistant Professor
Gregory Hall, MD; Clinical Assistant Professor
Marwan Hamaty, MD; Clinical Assistant Professor
Anne Hamik, MD PhD; Adjunct Associate Professor
Aaron Hamilton, MD; Clinical Assistant Professor
Tarek Hammad, MD; Clinical Assistant Professor
Chetan Hampole, MD; Clinical Assistant Professor
Tarik Hanane, MD; Clinical Assistant Professor
Robert Hancock, MD; Clinical Assistant Professor
Lisa Hanna, MD; Clinical Assistant Professor
Mazen Hanna, MD; Clinical Assistant Professor
Stephen Hantus, MD; Clinical Assistant Professor
Jeffrey Harhay, MD; Clinical Assistant Professor
Frederick Harris, MD; Clinical Assistant Professor
Martin Harris, MD; Clinical Assistant Professor
Lyndsay Harris, MD; Adjunct Professor
Jane Hart, MD; Clinical Instructor
Faisal Hasan, MBBS; Clinical Associate Professor
Sana Hasan, DO; Clinical Assistant Professor
Betul Hatipoglu, MD; Clinical Associate Professor
Umur Hatipoglu, MD; Clinical Assistant Professor
Greg Haun, DO; Clinical Assistant Professor
Katarzyna Hause-Wardega, MD; Clinical Senior Instructor
Jennifer Haut, PhD; Clinical Assistant Professor
Justin Haveman, MD; Clinical Assistant Professor
Edward Hawkins, MD; Clinical Assistant Professor
George Hawwa, MD; Clinical Senior Instructor
Stephen Hayden, MBBS; Clinical Assistant Professor
Emil Hayek, MD; Clinical Assistant Professor
Rami Hazzi, MD; Clinical Assistant Professor
David Headen, MD; Clinical Assistant Professor
Emer Joyce, PhD; Clinical Assistant Professor
Robert Juhasz, O.D.; Clinical Assistant Professor
Philip Junglas, MD; Clinical Senior Instructor
Daniel Kahn, DO; Clinical Assistant Professor
Karyn Kahn, DDS; Clinical Assistant Professor
Harish Kakarala, MD; Clinical Instructor
Priya Kalahasti, MBBS; Clinical Assistant Professor
Amanda Kanan, MD; Clinical Assistant Professor
Amit Kalia, MD; Clinical Assistant Professor
Matthew Kaminski, MD; Clinical Assistant Professor
Moses Kamya, MBBS; Adjunct Senior Instructor
Saul Kane, MD; Clinical Assistant Professor
Belagodu Kantharaj, MD; Clinical Assistant Professor
Aanchal Kapoor, MBBS; Clinical Assistant Professor
Ahmadreza Karimianpour, DO; Clinical Instructor
Karen Karwa, MD; Clinical Instructor
Georgianna Kates, MD; Clinical Senior Instructor
Edward Katongole-Mbidde, MBBS; Adjunct Assistant Professor
Irene Katz, MD; Clinical Assistant Professor
Hanspreet Kaur, MD; Clinical Associate Professor
Jonathan Keary, MD; Clinical Assistant Professor
Catherine Keating, MD; Clinical Assistant Professor
Ann Kelleher, DO; Clinical Assistant Professor
Lesley Kellie, MD; Clinical Instructor
Allan Kennedy, MD; Clinical Assistant Professor
Lawrence Kent, MD; Clinical Professor
Jeffrey Kern, MD; Adjunct Professor
Kevin Kerwin, MD; Clinical Assistant Professor
Rosemary Keskinen, MD; Clinical Assistant Professor
Douglas Keyser, MD; Clinical Assistant Professor
Philip Keyser, MD; Clinical Assistant Professor
Tagreed Khalaf, MD; Clinical Assistant Professor
Kamal Khalafi, MD; Clinical Instructor
Faiza Khalid, MBBS; Clinical Instructor
Mohammed Khalil, MD; Clinical Assistant Professor
Jamshed Khan, MD; Clinical Assistant Professor
Leila Khan, MD; Clinical Assistant Professor
Mufeedulla Khan, MD; Clinical Assistant Professor
Ossam Khan, MBBS; Clinical Assistant Professor
Safdar Khan, MBBS; Clinical Assistant Professor
Shahzad Khan, MD; Clinical Assistant Professor
Taranum Khan, MBBS; Clinical Assistant Professor
Paris Kharbat, DO; Clinical Assistant Professor
Jaikirshan Khatri, MD; Clinical Assistant Professor
Lakshmi Khatri, MD; Clinical Assistant Professor
Zeshaun Khawaja, MD; Clinical Assistant Professor
Elias Khawam, MD; Clinical Assistant Professor
Shilipi Khetarpal, MD; Clinical Assistant Professor
Umesh Khot, MD; Clinical Assistant Professor
Wael Khoury, MD; Clinical Assistant Professor
Peter Kibbe, MD; Clinical Instructor
Jennifer Kidd, MD; Clinical Assistant Professor
Ahmad Kilani, MD; Clinical Assistant Professor
Alice Kim, MD; Clinical Assistant Professor
Richard King, MD; Clinical Assistant Professor
Thomas King, MD; Clinical Assistant Professor
Duane Kirksey, MD; Clinical Assistant Professor
Sona Kirpekar, MD; Clinical Senior Instructor
Michael Kirsch, MD; Clinical Senior Instructor
Brian Kirsh, MD; Clinical Assistant Professor
Gaurav Kistangari, MBBS; Clinical Assistant Professor
David Kittoe, MD; Clinical Instructor
Patricia Klaas, PhD; Clinical Assistant Professor
Jonathan Klarfeld, MD; Clinical Assistant Professor
Jonathan Klein, MD; Clinical Assistant Professor
Allen Kline, DO; Clinical Assistant Professor
Glenn Kluge, MD; Clinical Instructor
Joseph Knapp, MD; Clinical Assistant Professor
George Knappenberger, MD; Clinical Assistant Professor
Kent Knaurer, MD; Clinical Assistant Professor
Nana Kobaivanova, MD; Clinical Assistant Professor
Omer Koc, MD; Clinical Assistant Professor
Michael Koehler, MD; Clinical Assistant Professor
Douglas Kohler, MD; Clinical Assistant Professor
Matthew Kolar, MS; Clinical Assistant Professor
Swapna Kollikonda, MBBS; Clinical Assistant Professor
Apostolos Kontzias, MD; Clinical Assistant Professor
Marian Korosec, MD; Clinical Instructor
Robert Kosmides, MD; Clinical Assistant Professor
Matthew Kostura, MD; Clinical Assistant Professor
Saket Kottewar, MBBS; Clinical Instructor
Zaher Koutoubi, MD; Clinical Assistant Professor
Martine Kowal, MA; Clinical Instructor
Krzysztof Kowalski, PhD; Clinical Associate Professor
Joseph Krall, MD; Clinical Professor
Margaret Kranjac, MD; Clinical Assistant Professor
Steven Krause, PhD; Clinical Assistant Professor
Alan Kravitz, MD; Clinical Senior Instructor
Balu Krishnan, PhD; Adjunct Assistant Professor
Kamini Krishnan, PhD; Adjunct Assistant Professor
Collin Kroen, MD; Clinical Assistant Professor
Keith Kruthoff, MD; Clinical Instructor
Megan Kruse, MD; Clinical Assistant Professor
Marie Kuchynski, MD; Clinical Senior Instructor
Neha Kumar, MD; Clinical Assistant Professor
Rahul Kumar, MBBS; Clinical Assistant Professor
Shiva Kumar, MBBS; Clinical Associate Professor
Suneel Kumar, MD; Clinical Assistant Professor
Sunir Kumar, MD; Clinical Assistant Professor
Praveen Kumar, MBBS; Clinical Senior Instructor
Peter Kunze, MD; Clinical Instructor
C. Kent Kwoh, MD; Adjunct Associate Professor
Angela Kyei, MD; Clinical Assistant Professor
Mark Kyei, MBBCh; Clinical Assistant Professor
Pilar Lachhwani, MD; Clinical Assistant Professor
Susan Lackey, DO; Clinical Assistant Professor
Ruth Lagnman, MD; Clinical Assistant Professor
Shaheen Lakhan, MD PhD; Clinical Instructor
Charles Landefeld, MD; Adjunct Professor
Veeda Landeras, MBBS; Clinical Assistant Professor
Charles Lane, MD; Clinical Assistant Professor
Deforia Lane, PhD; Clinical Assistant Professor
Gerri Lane, MD; Clinical Instructor
James Lane Jr., MD; Clinical Assistant Professor
Richard Lang, MD; Clinical Senior Instructor
Crystal Lantz-DeGeorge, MD; Clinical Senior Instructor
Jason Lappe, MD; Clinical Instructor
Luis Lara, MD; Clinical Assistant Professor
David Lardizabal, MD; Clinical Assistant Professor
Theresa Lash-Ritter, MD; Clinical Assistant Professor
Matthew Lashutka, MD; Clinical Assistant Professor
Megan Lavery, PsyD; Clinical Assistant Professor
Richard Lavi, MD; Clinical Senior Instructor
Phuc Le, PhD; Adjunct Assistant Professor
Stuart Le Grice, PhD; Adjunct Professor
Christine Lee, MD; Clinical Assistant Professor
Daesung Lee, MD; Clinical Assistant Professor
Peter Lee, MBBS; Clinical Instructor
Sunny Lee, DO; Clinical Assistant Professor
Gabriel Leger, MD CM; Clinical Assistant Professor
Carli Lehr, MD; Clinical Instructor
Anju Lele, MBBS; Clinical Instructor
Shreenivas Lele, MBBS; Clinical Instructor
Sarah Lengen, MD; Clinical Assistant Professor
Amanda Lenhard, MD; Clinical Assistant Professor
Edward Lesnjesky, MD; Adjunct Professor
David Lever, MD; Clinical Assistant Professor
Harry Lever, MD; Clinical Assistant Professor
Jess Levy, MD; Clinical Assistant Professor
Richard Levy, MD; Clinical Professor
Ericka Li Fuentes, MD; Clinical Instructor
Chiara Liguori, MD; Clinical Assistant Professor
Christina Lindenmeyer, MD; Clinical Instructor
Bruce Lindsay, MD; Clinical Assistant Professor
School of Medicine Faculty

Tamara Lior, MD; Clinical Assistant Professor
Mark Lipton, MD; Clinical Assistant Professor
David Litaker, MD; Adjunct Associate Professor
Patrick Litam, MD; Clinical Assistant Professor
Qiang Liu, MD PhD; Clinical Assistant Professor
Andrew Liu, O.D.; Clinical Assistant Professor
Kar-Ming Lo, MD; Clinical Instructor
Todd Locke, MD; Clinical Associate Professor
Donald Long, MD; Clinical Assistant Professor
David Lopez, MD; Clinical Assistant Professor
Lillian Lopez, DO; Clinical Assistant Professor
Loreley Lopez, MD; Clinical Assistant Professor
Valerie Lopez, MD; Clinical Assistant Professor
James Loveland, MD; Clinical Senior Instructor
Ghai Lu, MD; Clinical Senior Instructor
John Ludgin, MD; Clinical Senior Instructor
Arminda Lumarpas, MD; Clinical Instructor
Cheryl Lund, MD; Clinical Instructor
Sean Lyons, MD; Clinical Instructor
Uri Macavinta, MD; Clinical Instructor
Michael Machuzak, MD; Clinical Assistant Professor
Maria Madajka, PhD; Adjunct Assistant Professor
Zuhayr Madhun, MD; Clinical Associate Professor
Anthony Magnelli, MS; Clinical Assistant Professor
Neeraj Mahajan, MD; Clinical Assistant Professor
Srijoy Mahapatra, MD; Adjunct Assistant Professor
Jamal Mahar, MD; Clinical Assistant Professor
Reda Mahfouz, MBBCch; Clinical Assistant Professor
Taras Mahlay, MD; Clinical Instructor
Manal Mahmoud, MD; Clinical Assistant Professor
Michael Maier, DPM; Clinical Assistant Professor
Baidehi Maiti, MD MPH; Clinical Assistant Professor
David Majdalany, MD; Clinical Assistant Professor
Vinit Makkar, MD; Clinical Assistant Professor
Jahangir Maleki, MD PhD; Clinical Assistant Professor
Chetan Malpe, MD; Clinical Assistant Professor
M.B. Mamlouk, MD; Clinical Instructor
Sundara Manickam, MBBS; Clinical Assistant Professor
Manesh Manne, MD; Clinical Assistant Professor
Jane Manno, Psy.D; Clinical Assistant Professor
Chenguttai Manohar, MBBS; Clinical Instructor
John Mansour, MD; Clinical Assistant Professor
Judith Manzon, MD; Clinical Assistant Professor
Joel Marcus, PsyD; Clinical Assistant Professor
Mary Ellen Margocs, DO; Clinical Assistant Professor
Valsa Mariappuram, MBBS; Clinical Instructor
DuPre Marks, MSSA; Clinical Assistant Professor
Frederick Marquinez, MD; Clinical Assistant Professor
Lonnie Marsh, MD; Clinical Senior Instructor
John Marshall, MD; Clinical Associate Professor
Angie Magcascaras, MD; Clinical Assistant Professor
Paul Masci, DO; Clinical Assistant Professor
Mohamad Masri, MD; Clinical Assistant Professor
Ramy Masroujeh, MD; Clinical Instructor
Scott Massien, MD; Clinical Instructor
Anamaria Massier, MD; Clinical Assistant Professor
Anthony Mastroianni, MD; Clinical Assistant Professor
Vivek Mathur, MD; Clinical Assistant Professor
Maroun Matta, MD; Clinical Assistant Professor
Rafael Mattera, PhD; Adjunct Associate Professor
Faisal Matto, MBBS; Clinical Instructor
Anna May, MD; Clinical Instructor
Harriet Mayanja-Kizza, MBBS; Adjunct Assistant Professor
Eric Mayer, MD; Clinical Assistant Professor
Robert Mayock, MD; Clinical Assistant Professor
Myttle Mayuga, MD; Clinical Instructor
Mary Mazanec, MD; Adjunct Associate Professor
Peter Mazzone, MD; Clinical Assistant Professor
Charles Mbanefo, MD; Clinical Assistant Professor
Nancy McBride, MD; Clinical Senior Instructor
J. McEachern, MD; Clinical Senior Instructor
Susan McInnes, MD; Clinical Assistant Professor
Joseph Nally, MD; Clinical Professor
Tinatin Narsia, MD; Clinical Instructor
Christian Nasar, MD; Clinical Assistant Professor
Thomas Nasheri, D.O.; Clinical Instructor
Marwan Nasif, MD; Clinical Instructor
Andrea Natale, MD; Adjunct Professor
Viswanath Natesan, MD; Clinical Instructor
Howard Nathan, MD; Clinical Instructor
Elsy Navas, MD; Clinical Assistant Professor
Ashwini Nayak, MD; Clinical Instructor
Kenneth Nekl, MD; Clinical Assistant Professor
Michael Nemunaitis, MD; Clinical Assistant Professor
John Nemunaitis, MD; Clinical Assistant Professor
Maria Neri-Nixon, MD; Clinical Assistant Professor
Christopher Newey, MD; Clinical Instructor
Pamela Ng, MD; Clinical Assistant Professor
Viet Nguyen, MD; Clinical Assistant Professor
Ngozi Nkanginieme, MD; Clinical Instructor
Michael Nochomovitz, MD; Clinical Assistant Professor
Edward Noguera, MD; Clinical Assistant Professor
Penali Noticewala, MD; Clinical Assistant Professor
David Novak, MD; Clinical Instructor
Ika Noviawaty, MD; Clinical Instructor
Saul Nurko, MD; Clinical Assistant Professor
Mary O'Connor, MD; Clinical Assistant Professor
Oludamilola Ogunlesi, MBBS; Clinical Instructor
Janet O'Hara, MD; Clinical Assistant Professor
Michael Ohm, MS; Clinical Assistant Professor
Toshihiro Okamoto, MD, PhD; Clinical Assistant Professor
Isidore Okere, MBBS; Clinical Instructor
Leann Olansky, MD; Clinical Assistant Professor
May Olayan, MD; Clinical Assistant Professor
G. Olds, MD; Adjunct Professor
Amy O'Linn, DO; Clinical Assistant Professor
Kelly O'Malia, MD; Clinical Assistant Professor
Beverly O'Neill, MD; Clinical Assistant Professor
Jackson Orem, MBBCH; Adjunct Assistant Professor
Daniel Ornt, MD; Adjunct Professor
Carl Orringer, MD; Adjunct Associate Professor
Mohammed Osman, MBBS; Clinical Assistant Professor
Bryan Pace, DO; Clinical Assistant Professor
Mark Pace, DO; Clinical Assistant Professor
Manjunath Pai, MD; Clinical Instructor
Rute Paixao, MD; Clinical Assistant Professor
Walter Paladino, MD; Clinical Instructor
Nicole Palekar, MD; Clinical Assistant Professor
Kristopher Palmer, DO; Clinical Instructor
Aman Pande, MD; Clinical Assistant Professor
Mukul Pandit, MBBS; Clinical Senior Instructor
Kevin Pantalone, DO; Clinical Assistant Professor
Irina Papirova, MD; Clinical Instructor
Joseph Parambil, MD; Clinical Assistant Professor
Keyur Parikh, MD; Clinical Assistant Professor
Hoon Park, MD; Clinical Instructor
Rajvinder Parmar, MD; Clinical Instructor
David Parris, MD; Clinical Senior Instructor
Michael Passero, MD; Clinical Instructor
Alpeshkumar Patel, MBBS; Clinical Assistant Professor
Chirag Patel, MD; Clinical Assistant Professor
Seema Patel, MD; Clinical Assistant Professor
Shetal Patel, MD; Clinical Assistant Professor
Pradnya Patil, MBBS; Clinical Assistant Professor
Charles Pavluk, MD; Clinical Instructor
Mahmood Pazirandeh, MD; Clinical Associate Professor
Craig Peacock, PhD; Clinical Assistant Professor
Evan Peck, MD; Clinical Assistant Professor
Holly Pederson, MD; Clinical Assistant Professor
Maajid Peerzada, MBBS; Clinical Assistant Professor
Gil Peleg, MD; Clinical Assistant Professor
Robert Pelley, MD; Clinical Assistant Professor
Norman Peralta, MD; Clinical Assistant Professor
Neil Perera, MD; Clinical Assistant Professor
Pedro Perez, MD; Clinical Assistant Professor
Rolando Perez, MD; Clinical Assistant Professor
Pranav Periyalwar, MD; Clinical Assistant Professor
Kevin Perry, MD; Clinical Assistant Professor
Brenda Perryman, MD; Clinical Senior Instructor
Stephen Pesanti, MD; Clinical Instructor
Ninoska Peterson, PhD; Adjunct Assistant Professor
Roman Petroff, MD; Clinical Instructor
James Phillips, PhD; Adjunct Assistant Professor
Jessica Philpott, MD, PhD; Clinical Assistant Professor
Bohdan Pichurko, MD; Clinical Assistant Professor
Melissa Piliang, MD; Clinical Assistant Professor
Dilip Pillai, MBBS; Clinical Assistant Professor
Robert Piloto, MD; Clinical Assistant Professor
Ronnie Pimental, MD; Clinical Assistant Professor
Ileana Pina, MD; Adjunct Professor
Massimo Pinzani, MD PhD; Adjunct Professor
Erik Pioro, MD, PhD; Clinical Assistant Professor
Jared Piotrowski, MD; Clinical Assistant Professor
Sarah Planchon Pope, PhD; Adjunct Assistant Professor
Brad Pohlman, MD; Clinical Assistant Professor
William Polinski, DO, PhD; Clinical Assistant Professor
Michael Pollack, MD; Clinical Assistant Professor
Amy Polster, MD; Clinical Assistant Professor
David Polston, MD; Clinical Assistant Professor
Vincent Pompili, MD; Adjunct Associate Professor
Rafeal Ponce-Terashima, MD; Clinical Instructor
Jacqueline Ponsky, MA; Clinical Instructor
Paul Poommipanit, MD; Clinical Associate Professor
Andrei Popescu, MD PhD; Clinical Instructor
Steven Potschmidt, MD; Clinical Assistant Professor
Leopoldo Pozuelo, MD; Clinical Assistant Professor
Anbazhagan Prabhakaran, MBBS; Clinical Assistant Professor
Radhai Prabhakaran, MBBS; Clinical Assistant Professor
Cristina Pravia, MD; Clinical Assistant Professor
Gina Predescu, MD; Clinical Assistant Professor
Franklin Price, MD; Clinical Instructor
Kristin Prock, DO; Clinical Assistant Professor
Ryan Prudoff, DO; Clinical Assistant Professor
Vineet Punia, MBBS; Clinical Instructor
Eshwar Punjabi, MBBS; Clinical Instructor
Grace Purisima, MD; Clinical Assistant Professor
Kim Puterbaugh, MD; Clinical Assistant Professor
Kara Quan, MD; Adjunct Associate Professor
Kathleen Quinn, MD; Clinical Assistant Professor
Dany Raad, MD; Clinical Assistant Professor
Jennifer Rabbat, MD; Clinical Assistant Professor
Ted Raddell, PhD; Clinical Assistant Professor
Cristine Radojicic, MD; Clinical Assistant Professor
Franck Rahaghi, MD; Clinical Assistant Professor
Saju Rajan, MD; Clinical Assistant Professor
Prabalini Rajendram, MD; Clinical Assistant Professor
Jayati Rakhit, MD; Clinical Senior Instructor
James Ramicone, DO; Clinical Assistant Professor
Pratibna Rao, MBBS; Clinical Assistant Professor
M. Rashid, MBBS; Clinical Assistant Professor
Arash Rashidi, MD; Clinical Assistant Professor
Paola Raska, PhD; Adjunct Assistant Professor
Deborah Rathz, MD, PhD; Clinical Assistant Professor
Watcharasarn Rattananan, MD; Clinical Assistant Professor
Monica Ray, MD; Clinical Assistant Professor
Russell Raymond, DO; Clinical Assistant Professor
Muhammad Raza, MBBS; Clinical Assistant Professor
Manuel Rebeiro Neto, MD; Clinical Assistant Professor
Anantha Reddy, MBBS; Clinical Assistant Professor
Sathya Reddy, MBBS; Clinical Assistant Professor
Susan Redline, MD; Adjunct Professor
Grant Reed, MD; Clinical Instructor
Mona Reed, MD; Clinical Assistant Professor
Amy Reese, MD; Clinical Assistant Professor
Saif Rehman, MD; Clinical Assistant Professor
Jon Reisman, MD; Clinical Instructor
Scot Remick, MD; Adjunct Professor
Anne Rex, DO; Clinical Assistant Professor
Stephanie Reznick, MD; Clinical Instructor
Kamal Riad, MBBS; Clinical Assistant Professor
Louis Rice, MD; Adjunct Professor
Sheila Rice Dane, MD; Clinical Assistant Professor
Kathryn Richards, MD; Clinical Assistant Professor
Robert Richardson, MD; Clinical Assistant Professor
William Riebel, MD; Clinical Senior Instructor
Florian Rieder, MD; Clinical Instructor
Hadie Rifai, DDS; Clinical Assistant Professor
Alexander Rim, MD; Clinical Assistant Professor
Sarah Rispinto, PhD; Clinical Assistant Professor
Pamela Ritchey, MD; Clinical Assistant Professor
Huma Rizvi, MBBS; Clinical Assistant Professor
Joseph Rock, PsyD; Clinical Assistant Professor
Adriana Rodriguez, MD; Clinical Assistant Professor
Carlos Rodriguez, MD; Clinical Assistant Professor
Matthew Roehrs, DO; Clinical Instructor
Bruce Rogen, MD; Clinical Assistant Professor
Michael Rollins, MD; Clinical Assistant Professor
Carlos Romero-Marrero, MD; Clinical Assistant Professor
Michael Rosas, MD; Clinical Assistant Professor
David Rosenberg, MD; Clinical Assistant Professor
Kenneth Rosenfeld, MD; Clinical Senior Instructor
Allan Rosenfield, MD; Clinical Assistant Professor
Edward Rosenthal, MD; Clinical Assistant Professor
Gary Rosenthal, MD; Adjunct Associate Professor
Arnold Rosenzweig, MD; Clinical Senior Instructor
Steven Roshon, MD; Clinical Assistant Professor
Rochelle Rosian, MD; Clinical Assistant Professor
Kenneth Rosplock, MD; Clinical Instructor
Frederick Ross, MD; Clinical Assistant Professor
Jennifer Rossi, MD; Clinical Assistant Professor
Elizabeth Roter, MD; Clinical Assistant Professor
Sean Roth, DO; Clinical Assistant Professor
A. Rothner, MD; Clinical Assistant Professor
Mazyar Rouhani, MD; Clinical Assistant Professor
Joy Rowland, DPM; Clinical Assistant Professor
Raymond Rozman Jr., MD; Clinical Senior Instructor
Sheila Rubin, MD; Clinical Assistant Professor
David Rubin, MD; Clinical Assistant Professor
Joseph Rudolph, MD; Clinical Assistant Professor
Stephen Rudolph, MD PhD; Clinical Assistant Professor
Allison Ruff, MD; Clinical Instructor
Vasco Rui Da Gama Ribeiro, MD; Adjunct Assistant Professor
Taylor Rush, PhD; Adjunct Assistant Professor
Jocelyn Russ, MD; Clinical Assistant Professor
Gregory Rutecki, MD; Clinical Assistant Professor
Maria Rybak, MS; Clinical Assistant Professor
Jack Rzepka, MD; Clinical Instructor
Ellen Sabik, MD; Clinical Assistant Professor
Matthew Sacco, PhD; Clinical Assistant Professor
Jacob Sadik, MD; Clinical Senior Instructor
Azeem Saeed, MBBS; Clinical Assistant Professor
Debasis Sahoo, MBBS; Clinical Assistant Professor
Frank Sailors, DO; Clinical Assistant Professor
Virgilio Salanga, MD; Clinical Assistant Professor
Elizabeth Salay, MD; Clinical Assistant Professor
Raymond Salomone, MD; Clinical Assistant Professor
Christy Samaras, DO; Clinical Assistant Professor
Stephen Samples, MD; Clinical Assistant Professor
Manpreet Samra, MBBS; Clinical Instructor
Susan Samuel, MD; Clinical Assistant Professor
Thomas Samuel, MD; Clinical Assistant Professor
Mohamed Sanad, MBBch; Clinical Assistant Professor
Madhusudhan Sanaka, MD; Clinical Assistant Professor
Satnam Sandhu, MBBS; Clinical Assistant Professor
Sharon Sandridge, PhD; Adjunct Assistant Professor
Dianne Sandy, MD; Clinical Assistant Professor
Bindu Sangani, MD; Clinical Assistant Professor
Susan Sangiorgi, BS; Clinical Instructor
Roopa Sankar, MD; Clinical Instructor
Muhammad Talal Sarmini, MD; Clinical Instructor
James Sauto, Jr., MD; Clinical Assistant Professor
Jennifer Savoca, MD; Clinical Instructor
Saket Saxena, MBBS; Clinical Assistant Professor
Stephen Sayles, III, MD; Clinical Assistant Professor
Jill Schaeffer, MD; Clinical Assistant Professor
Suzanne Schaffer, MD; Clinical Assistant Professor
Perry Schall, MD; Clinical Assistant Professor
Jonathan Scharfstein, MD; Clinical Assistant Professor
Amy Schechter, MD; Clinical Assistant Professor
Elizabeth Scheiber, DPM; Clinical Assistant Professor
Vandhana Scheller, MD; Clinical Assistant Professor
Judith Scheman, PhD; Clinical Instructor
Aldo Schenone, MD; Clinical Instructor
William Schiavone, DO; Clinical Assistant Professor
Patrick Schmitt, DO; Clinical Assistant Professor
Adrian Schnall, MD; Clinical Professor
Alison Schneider, MD; Clinical Assistant Professor
Isabel Schuermeyer, MD; Clinical Professor
William Schwab, MD PhD; Clinical Associate Professor
Steven Schwartz, MD; Clinical Senior Instructor
Raul Schwartzman, MD; Clinical Assistant Professor
James Sechler, MD; Clinical Assistant Professor
Allen Segal, DO; Clinical Assistant Professor
Roy Seitz, MD; Clinical Assistant Professor
Klaus Sellheyer, MD; Clinical Professor
James Senft, MD PhD; Clinical Senior Instructor
Cynthia Seng, MD; Clinical Assistant Professor
Mourad Senussi, MBBch; Clinical Instructor
Nizar Senussi, MD; Clinical Assistant Professor
Monica Seo, MD; Clinical Assistant Professor
Thomas Sequeira, MBBS; Clinical Assistant Professor
Anna Serels, MD; Clinical Instructor
Dina Serhal, MD; Clinical Assistant Professor
Rahul Seth, MD; Clinical Instructor
Sonali Sethi, MD; Clinical Assistant Professor
Eunji Seward, MD; Clinical Assistant Professor
Donna Sexton, MD; Clinical Instructor
Fariha Shad, MBBS; Clinical Instructor
Kenneth Shafer, MD; Clinical Assistant Professor
Khaldoon Shaheen, MBBCH; Clinical Assistant Professor
Dan Shamir, MD; Clinical Assistant Professor
Eric Shapiro, MD; Clinical Assistant Professor
Privanka Sharma, MBBS; Clinical Assistant Professor
Sadhana Sharma, MBBS; Clinical Assistant Professor
Yuvraj Sharma, MBBS; Clinical Assistant Professor
Trilok Sharma, MBBS; Clinical Assistant Professor
Patrick Shaugnessy, MD; Clinical Assistant Professor
John Sheehan, MD; Clinical Associate Professor
Hanan Sheikh Ibrahim, MD; Clinical Assistant Professor
Rahul Shekhar, MBBS; Clinical Instructor
Gong-Qing Shen, MD, PhD; Clinical Assistant Professor
Bruce Sherman, MD; Clinical Assistant Professor
Richard Shewbridge, MD; Clinical Assistant Professor
David Shewmon, MD; Clinical Assistant Professor
Nicole Shirvani, MD; Clinical Instructor
David Shlaes, MD PhD; Adjunct Professor
William Shomali, MD; Clinical Instructor
Steven Shook, MD; Clinical Assistant Professor
Anu Shrestha, MBBS; Clinical Assistant Professor
Kevin Shrestha, MD; Clinical Assistant Professor
Korina Shulemovich, MD; Clinical Assistant Professor
Yana Shumyatcher, MD; Clinical Assistant Professor
Khalid Siddiqui, MBBS; Clinical Assistant Professor
Iram Siddiqui, MBBS; Clinical Senior Instructor
Darby Sider, MD; Clinical Assistant Professor
Jay Sidloski, MD; Clinical Assistant Professor
Louise Sieben, MD; Clinical Senior Instructor
Daniel Silbiger, DO; Clinical Assistant Professor
Roxana Siles, MD; Clinical Assistant Professor
Bernard Silver, MD; Clinical Professor
Jean Simmons, PhD; Clinical Assistant Professor
Barry Simon, DO; Clinical Assistant Professor
Harry Sims, MBA; Clinical Assistant Professor
Jashanpreet Singh, MBBS; Clinical Assistant Professor
Mirela Siscu, MD; Clinical Assistant Professor
Indu Sivaraman, MD; Clinical Assistant Professor
David Skirball, MD; Clinical Assistant Professor
Gregory Skowronski, DO; Clinical Assistant Professor
Blazenka Skugor, MD; Clinical Assistant Professor
Mario Skugor, MD; Clinical Assistant Professor
Carol Slover, MD; Clinical Assistant Professor
Ethel Smith, MD; Clinical Assistant Professor
Martin Smith, STD; Clinical Assistant Professor
Mitchell Smith, MD, PhD; Clinical Assistant Professor
Neil Smith, DO; Clinical Assistant Professor
Andre Smith, MD; Clinical Instructor
David Smith, MD; Clinical Assistant Professor
Michael Smith, MD; Clinical Professor
Laurence Smolley, MD; Clinical Assistant Professor
Nancy Sobecks, MD; Clinical Assistant Professor
Christopher Sola, DO; Clinical Assistant Professor
Payam Soltanzadeh, MD; Clinical Assistant Professor
Apra Sood, MBBS; Clinical Assistant Professor
Pratima Sood, MD; Clinical Assistant Professor
Joseph Sopko, MD; Clinical Associate Professor
Antonio Sorgente, MD PhD; Clinical Assistant Professor
Alexandra Soriano Caminero, MD; Clinical Assistant Professor
Elizabeth Southworth, MD; Clinical Assistant Professor
Steven Spalding, MD; Clinical Assistant Professor
Dina Sparano, MD; Clinical Assistant Professor
Arun Raghav Sridhar, MBBS; Clinical Instructor
Francis Ssali, MBBCh; Adjunct Instructor
Gabriel Stanescu, MD; Clinical Instructor
Roxana Stanescu, MD; Clinical Senior Instructor
Ursula Stanton-Hicks, MD; Clinical Assistant Professor
Gregory Stefano, MD; Clinical Assistant Professor
Richard Stein, MD; Clinical Assistant Professor
Richard Stein, MD; Clinical Senior Instructor
William Steiner II, MD PhD; Clinical Assistant Professor
Catherine Stenroos, PhD; Clinical Assistant Professor
Denise Stern, MD; Clinical Senior Instructor
Jason Stern, D.O.; Clinical Assistant Professor
Mariam Stevens, MD; Clinical Assistant Professor
Mirica Stevens, DO; Clinical Assistant Professor
David Stevens, MD; Adjunct Professor
Elaine Stevens, MA/MS; Clinical Instructor
James Stevenson, MD; Clinical Assistant Professor
William Stewart, MD; Clinical Assistant Professor
Mark Stillman, MD; Clinical Assistant Professor
Andrey Stojic, MD, PhD; Clinical Assistant Professor
Jodie Strauss, DO; Clinical Assistant Professor
Gerald Strauss, PhD; Clinical Assistant Professor
David Streem, MD; Clinical Assistant Professor
Jameelah Strickland, MD; Clinical Senior Instructor
Tamara Strohm, MD; Clinical Instructor
Michael Strongosky, MS; Clinical Assistant Professor
Johnny Su, MD; Clinical Assistant Professor
Ahila Subramanian, MD, MPH; Clinical Assistant Professor
Jose Such, MD PhD; Clinical Professor
Roxanne Sukol, MD; Clinical Assistant Professor
Daniel Sullivan, MD; Clinical Assistant Professor
Jana Suman, MD; Clinical Assistant Professor
Marianne Sumego, MD; Clinical Assistant Professor
Varun Sundaram, MBBS; Clinical Assistant Professor
Krishnan Sundararajan, MD; Clinical Assistant Professor
Ann Suri, MBBS; Clinical Assistant Professor
Kari Sutter, MD; Clinical Assistant Professor
Patrick Sweeney, MD; Clinical Associate Professor
Sarah Sydlowski, PhD; Clinical Assistant Professor
Muhammad Syed, MBBS; Clinical Assistant Professor
Qarab Syed, MBBS; Clinical Instructor
Nabil Tadross, MD; Clinical Assistant Professor
Mohammad Taher, MD; Clinical Assistant Professor
Adnan Tahir, MD; Clinical Assistant Professor
Liza Talampas, MD; Clinical Assistant Professor
Rachel Taliercio, DO; Clinical Assistant Professor
Hiromichi Tamaki, MD; Clinical Instructor
Balaji Tamarappoo, MD, PhD; Clinical Assistant Professor
Ila Tamaskar, MBBS; Clinical Assistant Professor
Annie Tan, MD; Clinical Assistant Professor
Christine Tanaka-Esposito, MD; Clinical Assistant Professor
Amir Taraben, MD; Clinical Assistant Professor
Giorgio Tarchini, MD; Clinical Assistant Professor
Clarence Taylor, MD; Clinical Assistant Professor
James Taylor, MD; Clinical Assistant Professor
Clarence Taylor, MD; Clinical Assistant Professor
Harris Taylor, MD; Clinical Professor
Daniela Tcaciuc, MD; Clinical Senior Instructor
Tea Tchelidze, MD; Clinical Instructor
Haig Tcheurekdjian, MD; Clinical Associate Professor
Patrick Tchou, MD; Clinical Assistant Professor
Lucileia Teixeira Johnson, MD; Clinical Assistant Professor
Deborah Tepper, MD; Clinical Instructor
Paul Terpeluk, DO; Clinical Assistant Professor
Sanjiv Tewari, MBBS; Clinical Instructor
Prashanth Thakker, MD; Clinical Senior Instructor
Swati Thakur, MBBS; Clinical Assistant Professor
Sergio Thal, MD; Clinical Associate Professor
Maran Thamilarasan, MD; Clinical Assistant Professor
Kiruthika Thiagarajan, MBBS; Clinical Assistant Professor
Santhosh Thomas, DO; Clinical Senior Instructor
Suma Thomas, MD; Clinical Assistant Professor
Robin Thomas, D.O.; Clinical Instructor
Farrah Thomas, Psy.D.; Clinical Assistant Professor
Kimberly Thomsen, MD; Clinical Assistant Professor
Julia Thornton, MD; Clinical Instructor
Prashanthi Thota, MD; Clinical Assistant Professor
Jalil Thurber, MD; Clinical Assistant Professor
Becky Tilahun, PhD; Clinical Assistant Professor
Eric Tischler, MS; Clinical Assistant Professor
Mark Todd, PhD; Clinical Assistant Professor
Kenneth Tomecki, MD; Clinical Assistant Professor
Richard Tomm, MD; Clinical Senior Instructor
Hakon Torjesen, MD; Clinical Assistant Professor
Thomas Torzok, DC; Clinical Assistant Professor
Babak Tousi, MD; Clinical Assistant Professor
Kevin Trangle, MD; Clinical Senior Instructor
Erika Tress, DO; Clinical Assistant Professor
Nicholas Tripoulas, PhD; Clinical Assistant Professor
Po-Heng Tsai, MD; Clinical Assistant Professor
Albert Tsai, MD; Clinical Assistant Professor
Rayji Tsutsui, MBChB; Clinical Instructor
Emmanuel Tuffuor, MD; Clinical Assistant Professor
Steven Turoczi, MD; Clinical Senior Instructor
Rohit Tyagi, MD; Clinical Assistant Professor
Melanie Tyler, MD; Clinical Assistant Professor
Nikolaos Tzemos, MD; Clinical Professor
Jennifer Uí, MD; Clinical Assistant Professor
Andrew Ukleja, MD; Clinical Assistant Professor
Arthur Ulatowski, DO; Clinical Assistant Professor
Kandasamy Umapathy, MBBS; Clinical Instructor
Priyadharshini Umapathy, MD; Clinical Instructor
Nadia Umar, MD; Clinical Instructor
Jonathan Umbel, DO; Clinical Assistant Professor
Naoki Umeda, MD; Clinical Assistant Professor
Melissa Underwood, MD; Clinical Assistant Professor
Madhu Unnikrishnan, MBBS; Clinical Instructor
Jaya Unnithan, MBBS; Clinical Assistant Professor
Saurav Uppal, MD; Clinical Senior Instructor
Monica Urban, MD; Clinical Instructor
Maidana Vacca, MD; Clinical Assistant Professor
Nirav Vakharia, MD; Clinical Assistant Professor
Roya Vakili, MD; Clinical Assistant Professor
Maryann Valapour, MD; Clinical Assistant Professor
Jason Valent, MD; Clinical Assistant Professor
Arthur Van Dyke, MD; Clinical Assistant Professor
Willem van Heeckeren, MD PhD; Clinical Assistant Professor
Mohammad Varghai, MD; Clinical Assistant Professor
Mohammed Varghai, MD; Clinical Assistant Professor
Niraj Varma, MD PhD; Clinical Assistant Professor
Andrew Vassil, MD; Clinical Assistant Professor
Virginia Vatev, MD; Clinical Instructor
Sergei Vatolin, PhD; Adjunct Assistant Professor
Vladimir Vekstein, MD; Clinical Assistant Professor
Maria Giselle Velez, MD; Clinical Assistant Professor
Simona Velicu, MD; Clinical Assistant Professor
Hazel Veloso, MD; Clinical Assistant Professor
Francoise Veneroni, MD; Clinical Assistant Professor
Deborah Venesy, MD; Clinical Assistant Professor
Paul Venizelos, MD; Clinical Assistant Professor
S Venkatasubramanian, MD; Clinical Instructor
Lokesh Venkateshiah, MBBS; Clinical Instructor
Jessica Vensel Rundo, MD; Clinical Assistant Professor
Ravi Verma, MBBS; Clinical Assistant Professor
Carmen Vermont, MD; Clinical Assistant Professor
Adele Viguera, MD; Clinical Assistant Professor
Malti Vij, MBBS; Clinical Assistant Professor
Anil Kumar Vijayan, MBBS; Clinical Assistant Professor
Felix Vilinsky, MD; Clinical Instructor
Carmen Villabona, MD; Clinical Assistant Professor
Claudia Villabona, MD; Clinical Instructor
Alexandra Villa-Forte, MD, MPH; Clinical Assistant Professor
Miriam Vishny, MD; Clinical Senior Instructor
John Vitkus, PhD; Clinical Assistant Professor
Franjo Vladic, MD; Clinical Instructor
Anthony Vlastaris, MD; Clinical Assistant Professor
Jennifer Vollweiler, MD; Clinical Assistant Professor
Matthew Vossler, MS; Clinical Assistant Professor
Mary Vouyiouklis Kellis, MD; Clinical Assistant Professor
John Voytas, MD; Clinical Assistant Professor
Matthew Vrobel, MD; Clinical Assistant Professor
Kelly Wadeson, PhD; Clinical Assistant Professor
Neha Wadhwa, MBBS; Clinical Assistant Professor
Elena Wahnhoff, MD; Clinical Assistant Professor
Michelle Wallen, DO; Clinical Assistant Professor
Robert Wallis, MD; Adjunct Professor
Yinghong (Mimi) Wang, MD, PhD; Clinical Assistant Professor
Yiping Wang, MD; Clinical Assistant Professor
Rebecca Ware, MD; Clinical Assistant Professor
Christine Warren, MD; Clinical Assistant Professor
Tina Waters, MD; Clinical Assistant Professor
Jonathan Watson, MD; Clinical Assistant Professor
Abdul Wattar, MD; Clinical Assistant Professor
Gregory Watts, MD; Clinical Senior Instructor
Allison Weathers, MD; Clinical Assistant Professor
Luke Weber, MD; Clinical Assistant Professor
David Weiner, MD; Clinical Assistant Professor
Kenneth Weiss, MD; Clinical Assistant Professor
Nicole Welch, MD; Clinical Instructor
Michael Weller, MD; Clinical Assistant Professor
Charles Wellman, MD; Clinical Assistant Professor
Todd Welsh, MD; Clinical Assistant Professor
Christopher Whinney, MD; Clinical Assistant Professor
Cynthia White, PhD; Clinical Assistant Professor
Emily White, PhD; Clinical Instructor
Stephanie Whitko, MD; Clinical Senior Instructor
Dorota Whitmer, MD; Clinical Assistant Professor
Erika Whitney, O.D.; Clinical Senior Instructor
Herbert Wiedemann, MD; Clinical Assistant Professor
Ari Wiesen, MD; Clinical Assistant Professor
Alan Wiggers, D.O.; Clinical Instructor
Newton Wiggins, MD; Clinical Instructor
Sandra Williams, MD DMD; Clinical Assistant Professor
Barbara Williams, MD; Clinical Instructor
Fredrick Wilson, DO; Clinical Assistant Professor
Robert Wilson, DO; Clinical Assistant Professor
Thomas Wilson, MD; Clinical Assistant Professor
Dylan Wint, MD; Clinical Assistant Professor
Dolora Wisco, MD; Clinical Assistant Professor
Martin Wiseman, MBBS; Clinical Assistant Professor
Jason Wolf, MD; Clinical Assistant Professor
Mark Wolf, MD; Clinical Assistant Professor
Sidney Wolfe, MD; Adjunct Professor
David Wolinsky, MD; Clinical Assistant Professor
Brian Wolovitz, MBBS; Clinical Instructor
Daniel Wolpaw, MD; Adjunct Professor
Terry Wolpaw, MD; Adjunct Professor
Andrew Wright, MD; Clinical Assistant Professor
Charles Wu, MD; Clinical Assistant Professor
Nancy Wu, MD; Clinical Assistant Professor
Kate Xue, MD; Clinical Assistant Professor
Dhiraj Yadav, MBBS; Clinical Instructor
Jun Yang, MD; Clinical Assistant Professor
Peter Yang, MD; Clinical Assistant Professor
Eric Yasinow, MD; Clinical Assistant Professor
Divya Yogi-Morren, MD; Clinical Assistant Professor
Melissa Young, MD; Clinical Assistant Professor
Adrian Zachary, MD MPH; Clinical Assistant Professor
William Zafirau, MD; Clinical Assistant Professor
Manaf Zaizafoun, MD; Clinical Instructor
Keivan Zandinejad, MD; Clinical Instructor
Joseph Zayat, MD; Clinical Assistant Professor
Ahmad Zeeshan, MBBS; Clinical Assistant Professor
Joe Zein, MD; Clinical Assistant Professor
Xaralambos Zervos, DO; Clinical Assistant Professor
Carlos Zevallos, MD; Clinical Instructor
Howard Zhang, MD; Clinical Assistant Professor
Bo Zhao, MD; Clinical Assistant Professor
Kate Zhong, MD; Clinical Assistant Professor
Julie Zhu, MD; Clinical Instructor
Wenhui Zhu, MD PhD; Clinical Assistant Professor
Robert Zimmerman, MD; Clinical Assistant Professor
Thomas Zipp, MD; Adjunct Assistant Professor
Christine Zirafi, MD; Clinical Assistant Professor
Zaid Zoumot, MBBS; Clinical Assistant Professor
Jeanne Zubert, MD; Clinical Assistant Professor
Gregory Zuccaro, MD; Clinical Assistant Professor

Molecular Biology & Microbiology
David McDonald, PhD; Adjunct Associate Professor
Roxana Rojas, MD; Adjunct Assistant Professor

Molecular Medicine
Ata Abbas, PhD; Adjunct Assistant Professor
John Barnard, PhD; Adjunct Assistant Professor
Shannon Barnes, MS; Adjunct Assistant Professor
Katarzyna Bialkowska, PhD; Adjunct Assistant Professor
Sudipta Biswas, PhD; Adjunct Assistant Professor
Kamila Bledzka, PhD; Adjunct Assistant Professor
Katarzyna Bulek, PhD; Adjunct Assistant Professor
Kai-Hsiung Chang, PhD; Adjunct Assistant Professor
Gregory Clement, PhD; Adjunct Assistant Professor
Robb Colbrunn, PhD; Adjunct Assistant Professor
Dola Das, PhD; Adjunct Assistant Professor
Mitali Das, PhD; Adjunct Assistant Professor
Shyamasree Datta, PhD; Adjunct Assistant Professor
Gangarao Davuluri, PhD; Adjunct Assistant Professor
Sarmishta De, PhD; Adjunct Assistant Professor
Tanujit Dey, PhD; Adjunct Assistant Professor
Claudia Diaz-Montero, PhD; Adjunct Assistant Professor
Sanja Dimitrijevic, DVM; Adjunct Assistant Professor
Liang Ding, MD, PhD; Adjunct Assistant Professor
Beihua Dong, MD; Adjunct Assistant Professor
Judith Drazba, PhD; Adjunct Assistant Professor
Russell Fedewa, PhD; Adjunct Assistant Professor
Volker Fensterl, PhD; Adjunct Assistant Professor
Dechen Fu, PhD; Adjunct Assistant Professor
Jennifer Gassman, PhD; Adjunct Associate Professor
Prabar Ghosh, PhD; Adjunct Assistant Professor
Shamone Gore Panter, PhD; Adjunct Assistant Professor
Maryam Goudarzi, PhD; Adjunct Assistant Professor
Rafael Granja-Vazquez, MD; Clinical Assistant Professor
Kailash Gulshan, PhD; Adjunct Assistant Professor
Manveen Gupta, PhD; Adjunct Assistant Professor
Hannelore Heemers, PhD; Adjunct Assistant Professor
Warren Heston, PhD; Adjunct Professor
Christopher Hine, PhD; Adjunct Assistant Professor
Xiangyou Hu, PhD; Adjunct Assistant Professor
Sujay Ithychanda, PhD; Adjunct Assistant Professor
Lahoucine Izem, PhD; Adjunct Assistant Professor
Babal Jha, PhD; Adjunct Assistant Professor
Jamshid Karimov, MD PhD; Adjunct Assistant Professor
Bethany Kerr, PhD; Adjunct Assistant Professor
Grahame Kidd, PhD; Adjunct Assistant Professor
Barry Kuban, BSEE; Adjunct Assistant Professor
Bibo Li, PhD; Adjunct Assistant Professor
Ling Li, PhD; Adjunct Assistant Professor
Yan Li, MD; Adjunct Assistant Professor
Susan Linder, MHS; Adjunct Assistant Professor
Caini Liu, PhD; Adjunct Assistant Professor
LiPing Liu, MD, PhD; Adjunct Assistant Professor
Haiyan Lu, MD, PhD; Adjunct Assistant Professor
Yong Lu, PhD; Adjunct Assistant Professor
Shuang Ma, PhD; Adjunct Assistant Professor
Paul Marasco, PhD; Adjunct Assistant Professor
Nicola Marchi, PhD; Adjunct Assistant Professor
Aaron Miller, PhD; Adjunct Assistant Professor
Maradumane Mohan, PhD; Adjunct Assistant Professor
Timothy Myshral, DVM; Adjunct Assistant Professor
Ina Nemet, PhD; Adjunct Assistant Professor
Tammy Owings, DEng; Adjunct Assistant Professor
John Peterson, PhD; Adjunct Assistant Professor
Aaron Petrey, PhD; Clinical Assistant Professor
Elzbieta Pluskota, PhD; Adjunct Assistant Professor
Jianfei Qian, DVM, PhD; Adjunct Assistant Professor
Richard Ransohoff, MD; Adjunct Professor
Peggy Robinet, PhD; Adjunct Assistant Professor
Paramananda Saikia, PhD; Adjunct Assistant Professor
Yibayiri Sanogo, PhD; Adjunct Assistant Professor
Carine Savarin, PhD; Adjunct Assistant Professor
Jacob Scott, MD; Clinical Assistant Professor
Ting Shi, PhD; Adjunct Assistant Professor
Steven Signs, PhD; Adjunct Assistant Professor
Dmitri Soloviev, PhD; Adjunct Assistant Professor
Dennis Stacey, PhD; Adjunct Professor
Susan Staugaitis, MD PhD; Adjunct Assistant Professor
Kimberly Such, DVM; Clinical Assistant Professor
Cassandra Talero, PhD; Adjunct Assistant Professor
Praveena Thiagarajan, MBBS, PhD; Adjunct Assistant Professor
Sivakumar Vijayaraghavalu, PhD; Adjunct Assistant Professor
Eldon Walker, PhD; Adjunct Assistant Professor
Fan Wang, PhD; Adjunct Assistant Professor
Yuxin Wang, PhD; Adjunct Assistant Professor
Karl West, MS; Adjunct Assistant Professor
Belinda Willard, PhD; Adjunct Assistant Professor
Jun Yang, PhD; Adjunct Assistant Professor
Maryam Zamanian-Daryoush, PhD; Clinical Assistant Professor
Renliang Zhang, MD, PhD; Clinical Assistant Professor
Wei Zhang, PhD; Adjunct Assistant Professor
Chenyang Zhao, PhD; Adjunct Assistant Professor
Yongzhong Zhao, PhD; Adjunct Assistant Professor
Weifei Zhu, PhD; Adjunct Assistant Professor

Neurological Surgery

Jeremy Amps, MD; Clinical Assistant Professor
Lilyana Angelov, MD; Clinical Assistant Professor
Toomas Anton, MD; Clinical Assistant Professor
Mark Bain, MD; Clinical Assistant Professor
Benedict Colombi, MD; Clinical Professor
J. Dakters, MD; Clinical Assistant Professor
David Dean, PhD; Adjunct Associate Professor
Fady Girgis, MD; Clinical Instructor
Chad Glenn, MD; Clinical Instructor
Rishi Goel, MD; Clinical Assistant Professor
Barry Hoffer, MD PhD; Adjunct Professor
Hayder Jaffer, MD; Clinical Assistant Professor
Iain Kalfas, MD; Clinical Assistant Professor
Varun Kshettry, MD; Clinical Assistant Professor
Roseanna Lechner, MD; Clinical Instructor
Pete Poolos, MD; Clinical Assistant Professor
Richard Rhiew, MD PhD; Clinical Assistant Professor
Luigi Rigante, MD; Clinical Assistant Professor
Ben Roitberg, MD; Clinical Professor
Teresa Ruch, MD; Clinical Assistant Professor
Richard Schlenk, MD; Clinical Assistant Professor
Sarel Vorster, MD; Clinical Assistant Professor
Bo Yoo, MD; Clinical Senior Instructor

Neurology
Ziad Ahmed, MD; Adjunct Assistant Professor
John Andrefsky, MD; Clinical Assistant Professor
Peter Bambakidis, MD; Clinical Assistant Professor
Kathryn Bryan, PhD; Adjunct Instructor
Thomas Chelimsky, MD; Adjunct Professor
John Conomy, MD; Clinical Professor
Janis Daly, PhD; Adjunct Professor
Vikram Dhawan, MBBS; Adjunct Assistant Professor
Stefan Dupont, MD PhD; Clinical Assistant Professor
Deborah Ewing-Wilson, DO; Clinical Assistant Professor
Thomas Fritsch, MD; Adjunct Instructor
Betsy Garratt, DO; Clinical Instructor
Cynthia Griggins, PhD; Clinical Assistant Professor
Rami Hachwi, MD; Clinical Instructor
Aamir Hussain, MBBS; Clinical Assistant Professor
Jonathan Jacobs, PhD; Adjunct Assistant Professor
Ashwani Joshi, MD; Clinical Assistant Professor
Mohamad Koubiessi, MD; Adjunct Assistant Professor
Frances Lissemore, PhD; Adjunct Instructor
Karla Madalin, MD; Clinical Instructor
Jason Makii, Pharm. D.; Clinical Assistant Professor
Donald Mann, MD; Clinical Associate Professor
Mckee McClendon, PhD; Adjunct Instructor
Jeffrey Miles, MD PhD; Clinical Instructor
Hatem Murad, MD; Adjunct Assistant Professor
Sagarika Nayak, MD; Clinical Assistant Professor
Marian Patterson, PhD; Adjunct Associate Professor
Deborah Reed, MD; Clinical Assistant Professor
Mark Rorick, MD; Clinical Associate Professor
Michael Schoenberg, PhD; Adjunct Associate Professor
Marie Tani, MD; Clinical Assistant Professor
Adriana Tanner, MD; Adjunct Assistant Professor
Leonard Weinberger, MD; Clinical Assistant Professor
Norton Winer, MD; Clinical Assistant Professor
Yan Yang, MD; Adjunct Assistant Professor

Neurosciences
Karl Herrup, PhD; Adjunct Professor
Diana Kunze, PhD; Adjunct Professor
Gary Landreth, PhD; Adjunct Professor
Wendy Macklin, PhD; Adjunct Professor
Crystal Miller, PhD; Adjunct Instructor
Robert Miller, PhD; Adjunct Professor
Guillermo Pilar, MD; Adjunct Professor
Daniel Wesson, PhD; Adjunct Assistant Professor

Nutrition
Rima Al-Nimr, MS; Adjunct Instructor
Arianna Aoun, MS RD CSR LD; Adjunct Instructor
Gina Bayless, MS RD LD; Adjunct Instructor
Ilya Bederman, PhD; Adjunct Instructor
Jennifer Bier, MS; Adjunct Instructor
Mark Bindus, BS; Adjunct Instructor
Rachel Colchamiro, BS; Adjunct Instructor
Marti DeSantis, MS RD LD; Adjunct Instructor
Helen Dumski, MA; Adjunct Instructor
Karen Filipic, RD; Adjunct Instructor
Cynthia Finohr, BS; Adjunct Instructor
Lorna Fuller, MS; Adjunct Instructor
Emily Gibbons, MS; Adjunct Instructor
Sayan Gupta, PhD; Adjunct Assistant Professor
Samia Hamdan, M PH; Adjunct Instructor
Rosa Hand, MS RD LD; Adjunct Instructor
Brigette Hires, PhD; Adjunct Instructor
Steffes Judy, RD LD; Adjunct Instructor
Mary Kavanagh, MA/MS; Adjunct Senior Instructor
Natalia Kliszczuk-Smolilo, BS; Adjunct Instructor
Richard Koletsky, MD; Clinical Assistant Professor
Jane Korsberg, MS; Adjunct Senior Instructor
Lois Lenard, BS; Adjunct Instructor
Lindsay Malone, MS; Adjunct Instructor
Lauren Melnick, RD LD; Adjunct Instructor
M. Tristyn Patrick, MS MBA; Adjunct Instructor
Sandy Pichette, MS; Adjunct Instructor
Maureen Pisanick, B PH; Adjunct Instructor
Stephen Previs, PhD; Adjunct Associate Professor
Allison Prince, MS; Adjunct Instructor
Barbara Pryor, MS; Adjunct Instructor
Maryanne Salsbury, BS; Adjunct Instructor
Joanne Samuels, BS; Adjunct Instructor
Sharon Sass, BS; Adjunct Instructor
Bonnie Schmidt-Hayes, RD; Adjunct Instructor
Najeebah Shine, MS; Adjunct Instructor
Barbara Sipe, MS; Adjunct Instructor
Donna Skoda, MA; Adjunct Instructor
Sandra Slater, RD LD; Adjunct Instructor
Lura Spinks, MS; Adjunct Instructor
Judy Steffes, RD LD; Adjunct Instructor
Alison Steiber, PhD; Adjunct Associate Professor
Camille Switzer, RD LD; Adjunct Instructor
Denise Tabar, MS; Adjunct Instructor
Brigid Titgemeier, MS RDN LD; Adjunct Instructor
Anya Todd, MS; Adjunct Instructor
Rima Toukan, MS; Adjunct Instructor
Maria Turcoliveri, MS; Adjunct Instructor
Felicia Vatakis, MS; Adjunct Instructor
Sarah Walden, MS; Adjunct Instructor
Brenda Walsh, MS RD LD; Adjunct Instructor
Jodi Wolff, MS RD LD; Adjunct Instructor
Wendy Youmans, MS; Adjunct Instructor

Ophthalmology
Barbara Bingham, DO; Clinical Assistant Professor
David Burket, MD; Clinical Assistant Professor
Jonathan Chan, PhD; Clinical Assistant Professor
Aimee Chappelow, MD; Clinical Assistant Professor
Anita Chitluri, OD; Clinical Assistant Professor
Jon Cooper, DO; Clinical Assistant Professor
Teresa Cooper, DO; Clinical Assistant Professor
Andrea Crabb, DO; Clinical Assistant Professor
Ryan Deasy, MD; Clinical Assistant Professor
Omar Durani, MBBS; Clinical Professor
Jonathan Eisengart, MD; Clinical Assistant Professor
Robert Engel, OD; Clinical Assistant Professor
Abby Fisher, OD; Clinical Assistant Professor
Karen Frombach, OD; Clinical Assistant Professor
Philip Goldberg, MD; Clinical Assistant Professor
Jeffrey Goshe, MD; Clinical Assistant Professor
Robert Gradisek, OD; Clinical Assistant Professor
Mohinder Gupta, MD; Clinical Assistant Professor
Julie Hill, OD; Clinical Assistant Professor
Wes Immler, OD; Clinical Assistant Professor
Geeng Fu Jang, PhD; Clinical Assistant Professor
Lilian Julian, MD; Clinical Assistant Professor
Reecha Kampani, DO; Clinical Assistant Professor
Arif Khan, MD; Clinical Professor
Gregory Kosmorsky, DO; Clinical Assistant Professor
Gregory Kosunick, OD; Clinical Assistant Professor
Glenn Lobo, PhD; Clinical Assistant Professor
Randall Loudenslager, OD; Clinical Assistant Professor
Andreas Marcotty, MD; Clinical Assistant Professor
Jennifer McNamara, OD; Clinical Assistant Professor
Ryan Meffley, OD; Clinical Assistant Professor
Michael Millstein, MD; Clinical Assistant Professor
Stella Paparizos, MD; Clinical Assistant Professor
Michael Parker, OD; Clinical Assistant Professor
Rosemary Perl, OD; Clinical Assistant Professor
Julian Perry, MD; Clinical Assistant Professor
Francesco Pichi, MD; Clinical Assistant Professor
Mary Rayborn, MS; Clinical Assistant Professor
Charles Roseman, OD; Clinical Assistant Professor
William Sax, OD; Clinical Assistant Professor
David Sholiton, MD; Clinical Assistant Professor
Shalini Sood-Mendiratta, MD; Clinical Assistant Professor
Sunil Srivastava, MD; Clinical Assistant Professor
Diane Sutton, OD; Clinical Assistant Professor
Geetha Vedula, MD; Clinical Assistant Professor
Scott Wagenberg, MD; Clinical Assistant Professor
Corrie Weitzel, OD; Clinical Assistant Professor

Yu Kim, MD; Clinical Instructor
Ronald Krasney, MD; Clinical Associate Professor
Kathleen Lamping, MD; Clinical Associate Professor
Harvey Lester, MD; Clinical Assistant Professor
Mikhail Linetsky, PhD; Adjunct Assistant Professor
Annie Mathai, MBBS; Clinical Instructor
David Mitchell, MD; Clinical Assistant Professor
R. MURALEEDHARA, MBBS; Clinical Instructor
Somasheila Murthy, MS; Clinical Instructor
Milind Naik, MBBS; Clinical Instructor
Raja Narayanan, MBBS; Clinical Assistant Professor
Linda Ohsie-Bajor, MD; Clinical Instructor
Rajeev Kumar Pappuru, MBBS; Clinical Assistant Professor
Eric Pearlman, PhD; Clinical Professor
Bernard Perla, MD; Clinical Assistant Professor
Mark Pophal, MD; Clinical Assistant Professor
David Pugh, MD; Clinical Senior Instructor
Kekunnaya Ramesh, MD; Clinical Assistant Professor
Harsha Birur Rao, MBBS; Clinical Instructor
Varsha Rathi, D.O.; Clinical Assistant Professor
Douglas Ripkin, MD; Clinical Assistant Professor
Roxana Rivera-Michlig, MD; Clinical Instructor
Stacy Schonberg, OD; Clinical Instructor
Sirisha Senthil, MBBS; Clinical Instructor
Tamar Shafran, MD; Clinical Instructor
Philip Shands, MD; Clinical Associate Professor
Michael Shaughnessy, MD; Clinical Assistant Professor
Holly Simpson, MD; Clinical Instructor
Lawrence Singerman, MD; Clinical Professor
Eric Stocker, PhD; Clinical Assistant Professor
Mukesh Taneja, MBBS; Clinical Assistant Professor
Georgios Trichonas, MD; Clinical Instructor
Daniel Weidenthal, MD; Clinical Professor
William Wiley, MD; Clinical Instructor
William Yeakley, MD; Clinical Senior Instructor
Nicholas Zakov, MD; Clinical Professor
Kathleen Zielinski, MD; Clinical Instructor

Orthopaedics
Kath Bogie, PhD; Adjunct Assistant Professor
James Brodell, MD; Clinical Assistant Professor
Dennis Brooks, MD; Clinical Assistant Professor
Michael Eppig, MD; Clinical Instructor
John Feighan, MD; Clinical Assistant Professor
A. Greenwald, PhD; Adjunct Professor
Audley M. Mackel, MD; Clinical Instructor
R. Mistovich, MD; Clinical Assistant Professor
Shunichi Murakami, MD PhD; Adjunct Assistant Professor
William Petersilge, MD; Clinical Assistant Professor
Benjamin Silver, MD; Clinical Assistant Professor
Susan Stephens, MD; Clinical Instructor
Christopher Tisdel, MD; Clinical Assistant Professor
J. Vento, MD; Clinical Assistant Professor
David Weimer, MD; Clinical Senior Instructor
John Wood, MD; Clinical Assistant Professor

Otolaryngology Head & Neck Surgery
Abdul Abbass, MD; Clinical Assistant Professor
Fadi Abbass, MD; Clinical Assistant Professor
Hassan Abbass, MD; Clinical Assistant Professor
Stephani Ackerman, MA; Clinical Instructor
Christine Boyer, MS; Clinical Instructor
Michael Broniatowski, MD; Clinical Associate Professor
Bert Brown, MD; Clinical Instructor
Deborah Cherpillod, MA; Clinical Instructor
Ellen Cobler, MS; Clinical Instructor
Brian D’Anza, MD; Clinical Instructor
Toribio Flores, MD; Clinical Assistant Professor
Steven Goldman, MD; Clinical Assistant Professor
Marc Guay, MD; Clinical Instructor
Mohamed Hamid, MD PhD; Clinical Associate Professor
Brian Harmych, MD; Clinical Instructor
Sam Kinney, MD; Clinical Associate Professor
Madeleine Lenox, MD; Clinical Instructor

Jane Mackall, MA; Clinical Instructor
Adnan Mourany, MD; Clinical Instructor
Sarah Mowry, MD; Clinical Instructor
Tracey Newman, MA; Clinical Instructor
Joseph Onyia, MD; Clinical Instructor
Christy Pappas, MA; Clinical Senior Instructor
Sue Phillipbar, MA; Clinical Instructor
Robin Piper, MA/MS; Clinical Senior Instructor
Jonathan Plessner, MA; Clinical Instructor
Michael Starkey, MS; Clinical Instructor
Robert Stegmoyer, MD; Clinical Instructor
Andrew Stein, MD; Clinical Instructor
Andrea Sterkel, MS; Clinical Senior Instructor
Sanford Timen, MD; Clinical Instructor
Rebecca Warnock, MA; Clinical Instructor
Carissa Wentland, DO; Clinical Instructor
Lindsey Zombek, MS; Clinical Instructor

Pathology
Kathleen Allen, MD; Clinical Assistant Professor
Erica Armstrong, MD; Clinical Assistant Professor
Mark Barcelo, MD; Adjunct Assistant Professor
Thomas Bauer, MD, PhD; Clinical Assistant Professor
Rose Beck, MD PhD; Clinical Assistant Professor
Pablo Bejarano, MD; Clinical Assistant Professor
Ana Bennett, MD; Clinical Assistant Professor
Mariana Berho, MD; Clinical Assistant Professor
Charles Biscotti, MD; Clinical Assistant Professor
Juraj Bodo, PhD; Adjunct Assistant Professor
Maridee Boos, DO; Clinical Instructor
Jennifer Brainard, MD; Clinical Assistant Professor
Tatiana Buhtoiarova, MD; Clinical Instructor
Nasir Butt, PhD; Clinical Instructor
Diane Carlson, MD; Clinical Assistant Professor
Yu-Wei Cheng, PhD; Clinical Assistant Professor
Amy Cocco, MD; Clinical Assistant Professor
Michael Cruise, MD PhD; Clinical Assistant Professor
Christine Curtis, PhD; Clinical Assistant Professor
Thomas Daly, MD; Clinical Assistant Professor
Andrea Dawson, MD; Clinical Assistant Professor
Dawn Dawson, MD; Clinical Assistant Professor
Anaibeth Del Rio Perez, MD; Clinical Instructor
Maria Diacovo, MD; Clinical Assistant Professor
David Dolinak, MD; Clinical Associate Professor
Erinn Downs-Kelly, DO; Clinical Assistant Professor
Brian Enloe, MD PhD; Clinical Instructor
Rosemary Farag, MBBS; Clinical Instructor
Joseph Felo, MD; Clinical Assistant Professor
Priscilla Figueroa, MD; Clinical Assistant Professor
Maryann Fitzmaurice, MD PhD; Adjunct Associate Professor
Nancy Fong, MD; Clinical Assistant Professor
Dan Galita, MD; Clinical Instructor
Santhi Ganesan, MBBS; Clinical Assistant Professor
Thomas Gilson, MD; Clinical Assistant Professor
Manjula Gupta, PhD; Adjunct Professor
Walter Henricks, MD; Clinical Assistant Professor
Amy Hise, MD; Adjunct Associate Professor
Aaron Hoschar, MD; Clinical Assistant Professor
Ihab Hosny, MBBch; Clinical Instructor
Jennifer Jeung, MD; Clinical Assistant Professor
Yasmin Johnston, MD; Clinical Assistant Professor
Curtiss Jones, MS; Clinical Instructor
Nadia Kaisi, MBBS; Clinical Associate Professor
William Katzin, MD PhD; Clinical Associate Professor
Harmeet Kaur, PhD; Clinical Instructor
Jennifer Ko, MD; Clinical Assistant Professor
James Lapinski, MD; Clinical Assistant Professor
Roy Lee, MD; Clinical Assistant Professor
Hyoung-gon Lee, PhD; Adjunct Assistant Professor
Paul Lehmann, MD PhD; Adjunct Professor
Xin Li, MD PhD; Clinical Instructor
Huiping Liu, MD PhD; Adjunct Assistant Professor
John Lowe, MD; Adjunct Professor
Wen Lu, MD; Clinical Assistant Professor
Gayatri Madan-Mohan, MBBS; Clinical Instructor
Andrea McColloM, MD; Clinical Instructor
Jesse McKenney, MD; Clinical Assistant Professor
Shalini Mohindra, MBBS; Clinical Instructor
Sanjay Mukhopadhyay, MD; Clinical Assistant Professor
Richard Nelson, MD; Clinical Instructor
Carlos Nunez-Alonso, MD; Clinical Assistant Professor
Olaronke Oshilaja, MD; Clinical Assistant Professor
George Perry, PhD; Adjunct Professor
Robert Petersen, PhD; Adjunct Professor
Sanjay Pimplikar, PhD; Adjunct Assistant Professor
Maria Luisa Policarpio-Nicolas, MD; Clinical Assistant Professor
Tricia Pua, MD; Clinical Assistant Professor
Scott Robertson, MD PhD; Clinical Assistant Professor
Mark Rodgers, MD; Clinical Instructor
Raj Rolston, MBBS; Clinical Assistant Professor
Carey Shive, PhD; Adjunct Instructor
Roy Silverstein, MD; Adjunct Professor
Anthony Simonetti, MD; Clinical Assistant Professor
Michael Snape, PhD; Adjunct Assistant Professor
Michelle Stehura, MD; Clinical Instructor
Caroline Steinitz, MD; Clinical Instructor
Magdalena Tary-Lehmann, MD; Adjunct Associate Professor
Dennis Templeton, MD PhD; Adjunct Professor
Karl Theil, MD; Clinical Assistant Professor
Sihe Wang, PhD; Adjunct Assistant Professor
Katherine Watts, MD; Clinical Assistant Professor
Michael Weaver, MD; Clinical Assistant Professor
Miriam Weiss, MD; Adjunct Professor
James Westra, MD; Clinical Instructor
M. Zaim, MD; Clinical Instructor
Gloria Zhang, MD, MPH; Clinical Assistant Professor
Xiaochun Zhang, MD PhD; Clinical Assistant Professor
Shulin Zhang, MD PhD; Adjunct Associate Professor
Xiaoxian Zhao, PhD; Adjunct Assistant Professor
Yu Zhou, PhD; Adjunct Assistant Professor

Pediatrics

Mahmoud Abouel Soud, MD; Clinical Instructor

Jon Abrahamson, MD; Clinical Assistant Professor

Vijaya Achanti, MD; Clinical Assistant Professor

Babu Achanti, MD; Clinical Associate Professor

Adebowale Adedipe, MD; Clinical Associate Professor

Raidour Ahmed, MD; Clinical Assistant Professor

Khalid Akbar, MD; Clinical Instructor

Diane Ali, DO; Clinical Assistant Professor

Douangdao Aloun, MD; Adjunct Assistant Professor

Michael Anderson, MD; Clinical Professor

Lucy Andrews-Mann, MSN; Clinical Instructor

Heather Arnett, MD; Clinical Instructor

Catherine Arora, MD; Clinical Instructor

Jeffery Auletta, MD; Adjunct Associate Professor

Hany Aziz, MBCh; Clinical Assistant Professor

Peter Aziz, MD; Clinical Assistant Professor

Orkun Baloglu, MD; Clinical Assistant Professor

Gerard Banez, PhD; Clinical Assistant Professor

Marcus Baratian, MD; Clinical Instructor

Deanna Barry, DO; Clinical Instructor

Adam Bartsch, PhD; Adjunct Assistant Professor

Samar Bashour, MD; Clinical Assistant Professor

Govindasamy Baskar, MBBS; Clinical Instructor

Courtney Batt, MD; Clinical Instructor

Cynthia Bearer, MD PhD; Adjunct Professor

Sarah Bement, MD; Clinical Instructor

Janet Benish, MD; Clinical Instructor

John Bennet, MD; Clinical Assistant Professor

Ethan Benore, PhD; Clinical Assistant Professor

Melvin Berger, MD PhD; Adjunct Professor

Viera Bernat, MD; Clinical Assistant Professor

Eva Bhadra, MBBS; Adjunct Instructor

Anita Bhardwaj, MD; Clinical Instructor

Smita Bhaskaran, MBBS; Clinical Instructor

Jane Black, MD; Clinical Assistant Professor

Brian Boe, MD; Clinical Instructor

Sara Bohac, MD; Clinical Assistant Professor

Deborah Bonem, MS; Adjunct Instructor

Joseph Borus, MD; Clinical Instructor

David Bowe, MD; Clinical Instructor

Elise Bream, MD; Clinical Instructor

Joann Brewer, MD; Clinical Instructor

Deborah Brindza, MD; Clinical Instructor

Katherine Brown, MD; Clinical Assistant Professor

Elizabeth Bucchieri, MD; Clinical Assistant Professor

Vladimir Burdjalov, MD; Clinical Assistant Professor

Melissa Burgett, MD; Clinical Assistant Professor

Diane Burgin, MD; Clinical Assistant Professor

Peter Cantanzano, MD; Clinical Instructor

Jennifer Carandang, MD; Clinical Instructor

Elizabeth Carpenter, MD; Clinical Instructor

Michele Carrouzzo, MD; Clinical Assistant Professor

Amy Carruthers, MD; Clinical Instructor

Constancia Castro, MD; Clinical Instructor

Julie Cernanec, MD; Clinical Assistant Professor

Michael Chaka, MD; Clinical Instructor

Geetha Challapudi, MBBS; Clinical Assistant Professor

Gisela Chelimsky, MD; Adjunct Professor

Lisa Cherullo, MD; Clinical Instructor

Laura Cifra-Bean, MD; Clinical Instructor

Petr Cigner, MBBS; Clinical Instructor

Thelma Citta-Pietrolunga, O.D.; Clinical Assistant Professor

Mary Clough, MD; Clinical Instructor

Valerie Coats, MD; Clinical Instructor

Jennifer Cochrane, MD; Clinical Instructor

Jessica Cohn, MD; Clinical Instructor

Jennifer Coliadi, MD; Clinical Instructor

Marcia Columbo, MD; Clinical Instructor

Suzanne Connolly, MD; Clinical Assistant Professor

Kenneth Cooke, MD; Adjunct Associate Professor
Maria Coutinho, MBBS; Clinical Assistant Professor
Cathleen Coyne, MD; Clinical Instructor
Cara Cuddy, PhD; Clinical Assistant Professor
Wendy Cunningham, PsyD; Clinical Assistant Professor
Steven Czinn, MD; Adjunct Professor
Chantal Dalencour, MD; Clinical Instructor
Naser Danan, MD; Clinical Instructor
Callisto Daniel, D.O.; Clinical Instructor
Kshama Daphtary, MBBS; Clinical Assistant Professor
Amy Dasso, MD; Clinical Instructor
Lori D’Avello, MD; Clinical Instructor
Charles Davis, MD; Clinical Associate Professor
Barbara Davis, MD; Clinical Assistant Professor
Ira Davis, MD; Clinical Associate Professor
Joan Delahay, MD; Clinical Instructor
Carol Delahunty, MD; Clinical Assistant Professor
Riddhi Desai, MD; Clinical Instructor
Delia Di Gregorio, MD; Clinical Senior Instructor
Lisa Diard, MD; Clinical Assistant Professor
Lyn Dickert-Leonard, MD; Clinical Assistant Professor
Hilda Ding, MD; Clinical Instructor
Marita D’Netto, MBBS; Clinical Assistant Professor
Nancy Dobrolet, MD; Clinical Instructor
Denise Dougherty, PhD; Adjunct Professor
Nicholas Dreher, MD; Clinical Instructor
Mohan Durve, MBBS; Clinical Assistant Professor
Stephen Dutko, MD; Clinical Instructor
Susan Dykeman, MD; Clinical Assistant Professor
Sara Eapen, O.D.; Clinical Instructor
Kristen Eastman, PsyD; Clinical Assistant Professor
Thomas Edwards, MD; Clinical Associate Professor
Allison Effron, MD; Clinical Instructor
Laurie Ekstein, MD; Clinical Instructor
Malek El Yaman, MD; Clinical Assistant Professor
Michelle Elias Ruiz, MD; Clinical Assistant Professor
Phyllis Elinson, MD; Clinical Assistant Professor
Ibrahim Elsheikh, MD; Clinical Instructor
Joy Ertel, MD; Clinical Instructor
Kate Eshleman, PsyD; Clinical Assistant Professor
Doris Evans, MD; Clinical Professor
Lynne Eversman, MD; Clinical Instructor
Ann Failinger, MD; Clinical Instructor
Genevive Falconi, MD; Clinical Assistant Professor
Douglas Fall, MD; Clinical Assistant Professor
Michael Fedak, MD; Clinical Assistant Professor
Elizabeth Feighan, MD; Clinical Instructor
Lisa Feinberg, MD; Clinical Assistant Professor
Marc Feldman, MD; Clinical Senior Instructor
Lori Finley, MD; Clinical Assistant Professor
Elaine Fitzgerald, MD; Clinical Instructor
Aron Flagg, MD; Clinical Assistant Professor
Vaishali Flask, MD; Clinical Assistant Professor
Douglas Fleck, MD; Clinical Assistant Professor
Conrad Foley, MD; Clinical Assistant Professor
Lindsey Forur, MD; Clinical Instructor
Julia Frantsuzov, MD; Clinical Assistant Professor
Deborah Friedman, MD; Clinical Assistant Professor
Joji Gacad, MD; Clinical Instructor
Claire Gahm, MD; Clinical Instructor
Marilee Gallagher, MD; Clinical Professor
Rachel Garber, MD; Clinical Assistant Professor
Andrew Garner, MD PhD; Clinical Professor
G. Gascoigne, MD; Clinical Instructor
Susan Gaston, MD; Clinical Instructor
Catherine Gaw, PsyD; Clinical Assistant Professor
Edward Gaydos, O.D.; Clinical Instructor
Ernesto Gerardo, MD; Clinical Assistant Professor
Deborah Ghazoul, MD; Clinical Assistant Professor
Cindy Gherman, MD; Clinical Assistant Professor
Amrit Gill, MB; Clinical Assistant Professor
Mark Gipson, MD; Clinical Instructor
Gwen Glazer, MD; Clinical Instructor
Abigail Glick, MD; Clinical Instructor
Deborah Goldman, MD; Clinical Assistant Professor
Gregory Golonka, MD; Clinical Assistant Professor
Eleanor Gottesman, MD; Clinical Instructor
Ellen Graber, MD; Clinical Instructor
Kathleen Grady, MD; Clinical Instructor
Mary Greenberg, MD; Clinical Instructor
Charles Griffin Jr., MD; Clinical Assistant Professor
Anna Grinberg, MD; Clinical Instructor
Isabelita Guadiz, MD; Clinical Assistant Professor
Anandhi Gunder, MD; Clinical Instructor
Julie Gunzler, MD PhD; Clinical Instructor
D. Hackenberg, MD; Clinical Instructor
Lisa Hackney, MD; Clinical Assistant Professor
Ibrahim Haddad, MD; Adjunct Assistant Professor
Elizabeth Hagen, MD; Clinical Assistant Professor
Anzar Haider, MD; Clinical Assistant Professor
Mohammed Hamzah, MBBS; Clinical Assistant Professor
William Hanna, MD; Clinical Assistant Professor
Carmen Hansford, MD; Clinical Instructor
Angela Hardman, MD; Clinical Instructor
Sandra Hassink, MD; Adjunct Professor
Jacalyn Hazen, MD; Clinical Assistant Professor
Elizabeth Hellerstein, MD; Clinical Assistant Professor
Joanne Hempel, MD; Clinical Assistant Professor
Amy Heneghan, MD; Adjunct Associate Professor
Douglas Henry, MD; Clinical Assistant Professor
Andrew Hertz, MD; Clinical Assistant Professor
Julie Hertzer, MD; Clinical Instructor
Lainie Holman, MD; Clinical Assistant Professor
Eva Holsinger, MD; Adjunct Assistant Professor
TRUE Hooper, DO; Clinical Assistant Professor
Kristin Horansky, MD; Clinical Instructor
David Hornick, MD; Clinical Assistant Professor
Robert Hostoffer, DO; Clinical Associate Professor
Randal Huff, O.D.; Clinical Senior Instructor
Vera Hupertz, MD; Clinical Assistant Professor
Meade Ignacio-Francisco, MD; Clinical Instructor
Ruth Imrie, MBBS; Clinical Professor
Daniela Isakov, MD; Clinical Assistant Professor
Jo Ann Jackson, MD; Clinical Instructor
Howard Jacobs, MD; Clinical Assistant Professor
Kari Jacono, MD; Clinical Instructor
Joseph Jamhour, MD; Clinical Instructor
Stephanie Jennings, MD; Clinical Assistant Professor
Vanessa Jensen, PsyD; Clinical Assistant Professor
Devi Jhaveri, DO; Clinical Instructor
Jeffrey Jinks, MD; Clinical Instructor
Katherine Josie, PhD; Adjunct Assistant Professor
Chuanchau Jou, DO; Clinical Assistant Professor
Kelly Joyce, MD; Clinical Assistant Professor
Constance Judge, MD; Clinical Instructor
Matthew Kacir, MD; Clinical Instructor
Ann Marie Kalata-Cetin, O.D.; Clinical Assistant Professor
Peggy Kaminski, MD; Clinical Instructor
Theresa Kammerman, MD; Clinical Instructor
Jon Kannensohn, MD; Clinical Instructor
Barbara Kaplan, MD; Clinical Assistant Professor
Sreenivas Karnati, MD; Clinical Assistant Professor
Benjamin Katholi, MD; Clinical Assistant Professor
Marsha Kay, MD; Clinical Assistant Professor
Adam Keating, MD; Clinical Assistant Professor
Zelalem Kebede, MD; Clinical Assistant Professor
Eileen Kennedy, PhD; Clinical Assistant Professor
Vidula Khadilkar, MBBS; Clinical Instructor
Bilquis Khan, MBBS; Clinical Instructor
Seong-Jin Kim, PhD; Adjunct Professor
Jack King, MD; Clinical Instructor
Nancy Klein, PhD; Clinical Assistant Professor
Julie Knapp, PhD; Clinical Instructor
Esther Kofman, MD; Clinical Instructor
Alla Kolkin, MD; Clinical Instructor
Michaela Koontz, MD; Adjunct Assistant Professor
Jan Kriwinsky, MD; Clinical Associate Professor
Eva Kubiczek-Love, MD; Clinical Assistant Professor
Anika Kumar, MD; Clinical Assistant Professor
Jacob Kurowski, MD; Clinical Assistant Professor
Charles Kwon, MD; Clinical Assistant Professor
Kathleen Laing, PhD; Adjunct Assistant Professor
Suet Lam, MD; Clinical Instructor
John Lampe, MD; Clinical Assistant Professor
Beverly Landry, MD; Clinical Instructor
Samir Latifi, MD; Clinical Assistant Professor
Arthur Lavin, MD; Clinical Associate Professor
H. Lawrence, MD; Clinical Instructor
Amy Lee, PhD; Clinical Assistant Professor
James Leslie, MD; Clinical Associate Professor
Diane Lester, MD; Clinical Instructor
Morris Levinsohn, MD; Clinical Associate Professor
Michelle Levy Mandalla, MD; Clinical Instructor
Julia Libecco, MD; Clinical Instructor
Tracy Lim, MD; Clinical Instructor
Adriane Lioudis, MD; Clinical Assistant Professor
Alana Lopez, PhD; Clinical Assistant Professor
Meghan Lynch, DO; Clinical Instructor
Anne Lyren, MD; Adjunct Associate Professor
Jessica Madden, MD; Clinical Assistant Professor
Lori Mahajan, MD; Clinical Assistant Professor
Niyati Mahajan, MBBS; Clinical Instructor
Mark Malinowski, MD; Clinical Instructor
Anna Mandalakas, MD; Adjunct Associate Professor
Soudaline Maniphon, MD; Adjunct Assistant Professor
Andrea Mann, D.O.; Clinical Senior Instructor
Stephen Maricich, MD PhD; Adjunct Associate Professor
Leslie Markowitz, Psy.D; Clinical Assistant Professor
Rebecca Marsick, MS; Clinical Instructor
Beth Ann Martin, PhD; Clinical Assistant Professor
Matthew Mascioli, MD; Clinical Instructor
Delbert Mason, MD; Clinical Assistant Professor
Laura Mason, MD; Clinical Instructor
Raichal Mathew, MBBS; Clinical Instructor
Marisa Matthys, MD; Clinical Assistant Professor
Angelica Mazzarini, MD; Clinical Instructor
George McPherson, MD; Clinical Instructor
Charlotte McCumber, MD; Clinical Assistant Professor
Brenda McGhee, MD; Clinical Instructor
Susan McGrath, PhD; Adjunct Instructor
Alice McIntyre, MD; Clinical Assistant Professor
Jeff McRaven, MD; Clinical Instructor
M.A. Michelle Medina, MD; Clinical Assistant Professor
Sudhir Mehta, MBBS; Clinical Associate Professor
Alton Melton, MD; Clinical Assistant Professor
Stacey Membere, MD PhD; Clinical Instructor
Sharon Meropol, MD; Clinical Assistant Professor
William Michener, MD; Clinical Associate Professor
Sherry Milner, MD; Clinical Instructor
Keili Mistovich, MD; Clinical Instructor
Cheryl Morrow-White, MD; Clinical Assistant Professor
Alison Moses, PhD; Clinical Assistant Professor
Michael Mount, MD; Clinical Instructor
Philippa Mudido, MD; Adjunct Instructor
Erin Murdock, MD; Clinical Assistant Professor
Mary Murphy, MD; Clinical Assistant Professor
Martha Myers, MD; Clinical Instructor
Timothy Myers, BS; Adjunct Assistant Professor
Holly Nadorlik, DO; Clinical Assistant Professor
Kassandra Najm, MD; Clinical Instructor
Alexander Namrow, MD; Clinical Assistant Professor
Ann Nevar, MS; Clinical Instructor
Courtney Nolan, DO; Clinical Assistant Professor
Sigmund Norr, MD PhD; Clinical Assistant Professor
Scot Occhionero, MD; Clinical Assistant Professor
Grace Onimoe, MBBS; Clinical Assistant Professor
Mary Ann O’Riordan, MS; Adjunct Assistant Professor
Linda Orosz, MD; Clinical Instructor
Sophia Orraca-Tetteh, MD; Clinical Senior Instructor
Srivieng Pairojkul, MD; Adjunct Associate Professor
Rita Pappas, MD; Clinical Assistant Professor
Divya Parikh, MD; Clinical Instructor
Sophia Patel, MD; Clinical Assistant Professor
Swati Patel, MD; Clinical Instructor
Mona Patel, MD; Clinical Instructor
Katherine Patrick, MD; Clinical Instructor
Fred Pearlman, O.D.; Clinical Instructor
Michael Pena, MD; Clinical Instructor
Marina Perez-Fournier, MD; Clinical Assistant Professor
Shelly Pesick, MD; Clinical Instructor
Katie Pestak, DO; Clinical Assistant Professor
Thomas Phelps, MD; Clinical Assistant Professor
Khamseng Philavong, MD; Adjunct Assistant Professor
Phonethep Pholsena, MD; Adjunct Associate Professor
Khampe Phongsavath, MD; Adjunct Assistant Professor
Candis Platt-Houston, MD; Clinical Instructor
Timothy Playl, MD; Clinical Assistant Professor
Svetlana Pomeranets, MD; Clinical Assistant Professor
Stephen Poslusny, MD; Clinical Instructor
Brian Postma, MD; Clinical Instructor
Adriana Prada-Ruiz, MD; Clinical Assistant Professor
Andrea Preston, MD; Clinical Assistant Professor
Anthony Pucell, MD; Clinical Instructor
Subhash Puthuraya, MBBS; Clinical Assistant Professor
James Quilty, MD; Clinical Professor
Kadakkal Radhakrishnan, MBBS; Clinical Assistant Professor
Nouhad Raissouni, MD; Clinical Assistant Professor
Prabi Rajbandari, MD; Clinical Instructor
Umarani Ramachandran, MBBS; Clinical Instructor
Rajyalakshmi Rambhatla, MBBS; Clinical Assistant Professor
Shakuntala Rao, MD; Clinical Assistant Professor
Bharati Rao, MBBS; Clinical Senior Instructor
Angelique Redus-McCoy, MD; Clinical Assistant Professor
Robert Rennebohm, MD; Clinical Assistant Professor
Justin Rich, MD; Clinical Instructor
Dawn Riebe, MD; Clinical Instructor
Mona Rifka, MD; Clinical Assistant Professor
Laurel Roach-Armao, MD; Clinical Instructor
Rosemary Robbins, MD; Clinical Instructor
David Roberts, MD; Clinical Associate Professor
Gina Robinson, MD; Clinical Instructor
Douglas Rogers, MD; Clinical Assistant Professor
Lynne Romero, MD; Clinical Instructor
Lilia Rosenstein, MD; Clinical Instructor
Alan Rosenthal, MD; Clinical Assistant Professor
Barbara Rowane, MD; Clinical Instructor
Wasim Saadeh, MD; Clinical Instructor
Michael Saalouke, MD; Clinical Associate Professor
Zane Saalouke, MD; Clinical Assistant Professor
Paula Sabella, MD; Clinical Assistant Professor
Firas Saker, MD; Clinical Associate Professor
Ayman Saleh, MD; Adjunct Assistant Professor
Tarek Salman, MBBCH; Clinical Instructor
Victor Sandoval, MD; Clinical Instructor
Troy Sands, MD; Clinical Assistant Professor
Jill Sangree, MD; Clinical Assistant Professor
Bounnack Saysanasong Kham, MD; Adjunct Assistant Professor
Colleen Schelzig, MD; Clinical Assistant Professor
Lori-Anne Schillaci, MD; Clinical Instructor
Dana Schmidt, MD; Clinical Assistant Professor
Marcy Schwartz, MD; Clinical Assistant Professor
Jeffrey Schwersenski, MBBS; Adjunct Assistant Professor
Melissa Seifried, MD; Clinical Assistant Professor
Pamela Senders, PhD; Clinical Assistant Professor
Shelly Senders, MD; Clinical Professor
K. Sengmanivong, MD; Adjunct Assistant Professor
Heidi Senokozlieff, DO; Clinical Assistant Professor
Wadie Shabab, MD; Clinical Assistant Professor
Jaya Shah, MBBS; Clinical Instructor
K. Sengmanivong, MD; Adjunct Assistant Professor
Heidi Senokozlieff, DO; Clinical Assistant Professor
Wadie Shabab, MD; Clinical Assistant Professor
Jaya Shah, MBBS; Clinical Instructor
Carly Wilbur, MD; Clinical Instructor
Carolyn Wilhelm, MD; Clinical Instructor
Tara Williams, MD; Clinical Assistant Professor
Jason Williams, MD; Adjunct Assistant Professor
Eddie Wills, MD; Adjunct Instructor
Bradley Winberger, MD; Clinical Assistant Professor
Anna Winfield, MPH MD; Clinical Assistant Professor
Terry Wiseman, MD; Clinical Instructor
Kholoud Wishah, MBBS; Clinical Instructor
Mary Wong, MD; Clinical Assistant Professor
Natalie Woods, MD; Clinical Instructor
Daniel Worthington, MD; Clinical Assistant Professor
Natalie Yearney, MD; Clinical Assistant Professor
Lloyd Yeh, MD; Clinical Instructor
Sarah Youssef, MD; Clinical Instructor
Brian Zack, MD; Clinical Instructor
William Zaia, MBBS; Adjunct Assistant Professor
Rachael Zanotti-Morocco, MD; Clinical Instructor
R. Krupkin, MD; Clinical Assistant Professor
George Farr, PhD; Adjunct Assistant Professor
Masao Ikeda-Saito, PhD; Adjunct Professor
Jian-Ping Jin, PhD; Adjunct Professor
Marc Pelletier, PhD; Adjunct Assistant Professor
Susanne Mohr, PhD; Adjunct Associate Professor
Nanduri Prabhakar, PhD; Adjunct Professor
Andrew Resnick, PhD; Adjunct Assistant Professor
Frank Sonnichsen, PhD; Adjunct Associate Professor
Assem Ziady, PhD; Adjunct Associate Professor

Pharmacology
Zhaoyang John Feng, PhD; Adjunct Assistant Professor
Bin Su, PhD; Adjunct Assistant Professor

Physical Medicine & Rehabilitation
Andre Cassell, MD; Clinical Assistant Professor
Maarten Ijzerman, PhD; Clinical Assistant Professor
R. Krupkin, MD; Clinical Assistant Professor
George Macrinici, MD; Clinical Instructor
Fadeel Mahmood, MD; Clinical Instructor
A. Tritle, MD; Clinical Instructor

Physiology & Biophysics
Jessica Berthiaume, PhD; Adjunct Instructor
Arthur Brown, MD PhD; Adjunct Professor
Liming Chen, PhD; Adjunct Instructor

Plastic Surgery
Anand Kumar, MD; Clinical Professor
Bryan Michelow, MBBS; Clinical Assistant Professor
Roland Reyes, MD; Clinical Assistant Professor
William Schleicher, MD; Clinical Instructor
Akira Yamada, MD; Clinical Assistant Professor

Population & Quantitative Health Sciences
Francis Afram-Gyening, MD; Adjunct Instructor
Terrence Allan, MA; Adjunct Assistant Professor
Denise Babineau, PhD; Adjunct Assistant Professor
Mahbat Bahromov, MD; Adjunct Assistant Professor
Roger Bielefeld, PhD; Adjunct Assistant Professor
David Bruckman, MS; Adjunct Instructor
Karen Butler, MS; Adjunct Instructor
Nancy Callahan, M PH; Adjunct Instructor
Matthew Carroll, JD; Adjunct Assistant Professor
Jordan Crows, MS; Adjunct Instructor
Aylin Drabousky, MA; Adjunct Instructor
Wei Guo, PhD; Adjunct Instructor
Patricia Heilbron, MS; Adjunct Instructor
Sandi Hurley, RN; Adjunct Instructor
Leila Jackson, PhD; Adjunct Assistant Professor
Gyungah Jun, PhD; Adjunct Assistant Professor
Christopher Kippes, MS; Adjunct Instructor
Kristina Knight, M PH; Adjunct Instructor
Tzuyung Kou, PhD; Adjunct Assistant Professor
Elizabeth Larkin, MS; Adjunct Instructor
Courtney Montgomery, PhD; Adjunct Assistant Professor
Andrew Morris, MPH; Adjunct Instructor
Ezekiel Mupere, PhD; Adjunct Assistant Professor
Katherine Nagel, M PH; Adjunct Instructor
Junghyun Namkung, PhD; Adjunct Instructor
Ralph O’Brien, PhD; Adjunct Professor
Heather Ochs-Balcom, PhD; Adjunct Assistant Professor
Ashok Panneerselvam, PhD; Adjunct Assistant Professor
Julia Patterson, M PH; Adjunct Instructor
Lakshmi Pulagam, PhD; Adjunct Instructor
Huaizhen Qin, PhD; Adjunct Instructor
Feiyou Qiu, PhD; Adjunct Instructor
J. Sunil Rao, PhD; Adjunct Professor
Thomas Rehman, MS MPH; Adjunct Instructor
Jeff Roming, MD; Adjunct Instructor
Douglas Rowland, PhD; Adjunct Assistant Professor
Laura Santurri, M PH; Adjunct Instructor
Shuying Sun, PhD; Adjunct Assistant Professor
Sivakumaran Theru Arumugam, PhD; Adjunct Assistant Professor
Christopher Whalen, MD; Adjunct Professor
Yifan Xu, PhD; Adjunct Instructor
Melissa Zullo, PhD; Adjunct Assistant Professor

Psychiatry
John Adamo, MSN; Clinical Senior Instructor
Devra Adelstein, MSW; Adjunct Instructor
Adit Adityanjee, MD; Clinical Instructor
Mahboob Ahmed, MBBS; Clinical Instructor
Syed Ahmed, MBBS; Clinical Instructor
Avril Albaugh, LISW; Adjunct Assistant Professor
Robert Alcorn, MD; Clinical Assistant Professor
Brenda Altose, MD; Clinical Instructor
Michael Aronoff, PhD; Clinical Instructor
Sarah Aronson, MD; Clinical Assistant Professor
Zev Ashenberg, PhD; Clinical Assistant Professor
Virginia Ayres, PhD; Clinical Assistant Professor
Elizabeth Baker, MD; Clinical Assistant Professor
Peter Barach, PhD; Clinical Senior Instructor
Leonard Barley, MD; Clinical Assistant Professor
Jera Barrett, MD; Clinical Assistant Professor
Jane Belkin, MA; Clinical Instructor
Pauline Benjamin, PhD; Clinical Assistant Professor
Kurt Bertschinger, MD; Clinical Assistant Professor
Aaron Billowitz, MD; Clinical Assistant Professor
Carol Blixen, PhD; Adjunct Associate Professor
Gregory Boehm, MD; Clinical Assistant Professor
Elise Bonder, MD; Clinical Senior Instructor
Howard Bonem, PhD; Clinical Senior Instructor
Miriam Boraz, MD; Clinical Instructor
Ivy Boyle, MD; Clinical Assistant Professor
James Bukuts, MD; Clinical Instructor
Kathryn Burns, MD; Clinical Assistant Professor
Vera Camden, PhD; Clinical Assistant Professor
Jose Camerino, MA; Adjunct Assistant Professor
Heather Carey, PharmD; Adjunct Assistant Professor
Michael Carlisle, D.O.; Clinical Assistant Professor
Carol Cavey, MD; Clinical Senior Instructor
Heather Chapman, PhD; Clinical Assistant Professor
Melvin Chavinson, MD; Clinical Associate Professor
Joselita Chua, MD; Clinical Instructor
Robert Chwast, PhD; Clinical Assistant Professor
Cristinel Coconcea, MD; Clinical Assistant Professor
Nicolete Coconcea, MD; Clinical Assistant Professor
Erin Cooper, PhD; Clinical Instructor
Homai Cupala, MBBS; Clinical Assistant Professor
Maureen Curley, PhD; Clinical Assistant Professor
Sandra Curry, PhD; Clinical Assistant Professor
Marilyn Davies, PhD; Adjunct Assistant Professor
Mary Ellen Davis, MD; Clinical Associate Professor
Kenneth De Luca, PhD; Clinical Assistant Professor
Elizabeth Del Paggio, MS; Adjunct Instructor
Christine Demeter, MA; Adjunct Instructor
Daniel Deutschman, MD; Clinical Assistant Professor
Jane Domb, MD; Clinical Senior Instructor
A. Dowling Jr., MD; Clinical Associate Professor
Edward Dutton, MD; Clinical Senior Instructor
Diane Eden, MD; Clinical Assistant Professor
Larissa Elgudin, MD; Clinical Instructor
Omar Elhaj, MD; Clinical Assistant Professor
Aaron Ellington, PhD; Clinical Senior Instructor
Patrick Enders, MD; Clinical Assistant Professor
Thomas Eppright, MD; Clinical Associate Professor
Claire Ernhart, PhD; Adjunct Professor
Michel Farivar, MD; Clinical Senior Instructor
David Feldman, MD; Clinical Assistant Professor
William Fikter, MD; Clinical Instructor
Robert Findling, MD; Adjunct Professor
Philip Fischer, MD; Clinical Senior Instructor
Barbara Fleming, PhD; Clinical Assistant Professor
Stacey Foerstner, PhD; Clinical Senior Instructor
Leighann Forsyth, PhD; Clinical Assistant Professor
David Fox, MD; Clinical Senior Instructor
Mark Frankel, MD; Clinical Assistant Professor
Lois Freedman, MD; Clinical Assistant Professor
David Fresco, PhD; Adjunct Associate Professor
Frederick Frese, PhD; Clinical Assistant Professor
Richard Friedell, MD; Clinical Assistant Professor
Matthew Fuller, PhD; Clinical Professor
Javier Galvez, MD; Clinical Assistant Professor
Gretchen Gardner, MD; Clinical Instructor
Ingrid Geerken, PhD; Clinical Instructor
Peter Geier, MD; Clinical Assistant Professor
Kenneth Gerstenhaber, PhD; Clinical Instructor
Amy Ginsberg, PhD JD; Clinical Assistant Professor
Pamela Gleisser, LISW; Adjunct Instructor
Patricia Goetz, MD; Clinical Assistant Professor
Robert Goldberg, PhD; Clinical Professor
Murray Goldstone, MD; Clinical Associate Professor
Deborah Gould, MD; Clinical Assistant Professor
Stephen Grcevich, MD; Clinical Senior Instructor
Linda Gross, MD; Clinical Instructor
Shawna Gudalis, MSN; Clinical Senior Instructor
Neera Gupta, MD; Clinical Senior Instructor
Colleen Hall, Pharm.D.; Clinical Assistant Professor
Samia Hasan, MD; Clinical Assistant Professor
Helen Hattab, MD; Clinical Assistant Professor
Franklin Hickman, PhD; Adjunct Assistant Professor
Richard Hill, MD PhD; Clinical Senior Instructor
Judith Hirshman, MD; Clinical Instructor
Andrew Hoffman, PhD; Clinical Assistant Professor
Michael Hogan, PhD; Adjunct Professor
Amanda Horrigan, MBBch; Clinical Senior Instructor
Debra Hrouda, MS; Adjunct Assistant Professor
Ronald Immerman, MD; Clinical Senior Instructor
Ray Isackila, MS; Clinical Assistant Professor
James Jacobsohn, MD; Clinical Associate Professor
Anna Janicki, MD; Clinical Assistant Professor
Marianne Jhee, MD; Clinical Assistant Professor
Pythias Jones, MD; Clinical Assistant Professor
Przemyslaw Kapalczynski, MD; Clinical Senior Instructor
Barbara Kaufman, MD; Clinical Assistant Professor
Otto Kausch, MD; Clinical Assistant Professor
Daniel Keaton, MD; Clinical Instructor
David Kemp, MD; Clinical Assistant Professor
Janet Kemp, MD; Clinical Instructor
John Kenny, PhD; Clinical Assistant Professor
Lindsey Kershaw, MSN; Clinical Instructor
Louis Klein, MD; Clinical Instructor
Elizabeth Koby, MD; Clinical Assistant Professor
Cortney Kohberger, MD; Clinical Senior Instructor
J. Konieczny, PhD; Clinical Senior Instructor
Irina Korobkova, MD; Clinical Assistant Professor
Elisabeth Koss, PhD; Clinical Associate Professor
Sunita Kumar, MBBS; Clinical Senior Instructor
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesna Kutlesic, PhD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Zinaida Lebedeva, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Joan Lederer, MD</td>
<td>Clinical Senior Instructor</td>
</tr>
<tr>
<td>Kay Levine, PhD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Stephen Levine, MD</td>
<td>Clinical Professor</td>
</tr>
<tr>
<td>Carol Lewis, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Richard Lightbody, MD</td>
<td>Clinical Professor</td>
</tr>
<tr>
<td>Lori Locke, MSN</td>
<td>Adjunct Assistant Professor</td>
</tr>
<tr>
<td>Leslie Lothstein, PhD</td>
<td>Clinical Associate Professor</td>
</tr>
<tr>
<td>Mark Lovinger, PhD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Monica MacDougall, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Martin Macklin, MD PhD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Carol Macknin, MD</td>
<td>Clinical Senior Instructor</td>
</tr>
<tr>
<td>Nitika Mahajan, MD</td>
<td>Clinical Senior Instructor</td>
</tr>
<tr>
<td>Marilyn Malkin, PhD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Sybille Marqua, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Loralee Marsh, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Ruth Martin, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Scott Martin, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Kay Mc Kenzie, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Eileen McGee, MD</td>
<td>Clinical Senior Instructor</td>
</tr>
<tr>
<td>Rene McGovern, PhD</td>
<td>Adjunct Associate Professor</td>
</tr>
<tr>
<td>Allan McLaughlin, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Cheryl Meister, BSN</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Herbert Meltzer, MD Adjunct Professor</td>
<td></td>
</tr>
<tr>
<td>Bruce Merkin, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Claudia Metz, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Benjamin Miller, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Jacqueline Miller, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Noah Miller, MD</td>
<td>Clinical Senior Instructor</td>
</tr>
<tr>
<td>Muhammad Momen, MD</td>
<td>Clinical Senior Instructor</td>
</tr>
<tr>
<td>Douglas Moore, PhD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Sonal Moratschek, MD MPH</td>
<td>Clinical Senior Instructor</td>
</tr>
<tr>
<td>Sherrod Morehead, PhD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Samareh Moussavand, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Erin Murphy, MSN</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Catherine Nageotte, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Jonathan Nehrer, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Steven Neuhaus, PhD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Erica New, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>F. Noveske, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Emmanuel Nwajei, MBBS</td>
<td>Clinical Senior Instructor</td>
</tr>
<tr>
<td>Gary Pagano, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>David Pincus, PhD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Judith Pitlick, MA</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Daniel Polster, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Amir Poreh, PhD</td>
<td>Clinical Associate Professor</td>
</tr>
<tr>
<td>James Pretzer, PhD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Monica Proctor, MD</td>
<td>Clinical Senior Instructor</td>
</tr>
<tr>
<td>Katherine Proehl, MSN</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Priti Purushothaman, MBBS</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Sylvia Rimm, PhD</td>
<td>Clinical Professor</td>
</tr>
<tr>
<td>Candace Risen, M SW</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>George Ritz, PhD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Nabila Rizk, MD</td>
<td>Clinical Senior Instructor</td>
</tr>
<tr>
<td>David Robinson, MD Adjunct Professor</td>
<td></td>
</tr>
<tr>
<td>Jennifer Roche-Desilets, MD</td>
<td>Clinical Senior Instructor</td>
</tr>
<tr>
<td>Laura Rocker, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>James Rodio, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Barbara Rodriguez, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Ellen Rosenblatt, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>William Rowane, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Robert Rowney, DO</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Boris Royak, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Rosa Ruggiero, MSN</td>
<td>Clinical Senior Instructor</td>
</tr>
<tr>
<td>Farid Sabet, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Roknedin Safavi, MD</td>
<td>Clinical Associate Professor</td>
</tr>
<tr>
<td>John Sanitato, MD</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>Eden Santiago-Lee, MD</td>
<td>Clinical Instructor</td>
</tr>
<tr>
<td>Dietrich Schelzig, MD MPH</td>
<td>Clinical Assistant Professor</td>
</tr>
<tr>
<td>George Schmedlen, PhD JD</td>
<td>Clinical Senior Instructor</td>
</tr>
<tr>
<td>Stephan Schwartz, PhD JD</td>
<td>Clinical Senior Instructor</td>
</tr>
</tbody>
</table>
Daniel Schweid, MD; Clinical Assistant Professor
Robert Schweid, PhD; Clinical Senior Instructor
Sam Schwendiman, MD; Clinical Instructor
David Scott, MD; Clinical Instructor
Samuel Selekman, M SW; Clinical Instructor
Jes Sellers, PhD; Clinical Instructor
George Serna, PhD; Clinical Instructor
Janet Sharp, MA; Clinical Instructor
Navneet Sidhu, MBBS; Clinical Instructor
Jonathan Sirkin, MD; Clinical Instructor
Harry Sivec, PhD; Clinical Assistant Professor
Rachel Slepecky, PhD; Clinical Senior Instructor
Sylvester Smarty, MBCh; Clinical Instructor
Douglas Smith, MD; Clinical Associate Professor
Jeffrey Smith, MD; Clinical Instructor
Sherif Soliman, MD; Clinical Assistant Professor
James Srp, MS; Clinical Instructor
Joy Stankowski, MD; Clinical Assistant Professor
Libbie Stansifer, MD; Clinical Assistant Professor
Sara Stein, MD; Clinical Assistant Professor
Joel Steinberg, MD; Clinical Assistant Professor
Laura Steinberg, MD; Clinical Instructor
Elizabeth Stern, MD; Clinical Instructor
Craig Stockmeier, PhD; Adjunct Associate Professor
Barbara Streeter, MS; Adjunct Instructor
Catherine Sullivan, M SW; Clinical Instructor
M. Suresky, ND; Clinical Instructor
Kathleen Svala, MD; Clinical Senior Instructor
Thomas Svete, MD; Clinical Senior Instructor
Maureen Sweeney, CNP; Clinical Senior Instructor
Cynthia Taylor, MD; Clinical Assistant Professor
Tiffany Thomas-Lakia, MD; Clinical Senior Instructor
Crystal Thomas-Rozea, MD; Clinical Instructor
Jane Timmons-Mitchell, PhD; Clinical Associate Professor
Terry Tobias, PhD; Clinical Assistant Professor
Khoa Tran, MD; Clinical Senior Instructor
Daksha Trivedi, MBBS; Clinical Instructor
Eduardo Vazquez, MD; Clinical Senior Instructor
Cynthia Vrabel, MD; Clinical Assistant Professor
Leslie Walker, MD; Clinical Instructor
Anne Warren, MD; Clinical Assistant Professor
Mark Warren, MD; Clinical Assistant Professor
Daniel Weinberger, MD; Adjunct Assistant Professor
Carl Weitman, PhD; Clinical Assistant Professor
Brian Welsh, MD; Clinical Instructor
Diane Wetzig, PhD; Clinical Assistant Professor
Brooke Wolf, MD; Clinical Senior Instructor
Denton Wyse, MD; Clinical Assistant Professor
Cynthia Yamakoski, PhD; Clinical Senior Instructor
Joshua Zarowitz, DO; Clinical Senior Instructor
Margaret Zerba, PhD; Clinical Instructor
Stephen Zinn, MD; Clinical Assistant Professor

Radiation Oncology
Fredrick Barton, MD; Clinical Instructor
Tithi Biswas, MBBS MD; Clinical Associate Professor
Douglas Einstein, MD PhD; Adjunct Assistant Professor
Joel Elconin, MD; Clinical Assistant Professor
Mersiha Hadziahmetovic, MD; Clinical Assistant Professor
Jerald Katcher, MD; Clinical Assistant Professor
Whoon Kil, MBBS; Clinical Assistant Professor
Aryavarta Kumar, MD PhD; Clinical Assistant Professor
Charles Kunos, MD PhD; Adjunct Assistant Professor
Adir Ludin, MD; Clinical Assistant Professor
Chunhui Luo, PhD; Clinical Assistant Professor
David Ly, MD; Clinical Assistant Professor
Roger Macklis, MD; Clinical Professor
Silviu Marcu, MS; Clinical Instructor
James Monroe, PhD; Adjunct Assistant Professor
Roger Ove, MD PhD; Clinical Associate Professor
Kunjan Pillai, MS; Adjunct Assistant Professor
Suzanne Russo, MD; Clinical Associate Professor
Mehran Saboori, MD; Clinical Assistant Professor
Scott Welford, PhD; Adjunct Associate Professor

Radiology

Julia Abbass, MD; Clinical Assistant Professor
Salim-Tamuz Abboud, MD; Clinical Assistant Professor
Abraham Ahmed, MD; Clinical Assistant Professor
Manzoor Ahmed, MBBS; Clinical Assistant Professor
George Ainge, MD; Clinical Assistant Professor
Elena Antonescu, DO; Clinical Assistant Professor
Paresh Arora, MD; Clinical Assistant Professor
Joe Assaad, MD; Clinical Assistant Professor
Dana Ataya, MD; Clinical Instructor
Joseph Azok, MD; Clinical Assistant Professor
Chaitra Badve, MD; Clinical Assistant Professor
Gregory Baran, MD; Clinical Assistant Professor
Richard Barger, MD; Clinical Assistant Professor
Kyle Basques, MD; Clinical Assistant Professor
Chandra Batchu, MD; Clinical Assistant Professor
Ryo Benson, MD; Clinical Assistant Professor
Mark Berman, MD; Clinical Assistant Professor
Ajay Bhardwaj, MD; Clinical Assistant Professor
Kavita Bhatt, MD; Clinical Instructor
Troy Blagrave, MD; Clinical Assistant Professor
Rodolfo Blandon, MD; Clinical Assistant Professor
Judy Blebea, MD; Clinical Professor
Michael Bolen, MD; Clinical Assistant Professor
Carrie Bolton, MD; Clinical Assistant Professor
Gregory Borkowski, MD; Clinical Professor
Pamela Brethauer, MD; Clinical Assistant Professor
Aliye Bricker, MD; Clinical Assistant Professor
David Brown, MD; Clinical Assistant Professor
James Buchino, MD; Clinical Assistant Professor
J. Burns, MD; Clinical Assistant Professor
Edward Bury, MD; Clinical Associate Professor
Carl Butcher, MD; Clinical Assistant Professor
Howard Cahn, MD; Clinical Assistant Professor
Fabian Candocia, MD; Clinical Associate Professor

Dominique Caovan, MD; Clinical Assistant Professor
Sean Carlson, DO; Clinical Assistant Professor
Phillip Catanzaro, MD; Clinical Assistant Professor
Robert Cecil, PhD; Clinical Assistant Professor
Serena Chacko, MD; Clinical Assistant Professor
Vincent Chan, MD; Clinical Assistant Professor
Claudia Chapek, MD; Clinical Assistant Professor
Nikunj Chauhan, MD; Clinical Assistant Professor
Melanie Chellman-Jeffers, MD; Clinical Assistant Professor
Gary Chen, MD; Clinical Assistant Professor
Tracy Chen, DO MPH; Clinical Assistant Professor
Aqeel Chowdhry, MD; Clinical Assistant Professor
Mark Allen Cohen, MD; Clinical Assistant Professor
Bradley Cole, DO; Clinical Assistant Professor
Jomarie Cortes-Santos, MD; Clinical Assistant Professor
Jay Costantini, MD; Clinical Assistant Professor
Baz De Baz, MD; Clinical Associate Professor
Victor De Marco, MD; Clinical Senior Instructor
Laura Dean, MD; Clinical Assistant Professor
Andrea Desberg, MD; Clinical Assistant Professor
Simon Dorton, MD; Clinical Assistant Professor
Natalya Eidlin, MD; Clinical Assistant Professor
David Einstein, MD; Clinical Professor
Todd Emch, MD; Clinical Assistant Professor
Peter Eyler, MD; Clinical Assistant Professor
Sami Fakir, MD; Clinical Assistant Professor
Arezou Faraji, MD; Clinical Assistant Professor
Heather Finke, MD; Clinical Assistant Professor
Ryan Fisher, PhD; Clinical Assistant Professor
Douglas Foltz, MD; Clinical Assistant Professor
Melissa Frankel, MD; Clinical Assistant Professor
Nicholas Fulton, MD; Clinical Assistant Professor
Michael Geisinger, MD; Clinical Assistant Professor
Peter Ghobrial, MD; Clinical Assistant Professor
Subha Ghosh, MD; Clinical Assistant Professor
Amanjit Gill, MBBS; Clinical Assistant Professor
Michael Gioia, DO; Clinical Assistant Professor
Joshua Golub, MD; Clinical Assistant Professor
Daniel Gorman, MD; Clinical Assistant Professor
Paul Grooff, MD; Clinical Associate Professor
Laurance Grossman, MD; Clinical Assistant Professor
Amar Gupta, MD; Clinical Instructor
Amit Gupta, MBBS; Clinical Assistant Professor
Ravi Guttikonda, MD; Clinical Assistant Professor
Timothy Haaga, MD; Clinical Assistant Professor
Ihab Haddadin, MD; Clinical Assistant Professor
Ahmad Haidary, MD; Clinical Assistant Professor
Robert Haller, MD; Clinical Assistant Professor
Sandra Halliburton, PhD; Adjunct Professor
Ramin Hamidi, DO; Clinical Assistant Professor
Glen Hansen, MD; Clinical Assistant Professor
Gregory Harkey, MD; Clinical Assistant Professor
Ahmad Hatami, MS; Clinical Assistant Professor
Stephen Hatem, MD; Clinical Assistant Professor
Anupinder Hazra, MD; Clinical Assistant Professor
Lulu He, DO; Clinical Instructor
Upma Hemal, MD; Clinical Assistant Professor
Thomas Herbener, MD; Clinical Assistant Professor
Virginia Hill, MD; Clinical Assistant Professor
Sherry Hillier, MD; Clinical Assistant Professor
Darlene Holden, MD; Clinical Assistant Professor
Gwynne Holz, MD; Clinical Assistant Professor
Cheryl Hubbard, MD; Clinical Assistant Professor
Lisa Hughes, MD; Clinical Assistant Professor
Ferdinand Hui, MD; Clinical Assistant Professor
Katie Hulme, MS; Clinical Assistant Professor
Jose Irizarry, MD; Clinical Assistant Professor
Rachana Jain, MD; Clinical Assistant Professor
Paul Johnson, MS; Clinical Assistant Professor
Rebecca Johnson, MD; Clinical Assistant Professor
Thomas Jones, MD; Clinical Assistant Professor
Leonard Kahn, MD; Clinical Assistant Professor
Christopher Karakasis, MD; Clinical Assistant Professor
Boris Karaman, MD; Clinical Assistant Professor
Ali Kassaie, MD; Clinical Assistant Professor
James Kellen, MD; Clinical Instructor
Vladimir Kepe, PhD; Adjunct Assistant Professor
Sharif Kershah, MD; Clinical Instructor
Michele Keys, DO; Clinical Assistant Professor
Rafik Khalil, MD; Clinical Assistant Professor
Jacob Kirsch, MD; Clinical Assistant Professor
Paul Klatte, MD; Clinical Assistant Professor
Rosemary Klecker, MD; Clinical Assistant Professor
Monica Koplas, MD; Clinical Assistant Professor
Jeffrey Kornick, MD; Clinical Assistant Professor
Thomas Krewson, MD; Clinical Assistant Professor
S. Kulasingham, MD; Clinical Assistant Professor
Andrew Kurman, MD; Clinical Assistant Professor
Omar Lababede, MD; Clinical Assistant Professor
Brooke Lampl, DO; Clinical Assistant Professor
Eric Lee, MD; Clinical Assistant Professor
Jonathan Lee, MD; Clinical Assistant Professor
Xiang Li, PhD; Adjunct Assistant Professor
Antonio Luna, MD; Clinical Assistant Professor
Andrea Magen, MD; Clinical Assistant Professor
Borut Marincek, MD; Clinical Assistant Professor
Felipe Martinez, MD; Clinical Assistant Professor
Michael Martinez, MD; Clinical Assistant Professor
Parvez Masood, MD; Clinical Assistant Professor
John McCormac, MD; Clinical Assistant Professor
Marc Mellion, DO; Clinical Assistant Professor
Luis Mendoza, MD; Clinical Assistant Professor
Moulay Meziane, MD; Clinical Professor
Maria Del Pilar Bayo Molano, MD; Clinical Assistant Professor
Jennifer Montgomery, MD PhD; Clinical Assistant Professor
Timothy Moore, MD; Clinical Assistant Professor
Stuart Morrison, MBCh; Clinical Professor
Andrew Myers, MD; Clinical Assistant Professor
Donald Neumann, MD PhD; Clinical Assistant Professor
Vinh Nguyen, MD; Clinical Assistant Professor
William Noble, DO; Clinical Assistant Professor
Betty Obi, MD; Clinical Assistant Professor
Sehong Oh, PhD; Adjunct Assistant Professor
Charles O'Malley, MD; Clinical Assistant Professor
Avi Oppenheimer, MD; Clinical Assistant Professor
Douglas Owens, MD; Clinical Assistant Professor
Lindy Paradise, MD; Clinical Assistant Professor
Michael Paradise, MD; Clinical Assistant Professor
Albert Parlade, MD; Clinical Assistant Professor
Bhupendra Patel, MD; Clinical Assistant Professor
Tanay Patel, MD; Clinical Assistant Professor
Cheryl Petersilge, MD; Clinical Professor
Jon Prescott, MD; Clinical Assistant Professor
Andrei Purysko, MD; Clinical Assistant Professor
Jonathan Rassi, MD; Clinical Instructor
Rahul Renapurkar, MD; Clinical Assistant Professor
Frank Ricautre, MD; Clinical Assistant Professor
Mark Richards, MD; Clinical Assistant Professor
Alice Rim, MD; Clinical Assistant Professor
Darryl Rini, MD; Clinical Assistant Professor
Barbara Risius, MD; Clinical Assistant Professor
Alfonso Rivera, MD; Clinical Assistant Professor
Ann Rivera, MD; Clinical Assistant Professor
Matthew Robertson, MD; Clinical Assistant Professor
Craig Rodriguez, MD; Clinical Assistant Professor
Gamaliel Rodriguez-Herrera, MD; Clinical Assistant Professor
Daniel Roesel, DO; Clinical Assistant Professor
Tina Ruchalski, MD; Clinical Assistant Professor
Samuel Ruskin, MD; Clinical Assistant Professor
Hossam Kamel Saad, MD PhD; Clinical Assistant Professor
John Saks, MD; Clinical Assistant Professor
Mark Sands, MD; Clinical Assistant Professor
Andrew Scharf, MD; Clinical Assistant Professor
Keith Schlechte, MD; Clinical Assistant Professor
Erika Schneider, PhD; Clinical Assistant Professor
Joseph Schoenberger, MD; Clinical Assistant Professor
Paul Schroeder, MD; Clinical Assistant Professor
Matthew Sfiligoj, MD; Clinical Assistant Professor
Nidhi Sharma, MD; Clinical Assistant Professor
Wendy Shaw, MD; Clinical Assistant Professor
Shu-Jane Shen, MD; Clinical Assistant Professor
Laura Shepardson, MD; Clinical Assistant Professor
Nicholas Shkumat, MS; Clinical Assistant Professor
Voravan Shotelersuk, MD; Clinical Assistant Professor
Anne Singer, MD; Clinical Assistant Professor
Alison Smith, MD; Clinical Assistant Professor
Jennifer Sommer, DO; Clinical Assistant Professor
Charles Spirtos, MD; Clinical Assistant Professor
Jeffrey Spreitzer, MD; Clinical Assistant Professor
Guruprasad Srinath, MD; Clinical Assistant Professor
Kevin Stadlander, MD; Clinical Assistant Professor
Volodymyr Statsevych, MD; Clinical Assistant Professor
Christoforos Stoupis, MD; Clinical Associate Professor
Todd Stultz, MD DDS; Clinical Assistant Professor
Kerry Sullivan, DO; Clinical Assistant Professor
Jonathan Tanner, MD; Clinical Assistant Professor
Robert Tarr, MD; Clinical Professor
Aju Thomas, MD; Clinical Assistant Professor
Dustin Thompson, MD; Clinical Assistant Professor
Kun-Lin Tsai, MD; Clinical Assistant Professor
Jawad Tsay, MD; Clinical Assistant Professor
Mark Tushan, MD; Clinical Assistant Professor
Carolyn VanDyke, MD; Clinical Assistant Professor
Manju Vijayvargiya, MD; Clinical Assistant Professor
Rashmi Virmani, MD; Clinical Assistant Professor
Moiz Vohra, MD; Clinical Assistant Professor
Elliot Wasser, MD; Clinical Assistant Professor
Harold White, MD; Clinical Assistant Professor
Mitchell Whiteman, MD; Clinical Assistant Professor
Michael Wien, MD; Clinical Assistant Professor
Kevin Wiesmann, MD; Clinical Assistant Professor
Michael Wilson, MD; Clinical Assistant Professor
Lindsey Wilson, MD; Clinical Assistant Professor
Michael Wolf, MD MBA; Clinical Assistant Professor
Hsien Wong, MD; Clinical Assistant Professor
Alex Wu, MD; Clinical Instructor
Guiyun Wu, MD; Clinical Assistant Professor
Jenny Wu, MD; Clinical Instructor
Kevin Wunderle, PhD; Clinical Assistant Professor
John Wylie, MD PhD; Clinical Assistant Professor
Uliyana Yankevich, MD; Clinical Assistant Professor
Molly Yohann, MD; Clinical Assistant Professor
Hazel Young, MD; Clinical Assistant Professor
Xiaoyi Yu, MD; Clinical Assistant Professor
Lee Zeiszler, MD; Clinical Assistant Professor

Reproductive Biology
Samir Ahuja, MD; Clinical Instructor
Amy Armstrong, MD; Clinical Instructor
Katherine Austinson, MSN; Clinical Assistant Professor
Anthony Bacevice Jr., MD; Clinical Assistant Professor
Timothy Barrett, MD; Clinical Instructor
Alison Bauer, MD; Clinical Instructor
Michelle Belardo, MD; Clinical Instructor
Sandra Bellin, MD; Clinical Instructor
Elizabeth Brandewie, MD; Clinical Instructor
Kelly Buchanan, MD; Clinical Instructor
David Burkons, MD; Clinical Assistant Professor
Shahid Butt, MBBS; Clinical Instructor
J Cameron, MD; Clinical Instructor
Sarah Caril, MD; Clinical Assistant Professor
Graham Chapman, MD; Clinical Instructor
Mark Chapman, MD; Clinical Assistant Professor
Jeffrey Christian, MD; Clinical Instructor
Amy Coleman, CNM; Clinical Assistant Professor
Randi Connor, MD; Clinical Instructor
Celina del Cunanan, MSN; Clinical Assistant Professor

Laura David, MD; Clinical Assistant Professor
Bradley Dennis, MD; Clinical Instructor
Ashley Doolos, MSN; Clinical Assistant Professor
Judith Evans, MD; Clinical Assistant Professor
Cynthia Flynn, MD; Clinical Instructor
Gretchen Gerbe, MD; Clinical Instructor
Gretchen Gerace, MD; Clinical Instructor
Deborah Gerson, MD; Clinical Instructor
James Goldfarb, MD; Clinical Professor
Rhoda Goldschmidt, MD; Clinical Instructor
Scott Greenberg, DO; Clinical Instructor
Ralph Gwatkin, PhD; Adjunct Professor
Mary Haerr, MD; Clinical Assistant Professor
Richard Harlan, MD; Clinical Instructor
Sylvie Hauguel-de Mouzon, PhD; Adjunct Professor
Joseph Henderson, MD; Clinical Instructor
Israel Henig, MD; Clinical Assistant Professor
Tonya Heyman, MD; Clinical Instructor
Elizabeth Hopp, MD; Clinical Instructor
Shin Huang, MD; Clinical Instructor
Karen Jaffe, MD; Clinical Instructor
Thomas Janicki, MD; Clinical Associate Professor
Joel Kamda, MD PhD; Clinical Instructor
Rachel Kay, MS; Clinical Assistant Professor
Lauren Kerr, MD; Clinical Instructor
David Klausner, MD; Clinical Assistant Professor
Steven Klein, MD; Clinical Instructor
Ann Konkoly, MS; Clinical Assistant Professor
Irwin Kombluth, MD; Clinical Assistant Professor
Michael Koroly, O.D.; Clinical Instructor
Ori Kushnir, MD; Clinical Instructor
Da’Na Langford, MS CNM; Clinical Instructor
Emily Leslie, MSN; Clinical Instructor
Judette Louis, MD; Clinical Assistant Professor
Amy Lowell, MSN; Clinical Instructor
Robert Lucas, MD; Clinical Instructor
Lauren MacGregor-Banak, MS; Clinical Assistant Professor
Ali McGregor, MD; Clinical Instructor
Patricia McNamara, MD; Clinical Instructor
Gretchen Mettler, MSN; Clinical Assistant Professor
Sangithan Moodley, MBBS; Clinical Assistant Professor
Lori Mullen, MD; Clinical Instructor
Abby Myers, MSN; Clinical Instructor
Jacob Palomaki, MD; Clinical Associate Professor
Earle Pescatore, O.D.; Clinical Instructor
Andrey Petrikovets, MD; Clinical Instructor
Stanley Post, MD; Clinical Instructor
Deborah Prinz-Gentile, MD PhD; Clinical Instructor
Alfida Ramahi, MD; Clinical Assistant Professor
Laura Rauser, MD; Clinical Instructor
Brooke Rossi, MD; Clinical Assistant Professor
Elizabeth Ruzga, ND; Clinical Assistant Professor
Daniel Rzepka, MD; Clinical Instructor
Sherilyn Sage, MD; Clinical Instructor
Anita Schwandt, MD; Clinical Instructor
Thalia Segal, MD; Clinical Instructor
Barbara Shagawat, MD; Clinical Instructor
Yogesh Shah, MBBS; Clinical Assistant Professor
Joseph Shawi, MD; Clinical Instructor
Douglas Sherlock, MD; Clinical Instructor
David Sheyn, MD; Clinical Instructor
Sarah Smith, MD; Clinical Instructor
Marc Snelson, MD; Clinical Instructor
Maurice Soremekun, MD; Clinical Instructor
Sarah Spengler, MS; Clinical Instructor
Edward Springel, MD; Clinical Instructor
Peggy-Jeanne St Clair, MD; Clinical Instructor
Janette Stephenson, MD; Clinical Instructor
Leslie Stroud, MSN; Clinical Assistant Professor
Yolanda Thigpen, MD; Clinical Instructor
Megan Thomas, MD; Clinical Instructor
Katherine Tufts, MSN; Clinical Instructor
Paula Usis, MD; Clinical Instructor
Kristin Van Heertum, MD; Clinical Instructor
Sandhya Varyani, MD; Clinical Instructor
Vivian von Gruenigen, MD; Adjunct Associate Professor
Thaddeus Waters, MD; Clinical Assistant Professor
Rachel Weinerman, MD; Clinical Assistant Professor
Margie Wenz, MD; Clinical Instructor
Mistie Winkfield, MSN; Clinical Assistant Professor
Nancy Wollam-Huhn, MD; Clinical Instructor
C.K. Woo, MD; Clinical Instructor
Charles Zonfa, MD; Clinical Instructor

Surgery
Tom Abelson, MD; Clinical Associate Professor
Badih Adada, MD; Clinical Assistant Professor
Joseph Africa, MD; Clinical Assistant Professor
Rami Akhrass, MD; Clinical Assistant Professor
Olufemi Akindipe, MD; Clinical Assistant Professor
Gilberto Alemar, MD; Clinical Assistant Professor
Zahraa Al-Hilli, MBbch; Clinical Assistant Professor
Nima Almassi, MD; Clinical Instructor
Javier Alvarez-Tostado, MD; Clinical Assistant Professor
Michael E. Anderson, MD; Clinical Assistant Professor
George Anton, MD; Clinical Assistant Professor
Gabriel Arevalo, MD; Clinical Instructor
Luis Argote-Greene, MD; Clinical Assistant Professor
Sofya Asfaw, MD; Clinical Instructor
Jean Ashburn, MD; Clinical Assistant Professor
Kathleen Ashton, PhD; Clinical Assistant Professor
Marjan Attaran, MD; Clinical Assistant Professor
Toms Augustin, MBBS; Clinical Assistant Professor
Khalil Azem, MD; Clinical Assistant Professor
Rebecca Bagley, MD; Clinical Assistant Professor
Naveen Balasundaram, MBBS; Clinical Instructor
George Balis, MD; Clinical Assistant Professor
Steven Ball, MD; Clinical Assistant Professor
Timothy Barnett, MD; Clinical Assistant Professor
School of Medicine Faculty

Fadi Bashour, MD; Clinical Assistant Professor
Ahmet Bayar, MD; Clinical Instructor
James Bekeny, MD; Clinical Assistant Professor
Regan Berg, MD; Clinical Assistant Professor
John Bergfeld, MD; Clinical Assistant Professor
Mark Berkowitz, MD; Clinical Assistant Professor
Cassann Blake, MD; Clinical Assistant Professor
Anne Blumental-Perry, PhD; Adjunct Assistant Professor
Brent Bogard, MD; Clinical Assistant Professor
Johannes Bonatti, MD; Clinical Professor
Gwen Bonner, MD; Clinical Instructor
Samuel Borsellino, MD; Clinical Assistant Professor
Georgeanne Botek, DPM; Clinical Assistant Professor
Mark Botham, MD; Clinical Assistant Professor
Natalie Bowersox, MD; Clinical Assistant Professor
Jonathan Boyd, MD; Clinical Assistant Professor
Jeffrey Boyko, D.O.; Clinical Assistant Professor
David Brigati, MD; Clinical Instructor
Peter Brooks, MD; Clinical Assistant Professor
Michael Brown, DO; Clinical Assistant Professor
Diane Brown-Young, MD; Clinical Assistant Professor
Brian Burkey, MD; Clinical Assistant Professor
Robert Cagle, MD; Clinical Instructor
John Cann, DPM; Clinical Assistant Professor
Avery Capone, MD; Clinical Instructor
William Cappaert, MD; Clinical Assistant Professor
Mary Carneval, DO; Clinical Assistant Professor
Robert Cebul, MD; Clinical Assistant Professor
Walter Cha, MD; Clinical Assistant Professor
Kevin Chandler, MD; Clinical Instructor
Jeff Chapa, MD; Clinical Assistant Professor
Altagracia Chavez, MD; Clinical Assistant Professor
Christina Ching, MD; Clinical Instructor
Louisa Chiu, MD; Clinical Instructor
Stella Chiunda, DPM; Clinical Assistant Professor
Shih-Chieh Chueh, MD PhD; Clinical Professor
James Church, MBBCh; Clinical Assistant Professor
Peter Ciolek, MD; Clinical Instructor
Michele Colangelo, DO; Clinical Assistant Professor
Angela Collie, MD PhD; Clinical Instructor
Viviane Connor, MD; Clinical Assistant Professor
Constantinos Constantinou, MD; Clinical Assistant Professor
George Coseriu, MD; Clinical Assistant Professor
John Costin, MD; Clinical Assistant Professor
Christian Cruz, MD; Clinical Instructor
Giovanna da Silva, MD; Clinical Assistant Professor
Elias Dakwar, MD; Clinical Assistant Professor
Louis Damico, MD; Clinical Assistant Professor
Ihor Danko, MD; Clinical Instructor
Howard Darvin, MD; Clinical Assistant Professor
Guillermo Davila, MD; Clinical Assistant Professor
Alan Davis, MD; Clinical Assistant Professor
Carly Day, MD; Clinical Assistant Professor
Colleen DeBarr, DPM; Clinical Assistant Professor
Russell DeMicco, D.O.; Clinical Assistant Professor
Eric Devaney, MD; Clinical Professor
Conor Devine, MD; Clinical Instructor
Edward Diaz, MD; Clinical Instructor
David Dietz, MD; Clinical Associate Professor
John DiFiore, MD; Clinical Assistant Professor
Jeffrey Donohoe, MD; Clinical Assistant Professor
John Dorsky, MD; Clinical Assistant Professor
Basem Droubi, MD; Clinical Assistant Professor
Desmond D’Souza, MBBS; Clinical Instructor
Vladimir Dubchuk, MD; Clinical Assistant Professor
Steven Earle, MD; Clinical Assistant Professor
David Ebenezer, MD; Clinical Instructor
Bijan Eghtesad, MD; Clinical Assistant Professor
Marina Eisenberg, MD; Clinical Assistant Professor
Kevin El-Hayek, MD; Clinical Instructor
Vahid Entezari, MD; Clinical Instructor
Barbara Ercole, MD; Clinical Assistant Professor
Pedro Escobar, MD; Clinical Associate Professor
Peter Evans, MD PhD; Clinical Assistant Professor
Lourdes Falconi, MD; Clinical Assistant Professor
Alicia Fanning, MD; Clinical Assistant Professor
Amr Fergany, MD; Clinical Assistant Professor
Amanda Ferry, MD; Clinical Assistant Professor
Gretchen Fisher, MD; Clinical Assistant Professor
Richard Freeman, MD PhD; Clinical Associate Professor
Mary Freyvogel, DO; Clinical Assistant Professor
David Friedman, MD; Clinical Assistant Professor
Charlotte Frides, MSN; Adjunct Instructor
Mark Froimson, MD; Clinical Assistant Professor
Jonathan Funk, MD; Clinical Assistant Professor
Bishoy Gad, MD; Clinical Instructor
William Gans, MD; Clinical Assistant Professor
Thomas Garofalo, MD; Clinical Assistant Professor
Katie Geelan-Hansen, MD; Clinical Instructor
Rick Gemma, DO; Clinical Assistant Professor
Jason Genin, DO; Clinical Assistant Professor
Joseph George, MD; Clinical Assistant Professor
Islam Ghoneim, MD; Clinical Assistant Professor
Neil Gibson, MD; Clinical Instructor
Bradley Gill, MD; Clinical Instructor
Gregory Gilot, MD; Clinical Assistant Professor
Margaret Gilot, MD; Clinical Assistant Professor
Julie Girzhel, MD; Clinical Assistant Professor
Habibeh Gitforooz, MD; Clinical Assistant Professor
Kathryn Goebel, MD; Clinical Assistant Professor
Amitabh Goel, MD; Clinical Professor
Michael Gong, MD PhD; Clinical Assistant Professor
Jennifer Goodman, DPM; Clinical Instructor
Ilhya Gorgun, MD; Clinical Assistant Professor
Loinel Gottschalk, MD; Clinical Instructor
Thomas Graham, MD; Clinical Assistant Professor
Daniel Greene, MD; Clinical Instructor
David Gurd, MD; Clinical Assistant Professor
Jesse Gutnick, MD; Clinical Instructor
Richard Guttman, MD; Clinical Assistant Professor
Georges-Pascal Haber, MD, PhD; Clinical Assistant Professor
Betty Haberkamp, DDS; Clinical Assistant Professor
Thomas Haberkamp, MD; Clinical Assistant Professor
Lawrence Hakim, MD; Clinical Assistant Professor
M. Halbreiner, MD; Clinical Instructor
Amer Hanano, MD; Clinical Assistant Professor
Anastasios Hantzakos, MD; Clinical Assistant Professor
Mark Hardy, DPH; Clinical Instructor
Waleed Hassen, MD; Clinical Associate Professor
Samuel Haywood, MD; Clinical Instructor
Nader Hebela, MD; Clinical Associate Professor
Mark Hendrickson, MD; Clinical Assistant Professor
Christopher Herbert, DPM; Clinical Assistant Professor
Robert Hermann, MD; Clinical Professor
Gina Hild, DPM; Clinical Assistant Professor
Bryan Hinck, MD; Clinical Instructor
Jason Ho, MD; Clinical Instructor
Carrie Hood, MD; Clinical Assistant Professor
Brandon Hopkins, MD; Clinical Assistant Professor
Anne Hseu, MD; Clinical Instructor
Eric Hurtado, MD; Clinical Assistant Professor
John Iafelice, MD; Adjunct Instructor
Raymond Isakov, MD; Clinical Assistant Professor
Brandon Isariyawongse, MD; Clinical Instructor
Pascal Jarjoura, MD; Clinical Assistant Professor
John Jasper, MD; Clinical Assistant Professor
Majida Jassani, MD; Clinical Associate Professor
Joan Jesse, MD; Clinical Assistant Professor
Douglas Johnston, MD; Clinical Instructor
Morgan Jones, MD MPH; Clinical Assistant Professor
David Joyce, MD; Clinical Instructor
Michael Joyce, MD; Clinical Associate Professor
Timothy Joyce, MD; Clinical Instructor
Jeanwan Kang, MD; Clinical Assistant Professor
Georgios Karagkounis, MD; Clinical Instructor
Lynnette Karth, MD; Clinical Assistant Professor
Ganesh Kartha, MD; Clinical Instructor
Daniel Kassavin, MD; Clinical Assistant Professor
Robert Katz, MD; Clinical Professor
Kripa Kavasseri, MD; Clinical Assistant Professor
Rebecca Kelso, MD; Clinical Assistant Professor
Rosanne Kho, MD; Clinical Assistant Professor
Fadi Khoury, MD; Clinical Assistant Professor
Howard Kimmel, MD; Clinical Senior Instructor
Bogdan Kindzelski, MD; Clinical Instructor
Terry King, MD; Clinical Assistant Professor
Lee Kirksey, MD; Clinical Assistant Professor
John Klein, MD; Clinical Instructor
Matthew Klos, PhD; Clinical Instructor
Thomas Knackstedt, MD; Clinical Assistant Professor
Joel Kolmodin, MD; Clinical Instructor
Meredith Konya, MD; Clinical Assistant Professor
Marijan Koprivanac, MD; Clinical Instructor
Alexander Kotlyar, MD; Clinical Instructor
David Kovacevic, MD; Clinical Instructor
David Krahe, DO; Clinical Assistant Professor
Viktor Krebs, MD; Clinical Assistant Professor
Jayram Krishnan, DO; Clinical Assistant Professor
Thomas Kuivila, MD; Clinical Assistant Professor
Norman Kumins, MD; Clinical Assistant Professor
Neilendu Kundu, MD; Clinical Instructor
Donald Kushner, MD; Clinical Senior Instructor
Joseph Lahorra, MD; Clinical Assistant Professor
Ching-Feng Lai, DO; Clinical Assistant Professor
Eric Lamarre, MD; Clinical Instructor
Patrick Landers, DPM; Clinical Instructor
James Lane, MD; Clinical Assistant Professor
Mary Laplante, MD; Clinical Assistant Professor
Byron Lee, MD PhD; Clinical Assistant Professor
Jai Lee, MD; Clinical Assistant Professor
Brian Leo, MD; Clinical Assistant Professor
Melissa Levack, MD; Clinical Instructor
David Levy, MD; Clinical Associate Professor
Edward Levy, MD; Clinical Assistant Professor
Pamela Li, MD; Clinical Assistant Professor
Hanna Lisbona, MD; Clinical Assistant Professor
Christopher Litts, MD; Clinical Assistant Professor
Emanuele Lo Menzo, MD, PhD; Clinical Assistant Professor
Gabriel Loor, MD; Clinical Instructor
David Lott, MD; Clinical Instructor
Jennifer Lucas, MD; Clinical Assistant Professor
Sanford Luria, MD; Clinical Assistant Professor
Adam Mace, MD; Clinical Instructor
Ramon Malaya, MD; Clinical Assistant Professor
James Malgieri, MD; Clinical Assistant Professor
Sharon Marcanthony, MD; Clinical Assistant Professor
Patrick Marinello, MD; Clinical Instructor
Alan Markowitz, MD; Clinical Assistant Professor
David Maron, MD; Clinical Assistant Professor
Steven Maschke, MD; Clinical Assistant Professor
Claudia Mason, MD; Clinical Assistant Professor
Anthony Matalavage, DPM; Clinical Instructor
Daniel Mayer, DO; Clinical Assistant Professor
Tara McElroy, MD; Clinical Assistant Professor
Thomas McGrew, MD; Clinical Assistant Professor
Erin Mckelvey, MD; Clinical Assistant Professor
Michael Medina, MD; Clinical Assistant Professor
Miguel Medina, MD; Clinical Assistant Professor
Gita Mehta, MBBS; Clinical Assistant Professor
Jon Meine, MD; Clinical Assistant Professor
James Merlino, MD; Clinical Assistant Professor
Miloslava Mervart, MD; Clinical Assistant Professor
Mena Mesoha, MD; Clinical Instructor
Daniel Mesko, DO; Clinical Instructor
Sharon Mikol, MD; Clinical Assistant Professor
Susan Mlijkovic-Goodrich, MD; Clinical Assistant Professor
Jill Minger, MD; Clinical Assistant Professor
Sara Miniaci-Coxhead, MD; Clinical Assistant Professor
Suhael Momin, MD; Clinical Instructor
Rosebel Monteiro, MD; Clinical Instructor
Sara Miniaci-Coxhead, MD; Clinical Assistant Professor
Ryan Mori, MD; Clinical Instructor
Gareth Morris-Stiff, MBBCh; Clinical Assistant Professor
Thomas Mrocz, MD; Clinical Assistant Professor
Kevin Muise, MD; Clinical Assistant Professor
Amani Munshi, MD; Clinical Assistant Professor
Nicolas Muruve, MD; Clinical Assistant Professor
Sumon Nandi, MD; Clinical Instructor
Martin Newman, MD; Clinical Assistant Professor
Kathryn Newton, MD; Clinical Assistant Professor
Robert Nickodem, Jr., MD; Clinical Assistant Professor
Juan Nogueras, MD; Clinical Assistant Professor
Edward Nowicki, MD; Clinical Associate Professor
Yaw Nyame, MD; Clinical Instructor
William O'Brien, MD; Clinical Assistant Professor
Timothy O'Donnell, MD; Clinical Assistant Professor
Patrick O'Hara, MD; Clinical Professor
Thomas Olbrych, MD; Clinical Assistant Professor
Omar Ortiz-Alvarado, MD; Clinical Assistant Professor
R. Orr, MD; Clinical Assistant Professor
George Ozbardakci, MD; Clinical Assistant Professor
Tammy Parker, MD; Clinical Assistant Professor
Jeffrey Parks, MD; Clinical Instructor
Mita Patel, MD; Clinical Assistant Professor
Betsy Patterson, MD; Clinical Assistant Professor
Thomas Patterson, PhD; Adjunct Assistant Professor
Daniel Peabody, MD; Clinical Assistant Professor
Sotero Peralta, MD; Clinical Assistant Professor
Tiffany Perry, MD; Clinical Assistant Professor
Yaron Perry, MD; Clinical Associate Professor
James Persky, MD; Clinical Assistant Professor
Barry Peskin, MD; Clinical Assistant Professor
Julian Peskin, MBBS; Clinical Assistant Professor
Erica Peters, MD; Clinical Assistant Professor
Roland Philip, MD; Clinical Assistant Professor
Thomas Picklow, MD; Clinical Assistant Professor
Bradley Pierce, MD; Clinical Assistant Professor
J. Vicente Poblete, MD; Clinical Assistant Professor
Christine Poblete-Lopez, MD; Clinical Assistant Professor
James Poliquin, MD; Clinical Assistant Professor
Arthur Porter, MD; Clinical Assistant Professor
Fabio Potenti, MD; Clinical Assistant Professor
Debra Pratt, MD; Clinical Assistant Professor
Naftali Presser, MD; Clinical Instructor
Brian Putka, MD; Clinical Assistant Professor
Laura Rabinowitz, MD; Clinical Assistant Professor
Prasanta Raj, MBBS; Clinical Associate Professor
Rachel Randall, MD; Clinical Instructor
Sudhakar Rao, MD; Clinical Assistant Professor
Colleen Raymond, MD; Clinical Assistant Professor
Daniel Raymond, MD; Clinical Assistant Professor
Vicki Reed, MD; Clinical Assistant Professor
Jean Reinhold, MD; Clinical Assistant Professor
Peter Revenaugh, MD; Clinical Instructor
Stephanie Ricci, MD; Clinical Assistant Professor
Jeffrey Robbins, MD; Clinical Assistant Professor
Scott Robertson, MD; Clinical Assistant Professor
Lisa Rock, MD; Clinical Instructor
John Rodriguez, MD; Clinical Assistant Professor
L. Leonardo Rodriguez, MD; Clinical Assistant Professor
Warren Rose, MD; Clinical Assistant Professor
Eric Roselli, MD; Clinical Assistant Professor
Lester Rosen, MD; Clinical Assistant Professor
Raul Rosenthal, MD; Clinical Assistant Professor
Florian Roser, MD PhD; Clinical Professor
Richard Roski, MD; Clinical Assistant Professor
Allen Roth, MD; Clinical Assistant Professor
James Ruda, MD; Clinical Instructor
Jonathon Russell, MD; Clinical Instructor
Rebecca Russell, MD; Clinical Assistant Professor
Andrew Russman, DO; Clinical Assistant Professor
Barbara Saar, DPM; Clinical Instructor
William Saar, DPM; Clinical Assistant Professor
Vani Sabesan, MD; Clinical Assistant Professor
Frank Sabo, MD; Clinical Assistant Professor
John Salamone, DPM; Clinical Instructor
Abdelaziz Saleh, MBBSCH; Clinical Professor
Muhammad Salman, MD; Clinical Assistant Professor
Michael Samotowka, MD; Clinical Assistant Professor
Mary Samploki, MD; Clinical Instructor
James Sampliner, MD; Clinical Professor
Dana Sands, MD; Clinical Assistant Professor
Bashir Sankari, MD; Clinical Assistant Professor
Thomas Santoscoy, MD; Clinical Assistant Professor
Edward Savage, MD; Clinical Professor
Jason Savage, MD; Clinical Associate Professor
Abraham Sayon, MD; Clinical Instructor
Joseph Scarcella, MD; Clinical Assistant Professor
Michael Scarcella, MD; Clinical Instructor
Paula Schaffer-Polakof, MD; Clinical Instructor
Maria Schleicher, MD; Clinical Assistant Professor
Frederick Schmieder, DPM; Clinical Instructor
Gabriel Schnickel, MD; Clinical Assistant Professor
Scott Seidel, DO; Clinical Instructor
Francesco Serino, MD; Clinical Professor
Alfred Serna, MD; Clinical Assistant Professor
Sebouh Setrakian, MD; Clinical Assistant Professor
Anup Shah, MD; Clinical Instructor
Mihir Shah, MD; Clinical Instructor
Samir Shah, MD; Clinical Instructor
Kaushal Shah, MD; Clinical Assistant Professor
David Shapiro, MD; Clinical Assistant Professor
Sarah Share, MD; Clinical Assistant Professor
Alok Shrivastava, MBBS; Clinical Assistant Professor
Shafik Sidani, MD; Clinical Assistant Professor
Anne Sierk, MD; Clinical Assistant Professor
Neil Sika, O.D.; Clinical Senior Instructor
Conrad Simpfendorfer, MD; Clinical Assistant Professor
Ashley Simpson, DO; Clinical Assistant Professor
Lynn Sindwani, MD; Clinical Assistant Professor
Scott Slavis, MD; Clinical Assistant Professor
Andrew Smith, MD; Clinical Assistant Professor
Armce Smith, MD; Clinical Instructor
Keisha Smith, MD; Clinical Assistant Professor
Edward Soltesz, MD; Clinical Assistant Professor
Michael Sprague, MD; Clinical Assistant Professor
Selvon St. Clair, MD PhD; Clinical Instructor
Rebecca Starck, MD; Clinical Assistant Professor
Robert Steffen, MD; Clinical Instructor
Amy Stephens, MD; Clinical Assistant Professor
Donald Stephens, MD; Clinical Assistant Professor
Robert Stewart, MD; Clinical Assistant Professor
Dina Stock, DPM; Clinical Assistant Professor
Womack Stokes, MD; Clinical Assistant Professor
Juan Suarez, MD; Clinical Assistant Professor
Andrew Sun, MD; Clinical Instructor
Luay Susan, MBBS; Clinical Assistant Professor
Sharom Sutherland, MD; Clinical Assistant Professor
Monica Svets, MD; Clinical Assistant Professor
Samuel Szomstein, MD; Clinical Assistant Professor
Hideo Takahashi, MD; Clinical Instructor
Dennis Tang, MD; Clinical Instructor
Julierut Tantibbedhyangkul, MD; Clinical Assistant Professor
Mary Taylor, MD; Clinical Assistant Professor
Anil Thomas, MD; Clinical Instructor
Anthony Tizzano, MD; Clinical Assistant Professor
Mindy Toabe, OD; Clinical Senior Instructor
Katherine Trunzo, MD; Clinical Assistant Professor
Andreas Tzakis, MD, PhD; Clinical Assistant Professor
Yuji Umeda, MD, PhD; Clinical Assistant Professor
Raman Unnikrishnan, MD; Clinical Instructor
Sneha Vaish, MD; Clinical Assistant Professor
Nakul Vakil, MD; Clinical Instructor
Jennifer VandeVeld, DO; Clinical Assistant Professor
Donna Vecchione, MD; Clinical Senior Instructor
Dominic Venne, MD; Clinical Associate Professor
Mark Verdun, DO, PhD; Clinical Assistant Professor
David Vexler, MD; Clinical Assistant Professor
Eloy Villasuso, MD; Clinical Assistant Professor
David Vogt, MD; Clinical Associate Professor
Steven Wanek, MD; Clinical Assistant Professor
Robert Weaver, DPM; Clinical Instructor
Alvin Wee, MD; Clinical Assistant Professor
Eric Weiss, MD; Clinical Assistant Professor
David Westerdahl, MD; Clinical Assistant Professor
Steven Wexner, MD; Clinical Assistant Professor
Catherine Wilkins, MD; Clinical Assistant Professor
Ryan Williams, MD; Clinical Assistant Professor
Erika Woodson, MD; Clinical Assistant Professor
James Wu, MD PhD; Clinical Assistant Professor
Randall Yetman, MD; Clinical Assistant Professor
Jeh Yung, MD; Clinical Instructor
Salena Zanotti, MD; Clinical Assistant Professor
Andrea Zelisko, MD; Clinical Instructor
Aiwen Zhang, PhD; Clinical Assistant Professor
Tao Zhu, MD; Clinical Instructor
Yuriy Zhukov, MD; Clinical Assistant Professor
Stephen Zimberg, MD; Clinical Associate Professor

Urology

Andrew Altman, MD; Clinical Assistant Professor
Kevin Banks, MD; Clinical Assistant Professor
Michael Barkoukis, MD; Clinical Assistant Professor
Michael Berte, MD; Clinical Assistant Professor
Nabil Chehade, MD; Clinical Assistant Professor

Marc Cymes, MS; Clinical Instructor
Kim Fitzgerald, MD; Clinical Assistant Professor
Lawrence Gervasi, MD; Clinical Assistant Professor
Ehud Gnessin, MD; Clinical Assistant Professor
Julian Gordon, MD; Clinical Assistant Professor
Irina Jaeger, MD; Clinical Assistant Professor
Irina Jaejer, MD; Clinical Senior Instructor
Kiranpreet Khurana, MD; Clinical Assistant Professor
Gregory Kondray, MD; Clinical Assistant Professor
William Larchian, MD; Clinical Associate Professor
Frederic Levine, MD; Clinical Assistant Professor
Allan Love, MD; Clinical Assistant Professor
S. Mahoney III, MD; Clinical Assistant Professor
Mani Menon, MD; Clinical Professor
Maria Mir Maresma, MD; Clinical Instructor
Tim Sidor, MD; Clinical Assistant Professor
David Turk, MD; Clinical Assistant Professor
Lawrence Wolkoff, MD; Clinical Assistant Professor
Craig Zippe, MD; Clinical Professor
INDEX

A
Anatomy .. 34
Anesthesiologist Assistant Program .. 38

B
Biochemistry ... 41
Bioethics .. 50

C
Certificate Programs .. 66
Clinical Research .. 64

D
Doctor of Medicine (MD) ... 14

E
Environmental Health Sciences .. 61

F
Faculty ... 161

G
General Medical Sciences .. 61
Genetics & Genome Sciences ... 85
Graduate Programs .. 31

M
MD Dual Degree Programs ... 26
Molecular Biology and Microbiology 91
Molecular Medicine .. 95

N
Neurosciences .. 98
Nutrition .. 101

P
Pathology .. 112
Pharmacology .. 123
Physician Assistant Program .. 130
Physiology and Biophysics ... 135
Population and Quantitative Health Sciences 145

S
School of Medicine .. 2
Systems Biology/Bioinformatics .. 68