2018-2019 CWRU SCHOOL OF MEDICINE BULLETIN

<table>
<thead>
<tr>
<th>Department</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Medicine</td>
<td>2</td>
</tr>
<tr>
<td>Doctor of Medicine (MD)</td>
<td>14</td>
</tr>
<tr>
<td>MD Dual Degree Programs</td>
<td>26</td>
</tr>
<tr>
<td>Certificate Programs</td>
<td>76</td>
</tr>
<tr>
<td>Physician Assistant Program</td>
<td>31</td>
</tr>
<tr>
<td>Graduate Programs</td>
<td>37</td>
</tr>
<tr>
<td>Anatomy</td>
<td>41</td>
</tr>
<tr>
<td>Anesthesia</td>
<td>45</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>48</td>
</tr>
<tr>
<td>Bioethics</td>
<td>57</td>
</tr>
<tr>
<td>Clinical Research</td>
<td>74</td>
</tr>
<tr>
<td>Environmental Health Sciences</td>
<td>71</td>
</tr>
<tr>
<td>General Medical Sciences</td>
<td>71</td>
</tr>
<tr>
<td>Genetics & Genome Sciences</td>
<td>96</td>
</tr>
<tr>
<td>Molecular Biology and Microbiology</td>
<td>102</td>
</tr>
<tr>
<td>Molecular Medicine</td>
<td>106</td>
</tr>
<tr>
<td>Neurosciences</td>
<td>109</td>
</tr>
<tr>
<td>Nutrition</td>
<td>113</td>
</tr>
<tr>
<td>Pathology</td>
<td>128</td>
</tr>
<tr>
<td>Pharmacology</td>
<td>138</td>
</tr>
<tr>
<td>Physiology and Biophysics</td>
<td>145</td>
</tr>
<tr>
<td>Population and Quantitative Health Sciences</td>
<td>154</td>
</tr>
<tr>
<td>Systems Biology/Bioinformatics</td>
<td>80</td>
</tr>
<tr>
<td>Faculty</td>
<td>170</td>
</tr>
<tr>
<td>Index</td>
<td>277</td>
</tr>
</tbody>
</table>
The mission of the Case Western Reserve University School of Medicine (https://case.edu/medicine) is to advance the health of humankind through the four interrelated components of Education, Research, Clinical Care and Public Service.

The School of Medicine provides three programs leading to the MD degree: the School of Medicine program, known as the University program; the Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, known as the College program, which first admitted students in 2004; and the Medical Scientist Training Program, or MSTP, the oldest existing MD-PhD program (since 1956) with NIH MSTP support since 1975. The School of Medicine also partners with the School of Graduate Studies to offer programs leading to PhD and MS degrees, as well as certificates in disciplines in the School of Medicine.

The school is actively developing Pathway programs, health care concentrations available to medical students who want to focus on particular aspects of health and patient care. The current Pathways are the Jack, Joseph and Morton Mandel Wellness and Preventive Care, Health Humanities, and Urban Health.

As a research institution, the School of Medicine has a tradition of national leadership. The School of Medicine consistently ranks in the top tier of the nation’s medical schools for federal research funding from the National Institutes of Health, and is proud of its Clinical Translational Service Award in partnership with its affiliates. In addition, a 2015 Academic Medicine study ranked the School of Medicine in the top 15 schools based on the achievements of its graduates. Faculty and trainee research is routinely reported in the nation’s top journals, leading to biomedical discoveries and improved health. Among a wide and interdisciplinary research portfolio, the school has particular strengths in the areas of informatics, stem cells, and brain health.

The School of Medicine engages the community in public service in many ways. The School of Medicine’s commitment links researchers and medical students to the community. The school’s faculty provide 90 percent of the indigent health care in Cuyahoga County and a majority of the care for indigent patients in Ohio. A major economic influence on the northern Ohio area, the School of Medicine and its affiliated hospitals are among the largest employers of personnel in the area and further stimulate the economy by providing concepts for technology transfer to the business sector. On the international level, the School of Medicine has a global health and diseases program focusing on AIDS, tuberculosis, malaria and other diseases that directly threaten world health.

The school is very proud of the contributions made by its educators and graduates but doesn’t rest on its laurels. The curriculum constantly responds to the latest findings in education and medicine and sets the pace for other schools with input from gifted and committed scholars.

At least eleven Nobel Prize holders have ties to the School of Medicine:

John J.R. Macleod, MB, ChB, DPH, physiology professor at Case from 1903 to 1918, shared the 1923 Nobel Prize in Physiology or Medicine for the discovery of insulin. Dr. Macleod completed much of his groundwork on diabetes in Cleveland.

Cornelle J.F. Heymans, MD, who was a visiting scientist in the Department of Physiology in 1927 and 1928, received the Nobel Prize in Physiology or Medicine in 1938 for work on carotid sinus reflexes.

Frederick C. Robbins, MD, shared the 1954 Nobel Prize in Physiology or Medicine for his work on the polio virus, which led to the development of polio vaccines. He received the award two years after joining the medical school. Dr. Robbins was active at the school until his death in 2003, at which time he held the titles of medical school dean emeritus, University Professor emeritus, and emeritus director of the Center for Adolescent Health.

Earl W. Sutherland Jr., MD, who had been professor and director of pharmacology from 1953 to 1963, won the 1971 Nobel Prize in Physiology or Medicine for establishing the identity and importance of cyclic adenosine monophosphate (AMP) in the regulation of cell metabolism.

Paul Berg, PhD, who earned his biochemistry degree at the university in 1952, received the 1980 Nobel Prize in Chemistry for pioneering research in recombinant DNA technology.

H. Jack Geiger, MD, a 1958 alumnus of the medical school, is a founding member and past president of Physicians for Social Responsibility, which shared the 1985 Nobel Peace Prize as part of International Physicians for the Prevention of Nuclear War, and Physicians for Human Rights (PHR), which shared the 1997 Nobel Peace Prize as part of the International Campaign to Ban Landmines.

George H. Hitchings, PhD, who had been a biochemistry instructor from 1939 to 1942, shared the 1988 Nobel Prize in Physiology or Medicine for research leading to the development of drugs to treat leukemia, organ transplant rejection, gout, the herpes virus and AIDS-related bacterial and pulmonary infections.

Alfred G. Gilman, MD, PhD, a 1969 graduate of the medical school, shared the 1994 Nobel Prize for Physiology or Medicine for identifying the role of G proteins in cell communication.

Ferid Murad, MD, PhD, a 1965 graduate of the medical school, shared the 1998 Nobel Prize in Physiology or Medicine for discoveries concerning nitric oxide as a signaling molecule in the cardiovascular system.

Paul C. Lauterbur, PhD, a 1951 graduate of the engineering school and a visiting professor of radiology at Case in 1993, shared the 2003 Nobel Prize in Physiology or Medicine for pioneering work in the development of magnetic resonance imaging.

Peter C. Agre, MD, who completed a fellowship in hematology at Case while a medical student at Johns Hopkins, shared the 2003 Nobel Prize in Chemistry for discoveries that have clarified how salts and water are transported out of and into the cells of the body, leading to a better understanding of many diseases of the kidneys, heart, muscles and nervous system.

Two other distinguished alumni have served as U.S. surgeon general: Jesse Steinfeld, MD, a 1949 graduate, was surgeon general from 1969 to 1973, and David Satcher, MD, PhD, who graduated in 1970 and was surgeon general from 1998 to 2002.

Dr. Satcher also served as director of the Centers for Disease Control and Prevention from 1993 to 1998, and another medical school graduate, Julie Gerberding, MD, MPH, followed in his footsteps, in 2002 becoming the first woman to be named CDC director.

History
Since its founding in 1843, the Case Western Reserve University School of Medicine has been an innovator in medical education and a leader in
pioneering research. Beginning as the Medical Department of Western Reserve College (and popularly known then as the Cleveland Medical College), the school moved into its first permanent home, in downtown Cleveland, in 1846. In 1915, a 20-acre site was secured for a medical center in University Circle, the current home of Case Western Reserve University, its School of Medicine, and two of the school’s affiliated hospitals, University Hospitals of Cleveland and the Louis Stokes Cleveland Department of Veterans Affairs Medical Center. University Circle also is home to many of the country’s outstanding cultural and educational institutions.

The school was one of the first medical schools in the country to employ instructors devoted to full-time teaching and research. Six of the first seven women to receive medical degrees from accredited American medical schools graduated from Western Reserve College (as it was called then) between 1850 and 1856.

Already a leading educational institution for more than a century, in 1952 the School of Medicine initiated the most advanced medical curriculum in the country, pioneering integrated education, a focus on organ systems and team teaching in the preclinical curriculum. This curriculum instituted a pass/fail grading system for the first two years of medical school to promote cooperation among students instead of competitiveness, introduced students to clinical work and patients almost as soon as they arrived on campus, and provided free, unscheduled time in an era when doing so seemed unthinkable. Many other medical schools followed suit, and these components remain at the core of the medical school’s curriculum today.

In 1924, the School of Medicine moved into the most modern and best-equipped preclinical science building in the country at that time. That building, donated by Cleveland industrialist Samuel Mather, remains an integral part of the medical school complex. It was named the Harland Goff Wood Building in 1993 in honor of the late chair and professor of biochemistry and former provost of the university.

In 1971, the Health Sciences Center was completed to house the university’s medical, dental and nursing schools, as well as the Health Center Library. In 1994, the health sciences complex was named for now-retired U.S. Congressman Louis Stokes. The proximity of these excellent research and educational centers to other prestigious university departments including science, engineering, and social sciences, stimulates uniquely creative interaction among researchers and educators.

Another giant leap in research capabilities came in the early 1990s, when the Richard F. Celeste Biomedical Research Building, named for the former Ohio governor, was opened. The $70 million building, attached to the Wood Building, added 154,000 square feet of research space and includes conference spaces, a lecture hall, public spaces and a cafeteria.

The School of Medicine was the first medical school to provide laptop computers to all its students. Today, students use their laptops to access the entire syllabus as well as numerous electronic resources deemed essential by faculty. Students have access to the WiFi network at the medical school and across campus. Technology is used to enhance, not replace, the faculty-student interaction that occurs in the classroom, the laboratory, and small group discussions.

In 2002, the School of Medicine became only the third institution in history to receive the best review possible from the body that grants accreditation to U.S. and Canadian medical degree programs, the Liaison Committee on Medical Education. Also in 2002, the school built on its tradition of innovation in education when the university and the Cleveland Clinic entered into an agreement to form the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, with the first class matriculating in 2004.

Recent boosts in research capabilities came with the spring 2003 dedication of a new, eight-floor addition to the School of Medicine’s Wood Building, which added more than 40,000 square feet to the medical school, primarily for research laboratories. Also as part of the project, 30,000 square feet of existing laboratory space in the Wood Building was renovated. And in the fall of 2003, the School of Medicine and University Hospitals of Cleveland dedicated the new, eight-floor Iris S. and Bert L. Wolstein Research Building, adding 320,000 square feet of space for up to 700 researchers.

In 2006, the School of Medicine launched the Western Reserve2, the latest evolution in the curriculum, interweaving four themes of research and scholarship; clinical mastery; teamwork and leadership; and civic professionalism and health advocacy. That same year, it partnered with the Cleveland Municipal School District to create the School of Science and Medicine at John Hay High School, the first such school in the nation. The following year, in 2007, Dean Pamela B. Davis was appointed the school’s first woman dean of the medical school.

The curricular advancements continued throughout the next decade. In 2015, CWRU and Cleveland Clinic partnered with Microsoft to develop medical and engineering platforms as part of the new HoloAnatomy curriculum. The inaugural Physician Assistant program began its inaugural class in 2016.

In 2019, a new four-story, 485,000 square foot, state-of-the-art Health Education Campus will open. This new building will be a collaboration between CWRU and Cleveland Clinic will house the School of Medicine, including the Cleveland Clinic Lerner College of Medicine program, as well as the Frances Payne Bolton School of Nursing and the School of Dental Medicine in order to promote inter-professional education that prepares students for real-world care.

Administration

Pamela B. Davis, MD, PhD
Dean, School of Medicine, and Senior Vice President for Medical Affairs

Carol L. Moss, MS
Vice Dean for External Affairs and VP for Medical Development

Sana Loue, PhD, JD
Vice Dean for Faculty Development and Diversity

Patricia Thomas, MD
Vice Dean for Medical Education

Mukesh Jain, MD
Vice Dean for Medical Sciences

Stanton Gerson, MD
Vice Dean for Oncology

Mark Chance, PhD
Vice Dean for Research

Michael W. Konstan, MD
Vice Dean for Translational Research

Lisa M. Mencini, CPA, MBA
Senior Associate Dean and Chief of Staff
In 2002, the university and Cleveland Clinic entered into a landmark agreement to form the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, with the first students matriculating in 2004. The "College Program" is a program within the Case Western Reserve University School of Medicine. Cleveland Clinic serves as an outstanding teaching site for all medical students in the School of Medicine, in addition to being the site for pre-clerkship education in the College Program.

Cleveland Clinic was founded in 1921 by four Case Western Reserve faculty members, three of whom are counted among the alumni of the Case School of Medicine. Cleveland Clinic serves as an outstanding teaching site for all medical students in the School of Medicine, in addition to being the site for pre-clerkship education in the College Program.

Occupying 44 buildings on 167 acres, Cleveland Clinic main campus includes a hospital, an outpatient clinic, a children's hospital, specific buildings for cancer, eye, heart and urologic care, a research institute with
supporting labs and facilities, and an education institute. To better serve
the Cleveland suburbs with quality healthcare, Cleveland Clinic operates
18 family health centers, three health and wellness centers, 10 regional
hospitals and numerous urgent care and medical offices. State-of-the-art
imaging services are available, and several locations contain pharmacies
and outpatient surgery centers.

Cleveland Clinic also has locations in Florida, Nevada, Canada, Abu Dhabi
and, beginning in 2020, London.

In 2016, Cleveland Clinic recorded more than 7.14 million outpatient visits
and 220,000 hospital admissions. Among them were patients from all
50 states and 185 countries. More than 3,500 physicians and scientists,
11,800 nurses and nearly 2,000 residents and fellows provide high-quality
care for patients.

Cleveland Clinic is consistently named as one of the nation’s top
hospitals by U.S. News & World Report, and its heart and heart surgery
program has been ranked No. 1 by U.S. News since 1995. Learn more
about Cleveland Clinic (http://www.clevelandclinic.org).

Louis Stokes Cleveland Department of Veterans Affairs
Medical Center (http://www.cleveland.va.gov)
The Louis Stokes Cleveland Department of Veterans Affairs Medical
Center (VAMC) is a major teaching hospital of the School of Medicine and
is an important site for the education of medical students. The Cleveland
VAMC also supports more than 100 residency and fellowship training
positions in medicine, surgery, and psychiatry and their subspecialties.
Most VAMC physicians hold faculty appointments within the School of
Medicine. The affiliation is overseen by the Deans Committee, consisting
of the dean, department chairpersons from the School of Medicine, and
key VAMC officials.

The Cleveland VAMC is a part of the VA Healthcare System of Ohio,
linking VA health care facilities in Ohio in an integrated service
network. Inpatient care is provided at the Wade Park location and
includes medicine, surgery, psychiatry, spinal cord injury, neurology, and
rehabilitation medicine as well as a nursing home and a domiciliary.
Outpatient care is delivered in primary and specialty care clinics
located at Wade Park, Akron, Canton, Cleveland, East Liverpool, Lorain,
Mansfield, New Philadelphia, Painesville, Ravenna, Sandusky, Warren, and
Youngstown. The medical center serves more than 100,000 individual
veterans annually through approximately 11,600 hospital admissions and
1,884,000 outpatient visits.

An active research program includes activities funded through the
Department of Veterans Affairs and other governmental and private
funding sources. Total funding of approximately $21.5 million annually
(from all sources) supports more than 50 principal investigators in
a broad range of research endeavors. For more information, go here

MetroHealth System (http://metrohealth.org)
The MetroHealth System is one of the largest, most comprehensive
health care providers in Northeast Ohio, caring for people in and around
Greater Cleveland for more than 170 years. This academic health care
system is committed to the communities it serves by saving lives,
restoring health, promoting wellness, and providing outstanding, lifelong
care that is accessible to all.

Affiliated with Case Western Reserve University School of Medicine since
1914, MetroHealth is a center for medical research and education, with
all active staff physicians holding CWRU faculty appointments. More
than 400 primary care and specialty care physicians practice within
The MetroHealth System. At the core of the MetroHealth system, is the
MetroHealth Medical Center. The system’s main health care provider,
research facility, and teaching hospital is also home to the region’s only
Level 1 trauma and burn center. However, The MetroHealth System also
serves Greater Cleveland with more than a dozen urban and suburban
primary and specialty healthcare centers in Cleveland, Strongsville,
Westlake, Lakewood, Pepper Pike and Beachwood.

MetroHealth has received many accolades for its high level of care and
the innovation of its physicians. Surgeons at MetroHealth are pioneering
new techniques in minimally-invasive surgery for faster recoveries,
while its primary care physicians are developing cutting-edge ways to
manage common and chronic diseases through the use of electronic
medical records and a patient-centered medical home model called
Partners in Care. Its maternal-fetal medicine specialists are successfully
managing the riskiest of pregnancies and saving the tiniest of lives. In
addition, MetroHealth is nationally recognized by the American Heart
Association for cardiac and stroke care and the cancer center has
earned outstanding achievement awards for the treatment of cancer
patients. Every year, MetroHealth provides care to more than 28,000
inpatients and delivers approximately 3,000 newborns. More than 790,000
visits are recorded each year in the medical center’s outpatient centers,
and patient visits to the emergency department exceed 99,000. To learn
more about MetroHealth and its locations and services, go here (http://
metrohealth.org).

University Hospitals (http://www.uhhospitals.org)
University Hospitals serves the needs of patients through an integrated
network of hospitals, outpatient centers, and primary care physicians.
At the core of the health system is University Hospitals Cleveland Medical
Center. University Hospitals Cleveland Medical Center is home to some
of the most prestigious clinical centers of excellence in the nation and
the world, including cancer, pediatrics, women’s health, orthopedics and
spine, radiology and radiation oncology, neurosurgery and neuroscience,
cardiology and cardiovascular surgery, organ transplantation and human
genetics. Its main campus includes the internationally celebrated UH
Rainbow Babies & Children’s Hospital, ranked among the top children’s
hospitals in the nation; UH MacDonald Women’s Hospital, Ohio’s only
hospital for women; and UH Seidman Cancer Center, part of the NCI-
designated Case Comprehensive Cancer Center. Go here (http://
www.uhhospitals.org) for more information.

Advanced Platform Technology Research
Center of Excellence
216.791.3800 x6003
Ronald J. Triolo, PhD, Executive Director
Gilles Pinault, MD, Medical Director

The Advanced Platform Technology (APT) Center (https://
www.aptcenter.research.va.gov) at the Louis Stokes Cleveland
Veterans Affairs Medical Center (LSCVAMC) is one of 13 designated
Centers in the Rehabilitation Research and Development Service.
The APT Center focuses on serving veterans with sensorimotor
dysfunction, cognitive impairment, or limb-loss using cutting edge
technologies and rehabilitation techniques, translating them from proof
of concept to viable clinical options. Advances in material science,
microfabrication and microsystem design, neural engineering, mechanics,
and communications are captured and integrated for applications in
prosthetics/orthotics, neural interfacing, wireless health monitoring
and maintenance and all forms of enabling and emerging technologies.

The APT Center is able to provide or facilitate access to the following resources:

- Neural modeling and analysis of interface designs
- Polymer and bioactive material development
- Microelectromechanical (MEMS) systems design and fabrication
- 3-D and laser printing/prototyping, mechanical testing and dynamic simulation
- Pre-clinical in vitro and in vivo verification of device performance
- Circuit, sensor and software design and fabrication
- System validation and design control documentation
- Professional engineering support and project management
- Administrative support for intellectual property protection, regulatory affairs, and quality systems.

The APT Center was established in 2005 as a collaboration between the LSCVAMC and Case Western Reserve University (CWRU). Over 50 Engineers and Clinician Scientists at the LSCVAMC, CWRU, Cleveland Clinic, University Hospitals, Cleveland State University, Kent State University, University of Michigan, and Cornell University are affiliated with the APT Center and contribute to its mission.

Case Comprehensive Cancer Center
216.368.1122
http://cancer.case.edu
Stanton L. Gerson, MD, Director, Case Comprehensive Cancer Center

The Case Comprehensive Cancer Center (Case CCC) is one of only 49 National Cancer Institute-designated Comprehensive Cancer Centers in the country. The Case CCC integrates the cancer research activities of the largest medical collaborative in Ohio, Case Western Reserve University (CWRU), University Hospitals and Cleveland Clinic - under a single leadership structure. Our researchers dedicate themselves to improving cancer outcomes through basic studies into signaling pathways giving rise to cancer and its genetic and epigenetic causes, pursuing novel therapeutic targets, and analyzing lifestyle interventions to prevent cancer and detect it earlier.

All 370 Case CCC members are CWRU faculty, recognized nationally for contributions to cancer care, and hold leadership positions at NCI, American Association of Cancer Institutes (AACI), American Society of Hematology (ASH), and others. Cancer Center members collaborate across seven research programs at the cutting-edge of basic science and translational and clinical oncology research.

Located in Cleveland, Ohio, the Case CCC serves a population with higher than average cancer rates. Research programs extend to CWRU affiliates MetroHealth Medical Center (the region’s county hospital) and Louis Stokes Veterans Affairs Hospital and to community medical centers operated by University Hospitals and Cleveland Clinic.

As a consortium cancer center, Case CCC has become a powerful example of the potential generated by complementary institutions coming together for the benefit of research and discovery, patient treatments and community impact. Through its partners, Cancer Center programs extend throughout Northeast Ohio to offer residents access to cancer care through participation in community outreach, cancer prevention, cancer survivorship initiatives and robust clinical trials operational effort coordinated across academic medical centers and community sites.

Case Cardiovascular Center
216.368.3391
Mukesh K. Jain, MD, Director, Case Cardiovascular Research Institute
Daniel I. Simon, MD, Director, University Hospitals Harrington-McLaughlin Heart & Vascular Institute Director, Case Cardiovascular Center

The Case Cardiovascular Center (http://www.case.edu/cvri) was established in 2006 with the central mission to develop premier clinical, research, and education programs in heart and vascular disease. The structure of the Center includes clinical (University Hospitals Harrington-McLaughlin Heart & Vascular Institute—UH-HMHVI) and research (Case Cardiovascular Research Institute—CVRI) arms.

The UH-HMHVI (http://www.uhhospitals.org/services/heart-and-vascular/institute) is a multi-disciplinary team of nearly 60 full-time faculty members dedicated to (a) the prevention, diagnosis, and treatment of heart and vascular disease to both local and regional patient populations in Northeast Ohio, (b) the education and training of medical students, residents and fellows, and (c) the development of breakthrough medical advancements and practices to deliver superior clinical outcomes. These clinical services range from primary to quaternary levels of expertise and are provided at all the health are facilities within the University Hospitals healthcare system. The clinical programs are organized into 11 program centers that comprise the Institute.

The research activities of the CCC are focused on the development of premier research programs that span the full spectrum of activities from basic bench-side research to translational research (“first-in-man”) and clinical trials. The CVRI is focused on basic and translational studies. The Research & Innovation Center (RIC) of the UH-HMHVI is dedicated to innovative clinical trials and applied technology. The major areas of research focus in the CVRI include cardiovascular biology, mechanisms of gene regulation, innate immunity & inflammation, and stem cell & regenerative medicine. Investigators in the CVRI have full access to two laboratories for in vivo research in small and large animals. The RIC oversees all clinical research activities within cardiovascular medicine and surgery and is supported by a lead administrator along with nurse coordinators and staff to facilitate patient enrollment as well as regulatory/grant activities. Active areas of clinical research include interventional cardiology, vascular medicine, heart failure, electrophysiology, preventive cardiology & rehabilitative medicine, and cardiovascular imaging.

Case Center for Imaging Research (CCIR)
216.983.3264
James Basilion, PhD, Director - CCIR
Chris Flasch, PhD, Director - Imaging Research Core

The CCIR (https://case.edu/medicine/ccir) is a joint venture between Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center. The CCIR, through its numerous faculty members and state-of-the-art clinical and preclinical imaging capabilities, promotes interdisciplinary and translational imaging research. As the imaging research program at CWRU continues to grow, we strive to make the CCIR imaging capabilities available to the broader research community. This overriding goal has led to a strong...
collaborative relationship between the CCIR imaging faculty and both basic and clinical researchers in many disciplines.

Within the CCIR, the Imaging Research Core provides facilities for both preclinical and clinical imaging studies. The Imaging Research Core serves as a shared resource for CWRU’s Cystic Fibrosis Center, the Case Comprehensive Cancer Center, the Clinical and Translational Science Collaborative (CTSC), the Cleveland Digestive Diseases Research Cores Center, and the SMART Center in the School of Nursing. The preclinical facility includes two high-resolution MRI scanners, a microPET/CT scanner, an ultrasound scanner, an X-ray scanner, and three bioluminescence and fluorescence systems. Magnetic relaxometers are also available for high throughput screening of developmental MRI contrast agents. In addition, a novel cryo-imaging imaging system provides high resolution, 3D optical imaging capabilities. The Core also provides support for quantitative analysis of all imaging data.

A human 3T MRI scanner and an ultrasound scanner are also available through the Core for clinical research studies. Other clinical imaging options are also available within the Department of Radiology. The creation of a new radiopharmaceutical facility within the CCIR, together with our existing cyclotron and radioisotope delivery system, now provide the capacity to conduct a variety of molecular PET imaging studies from preclinical animal studies all the way to routine clinical studies.

Case Center for Synchrotron Biosciences

216.368.4406
Mark Chance, PhD, Director
https://case.edu/medicine/csb/

Many of the advances in structural molecular biology and related biosciences are the result of the rapidly occurring developments at synchrotrons. These include X-ray crystallography for protein structure determination, X-ray spectroscopy for examination of metalloprotein structure, and synchrotron footprinting technologies for examining macromolecular structure and dynamics. The Case Western Reserve University School of Medicine (http://casemed.case.edu) established the Center for Proteomics and Bioinformatics (http://proteomics.case.edu) for expanding the state-of-the-art in proteomics research. This center provides administrative oversight for the Case Center for Synchrotron Biosciences (CSB) which is funded by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) (http://www.nibib.nih.gov) as a Biotechnology Research Resource to serve an international community of biomedical scientists. The CSB is catalyzing further development and application of synchrotron radiation tools through a number of multidisciplinary collaborations and partnerships. The research facility is located at the National Synchrotron Light Source II (NSLS-II) (https://www.bnl.gov/ps) at Brookhaven National Laboratory (BNL) (https://www.bnl.gov/world) in New York. NSLS-II, as a Department of Energy funded facility, has as a mission to provide academic institutions access to synchrotron light through various general user, collaboration, and consortium arrangements.

The Center for AIDS Research

216.368.0271
Jonathan Karn, PhD, Director
Michael Lederman, MD, Associate Director

Since its founding in 1994, the Case Western Reserve University/University Hospitals Center for AIDS Research (CWRU CFAR (http://casemed.case.edu/cfar)) has been a center of excellence for both clinical and basic science AIDS research. Investigators participating in the CWRU CFAR draw on resources from the Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, MetroHealth Medical Center, the Cleveland Clinic Foundation and the Joint Clinical Research Center in Kampala Uganda. As one of only 19 CFARs nationally, the CFAR plays an important role in ensuring that cutting-edge AIDS research and well-received community outreach is supported in our region of the country. Major strengths in the CWRU CFAR include international research, especially with respect to research in tuberculosis and HIV malignancy, microbiodes, pathogenesis, virology, clinical trials, and training, at the national and international levels. As the first CFAR to make a major investment in international research, we have been able to expand a highly productive and long-standing scientific relationship with Makerere University, Kampala.

The CWRU CFAR shares and supports the mission of the National CFAR program to support a multi-disciplinary environment that promotes basic, clinical, epidemiologic, behavioral, and translational research in the prevention, detection, and treatment of HIV infection and AIDS. The CWRU CFAR provides: Leadership and strategic planning that promotes and supports outstanding HIV/AIDS research at our participating institutions, a vibrant series of seminars and meetings regularly bringing leaders in HIV research to our campus, laboratory cores with expertise, state-of-the-art instrumentation and technologies; pilot grant awards and mentoring to develop junior faculty interested in HIV; educational and training efforts which encompass the whole range of contemporary HIV/AIDS research; community outreach programs, and the promotion of and participation in collaborative research efforts within the national CFAR network and in Uganda.

Center for Antimicrobial Resistance and Epidemiology

216.791.3800, ext. 4788
Louis Stokes Cleveland Department of Veterans Affairs Medical Center (VAMC)
Robert A. Bonomo (robert.bonomo@va.gov), MD Chief, Medical Service

As antibiotic resistance has become a national and global public-health problem, top academic centers are preparing to launch ambitious programs addressing research on the basic, translational and clinical aspects of antibiotic resistance. The CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES) aims to translate research findings into clinically useful tools for the diagnosis and treatment of patients infected with multidrug-resistant (MOR) Gram-negative organisms and mycobacteria. The center’s long term goals are: 1) to continue and expand this dynamic research program directed at understanding the mechanistic bases of resistance in order to develop innovative clinical and therapeutic approaches to deal with MOR organisms; 2) to develop a strong clinical research program of translational medicine on antibiotic resistance; 3) to incorporate drug discovery, whole genomic sequencing and other rapid diagnostic technologies into the management of patients infected with MOR organisms and mycobacterial pathogens, including tracking of outbreaks and molecular epidemiology of these organisms; 4) to enhance educational activities of trainees in aspects related to antibiotic resistance; and 5) work with existing services available at the School of Medicine, University Hospitals, and the Clinical and Translational Science Collaborative to disseminate research and educational activities both nationally and internationally.
The Center for Child Health and Policy at Rainbow Babies & Children's Hospital

216.844.6253
Ann Nevar, MPA, Manager

Established in 2007, the Center for Child Health and Policy at Rainbow (http://www.uhhospitals.org/rainbow/for-clinicians/child-health-policy) focuses on major health policy issues that are central to the well-being of children and youth. The Center recognizes that health policy forms a framework for all health care delivery and that health policy is therefore essential to improving children's health. In this way, the Center focuses on the nexus between policy and practice of pediatric medicine.

The Center fills the need to amalgamate expertise in pediatric medicine and research with expertise in health policy. Operating as a think tank, the Center brings together experts in child health, health finance, law and policy to perform policy analyses, consultations, research, educational programming, and community outreach to advance child health through policy. Work is focused on several areas including: Maternal/Fetal/Newborn Health; Chronic Illness; Quality; and Care Delivery Systems. The Center is the only program devoted to child health policy in Cleveland and one of few nationwide.

To date, the Center has accrued many products and achievements including: Ohio Health Policy Researcher of the Year in 2006; Ohio Health Policy Researcher of the Year for Independent Research in 2009; programs designated Centers of Excellence; multiple white papers, reports, and peer-reviewed publications; grants and awards from the National Institutes of Health, The Centers for Disease Control and Prevention, the Ohio Department of Health, the Ohio Department of Job and Family Services, and numerous foundations; and invited/elected memberships in state and national policy committees.

Center for Clinical Investigation

216.368.3286
James Spilsbury, PhD, Academic Development Core Director

http://cci.case.edu/cci/index.php/Main_Page

The Center for Clinical Investigation (CCI) was founded in 2007 and is part of Case Western Reserve University School of Medicine's Division of General Medical Sciences. The CCI serves as the academic home of Cleveland's Clinical & Translational Science Collaborative, a partnership of 4 local institutions (Case Western Reserve University, the Cleveland Clinic Foundation, the MetroHealth System, and University Hospitals) and member of a national consortium of approximately 66 institutions funded by the National Institutes of Health to increase the efficiency and speed across the Cleveland area by: (1) spurring advances in knowledge of risk factors, outcomes and treatment effectiveness in the population; (2) facilitating the transfer of scientific advances to the community; and (3) developing a new generation of clinical researchers equipped with the skills needed to efficiently design, implement and interpret novel studies that address important public health questions. To accomplish its mission, the CCI provides computer systems and applications support for basic science and clinical research activities and works closely with basic science and clinical investigators in the CWRU Schools of Medicine, Nursing, and Dental Medicine, as well as the University Hospitals Case Medical Center, Cleveland Clinic, and MetroHealth System. The CCI has supported hundreds of clinical research and epidemiology projects, including local and national multicenter, longitudinal studies. The CCI has two cores that provide research support to all investigators: the Academic Development Core and Statistical Sciences Core.

The Academic Development Core manages the newly created PhD Program in Clinical Translational Science, the Master's Degree Program in Clinical Research (Clinical Research Scholars Program - see "Clinical Research MS" tab above), and the Graduate Certificate Program in Clinical Research. The Academic Development Core also delivers seminars and short courses in clinical research and works to coordinate educational activities in interdisciplinary clinical research across the CTSC's institutional members. The programs target investigators and other key members of the research team, including data managers and study coordinators. Training efforts in research design, research data management, statistical sciences, statistical software, and scientific communication are emphasized.

The Statistical Sciences Core provides data management and statistical support for study design and data analysis. Members who provide data management consist of skilled data managers and programmers who consult and collaborate with investigators on data collection instrument development and coding, database development and administration, data cleaning and quality assurance, statistical programming, and dataset preparation. Members providing statistical support collaborate and consult with clinical investigators on proposal development, study design, study monitoring, and data analysis. "The Statistical Sciences Core currently consists of 1 PhD biostatistician and 1 MS biostatistician. Statistical software packages that are supported by the CCI Statistical Sciences Core include SAS, SPSS, R/S-Plus, NCSS PASS and Minitab. In addition, the Statistical Science core serves as a gateway for connecting investigators with the broad expertise available through the biostatistics faculty in the Department of Population and Quantitative Health Sciences.

Center for Global Health and Diseases

216.368.6321
http://www.case.edu/orgs/cghd/
James W. Kazura, MD, Director

The Center for Global Health and Diseases links the numerous international health resources of the University, its affiliated institutions, and the northern Ohio community in transdisciplinary programs of research and education related to global health. The scope of the Center's activities also includes education and service as these are related to molecular, clinical and population studies of human health and disease.

The Center is currently a national leader in National Institutes of Health-supported studies of the major infectious diseases of developing countries. Cutting-edge approaches are implemented in order to examine the molecular, genetic and immunologic basis of susceptibility to infectious diseases of public health significance - malaria, river blindness, lymphatic filariasis, schistosomiasis, HIV and other viral diseases such as Rift Valley fever. Clinical research in endemic countries is concerned with testing and implementing cost-effective public health interventions that are aimed at the control of malaria and Neglected Tropical Diseases (worm infections of children, elimination of lymphatic filariasis). The Center has ongoing research and educational collaborations with academic and governmental institutions in Papua New Guinea, Brazil, Kenya, Uganda, and several other countries in Sub-Saharan Africa. Educational programs sponsored by the Center include electives in international health, population biology, and genetics of infectious diseases (available to undergraduate, graduate and professional school
students), a weekly World Health Interest Group (WHIG) seminar series, overseas rotations for graduate and professional school students, and training programs at the university and abroad for scholars from developing countries (with support from the Fogarty International Center at NIH).

A certificate in Global Health is available (see Certificates).

Center for Health Care Research & Policy
216.778.3902
Randall D. Cebul, MD, Director

The mission of the Center for Health Care Research & Policy (http://www.chrp.org) is to: 1) improve the health of the public by conducting research that improves access to health care, increases the quality and value of healthcare services, and informs health policy and practice; and 2) lead education and training programs that promote these goals. Formally established in 1994, the Center's mission is carried out by a cross-disciplinary faculty who both lead and collaborate with other scholars in Northeast Ohio and beyond. A core faculty of 17 is extended by affiliated Senior Scholars throughout the university, assisted by an able staff and over 30 grant-supported research associates. The Center's home at MetroHealth's Rammelkamp Research and Education Building is an outstanding venue for collaborative research, mentoring of students and junior faculty, and cross-disciplinary seminars.

The Center's research and training focus in programmatic areas that reflect national health care priorities as well as high impact problems in adults. Center Programs pertain to chronic conditions, especially stroke, obesity and diabetes, and kidney disease. Programs are supported by methods units, including biostatistics and evaluation, health care decision making, and health economics and health policy. Research using clinical informatics capitalizes on growing institutional capacities in electronic medical records (EMR) and clinical decision support. Center faculty view Northeast Ohio as a laboratory for research, recognizing the national relevance of regional challenges and opportunities. For over four years, the Center has served as the administrative home for Better Health Greater Cleveland, an EMR-catalyzed initiative to measure, publicly report, and improve health outcomes for the region's residents with chronic medical problems. Center faculty also assume leadership roles in federally-supported degree programs in Health Services Research and Clinical Investigation and teach in the core curriculum of the School of Medicine.

Center for Medical Education
216.368.1948
Patricia A. Thomas, MD, FACP, Director
Klara Papp, PhD, Director, CAML

The Center for Medical Education, established in 2010, provides an organizational home for teaching and learning programs in the School of Medicine and a supportive environment for those who want to develop special skills in medical education.

The Center also sponsors faculty appointments, both full- and part-time, for faculty whose roles are predominantly focused on teaching medical students and physician assistant students. These include community clinicians who welcome medical students into their clinics and practices.

The Center for the Advancement of Medical Learning ("CAML") operates its programs under the auspices of the CMEd. CAML supports and promotes the development of teaching and lifelong-learning skills among students, faculty, staff, residents, and alumni. CAML pursues research into educational innovations to advance our knowledge of medical learning and teaching. The Center offers workshops to faculty locally, regionally, and nationally to enhance faculty teaching, research and evaluation skills.

Center for Proteomics and Bioinformatics
216.368.0291
http://proteomics.case.edu/index.html
Biomedical Research Building, Ninth Floor
Mark R. Chance, PhD, Director

The Case Center for Proteomics and Bioinformatics was created, in part, to strengthen Cleveland's presence in modern proteomics and bioinformatics research to make the region a leader in the field. The vision for the Center has been shaped over the past several years by the leadership of the Center's Director, Mark Chance, PhD, with over $120 million in grants awarded to the Center and its collaborators since its inception in February 2006. One of the primary goals of the CPB is to develop an infrastructure of sophisticated equipment that facilitates and maximizes shared equipment usage, as well as to offer a wide array of proteomics and bioinformatics services including mass spectrometry, protein expression/interactions, systems biology, and biostatistical analyses.

The CPB has expanded its vision to include education of graduate students in systems biology and bioinformatics. The Center for Proteomics and Bioinformatics developed a graduate program in Systems Biology and Bioinformatics in collaboration with Schools and Departments across the campus. For more information regarding the SYBB graduate program please see "Systems/Bioinformatics" tab above. You may also visit http://bioinformatics.case.edu/.

Proteomics entails the in-depth structural analysis of individual proteins in human and animal cells. In studying proteins and their changes, bioinformatics enables researchers to take an integrated -omics approach for discovering networks involved in human disease. The School of Medicine has established the Center for Proteomics and Bioinformatics to perform research to better understand the genetic and environmental bases of disease as well as provide new technologies to diagnose diseases such as cancer, heart disease, and diabetes.

New technologies in mass spectrometry are also allowing protein expression, localization, structure, post-translational modifications, and interactions to be studied in increasing detail and on a genome-wide scale. The Center is also developing and applying state-of-the-art structural proteomics technologies to understand the function and interactions of macromolecular complexes.

The CPB has three divisions: Proteomics and Genomics, Bioinformatics, and Macromolecular Structure.

Proteomics and Genomics Division

The mission of the Division of Proteomics and Genomics is to support research in protein and gene expression analysis, protein and gene modifications, and protein interactions in a wide variety of biological contexts. The division also develops new tools in Proteomics and Genomics research. This includes multiple Proteomics Cores to support these activities.

Bioinformatics Division
The mission of the Division of Bioinformatics is to support interdisciplinary research and training in many areas of bioinformatics including analysis of DNA and protein sequences, protein interaction networks, linkage and association studies for simple and complex traits, and gene and protein expression profiles. This includes a Bioinformatics Core that provides research support for these activities.

Macromolecular Structure Division

The mission of the Division of Macromolecular Structure is to support interdisciplinary research in new methods of structure determination, the combination of computational and experimental structural biology approaches and developing and maintaining infrastructure for macromolecular structure determination. The Division will work closely and coordinate their activities with faculty and Departments in the University who use structural information to understand function as well as other Centers that provide leadership in Structural Biology and Biophysics.

The CPB also offers a wide range of seminars, workshops, and possibilities for individual training. These activities are posted on the CPB Web site. For a list of services and to explore opportunities to collaborate, please visit the Web site: http://proteomics.case.edu or e-mail: proteomics@case.edu (proteomics@case.edu).

Center for Psychoanalytic Child Development

Kimberly Bell, PhD; John A. Hadden Jr. Assistant Professor of Psychoanalytic Child Development
Email: kmb207@case.edu
216.991.4472

The Center for Psychoanalytic Child Development was established in 2001 in memorial to John A. Hadden Jr., past President of the Board of Trustees of the Cleveland Center for Research in Child Development and of the Hanna Perkins School. The mission of the center is to advance the science of psychoanalytic child development at the School of Medicine.

The Center offers medical students and residents who are interested in working with children the opportunity for observational learning in the Hanna Perkins school. In addition, didactic courses, case conferences, and supervision are available to deepen students’ understanding of the relationship between physical and psychological development in the first 5 years of life.

The Center for RNA Science and Therapeutics

216.368.0299
http://www.case.edu/med/rnacenter/home.htm
Jeffery M. Coller, PhD, Director

The Center for RNA Science and Therapeutics is a free-standing academic unit in the basic sciences within the School of Medicine at Case Western Reserve University. The RNA Center was established in the mid-nineties as a core entity in recognition of the strong cadre of research laboratories devoted to studying post-transcriptional mechanisms of gene expression focusing on various aspects of RNA Biology. The current mission of the RNA Center is to parlay the strengths of RNA Center scientists towards the development of unique therapeutic initiatives. The RNA Center is combining the usage of nanoparticle technology with RNA science to develop new classes of drugs, leading towards the amelioration of a variety of diseases. Current efforts are focused on metabolic disorders, cancer immunotherapies, immunity, and protein replacement. In addition, we are developing new technologies that promise to improve diagnostics, allowing for earlier detection of a variety of human diseases, especially cancer.

The RNA Center contains one of the largest concentrations of RNA scientists in the nation. The faculty of the RNA Center cover nearly every aspect of RNA research. Current research in the Center focuses on several problems ranging from extremely basic questions such as the mechanism of RNA catalysis and how proteins interact with RNA to the roles of RNA processing in disease. Specific research interests include splicing and its regulation, RNA editing, RNA maturation, mechanisms of translation regulation, RNA degradation, RNA trafficking, RNA interference and regulation of gene expression by microRNAs and non-coding RNAs.

Collectively, the RNA Center provides a valuable resource for collaborative efforts within the University and its affiliated institutions: the Cleveland Clinic Foundation, MetroHealth Medical Center, the Cleveland VA Medical Center, and University Hospitals Cleveland Medical Center. In addition, the official journal of the RNA Society “RNA” was founded and continues to be housed in the RNA Center. The members of the RNA Center have an excellent funding record and the research performed is regularly published in highly visible journals such as Science, Nature, Molecular Cell, NSMB, Molecular Cell, etc.

Center for Science, Health and Society

216.368.2059
http://casemed.case.edu/cshs/
Nathan A. Berger, MD, Director

Recognizing that the successful futures of Case Western Reserve University, the City of Cleveland, and Cuyahoga County are integrally related, the Center for Science, Health and Society (CShS) was created in 2002 to focus the efforts of the University and the community in a significant new collaboration to impact the areas of health and healthcare delivery systems through community outreach, education, and health policy. The Center, based in the School of Medicine, with university-wide associations, is engaging the many strengths of the University and the community to improve the health of the community.

The Center has engaged the community at the level of the individual and the neighborhood, in public and private schools, at civic and faith-based organizations, and at the level of governmental agencies and community leadership to identify community problems, perceptions, assets, and resources; advise the community of faculty skills, assets and expertise; and, catalyze that community service based scholarship that benefits community interests and promotes mutual enhancement. The Center coordinates the Scientific Enrichment Opportunity outreach program that brings Cleveland high school students on to the medical school campus in the summer to work along with our distinguished faculty in their research labs, to introduce and stimulate the students and help prepare them to enter careers in the health career professions and biomedical workforce. The Center also coordinates the Mini Medical School Program presented every Spring and Fall to educate the community about the latest developments in healthcare, particularly those developed at CWRU. The overall goal of these programs is to educate and empower the community to become better consumers of healthcare and more informed and stronger advocates for healthcare policy and legislation in their own interests.
Center for the Study of Kidney Biology and Disease

John R. Sedor, MD, Director
Thomas H. Hostetter, MD, Co-director
Jeffrey Garvin, MD, PhD, Co-director
Jeffrey Schelling, MD, Co-director

Chronic Kidney Disease (CKD) is a growing public health problem in the United States. More than seventeen percent of US adults—more than 40 million Americans—have CKD. CKD generally progresses over time and can cause cardiovascular disease, anemia, bone disease, fluid overload, and eventually end-stage kidney disease (ESKD). Patients with ESKD need renal replacement therapy, either from dialysis or a kidney transplant, to live. The risk of death for patients receiving dialysis is nearly eight times higher than the non-ESRD population, leading to a 20% annual probability of death. Kidney disease disproportionately affects minorities and vulnerable populations. Kidney disease is expensive and uniquely tied to federal expenditures through the Medicare entitlement program. The cost of care for ~ 550,000 ESKD patients is nearly $34 billion annually, exceeding the total NIH budget. Treating all health conditions of CKD and ESRD patients consumes nearly 25% of the Medicare’s budget.

The Center’s mission is to accelerate discovery and its translation for treatment and cure of kidney diseases in an interdisciplinary environment within the rich, research environment of the CWRU School of Medicine. The faculty is an accomplished and highly interactive group of investigators, based in the adult or pediatric Divisions of Nephrology in CWRU-affiliated hospitals (Cleveland Clinic, MetroHealth, Stokes VAMC, University Hospitals) as well as other clinical and basic science departments at the School of Medicine and Lerner Research Institute. Research interests of the faculty include digital pathology image analysis using machine learning tools, glomerular diseases, diabetic and other chronic kidney diseases, epithelial cell biology and ion transport, tubular physiology, genetic epidemiology, health services research, renal transplantation, health disparities research and clinical trials. Center faculty are members of the NIDDK-funded Kidney Precision Medicine Project and the APOLLO, NEPTUNE and CureGN consortia, all of which use "omics" tools to generate deep molecular phenotypes for discovery of new treatment targets and biomarkers. Research projects use cellular, molecular biological, computational, genetic, genomic and epidemiological methods to study in vitro and animal models and/or patients. Projects by Center investigators use health data, culled from electronic health records, and biological samples from patients with kidney diseases in order to generate novel hypotheses, which can then tested with animal models and cell lines. Training opportunities are available for undergraduate, pre- and post-doctoral students.

The Center for Translational Neuroscience

216.368.6116
David M. Katz, PhD, Director

The goals of the Center for Translational Neuroscience are to develop scientific interactions that promote understanding of the pathology of neurological diseases and to develop novel therapeutic strategies for the treatment of those diseases. The Center pursues these goals through Translational Interest Group meetings and events, and through the Neurological Institute, in the University Hospitals Case Medical Center, where clinicians and investigators have a direct conduit between research and developing treatments.

Cleveland Functional Electrical Stimulation (FES) Center

216.231.3257
Robert F. Kirsch, PhD, Executive Director
Robert Ruff, MD, PhD, Medical Director

The Cleveland Functional Electrical Stimulation (FES) Center (http://fescenter.org) is a consortium of three nationally recognized institutions: Department of Veterans Affairs, MetroHealth Medical Center, and Case Western Reserve University. Through the support of these partners, the Cleveland FES Center is able to provide a continuum of advancement. Created in 1991 with a grant from the Department of Veterans Affairs, the FES Center currently has research funding at the federal, state and local levels and additional industry and foundation funding in excess of $17M in order to achieve its mission.

The Center focuses on the application of electrical currents to either generate or suppress activity in the nervous system. This technique is known as functional electrical stimulation (FES). FES can produce and control the movement of otherwise paralyzed limbs for standing and hand grasp, activate visceral bodily functions such as bladder control or respiration, create perceptions such as skin sensitivity, arrest undesired activity such as pain or spasm, and facilitate natural recovery and accelerate motor relearning.

Founded to introduce FES into clinical practice, the Center provides innovative options for restoring neurological health and function by developing advanced technologies and integrating them into clinical care.

Institute for Transformative Molecular Medicine

216.368.5725
Jonathan S. Stamler, MD, Director

The Institute for Transformative Molecular Medicine (ITMM), which operates under the combined aegis of Case Western Reserve University and University Hospitals, is composed of physician-scientists and basic discovery researchers who work to acquire fundamental scientific knowledge within the field of molecular medicine. Founded in 2010, the ITMM provides physician-scientists with the opportunity for professional advancement based on their contributions to life sciences, protected from demanding clinical schedules or administrative responsibilities. The mission of the ITMM is to foster the unrestricted pursuit of new knowledge that can be cultivated as the basis for therapeutic innovation and to inspire new generations of physician-scientists.

The operation of the ITMM is based on a new model that unites academic medical centers, physician- and discovery-scientists and commercial partners to maximize the conversion of basic science discoveries into novel, high-value therapeutics. Thus, the ITMM facilitates connectivity between medical disciplines and the basic research community in order to catalyze fundamental discovery and its transformation into therapies that benefit humankind. Creativity and innovation are highly valued in the culture fostered by the ITMM. Expertise in interdisciplinary science is prioritized, including signal transduction, receptor biology, regenerative medicine, RNA biology and chemical biology, in the pursuit of cutting-edge advances that can impact human disease.

The Mt. Sinai Skills and Simulation Center

216.368.0064
Biomedical Program (OTFBP) to advance the clinical treatment of spinal cord injury, and a $2.1M OTW Wright Program Project (WPP) award was made to create a consortium of quantitative analysis imaging systems for stem cells.

Neural Engineering Center
216.368.3978
Dominique M. Durand, PhD, Director
Kenneth Gustafson, PhD, Associate Director

The Neural Engineering Center (NEC) (http://www.case.edu/cse/nec) is a coordinated group of scientists and engineers dedicated to research and education in an area at the interface between neuroscience and engineering. They share the common goal of analyzing the function of the nervous system, developing methods to restore damaged neurological function, and creating artificial neuronal systems by integrating physical, chemical, mathematical, biological and engineering tools.

The center was started in 2001 and replaced the Applied Neural Control Laboratory (ANCL) started in 1972. The center offers breadth and depth in Neural Engineering research and education in a highly ranked biomedical engineering department and medical school. The center is located on the campus of Case Western Reserve University and its members collaborate with four major hospitals in the Cleveland area.

The center provides core facilities in tissue culture, microscopy and histology. The center facilities also include an electrode fabrication laboratory, surgical suite for acute and sterile surgery, staffed by two full-time animal technicians. The center also holds several laboratories in neural regeneration, neural interfacing, materials fabrication and rapid prototyping are also available in collaboration with other closely related centers, the Functional Stimulation Center (FES) and the Advanced Platform development Laboratory (APD). Center members work closely with the partner hospitals and the technology transfer office of CWRU for translation and clinical implementation of solutions restore neural function such as development of electrodes for communication with the nervous system, regenerating neural tissue, restoring function in paralyzed patients, preventing seizures, motor disorders, incontinence aspiration or obstructive sleep apnea.

The center provides financial support for students through research and training grants. The graduates of this program have made significant contributions to the development and the growth of this fast-growing area of neural engineering in academic, industrial and federal institutions.

Prevention Research Center for Healthy Neighborhoods
216.368.1918
Elaine A. Borawski, PhD, Director

The Prevention Research Center for Healthy Neighborhoods (PRCHN) (http://casemed.case.edu/ctsc/community/prevention.cfm) at Case Western Reserve University was established in 2009 with funding from the Centers for Disease Control and Prevention (CDC). Built upon the foundation of two previous centers that merged to become the PRCHN - the Center for Health Promotion Research and the Center for Adolescent Health - the PRCHN seeks to foster partnerships within Cleveland’s neighborhoods for developing, testing, and implementing research strategies to prevent and reduce the burden of chronic disease. The PRCHN, midway into its second 5-year cycle of CDC funding, is a...
highly responsive and collaborative community-based research center that partners with public health agencies, community organizations, neighborhood leaders and residents to address significant environmental and lifestyle issues strongly linked to chronic disease and influenced by the conditions, disparities and resources of the neighborhood itself. Its faculty and staff have also served as an active partner and leader in the transformative process occurring in Cleveland around the concepts of health equity, collective action, and the understanding of multiple determinants of health.

The PRCHN supports a comprehensive research agenda that centers around food access and community nutrition, tobacco prevention, and cessation, environments supporting healthy eating and active living, place-based health and health behavior surveillance, and community-clinical linkages and chronic disease management research. This includes core research project, Freshlink, that aims to increase nutritional food access (NFA) in low-income neighborhoods throughout Cleveland. A goal of the PRCHN is to build capacity for community-based research among University and community partners by offering formal training programs (i.e., PEER Program, PRCHN Student Internship Program) monthly seminars, workshops and webinars, and by providing technical assistance, evaluation services and subject matter expertise to its community partners.

The PRCHN partners include experienced community based researchers, heads of local boards of health, more than 50 community and health organizations, neighborhood leaders and residents, and Affiliated Faculty from five schools within the University (College of Arts and Sciences, the Frances Payne Bolton School of Nursing, the Mandel School of Applied Social Sciences, and the School of Dental Medicine), to support the mission of the Center. Representatives from these local agencies and organizations serve on the PRCHN’s Network of Community Advisors (NOCA), offering guidance to identify emerging issues, set research and programmatic priorities, and ensure that the community’s voice informs our work.

Skin Cancer Research Institute

216.368.0324
Kevin D. Cooper, MD, Director

The Skin Cancer Research Institute (http://mediswww.case.edu/dept/dermatology/Centers/SCRI.html) engages the foremost experts in dermatology and oncology to work collaboratively across disciplines to identify new ways to treat and prevent skin cancers. The Skin Cancer Research Institute (SCRI) at Case Western Reserve University exists to discover causes of skin cancers, prevent skin cancers more effectively, and to develop new therapies for skin cancer treatment.

The Department of Dermatology is poised to create a research institute unique in scope on a national scale. Its efforts are validated by generous grant funding from the National Institutes of Health as well as through its continuous stream of groundbreaking discoveries over the past decade. What exists now within this rich infrastructure is an opportunity to transform discovery in skin cancer research. CWRU plans four new centers exclusively dedicated to the study of skin cancer, which will complement existing centers of excellence in the Department. The emerging centers will include a melanoma center, a basal/squamous cell carcinoma center, a photo medicine center, and an environmental agent center.

The Skin Cancer Research Institute has an opportunity to be unique in the nation in its capacity to bring new therapies “from lab to life” by aligning specialized skills and catalyzing new knowledge through these centers.

The Stem Cell Ethics Center

216.368.0881
Insoo Hyun, PhD, Director

The CWRU Stem Cell Ethics Center (https://case.edu/medicine/bioethics) serves as a focal point for campus-wide and international interdisciplinary scholarship and education. Housed in the Department of Bioethics, the Stem Cell Ethics Center provides an avenue to educate policymakers, regulators, and the general public about stem cell research of all forms and their translation to clinical practice. The Stem Cell Ethics Center bridges ethics and biotechnology by providing ethical and technical support, as well as a forum for directed application of stem cell ethics in the complex array of cultural, social, political, and economic issues.

The Swetland Center for Environmental Health

216.368.5437
http://casemed.case.edu/swetland/
Li Li (li.li@case.edu), MD, PhD, Director

The mission of the Mary Ann Swetland Center for Environmental Health is to study the complex interplay between the environment and health. The center places special emphasis on investigating the environmental determinants of health disparity and translating the findings into practices and programs that promote community and population health.

The environments in which we live, work and play have a great impact on our health. Environmental health embraces all the physical, psychosocial, and biological factors that affect health. Today, the Swetland Center continues Mary Ann Swetland’s legacy, promoting awareness of the environment’s disparate impact on disadvantaged populations.

The strategic vision of the Swetland Center is:

- Promoting translational environmental health research
- Integrating environmental health science into medical education
- Engaging the community in environmental health sciences

The Visual Sciences Research Center

216.368.4752
Irina Pikuleva, PhD, Director
Nancy Vitale, Administrative Manager

The Visual Sciences Research Center (VSRC) was founded at Case Western Reserve University in 1996 and its mission is to promote the study of basic and clinical problems of the eye and visual system, expectantly leading to improvements in the prevention and treatment of major blinding disorders. The VSRC now comprises a multidisciplinary and comprehensive research program in vision and ophthalmology, with 30 members in different departments including Ophthalmology and Visual Sciences (http://case.edu/med/ophthalmology), Pharmacology (http://pharmacology.case.edu), Chemistry (http://chemistry.case.edu), Medicine (http://medicine.case.edu), Molecular Biology (http://case.edu/med/microbio), Population and Quantitative Health Sciences (http://epibwww.case.edu) (formerly Epidemiology & Biostatistics), Neurosciences (http://case.edu/medicine/...
Research meetings. These three seminar series and the symposium are held regularly. Members from each Ophthalmology research lab take turns presenting their research at monthly Departmental Ophthalmology Research meetings. These three seminar series and the symposium foster a multitude of opportunities for collaboration, in addition to bringing non-vision investigators into the field.

Willard A. Bernbaum Cystic Fibrosis Research Center

216.368.6896

Mitchell Drumm, PhD and Michael Konstan, MD, Co-Directors

Constance May, Administrative Assistant

The Cystic Fibrosis Research Center is a translational center composed of investigators from Case Western Reserve University and University Hospitals of Cleveland. The Center’s research is funded by over $4 million in grants from the National Institutes of Health, the Cystic Fibrosis Foundation and other sources. The Center provides core facilities and services for investigators carrying out research related to cystic fibrosis, including a Clinical Studies core that provides clinical data for research studies and aids in IRB generation and study design, an Animal Models core that maintains the world’s largest assortment of CF mouse models, a Bioanalyte core that measures a range of biomolecules (proteins, lipids, mRNA) from blood, tissues or cell culture, an Animal Imaging core that uses such technologies as MRI, PET and SECT to generate high resolution images of rodents, a Biostatistical core to carry out complex statistical analyses of CF-related studies, a Histology core that generates slide-mounted and stained sections of tissues from animal or human samples and a Cell Culture core that provides facilities and media for cultured cells. These cores facilitate translational, or “bench to bedside” projects that take very mechanistic, basic research on CF-related biochemistry and cell biology to in vivo studies in animal models and on to humans. Center members have access to all the cores as well as involvement in the weekly seminar series focused on CF or pediatric pulmonary research.

Doctor of Medicine (MD)

Programs Leading to MD

Today, applicants can choose from three programs to obtain a medical degree at Case Western Reserve University: the University Program, the College Program (Cleveland Clinic Lerner College of Medicine at Case Western Reserve University), and the Medical Scientist Training Program (https://case.edu/medicine/admissions-programs/md-phd-program).

Students in all three programs:

- are introduced to clinical work and patients almost as soon as they arrive on campus.
- learn medicine using an integrated, systems-based approach.
- are treated as junior colleagues by faculty members.
- are taught the science of medicine infused with the skills of communication and compassion.
- learn how to learn- a skill they will call on throughout their careers in the quickly changing field of medicine.

Educational Authority

Governance of the educational programs leading to the medical degree resides in the Faculty of Medicine. Each class of students selects representatives who become voting members of the Faculty of Medicine. The faculty of the School of Medicine is responsible for the content, implementation, and evaluation of the curriculum. The Dean of the School of Medicine serves as its chief academic officer, with overall responsibility to the university for the entire academic program. The
Expectations for Personal and Professional Characteristics

Students are evaluated on knowledge base, clinical skills, and professional behavior and attitudes. The following characteristics are evaluated throughout the medical curriculum, and students are expected to adhere to these standards in both their academic and personal pursuits:

Interpersonal relationships: Provide supportive, educational and empathetic interactions with patients and families, and is able to interact effectively with "difficult" patients. Demonstrates respect for and complements roles of other professionals, and is cooperative, easy to work with, commanding respect of the health care team.

Initiative: Independently identify tasks to be performed and makes sure that tasks are completed. Performs duties promptly and efficiently, and is willing to spend additional time, assume new responsibilities, and able to recognize the need for help and ask for guidance when appropriate.

Dependability: Complete tasks promptly and well. Present on time and actively participates in clinical and didactic activities. Always follows through and is exceptionally reliable.

Attitude: Are actively concerned for others. Maintain a positive outlook toward assigned tasks. Recognizes and admits mistakes. Seeks and accepts criticism, using it to improve performance.

Integrity and honesty: Demonstrate integrity. Is honest in professional encounters. Adheres to professional ethical standards.

Tolerance: Demonstrate exceptional ability to accept people and situations. Acknowledges her or his biases and does not allow them to affect patient care.

Function under stress: Consistently maintain professional composure and exhibits good clinical judgment in stressful situations.

Appearance: Always display an appropriate professional appearance.

Graduation Requirement
To graduate from CWRU School of Medicine with the MD degree (or the MD degree with Special Qualifications in Biomedical Research for students in the Cleveland Clinic Lerner College of Medicine program), students must:

1. Satisfactorily complete all Program Specific Requirements and Educational Program Objectives of the School of Medicine
2. Pass the USMLE Step 1 and USMLE Step 2 CK and CS
3. Pass or remediate the School of Medicine's Clinical Skills Exam
4. Satisfactorily complete the MD Thesis
5. Meet financial obligations to the University
6. Be approved to graduate by the Committee on Students

Licensure
Licensure to practice medicine in the United States and its territories is a privilege granted by the individual licensing boards of the states and territories. Each licensing board of the individual jurisdictions establishes its policies, eligibility, and requirements for the practice of medicine within its boundaries pursuant to statutory and regulatory provisions.

The degree of doctor of medicine awarded by Case Western Reserve University is an academic degree and does not provide a legal basis for the practice of medicine.

Learning Management System
The School of Medicine uses an integrated Learning Management System for all years of the medical education program that conveniently organizes courses, associated learning expectations and resources to support learning in the curriculum. The learning resources include references to traditional textbooks and journal articles, as well as PowerPoint presentations, illustrations, animations, videos, audio files, and links to internet-based learning tools.

University Program students have access to the internet and their curricular material via gigabit ethernet connections to the CWRU network and via an extensive campus-wide wireless access as well as access from any other internet connection. Cleveland Clinic Lerner College of Medicine students have access to the internet and the College Program curriculum via wireless access at the Cleveland Clinic or anywhere else they have an internet connection.

Medical Student Organizations
The list of organizations and activities available to medical students continually evolves to reflect the interests of current students. Visit here for the most up-to-date list of student organizations (http://www.casemed.org/student-groups1.html). (http://casemed.case.edu/admissions/studentlife/organizations.cfm)

Admission
There are three paths to a medical degree at Case Western Reserve University School of Medicine: the University Program (4 yr. MD), the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University (College Program - 5 yr. MD), and the Medical Scientist Training Program.
Program (MSTP). Inquiries about admission and application should be addressed to the appropriate office:

Office of Admissions-University Program
School of Medicine, T-308
10900 Euclid Avenue
Cleveland, Ohio 44106-4920
Phone: 216.368.3450 or casemed-admissions@case.edu

Office for Admissions and Student Affairs-College Program
Cleveland Clinic Lerner College of Medicine of Case Western Reserve University
9500 Euclid Avenue NA21
Cleveland, Ohio 44195
Phone: 216.445.7170 or 866.735.1912 or cclcm@ccf.org (//cclcm@ccf.org)

Medical Scientist Training Program
School of Medicine
Case Western Reserve University
10900 Euclid Avenue
Cleveland, Ohio 44106-4936
Phone: 216.368.3404 or mstp@case.edu

Getting Started

Students wishing to apply to any MD program at the School of Medicine must initiate this electronic process through the American Medical Colleges Application Service (AMCAS). Visit AMCAS (https://www.aamc.org/students/applying/amcas) to learn more about the medical school application process.

Admissions Process

After the American Medical College Application Service (https://students-residents.aamc.org/applying-medical-school/applying-medical-school-process/applying-medical-school-amcas) (AMCAS) is completed the applicant receives an e-mail directing him or her to the CWRU School of Medicine online secondary (final) application where the applicant can designate to which MD program(s) they wish to apply. Applicants can apply to both MD programs and/or the MSTP. It is possible for an applicant to be interviewed by and receive an admission offer from all three programs.

Applicants should complete this secondary application as instructed. After the applicant has submitted the secondary application and all supporting materials, the appropriate admissions subcommittee will review the information and decide whether to invite the applicant for an interview. After the interview, the Admissions Committee of the CWRU SOM will discuss each applicant and decide whether to extend an offer of admission.

Admissions Criteria

Although academic credentials are important in the admissions process, high grades and a high score on the MCAT are not the only criteria for admission. Just as important are interpersonal skills, exposures to medicine, well-roundedness and qualities such as professionalism, empathy, and leadership ability. The School of Medicine includes a widely diverse student body.

Academic Requirements

Given the variability in the way undergraduate institutions structure various courses, there is some flexibility with some of our prerequisite courses. Please closely review the prerequisite charts (http://case.edu/medicine/admissions/application-process/requirements) for each program.

If these prerequisites were not fulfilled at an accredited, four-year, degree-granting American or Canadian college or university, the applicant should be prepared to take at least 1 year of challenging, upper-level sciences at one of these institutions prior to application.

If all science prerequisites were taken at a community college, the committee strongly recommends that the applicant take at least one year of upper-level sciences from an accredited four-year degree granting university within the United States or Canada. If a few science prerequisite courses were taken at a community college, the committee will evaluate them on a case-by-case basis.

Undergraduate students should pursue a major in a subject of their own choosing; they should not structure their undergraduate experiences in an attempt to sway the medical school admissions committee but instead, base it on their own personal interests and goals.

Financial Aid

About 70 percent of the University Program’s medical students receive some financial aid based strictly on financial need. It’s impossible to provide precise figures for financial aid before each specific situation is completely analyzed, but here is a description of the general aspects of the process:

The School of Medicine adheres to the unit loan concept used by most private medical schools. Under this concept, if a student qualifies for financial aid, he or she is expected to obtain a specific portion of his or her support from outside sources such as a Federal Direct Loan, savings, and family. Once the student obtains this amount, the remaining aid would be provided through the School of Medicine resources, up to the amount determined to be his or her reasonable need. The school's contribution would be a combination of loan and scholarship, with the exact ratio determined by the student's particular circumstances.

All students within the College Program receive a full scholarship covering tuition and fees. Additionally, the Medical Scientist Training Program offers financial support for participants. For more information, see other entries in this publication and contact the specific program.

The University Program each year offers a number of merit scholarships to each class through its Dean’s Scholars program. These scholarships, which vary in annual amounts, are awarded for up to four years for selected students. Application for the scholarships is by invitation of the Admissions Committee. Recipients are students with records of exceptional academic and personal achievement.

Overview of the University Program

The School of Medicine curriculum always has reflected the most current educational principles, practices, and knowledge. In the 1950s the School of Medicine was the first to introduce the organ systems approach to teaching the basic sciences. In July 2006, the University Program launched the Western Reserve2 Curriculum (WR2) to develop a learner-centered and self-directed curriculum framework and implement dynamic
small group learning teams. Students learn in an environment that fosters scientific inquiry and excitement.

The University Program in Detail

The WR2 Curriculum has high expectations for self-directed learning, and seeks to train physician scholars who are prepared to treat disease, promote health and examine the social and behavioral context of illness. It interweaves four themes - 1) research and scholarship, 2) clinical mastery, 3) teamwork and leadership, and 4) civic professionalism and health advocacy to prepare students for the ongoing practice of evidence-based medicine in the rapidly changing healthcare environment of the 21st century.

Scholarship and clinical relevance are the benchmarks for learning, and clinical experiences and biomedical and population sciences education are integrated across the four years of the curriculum. The WR2 Curriculum also creates an independent, educational environment where learning is self-directed and where student education primarily occurs through:

1. facilitated, small-group student-centered discussions
2. large group interactive sessions such as Team-Based Learning or didactic sessions that offer a framework or synthesis
3. interactive anatomy sessions
4. clinical skills training
5. patient-based activities

Clinical experiences begin in the first week of the University Program when students participate in community-based health care field experiences. In January of the first year, the Community Patient Care Preceptorship (CPCP) rotations begin. Each student works with a community physician one afternoon a week for 3 months.

Research and Scholarship begin early in the curriculum with special sessions led by faculty engaged in cutting-edge research. In the summer following year one, the majority of students engage in summer research opportunities. All students participate in a mentored 16-week experience in research and scholarship and complete an MD thesis prior to graduation.

Electronic resources make the most of classroom time while improving opportunities for self-directed learning and capitalizing on the innovative technology available at Case Western Reserve University.

A key component of the University Program is the unscheduled time on most Thursday mornings and some weekday afternoons. Students use this time for self-directed learning as well as to pursue a joint degree, take electives, participate in interest groups, shadow a practicing physician, or become active in student organizations.

Each student in the University Program is a member of one of the following advising societies: Blackwell-McKinley Society, Robbins Society, Satcher Society, Geiger Society, or Wellman Society. Each society is headed by an advising dean, who helps the students navigate the curriculum, advises them on residency and career planning, and writes their dean’s letters. The society deans hold regularly scheduled small group and individual meetings with the students. The society deans are all members of the faculty of the School of Medicine and participate actively in the educational programs of the school. Some aspects of the curriculum are coordinated through the societies.

Education throughout the Four Years is Centered on:
1. Fostering experiential and interactive learning in a clinical context;
2. Stimulating educational spiraling by revisiting concepts in progressively more meaningful depth and increasingly sophisticated contexts;
3. Promoting integration of the biomedical and population sciences with clinical experience;
4. Transferring concepts and principles learned in one context to other contexts;
5. Enhancing learning through deliberate practice, or providing learners with direct observation, feedback, and the opportunity to practice in both the clinical environment and in the Case Western Reserve University (CWRU) School of Medicine’s Mt. Sinai Skills and Simulation Center.

The Western Reserve2 Curriculum has 10 Guiding Principles:
1. The core concepts of health and disease prevention are fully integrated into the curriculum.
2. Medical education is experiential and emphasizes the skills for scholarship, critical thinking, and lifelong learning.
3. Educational methods stimulate an active interchange of ideas among students and faculty.
4. Students and faculty are mutually respectful partners in learning.
5. Students are immersed in a graduate school educational environment characterized by flexibility and high expectations for independent study and self-directed learning.
6. Learning is fostered by weaving the scientific foundations of medicine and health with clinical experiences throughout the curriculum. These scientific foundations include basic science, clinical science, population-based science, and social and behavioral sciences.
7. Every student has an in-depth mentored experience in research and scholarship.
8. Recognizing the obligations of physicians to society, the central themes of public health, civic professionalism and teamwork & leadership are woven through the curriculum.
9. The systems issues of patient safety, quality medical care, and health care delivery are emphasized and integrated throughout the curriculum.
10. Students acquire a core set of competencies in the knowledge, mastery of clinical skills and attitudes that are pre-requisite to graduate medical education. These competencies are defined, learned and assessed and serve as a mechanism of assessment of the school’s success.

Curricular Composition

The four years of the WR2 Curriculum are divided into four major components, each of which focuses on health as well as disease.

Foundations of Medicine and Health

This component is made up of six curricular blocks.

The first block, Becoming a Doctor, is five weeks in duration and gives students an understanding of population health and the doctor’s role in society. Typically students begin their medical education by studying basic science at the molecular level and are often not fully aware of the relevance that this knowledge has in their future education as physicians or how it relates to the actual practice of medicine. This curricular block focuses on how physicians can act as advocates for their patients in the health care system; how social and environmental factors impact health;
and the importance of population health. Medical students participate in an Extensive Care Unit, an experiential, longitudinal, service learning project intended to introduce them to key population health concepts including epidemiology, biostatistics, community assessment, health risk behavior, and social-environmental determinants of health.

The next five blocks in the Foundations of Medicine and Health are comprised of basic science education complemented by early contact with patients in clinical preceptorships and simulated clinical experiences. Subject matter is integrated across entire biological systems, which permits faculty in the different disciplines to leverage teaching time to convey content and concepts common to their disciplines. Content is divided into the following blocks:

- **The Human Blueprint**: Comprised of endocrine, reproductive development, genetics, molecular biology, and cancer biology.

- **Food to Fuel**: Encompasses gastro-intestinal system, nutrition, energy, metabolism, and biochemistry.

- **Homeostasis**: Includes cardiovascular system, pulmonary system, renal system, cell regulation, and pharmacology.

- **Host Defense and Host Response**: Focuses on host defense, microbiology, blood, skin, and the auto-immune system.

- **Cognition, Sensation and Movement**: Comprised of neurosciences, mind, and the musculoskeletal system.

Several concepts and themes stretch longitudinally across these blocks, including **Structure** (anatomy, histopathology, and radiology) and clinical mastery. Teamwork, interprofessional collaboration, and bioethics are likewise incorporated longitudinally.

During Block 4’s Clinical Immersion Week, students leave the classroom and enter the clinical setting to see the relevance of the basic science they have been studying as the concepts are used in the setting of patient care.

The Reflection and Integration week is the final week of blocks 2-6. During this week, no new material is introduced. Learning activities are planned to help students spiral back to concepts introduced earlier in the block by presenting these concepts again, sometimes in new contexts, and now integrated with other concepts previously learned. End of block assessment takes place during the reflection and integration week.

Research and Scholarship

The WR2 Curriculum is in concert with CWRU’s emphasis on research and scholarship to encourage student development in the areas of clinical investigation and population research. The practice of medicine is becoming increasingly evidence and science-based, and research teaches students a way of framing questions and developing an approach to answering them. The focus on research and scholarship provides medical students with opportunities to pursue individualized areas of interest in great depth. Through this 16-week, mentored experience in research and scholarship (which can be taken at any point from March of the second year onward), students acquire the intellectual tools needed to formulate research questions, critically assess scientific literature and continue the life-long pursuit of learning that is a critical aspect in the careers of all physicians and physician/scientists. The research project culminates in a thesis, which is written in the format of a manuscript of the leading journal in the particular area of interest.

Clinical Experiences

The clinical curriculum cuts across all four years of the medical school curriculum, and can be divided into three areas of involvement:

1. Foundations of Clinical Medicine

This segment of the clinical curriculum runs longitudinally through the Foundations of Medicine and Health and seeks to develop a broad range of clinical and professional capabilities. FCM develops the necessary skill sets through 4 separate, but integrated programs:

- **Tuesday Seminars**: Course continues the theme of “doctoring” begun in Block 1 through the Year 1 and Year 2 curriculum. Topics examined include the relationship between the physician and the patient, the family and the community; professionalism; healthcare disparities; cultural competence, quality improvement; law and medicine; medical error/patient safety; development of mindful practitioners and end of life issues.

- **Communications in Medicine**: Course is comprised of seven workshops running through Year 1 and Year 2 that focus on the range of skills needed for effectively talking with patients including the basic medical interview, educating patients about a disease, counseling patients for health behavior change, and presenting difficult news and diagnosis.

- **Physical Diagnosis**: Course runs throughout Year 1 and Year 2 and includes: Physical Diagnosis 1 introducing the basic adult exam to Year 1 students for one session per week for eight weeks, Physical Diagnosis 2 in-depth regional exams in various formats during Year 1 and Year 2, and Physical Diagnosis 3 in Year 2 where students spend five session doing complete histories, physicals and write-ups on patients they see in an in-patient setting.

- **Patient-based Programs**: Community Patient Care Preceptorship (CPCP) during either Year 1 or Year 2 students spend 10 afternoons in a community physician’s office developing and reinforcing medical interviewing, physical exam and presentation skills (written and oral) with ongoing mentorship from a preceptor.

- **Interprofessional Education (IPE)**: IPE provides students from the health professions (Medical, Dental, Nursing, Social Work, Public Health, Nutrition and Physician Assistants) the opportunity to engage in a dynamic and interactive team learning environment to better understand the goals, purpose, and benefits of inter-professional collaboration.

2. Core Clinical Rotations:

The Core Clinical Rotations are designed to provide students from both the University and College programs of the Medical School with both breadth and depth in clinical care. Experiences are developmental, with opportunities to reinforce, build upon, and transfer knowledge and skills from all parts of the curriculum. Clinical learning is integrated across disciplines whenever possible through a unique block structure, and important themes related to scholarship, humanism, and science are supported through specially designed weekly small group programs. A unified approach to addressing and assessing a core clinical curriculum is utilized at all teaching sites with the flexibility to take advantage of the unique strengths of each clinical setting.

Core Rotations: Beginning in March of their second year, students have the opportunity to begin their core clinical rotations. These rotations are organized in blocks that integrate core specialties in at one site for 8 or 12 weeks. Core 1 combines Internal Medicine, Family Medicine, and Geriatrics for 12 weeks, Core II combines Pediatrics and OB/Gyn for 12 weeks, Core 3 combines Neuroscience and Psychiatry for 8 weeks, and Core 4 combines Surgery and Emergent Care for 8 weeks. Each of these
clinical rotations is offered at all of the School of Medicine's hospital affiliates including University Hospitals of Cleveland, MetroHealth Medical Center and the Louis Stokes VA Medical Center.

Longitudinal Clerkship: Students will have the option of completing their core clinical rotations as part of a 12-month longitudinal clerkship experience at the Cleveland Clinic. The educational learning objectives remain the same for all Case Western Reserve University students on their core rotations, however, the structure of this experience will offer some unique features aimed at increased learning, longitudinal experiences with faculty and creation of a learning community. Students will complete all 40 weeks of their core rotations within the Cleveland Clinic Health System and have 8 weeks of electives that can be taken at other core hospitals in Cleveland or as a visiting student at another institution. The structure of the core rotations will differ from other sites in order to integrate a longitudinal ambulatory block. The rotation structure will be as follows:

- Longitudinal Ambulatory Block (LAB) – 12 weeks
- Team-Based Care 1 – Inpatient Internal Medicine/Surgery – 12 weeks
- Team-Based Care 2 – OB, Inpatient Gynecology, Inpatient Pediatrics – 8 weeks
- Team-Based Care 3 – Neurology/Psychiatry – 8 weeks
- Electives (any site) – 8 weeks
- Vacation – 4 weeks

The LAB will include outpatient components of Family Medicine, Internal Medicine, Ob/Gyn, Pediatrics, Emergency Medicine, Palliative Medicine, and Geriatrics. LAB will also provide exciting opportunities for students to explore disciplines and possible areas of career interest and establish longitudinal experiences by working a half-day a week with the same preceptor over 12 weeks. The longitudinal clerkship will also allow students to create a community of learning by participating in Longitudinal Learning Groups over the year. Topics such as quality/safety, high-value care, and palliative medicine will be covered as part of a year-long curriculum.

3. **Advanced Clinical and Scientific Studies**

Advanced clinical and scientific studies provide students with flexible learning opportunities that support ongoing professional development and residency preparation and planning:

- Two Acting Internships are required: one in Internal Medicine, Surgery, Pediatrics, or Inpatient Family Medicine, and one in an area of student choice.
- One Acting Internship and all electives can potentially be done outside of the CWRU system.
- Students are encouraged to augment their interest in scholarship through rotations and activities that focus on sciences basic to medicine as well as clinical rotations.

Pathways

In addition to our innovative curriculum, students in the University Program have the option of specializing in several longitudinal pathways:

Urban Health Pathway:

The Urban Health Pathway is designed to provide selected students with the opportunity to expand their knowledge and skills in caring for patients in an urban setting, and to foster a better understanding of medicine and health in urban communities by aligning students’ engagement, clinical and research goals with the community’s health care needs.

The Jack, Joseph, and Morton Mandel Wellness and Preventative Care Pathway:

The mission of this pathway is to provide participants with insight and skills in wellness and health promotion as it relates to the domain of the mind, body, and spirit, social interactions, and the community. The vision is to incorporate and advance the promotion of health and wellness at the individual, family, institutional, professional and community levels.

Humanities Pathway:

The vision of the Humanities Pathway is to use arts and humanities-based courses and experiences to promote the development of health care professionals who will explore the fundamental questions of what it is to be human and to be a healthcare professional. Students will think critically about the complex interplay among patients, health care professionals, and culture. They will develop innovative and informed approaches to health, well-being, and quality of life for the patients and communities they serve while developing resilience and passion to improve the culture of medicine.

Health Innovation and Entrepreneurship Pathway

In today's world, innovation and aligned entrepreneurial activities are increasingly focused upon as required value-drivers in patient care, healthcare economics, and regional economic development. The goal of the Health Innovation and Entrepreneurship Pathway is to address issues relating to the commercialization of medical-related inventions by exposing students to the challenges and opportunities encountered when attempting to develop innovative concepts from the point of early discovery to the market. The students will gain insight into what constitutes innovation, the skills necessary to become successful entrepreneurs, and future approaches on how to manage their clinical practice.

Evaluation and Assessment

Student assessment in the WR2 Curriculum is designed to accomplish three goals:

1. drive the types of conceptual learning and scientific inquiry that are goals for the WR2 Curriculum
2. assess whether students have attained the level of mastery set for each phase of the curriculum
3. prepare students for medical licensure

These three goals are accomplished through multiple assessment methods.

Independent study and inquiry are hallmarks of WR2 through assessment strategies that are formative, focus on the synthesis of concepts, and promote student responsibility for the mastery of skills and material. The following assessments are used in Foundations of Medicine and Health:

1. Assessment of students’ participation in weekly Case Inquiry (IQ) groups by faculty facilitators, utilizing observable behavior anchors and focusing on contributions to team process and content, critical appraisal skills, and professional behaviors.
2. Synthesis Essay Questions (SEQs). Weekly, formative, open book concept reasoning exercises in which students are given a brief written clinical scenario and asked to explain a clinical phenomenon...
and its basic science underpinnings. Throughout a teaching block, students complete SEQs at the end of each week. They compare their own answers to an ‘ideal’ answer and receive feedback from their IQ group facilitator.

3. Summative Synthesis Essay Questions (SSEQs), or exercises that measure what students know at specific points in their education, are closed book exercises with approximately 5 clinical vignettes that take an estimated 3-4 hours to complete. These SSEQs are based on the synthesis essays students have been assigned throughout the block. In the final week of the block SSEQs present concepts from previous exercises in new contexts and require concept integration. These summative exercises are scheduled at the end of each large teaching module (every 3-4 months) and are graded by faculty.

4. Structure Practical Exercises. These assessments occur in the final week of blocks 2-6 and assess anatomy, histo-pathology and radiology through clinical scenarios and questions that require anatomic localization and histo-pathologic identification.

5. Self-Assessment Multiple Choice Questions (MCQs). Throughout the block, students are required to complete MCQs. These are drawn from the School of Medicine’s extensive bank of questions which are mapped to learning objectives for the block. Students use these MCQs throughout the block as a study aid and method of self-assessment.

6. Cumulative Achievement Tests (CAT). At the end of each block, students complete a secure formative MCQ achievement test, based on content covered in the current teaching block as well as on content from each previous block. These exams are designed utilizing test question resources available through the National Board of Medical Examiners (NBME). Tests will become progressively longer throughout the Foundations of Medicine and Health. The final CAT reflects material across all curriculum blocks. These formative tests enable students to gain perspectives on their overall progress and preparedness for the USMLE Step 1.

7. Student progress in Foundations of Clinical Medicine is measured by small group facilitator assessment in the Seminars of Clinical Practice, direct observation of skills, preceptor evaluation of patient-based activities, and OSCE examinations.

8. Professional Learning Plan. During the Block, students review learning objectives and reflect on their learning, identifying their strengths and areas for further study. A reflective essay is completed that links to pieces of evidence, accumulated throughout the block, to support areas of strength and areas for further growth that have been identified. Students, working with their Society Deans develop a plan for further learning.

The WR2 Curriculum provides students with a focused education that is faculty-directed and student-centered. Classroom hours are limited. The content of WR2, organized across biological systems, provides students with an integrated view of medicine and health and an understanding of how the basic sciences and clinical practice relate to one another. The flexibility of WR2 permits students to explore in depth an area of interest to them alongside a mentor. The curriculum places great emphasis on the social and behavioral context of health and disease as well as on population medicine which will prepare students to face the emerging challenges of today’s health care system.

Assessment for Promotion and Graduation

The faculty of the School of Medicine is charged with assessing student performance, including knowledge, skills and personal characteristics that are important qualities of a responsible, competent and humane physician. This responsibility is delegated by the faculty to the Committee on Students, a standing committee of the faculty of medicine, with a majority of its members faculty-elected.

The Committee on Students reviews the performance of every medical student in the University Program during each of the four years, determines each student’s continuing status as a student in the school, and recommends candidates for graduation. The committee reviews a medical student’s total performance, which includes the usual indices such as formal grades and assessments, as well as the professional attitudes and behavior manifested by the student. Medical education entails the mastery of didactic, theoretical, and technical matters as well as the demonstration of appropriate professional and interpersonal behavior, sensitivity, sense of responsibility and ethics, and the ability to comport oneself suitably with patients, colleagues and co-workers. To be eligible for promotion and graduation, students must complete the requirements and perform satisfactorily in all components of the curriculum. Medical students in the University Program are graded “meets expectations” or “does not meet expectations” in the first two years and as “honors,” “commendable,” “satisfactory,” “unsatisfactory,” or “achieves or exceeds expectations” in the clerkships of the third and fourth years. There is no class ranking.

Graduation Requirements

To graduate from CWRU School of Medicine with the MD degree (or the MD degree with Special Qualifications in Biomedical Research for students in the Cleveland Clinic Lerner College of Medicine program), students must:

1. Satisfactorily complete all Program Specific Requirements and Educational Program Objectives of the School of Medicine
2. Pass the USMLE Step 1 and USMLE Step 2 CK and CS
3. Pass or remediate the School of Medicine’s Clinical Skills Exam
4. Satisfactorily complete the MD Thesis
5. Meet financial obligations to the University
6. Be approved to graduate by the Committee on Students

Overview of the College Program

The Cleveland Clinic Lerner College of Medicine (CCLCM or College Program) is a distinct 5-year program within the School of Medicine. In 2002, Cleveland Clinic and CWRU formed a historic partnership to collaborate in education and research through creation of the CCLCM. As stated in the affiliation agreement between the two institutions, “the principal purpose and educational mission of the College shall be to attract and educate, in specially designed programs, a limited number of highly qualified persons who seek to become physician investigators and scientists who will advance biomedical research and practice.” To achieve this mission, the CCLCM selects students with a desire to pursue careers as physicians and researchers, educates them to be excellent doctors, nurtures their curiosity about science and medicine, provides them with substantive research experience and core research skills, and offers financial support to ensure that excess debt does not preclude their ability to follow careers in research and medicine.

The College Program in Detail

Training the Physician Investigators of Tomorrow: A Synopsis of the Program

Recognizing the critical shortage of physicians engaged in research, the College Program offers an educational program that provides medical students with the necessary skills and knowledge to enter academic
residencies and pursue successful careers as basic, translational or clinical investigators and expert doctors – without requiring them to complete an advanced degree in addition to the MD. Graduates are expected to be scientifically inquisitive, to be life-long learners, to be independent thinkers with excellent teamwork skills, to have broad-based research knowledge as well as strong clinical acumen, and to be reflective practitioners of medicine and science who take a critical approach to self-assessment and self-improvement. All three components of the curriculum – **basic science, clinical and research** – in addition to the **advising** and **assessment** processes have been created to support the development of these attributes in our medical students.

The **basic science curriculum** applies adult learning principles, building on problem-based learning (PBL) to create an early link between clinical problems and basic science learning and to help students develop their skills in hypothesis generation, critical thinking, self-identification of learning objectives, oral presentation, and teamwork. Almost all faculty-student contact time involves some form of active learning – graduate school-style seminars and problem sets rather than lectures, case-based anatomy sessions using projections and cross-sectional images rather than full cadaver dissections, interactive lab sessions rather than demonstrations, and journal clubs. To support this educational model, curriculum schedules provide extensive time for independent study. The basic science curriculum is organ-system based, with the disciplines of anatomy/embryology, biostatistics/epidemiology, cell biology, histology, imaging, immunology, pathology, pharmacology, physiology, infectious disease, oncology, genetics, evidence-based medicine, bioinformatics and ethics designated as curricular threads woven through every organ-based basic science course and extending into the year 3-5 clinical curriculum. Learning objectives for the thread disciplines are used to determine the organ system curriculum structure in the first two years, with the goal of providing a logical, coherent two-year curriculum in each of these topics basic to medicine. Courses in Year 1 focus on normal human structure and function; in Year 2, courses focus on pathophysiology of disease. Later, in Years 3 through 5, students revisit advanced basic science concepts in their core clinical rotations, clinical electives, and College Program specific pullout sessions.

The **clinical curriculum** begins in the fall of the first year contiguous with the first basic science course in Year 1. At its foundation is a continuity teaching and learning experience with a primary care preceptor and his/her patients throughout the first two years. Students spend one half-day every other week in Year 1 and one half-day every week in Year 2 with the same preceptor. During Year 1, students learn core clinical skills in doctor-patient communications and physical diagnosis in sessions linked whenever possible to the basic science courses (e.g., learning the cardiac and lung exams during the Cardiovascular and Respiratory Sciences course and the basic neurological exam during the Neurological and Behavioral Sciences course) and then practice those skills with real patients in their preceptors’ offices on alternate weeks. Once they have mastered the basics of the history and physical, they begin to apply their skills to more complete evaluations of ambulatory patients with direct observation and feedback from their preceptors. By the end of Year 2, students are capable of performing a complete history and physical and confidently evaluating adults with common outpatient problems.

In Year 2, students spend a second half-day each week in sessions focused on building advanced clinical skills or clinical activities designed to complement concomitant basic science systems topics (e.g., a session in the Diabetes Clinic during the week devoted to learning about diabetes). The other key component of the clinical curriculum in Years 1 and 2 is the weekly Art and Practice of Medicine Seminar series. This course focuses on principles of leadership and their application to medical practice, professionalism and ethics, health care systems, population medicine, and provides a setting for students to reflect on their experiences and observations of the health care system. In Years 3 through 5, students in CCLCM participate in the same core clinical experiences as students in CWRU’s University Program. Friday afternoon sessions in Years 3-5 bring CCLCM students together regardless of clinical location and focus on program-specific topics in research and human values.

During all five years, there are close mentoring and advising relationships between students and faculty. To ensure this happens, at the beginning of medical school each student is assigned a physician advisor who serves as the student’s partner and guide in navigating and mastering the curriculum throughout all five years. In addition, during the first summer, each student is assigned to an experienced basic or translational research preceptor who integrates the student into all activities in his/her lab and provides guidance and feedback to the student in such areas as working effectively with the lab team, research design, data analysis, and oral and written presentations of research. During the second summer, each student develops a similar relationship with an experienced clinical researcher who includes the student as an active participant in one or more ongoing research projects. Students are exposed to a broad range of basic, translational and clinical researchers during the first two years – during the summer research blocks, during weekly research seminars (Advanced Research in Medicine series), and in class during basic science and clinical courses. Students then select a research advisor for the master’s level research project on which they will spend 12 to 15 months during the last three years of medical school.

The College uses a unique approach to student assessment designed to enhance student learning and to promote self-directed learning. There are no grades for any course or rotation and no class ranking. Instead, each student is expected to attain a defined level of achievement in each of the 9 CWRU School of Medicocompetencies. Seven of these defined competencies encompass the 6 core competencies defined for all U.S. graduate medical education programs accredited by the ACGME (Accreditation Council for Graduate Medical Education) as well as research and personal development. Starting on the first day of medical school, students begin collecting evidence from faculty and peers of their progress in achieving the standards in each of the 9 competencies and reflecting on how the evidence demonstrates their development as doctors and researchers – the two interrelated professional roles for which they are preparing.

One of the principles of the College is that assessment drives learning – that a curriculum designed to foster self-directed learning and achievement of competencies is ineffective if assessment focuses on what the “teacher” said in class and factual recall. Therefore, the College uses a student-centered, student-driven approach to assessment with strong support from the physician advisors who know the students well and guide them as they develop skills and self-confidence as self-directed learners.

Students gather a broad range of types of evidence over their five years of study and work as partners with their physician advisors to review the evidence and their reflections, to create individual learning plans to address areas of relative weakness and to tailor the curriculum to build on their areas of particular strength. Evidence of achievement and reflections on progress in their professional development are collected in electronic Student Portfolios and used to document readiness for promotion and graduation from the program. By training students in accurate self-assessment and developing their reflective ability, we intend to send them out of medical school already skilled in the kind of
independent, self-directed learning habits that will be required of them as residents and throughout the rest of their professional lives.

CCLCM’s Foundation: A Comprehensive Research Curriculum

The research curriculum begins on the first day of medical school with the basic and translational research block and is integrated throughout all five years of the College Program. Every student participates actively in a “bench” project in the first summer, prepares an oral presentation describing the project in the format used at most scientific meetings, and develops a mock research proposal that extends the summer research project to the next research question. In addition, students learn the basic principles of research design and data analysis, ethics of the use of animals in research, and critical appraisal and interpretation of the basic science research literature in a journal club. At the end of the summer, students formally present their research project and findings to students and preceptors. Linked with the summer research curriculum is a core curriculum in basic biochemistry, cell biology, molecular biology, genetics, and bioinformatics.

The second summer is devoted to clinical research. Coursework focuses on applied medical biostatistics, clinical epidemiology, including appropriate design and analysis of various kinds of clinical research protocols, and ethical issues such as human subjects protection. Each student participates actively in an ongoing clinical research project and writes an original clinical research protocol to extend the summer research project to the next research question, prepares an oral presentation describing the proposed research protocol, and formally presents this proposal at the end of the summer.

During the remainder of Years 1 and 2, students participate in Advanced Research in Medicine (ARM), a weekly series of highly interactive research seminars linked to the content of the basic molecular science courses. In Year 1, ARM is designed to provide students opportunities for interaction with a wide range of successful investigators to help them understand the sequence of problem identification, exploring prior work in the area, hypothesis development, experimentation, successes and failures that lead to new research findings. ARM 1 also helps students appreciate the interaction between basic and clinical research – how basic science discoveries translate into changes in the clinical care of patients and how clinical observations or research findings result in new directions in basic science research. In ARM 2, the presentations are linked to the basic clinical science content each week but are more focused on current research projects and development of well-constructed research questions and reinforcement of epidemiology and biostatistics principles learned in the Year 2 summer. The sessions take on the format of a formal research presentation at a scientific meeting.

Deans’ chats are held 4-6 times a year separately for all CCLCM students that provides a forum for students to meet and interact with Cleveland Clinic health care leaders and learn the complexity of managing health care and health care systems through the eyes of senior leaders.

By the end of Year 2, each student has experienced basic and clinical research first-hand, has met a large number of investigators with different research interests, has developed essential research skills, and is ready to choose an advisor to supervise and support his/her research project. Students must submit a research proposal with the thesis advisor and thesis committee members listed at least 6 months prior to the start date of the research. A Thesis Committee made up of the research advisor and two or more additional faculty supervise and approve the student’s research proposal, progress, and final master’s level thesis that must be completed by February 15 of Year 5.

The last three years of the curriculum are specifically designed to provide flexibility to students in scheduling their research and clinical rotations. Working together, the student, research advisor, and physician advisor tailor the curriculum to the student. Students complete their research projects in one 12- to 15-month block of time, usually during the fourth year. Every student regardless of the overall schedule will continue to engage in clinical experiences at least one half-day per week during blocks devoted primarily to research – to ensure that students maintain clinical skills and contact with patients, develop a deeper appreciation of the connection between advances in biomedical research and patient care, and have the opportunity to reflect on their ongoing development as both physicians and researchers.

Curriculum Timeline: Years 1 and 2

Students begin Year 1 with a one week-long Orientation in which they are formally welcomed to the profession of medicine by the Deans and their physician advisors. The week includes individual meetings with the student’s summer research preceptor and physician advisor, an introduction to the unique assessment system and the Student Portfolio, and an introduction to the summer curriculum and its expectations. A White Coat Ceremony that commemorates the entry of all students in both the College and University programs into the CWRU School of Medicine highlights the week.

The Basic and Translational Research Block occupies the first 10 weeks of Year 1 and includes a course reviewing core concepts in cell biology, molecular biology and biochemistry. Scheduled classes and meetings occur 5 days a week for 2 hours, with the remainder of each day devoted to independent study and hands-on experience in the lab of the student’s summer research preceptor. This block sets the stage for active learning in the rest of the curriculum. Throughout the core basic science course and all the basic science courses, each week has a conceptual "theme" within which more detailed learning objectives fall. All assignments and scheduled activities are designed to help students master the core concepts for the week. Mastery is defined as being able to explain the concepts and to apply them to new or different problems or situations, rather than simply "listing" all the factual details. Sessions for the core basic science course are held on Monday, Wednesday and Friday mornings and students are expected to study background material before class and self-assess their understanding of the readings. They then work together in class to solve complex problems related to what they have studied. Tuesday mornings are devoted to focused discussions and presentations related to the science topics discussed that week or introduce students to key concepts in areas such as genetics, oncology, and bioinformatics.

Students meet each Friday for a Journal Club aimed at enhancing skills in critically assessing the basic science research literature. Each week, two students present an article; the other students are expected to read the articles carefully and come prepared with questions. Each presenter works with a faculty facilitator to review the paper and presentation before Journal Club. Using feedback from faculty and other students on their presentations and on the questions they ask of others, students begin to hone their communication skills and develop confidence participating as speakers in this setting.

The primary focus of the Year 1 Basic and Translational Research Block is the summer research project. Students are assigned to a summer research preceptor with attention to individual preferences for specific
research areas. They are expected to engage fully in all activities in the preceptor’s research group, such as special lab meetings or journal clubs, in addition to working on their defined project. At the end of week 2, they submit a draft plan for their summer research project and review it with their preceptor to set the expectations for the summer. During the summer, students also develop a brief research proposal that extends their research project. At the end of week 5, they submit a draft outline of their brief research proposal. The final document is due in week 9. During week 10, students present their projects orally in the format used at many scientific meetings — a 10-minute presentation with audiovisuals followed by 5 minutes for questions. Thus, in addition to actually working on a bench project, students are guided by their preceptors in developing a number of other key skills. Students receive feedback from their preceptors, other members of the lab team, and peers on their contributions in the lab and their written and oral presentations.

During the summer, students schedule their first formal meeting with their physician advisors to review the evidence in their Student Portfolios, to discuss their reflections on their development in their new professional roles, and to review their learning plans to address any specific weaknesses or gaps they have identified. They review feedback on their activities in small group and journal club, lab work, mock grant proposal, oral presentations and scientific writing. This evidence is provided by their summer preceptors, peers, and self-assessments of their mastery of the core basic science concepts. Just as the interactive learning in class sets the stage for research and the rest of the curriculum, the first summer sets the stage for student success in the unique assessment process used in College Program.

Each week of the Year 1 and 2 basic science courses is organized around a theme that provides a focus of learning for the students and an opportunity to integrate when possible the basic science, clinical, and research curriculum components. For example, the theme of one of the weeks of the Gastrointestinal System 1 course is “Liver, Gallbladder and Pancreas.” The Problem-Based Learning (PBL) case focuses on a patient who takes an overdose of acetaminophen and alcohol and subsequently develops liver failure. Students learn normal liver function as they explore this case. (All PBL cases used in the curriculum are based on real cases at the Cleveland Clinic.) The case provides the framework for the anatomy and other seminar sessions that focus on liver, gallbladder and pancreas anatomy, histology, drug elimination, and genetics. Friday Advanced Research in Medicine session is a meeting of the Liver Transplant Selection Committee attended by all the students where research, bioethics, and clinical care are integrated in the discussion of liver transplant candidates. During Years 1 and 2, the topics of the 2 Deans’ Dinners for each class are also coordinated with the basic science course and weekly theme.

The first basic science course in Year 1, Cardiovascular and Respiratory Sciences 1 (CRS1), is a 7-week course in which students learn basic concepts of the normal structure and function of these systems. There are 14 hours of scheduled curricular time each week in the basic science courses, including 6 hours devoted to PBL cases and 8 hours devoted to other activities such as labs, seminars, and problem sets.

Throughout Year 1, anatomy, imaging and embryology are integrated into the basic science courses with information presented in two ways – self-directed learning modules that cover basic anatomical information (and are available online), and Case Directed Anatomy Sessions on Monday mornings for which students study clinical cases designed to introduce anatomical concepts and facts before coming to the lab. In the lab, students rotate among a number of stations using cadaver projections to demonstrate anatomy relevant to the cases and radiological images such as 3-dimensional CT scans. For example, a case of a patient who has suffered a penetrating injury to the chest may be used to focus students on the anatomical structures that might be injured and their relationship to one another.

Histology is also integrated into the basic science courses, with students using a computer-based virtual microscopy system rather than a mechanical microscope to look at slides. This allows students not only to scan slides but also to see slide annotations and related gross and radiographic images. Specific learning objectives for histology are included in PBL cases in addition to seminars devoted to histology. The goal is for students to understand the gross and histological structures of each organ system in relation to its function, rather than as isolated anatomical facts. For example, during the week in CRS1 devoted to the theme of how the heart functions as a pump, students learn the structure and anatomical relationships of the four chambers of the heart and heart valves and the histological appearance of myocardial cells while they are studying the physiological concepts of preload, afterload, and contractility.

In addition to anatomy/embryology, imaging, and histology, the other “threads” in Year 1 include cell biology, pharmacology, physiology, bioinformatics, evidence-based medicine, genetics, nutrition, health care systems, ethics and humanities, building on the core concepts from the summer in specific relation to each organ system. In CRS1, students learn not only the molecular structures and functions of α- and β-receptors but also the pharmacology of endogenous and exogenous agonists and antagonists of these receptors as they study myocardial contractility and physiological regulation of blood pressure. They learn the biochemical pathways involved in aerobic and anaerobic production of ATP as they study determinants of oxygen delivery to myocardial cells, concepts they will revisit and build upon during subsequent courses when they study skeletal muscle metabolism during exercise and the role of the liver in maintenance of normal blood glucose levels. They study physiology of the heart, lungs, red blood cells and plasma as an integrated system providing oxygen and removing carbon dioxide, supporting metabolic needs of the entire body. During each course, students return to the core concepts they mastered in previous courses, using those concepts as a framework for building their understanding of the human organism as a whole. The basic science curriculum continues with Gastrointestinal System (4.5 weeks), Endocrinology and Reproductive Biology (4 weeks), Renal Biology (3 weeks), Musculoskeletal Sciences (3 weeks), Neurosciences (5 weeks), and Hematology, Immunology and Microbiology (7 weeks). Each basic science course focuses on normal structure and function, relating back to previous courses and preparing students for concepts in future courses.

Starting in the fall of Year 1, the Basic and Translational Research Summer Block’s Friday journal clubs are replaced by Advanced Research in Medicine 1, a weekly series of research seminars in which students are exposed to a wide range of basic and clinical research topics in interactive discussions with accomplished investigators. Presentations are linked closely with the basic science curriculum in order to reinforce core basic science concepts, help students feel confident in questioning the investigators based on what they are learning at the time, and illustrate the process whereby new biomedical discoveries change clinical practice.

Foundations of Clinical Medicine begins at the same time as the first basic science course and continues throughout Years 1 and 2. The guiding principle is that early exposure to patients, with direct observation and feedback by experienced faculty physicians, is optimal for real-time assessment and feedback of student clinical skills.
Foundations of Clinical Medicine has 3 interrelated components — clinical skills training, patient care experiences, and Art and Practice of Medicine seminar series. The Art and Practice of Medicine seminar series is a two-year continuum addressing professionalism, ethics, leadership and its application to the care of patients and the practice of medicine, evidence-based medicine, health care systems and patient safety introduced to students primarily through the humanities.

Core clinical skills training occurs every other week from September through May and is coordinated with the organ systems under study. On alternate weeks, students practice the basic skills they just learned with standardized patients in the classroom by conducting histories and physical exams with real patients and writing chart notes on the previous week under the supervision of their longitudinal preceptors. Starting in February, students are exposed to special aspects of the history and physical for geriatric and pediatric patients, while continuing to work on basic skills every other week with their preceptors. They also begin to take on more patient care responsibility in preparation for their weekly clinics with the same preceptor in Year 2. An Objective Structured Clinical Examination (OSCE) with feedback from preceptors is used to help students chart their progress in mastering core skills.

Year 2 begins with the 9-week Clinical Research Block. Students work with a preceptor in an active clinical research environment on an ongoing project, continuing to develop their skills in building relationships with members of a research team. They also write a mock clinical research proposal that extends the research question on which the student is working during the summer. Scheduled coursework occupies 2 hours each weekday and includes a rigorous immersion in biostatistics with students using statistical software to analyze real data sets and a clinical epidemiology course focusing on formulation of scientific questions, study design, clinical trials, and legal and ethical issues in research including human subjects’ protection. The coursework requires significant class preparation for students, thus students must balance their time and effort between the coursework and research project in the Year 2 summer. Journal Club sessions on Fridays focus on articles from the clinical research literature, with students using knowledge gained from biostatistics and epidemiology to help them analyze the papers. Feedback from peers and faculty facilitators help students enhance their presentation skills and ability to critically read and present scientific papers. Students complete the second summer with a comprehensive range of clinical research skills and knowledge, complementing their basic research experience in the first summer and preparing them to engage in basic, translational or clinically oriented research for their thesis.

For the remainder of Year 2, students return to the same organ-system based basic science curriculum they studied in Year 1, this time focusing on learning the pathophysiology of common diseases. Immunology, Pathology, Oncology, Infectious Disease/Microbiology, and Biostatistics/Epidemiology are now integrated as threads throughout the Year 2 basic science curriculum. The first basic science course is Musculoskeletal Sciences (2 weeks), followed by Neurosciences (3 weeks) and Behavioral Sciences (3 weeks), Endocrinology and Reproductive Biology (4.5 weeks), Cardiovascular and Respiratory Sciences (7 weeks), Hematology (4 weeks), Gastrointestinal System (4 weeks), and Renal Biology (4 weeks). Anatomy and embryology seminars are conducted less often during Year 2, usually 1-3 sessions per course. The clinical curriculum continues to be closely linked to the basic science courses. Students spend one half-day every week in their primary care longitudinal preceptor’s office. An additional clinical half-day is added and students see patients who demonstrate the pathophysiology being studied that week. Some of the additional half-days are devoted to learning advanced clinical skills (the gynecologic and urologic exams, evaluation of geriatric and pediatric patients with common problems) and an exposure near the end of Year 2 to the acute care setting helps to prepare students for Year 3. The Art and Practice of Medicine seminar series begin in September of Year 1 and ends in April of Year 2. Students also participate in two OSCEs, one at the beginning of Year 2 to help students identify skills to address over the year and the second at the end of Year 2 to help students document their skills for their portfolio. After classes end in mid-May, students have 6 weeks available to study for and take the USMLE Step 1 Examination.

By the end of Year 2, students have engaged actively in both basic and clinical research, learned and practiced a wide range of research skills. They have extensive experience in self-directed learning both independently and in teams and have mastered core basic science concepts related to human health and disease. They are comfortable “doctoring” adult outpatients and competent in the complete history, physical examination, oral and written presentations, and basic clinical skills such as reading EKGs. Perhaps most important, they have learned to accurately assess their own strengths and weaknesses and create learning plans for themselves – preparing them to succeed in the next three years of the curriculum and a lifetime of professional practice.

Curriculum Timeline: Years 3 through 5

After Year 2, the clinical curriculum for the College Program is the same as the University Program. In all Core Clinical Rotations, students experience both breadth and depth in clinical care, and clinical experiences are developmental, with opportunities to reinforce, build upon, and transfer knowledge and skills. Clinical learning is also integrated across disciplines whenever possible, and the roles of basic science, civic professionalism, scholarship, and population health in clinical care are evident throughout the clinical curriculum. Students likewise have patient care responsibilities that are progressive in sophistication and increasing in amount as their level of clinical skill and knowledge increases, and all core clinical competencies are addressed and assessed using common methods applied at the clinical sites at which rotations occur.

Core Rotations: Beginning in July of their third year, students have the opportunity to begin their core clinical rotations. These rotations are organized in blocks that integrate core specialties at one site for 8 or 12 weeks. Core 1 combines Family Medicine, Internal Medicine, and Geriatrics for 12 weeks, Core 2 combines Pediatrics and OB/Gyn for 12 weeks, Core 3 combines Neurology and Psychiatry for 8 weeks, and Core 4 combines Surgery and Undifferentiated Care for 8 weeks. Each of these clinical rotations is offered at all of the School of Medicine’s hospital affiliates (including University Hospitals of Cleveland, the Cleveland Clinic, MetroHealth Medical Center, and the Louis Stokes VA Medical Center).

These Core Clinical Rotations, launched in July 2006 and modified in 2009 and 2012, represent an integrated approach to clinical education that is shared by students from both the University and College programs of the School of Medicine. Students engage in clinical learning with basic science correlation through patient-based experiences that are developmental and provide opportunities to acquire, reinforce, build upon, and transfer knowledge and skills.

Advanced Clinical and Scientific Studies

Advanced and scientific studies provide students with flexible learning opportunities that support ongoing professional development and residency preparation and planning.
The College's approach to student assessment is based on two key educational concepts—“competency-based assessment” and “reflective practice.” Competency-based assessment emphasizes the need for every student to achieve the broad range of required learning outcomes by providing an appropriate curriculum, learning resources, and regular formative assessments. No grades are assigned in the College Program during the 5-year program; when a student achieves the standards for all competencies, they are assigned a “Achieves Expectations” (“AE”) for each course on their transcript. Assessment of student performance is criterion-referenced, not norm-referenced; students are not compared to one another but to faculty-defined standards of achievement. A full range of assessment methods are used to profile learning outcomes. Reflective practice emphasizes that learning is dependent upon the integration of reflection and experience. Professionals learn by reflecting on their experiences both during the experiences (“reflection-in-action”) and after the experiences (“reflection-on-action”) and by using these reflections to develop new knowledge and skills. The assessment process helps our students develop their reflective practice skills—the ability to accurately describe, analyze and evaluate their performance and to identify and follow through on effective learning plans. We are committed to helping every student achieve our competency standards and develop reflective practice skills through frequent formative assessments and close advising.

Evidence of achievement for each of the Case Western Reserve University School of Medicine's Program's 9 competencies is collected and managed in an electronic portfolio. Students and their advisors share access to the e-Portfolio database of evidence and thus can track and document student progress in meeting our nine competencies. A broad range of types of evidence is collected from the learning experiences in the research, basic science, and clinical curriculum.

During research blocks, research preceptors, journal club facilitators, problem-solving session facilitators, and student peers provide written assessments of both individual work and teamwork in the lab, written and oral presentations, and critical thinking and reasoning skills. Written research proposals and reports and the final thesis are also included in the e-Portfolio.

During the basic science courses, students complete weekly online quizzes called Self-Assessment Questions (SAQs) that cover the breadth of knowledge for each week’s theme at the level of factual recall and simple application of the facts. Faculty design the SAQs so that students who are actively participating and studying should expect to know at least 80% of the answers; the individual results of the SAQs are available only to the students, but students are encouraged to contact the course director for help with any difficulties they are having. Students have continued access to the SAQs to assess their retention of this basic science knowledge. At the end of each week, students complete 1-2 open book Concept Appraisals (CAPPs) designed to determine if they have mastered the concepts for that week well enough to apply them to new or different problems or situations in brief, well-organized, clearly written essay(s). CAPPs are designed to assess depth of knowledge in key concept areas. Other evidence is provided by PBL facilitators and peers who provide assessments of performance in PBL sessions.

Assessments in the clinical curriculum include written feedback on performance from longitudinal preceptors and other faculty physicians and residents, results of OSCEs, patient logs documenting breadth of clinical exposure, patient journals in which students record their reflections on specific patients and their problems, self-assessments of videotaped interviews with patients (both standardized and real), and feedback from patients and other health care providers.

Students are expected to meet regularly with their physician advisor to discuss their progress. Several times each year, they are required to review their assessment evidence in relation to expected levels of achievement in the 9 competencies and write Formative Portfolios composed of structured reflective essays on how the evidence demonstrates their development as doctors and researchers. Based on this analysis, they develop learning plans to address areas needing improvement. The essays also include judgments on whether previously established learning goals have been achieved and reflections on the process of achieving these goals. Students discuss these materials with their physician advisors during Formative Assessment meetings. During the last three years, students submit learning plans on a bi-annual basis and meet with their physician advisor to review their progress. Students are expected to assume more and more responsibility and independence
in accurate self-assessment, in developing learning plans and following through on addressing their own learning needs, and in recognizing and building on their own strengths.

At the end of Years 1, 2 and 4, students assemble a Summative Portfolio for review by the Medical Student Promotions and Review Committee that determines if the evidence presented by the student indicates a level of achievement sufficient for promotion to the next year of the program (or graduation). Students are expected to choose not only their best examples of their work, but more importantly evidence demonstrating their growth across the year in specific competencies. We want to graduate students who recognize areas needing improvement, identify an approach to addressing them, and can show that they have now achieved that skill as well as those students who excel in specific areas throughout the year. Graduates of CCLCM will have not only achieved a defined level of achievement of each of the 9 competencies, they will also have developed their reflective ability to accurately assess their own strengths and areas needing improvement. The assessment process is designed to enhance student learning and the student portfolio enables students to document their progress in the achievement of defined competencies.

Graduation Requirements

To graduate from CWRU School of Medicine with the MD degree (or the MD degree with Special Qualifications in Biomedical Research for students in the Cleveland Clinic Lerner College of Medicine program), students must:

1. Satisfactorily complete all Program Specific Requirements and Educational Program Objectives of the School of Medicine
2. Pass the USMLE Step 1 and USMLE Step 2 CK and CS
3. Pass or remediate the School of Medicine's Clinical Skills Exam
4. Satisfactorily complete the MD Thesis
5. Meet financial obligations to the University
6. Be approved to graduate by the Committee on Students

Dual Degree Programs

Dual Degree Programs with the MD

The degree programs listed in this section may require admission to another school at the university in addition to or instead of the School of Medicine. Each school may have different deadlines and requirements for admissions. Please contact the other schools separately using information provided under that school's listing in this publication. Additional dual degree programs not including the MD are also offered through the medical school's departments. Several certificate programs are also offered in General Medical Sciences

MD/PhD (MSTP)

The Medical Scientist Training Program (https://case.edu/medicine/admissions-programs/md-phd-program) leading to the MD/PhD in various biomedical programs is listed in above grey tab.

Doctor of Medicine- MD/JD

This program, offered in conjunction with Case Western Reserve University School of Law, may be completed in six years. The JD portion requires the completion of 88 credit hours of study. Admission is through the School of Medicine and the School of Law. For more information about the JD portion of the program, visit the Law School section (http://bulletin.case.edu/schooloflaw/dualdegreeprograms), call the law school admissions office at 216.368.3600 or 800.756.0036, or e-mail lawadmissions@case.edu (/lawadmissions@case.edu).

Master of Arts in Bioethics- MD/MA

The 27-credit-hour Master's degree program, including a 12-hour foundations course taken during the first year of medical school, provides advanced training in bioethics while emphasizing the interdisciplinary and interprofessional nature of the field. In this program, medical students will participate in and contribute to the critical analysis of moral issues related to health, health care, and health policy at local, national and international levels. Medical school students complete the bioethics program while pursuing their medical degrees; no additional time is required. Admission for the master's degree portion is through the Case Western Reserve University School of Graduate Studies. For more information about the MA requirements, visit the Bioethics section (p. 58), call 216.368.8718, or e-mail bioethics@case.edu (/bioethics@case.edu).

Master of Public Health- MD/MPH

Graduates of this 5-year, 36-hour master's degree program are qualified to work in local and state health departments, universities and colleges, hospitals, ambulatory medical centers, non-profit organizations and the insurance and pharmaceutical industries. Areas of concentration include adolescent health, health promotion and disease prevention, epidemiology, public health research, health management and policy, clinical research, international health, human sexuality and reproductive health, and urban health. For more information about the MPH requirements, visit the Master of Public Health website (http://mph.case.edu), call 216.368.3128, or email mph-info@case.edu (mph-info@case.edu).

Master of Science in Applied Anatomy- MD/MS

Students seeking advanced training in the anatomical sciences may begin the 30-hour master's degree program in the fall or spring semester of the first year of medical school. Required graduate courses include the anatomical sciences core curriculum, completed during the first two years of medical school, and an advanced surgical anatomy course taken in the fourth year. Students earn the remaining credits through elective courses. Completion of a thesis is not required, but students may undertake independent research experiences as electives; a thesis-based program also is available. Interested medical students must apply to the master's program through the Department of Anatomy. The program is excellent preparation for those preparing for biomedical careers or those planning to pursue a PhD. Additional details and a sample course of study are described in the Anatomy section (p. 41) of the General Bulletin. For more information about the MS requirements, visit the Master of Science in Applied Anatomy website (https://case.edu/medicine/anatomy/education/ms), call 216.368.2433, or email anatomy@case.edu.

Master of Science in Biomedical Engineering- MD/MS

Medicine is undergoing a transformation based on the rapid advances in science and technology that are combining to produce more accurate diagnoses, more effective treatments with fewer side effects, and improved ability to prevent disease. The goal of the MD/MS in Engineering is to prepare medical graduates to be leaders in the development and clinical deployment of this technology and to partner
with others in technology based translational research teams. Current CWRU medical students in either the University Program (UP) or the Cleveland Clinic Lerner College of Medicine (CCLCM) may apply to the MD/MS in Engineering program.

Students must complete the normal requirements in either MD program. Portions of the medical school curriculum earn graded credit toward the MD/MS degree. Six credit hours can be applied to the MS component of the joint degree. The balance of 12 credit hours (4 courses) must be graduate level engineering concentration courses that provide rigor and depth in a field of engineering relevant to the area of research. All students attend monthly seminars focusing on the integration of engineering and medicine, with the opportunity to present their own research and to hear and interact with other presenters. Students must also complete training in the responsible conduct of research. The thesis serves as a key integration role for the joint degree, with both medical and engineering components. The thesis also fulfills the research requirement of the UP or CCLCM programs. Students should apply through the BME department admissions office.

For more information about the MS requirements, visit the Biomedical Engineering website (http://engineering.case.edu/ebme), call 216.368.4063, or email bmedept@case.edu.

Master of Science in Biomedical Investigation- MD/MS

This five-year dual degree program is designed for students who wish to prepare for careers in basic or clinical research at academic medical centers. The core components of this degree are three to six graduate courses in a specific track chosen by the student based on his or her interest, six graded credits of medical school coursework, a common seminar series, training in scientific integrity, and a full-year research project culminating in a written report and examination by faculty. Tracks include biochemistry, clinical investigation, epidemiology, health services research, nutrition, pathology, and physiology and biotechnology. Each track has specific course requirements. There is no tuition charge for the research year, and a stipend is provided. For more information visit the Biomedical Investigation website (https://case.edu/medicine/admissions/programs/dual-degree/biomedical-investigation), or contact the College Program Advisor, Dr. Chris Moravec (MORAVEC@ccf.org) or the University Program Advisor, Dr. William Merrick (william.c.merrick@case.edu).

Master of Business Administration- MD/ MBA

There is a growing need for physicians with business skills to manage organizations such as corporate practices, hospitals, etc. Those who complete this 5-year program will be able to apply learned management principles and take leadership roles as they navigate through varying and increasingly complex healthcare environments. For more information about the MBA requirements, visit the Weatherhead School of Management website (https://weatherhead.case.edu/degrees/masters/dual-degree/md-mba), call 216.368.2030, or email casemed-admissions@case.edu.

Master of Anthropology- MD/MA

This 4-year dual degree program is an organized course of study for students with a range of medical anthropological interests, from ethnomedicine to international health, urban health, psychiatric anthropology, psychological anthropology, cross-cultural aging, human adaptation and disease, nutritional anthropology, etc. The program is designed for students who wish to pursue anthropology beyond the baccalaureate level and to become acquainted with professional work in anthropology and to meet the challenges of our increasingly globalized world. For more information about the MA requirements, visit the Department of Anthropology website (http://anthropology.case.edu/graduate-programs/joint-programs/mdma-or-mdphd) or email the Department Administrator, L. (info@casemph.org)inda Rinella (linda.rinella@case.edu).

Medical Scientist Training Program (MSTP)

A combined MD/PhD program in biomedical sciences, the Medical Scientist Training Program (MSTP) is available for students desiring research careers in medicine and related biosciences. This program takes seven to eight years to complete, depending on the time needed to complete the PhD dissertation research. Financial support includes a stipend and full tuition support.

Candidates must meet established prerequisites for admission to both the School of Medicine and the School of Graduate Studies. Criteria include demonstrated capabilities in research and superior undergraduate academic credentials. Applicants must have either U.S. citizenship or permanent residency status to be considered for admission to the MSTP. Information can be obtained by contacting the MSTP program (mstp@case.edu) or from the program website (http://mstp.case.edu). Admissions are coordinated via the School of Medicine admissions program and the AMCAS application.

The first two years of the MSTP are centered on the University Program pre-clinical core medical school curriculum, which occupies five mornings each week. Afternoons include time for graduate courses and/or research rotations, as well as clinical training, thus integrating the medical school and graduate school experiences. The next three to four years are devoted to completion of graduate courses and PhD thesis research in one of the multiple MSTP-affiliated graduate programs. During the PhD phase, MSTP students participate in the MSTP Clinical Tutorial, a program designed to enhance clinical skills and allow students to develop connections between their research and clinical interests (this further addresses the goal of integrating medicine and science). After completion of the PhD program, students return to medical school for two years to complete clinical clerkships and finish the MD curriculum.

The program is administered by the MSTP Steering Committee, which consists of faculty from both basic science and clinical departments. Its functions include selecting candidates for admission, designing and administering the program curriculum, advising students and evaluating student progress.

Please see the Doctor of Medicine (MD) (http://bulletin.case.edu/schoolofmedicine/md) page for information about the MD curriculum.

MSTP Program by Year

Year 1

- University Program MD curriculum
- Summer Intro to MSTP course
• One graduate course or research rotation each semester (fall and spring)

Year 2
• University Program MD curriculum
• Summer research rotations (1 or 2)
• Graduate course or research rotation in the fall semester

Year 3
• PhD program

Year 4
• PhD program
• MSTP Clinical Tutorial

Year 5
• PhD program
• Optional MSTP Clinical Tutorial

Year 6 (If Needed)
• PhD program
• Optional MSTP Clinical Tutorial
• All PhD work, including dissertation defense and publications, to be completed before starting the 3rd year medical curriculum

Year 7
• Third year MD curriculum (core clinical clerkships)

Year 8
• Fourth year MD curriculum (completion of core clinical clerkships if necessary, clinical and research electives)

The Medical Scientist Training Program in detail

General Description
The Case Medical Scientist Training Program (MSTP) provides training for future physician-scientists by integrating well-developed curricula in science and medicine. Unique aspects of the program include the integration of graduate school and medical school in many phases of the program to optimize dual-degree training and a high degree of student involvement in running the program.

The MSTP includes three major phases of training.

First phase: During the first two years, each student completes the first two years of the University Program medical school curriculum, including early clinical experiences, completes at least three research rotations, takes graduate courses, and chooses his or her PhD graduate program and thesis lab. During the summer between the first two years of medical school, students complete one or two research rotations. During the fall and spring semesters of year one and the fall semester of year two, students take a graduate course or complete a research rotation.

Second phase: During the PhD phase, students complete all requirements of their PhD program. They also participate in the MSTP Clinical Tutorial for at least one year in a patient-based clinical specialty. A second year of MSTP Clinical Tutorial is optional.

Third phase: In the final phase, students complete years three and four of the University Program medical school curriculum. The focus is clinical training, but research electives can be taken for part of year four.

Although each of these three phases has a different focus, opportunities exist for students to pursue both research and clinical training in each phase. The philosophy of the Case MSTP is to integrate medicine and science throughout the program as much as possible.

The Case MSTP is run by faculty, students and staff. The MSTP Council is a body of students that plans and runs certain aspects of the program. The administrative director, program coordinator, and program assistant have many important roles and run the day-to-day management of the program. The co-director is involved in decisions at all levels of the program and is the primary advisor for students in the first two years of the program. The director is responsible for all aspects of the program and is available to students for advice at any stage. The MSTP Steering Committee makes decisions on MSTP policy, curriculum planning, student admissions, approval of mentors and evaluation of students.

Incoming MSTP students are expected to enter the program on or about July 1. The MSTP summer retreat, usually held in early July, provides an important orientation to the program and includes sessions and workshops for program and professional development.

Advising System
The program director provides advising to students in all phases of the program. The MSTP co-director advises students in the first two years on research rotations and course work. Students may also meet with an MSTP Steering Committee member representing an area of research interest or with the MSTP director. During the PhD training period, mentoring is provided by the thesis advisor and thesis committee, which includes a member of the MSTP Steering Committee and a member with an MD. MSTP students are full members of the medical school class and enter one of the four societies of the University Program when they matriculate in the program. The society dean provides important advice on matters concerning the MD curriculum.

Classes and Research Rotations in Years One and Two
During years one and two of the University Program, MSTP students register for 9 credit hours of graduate course work each semester.

Plan of Study

<table>
<thead>
<tr>
<th>Plan of Study</th>
<th>First Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fall</td>
</tr>
<tr>
<td>Integrated Biological Sciences I (IBIS 401)</td>
<td>3-4</td>
</tr>
<tr>
<td>Clinical Science I (IBIS 411)</td>
<td>2</td>
</tr>
<tr>
<td>Research Rotation in Medical Scientist Training Program (MSTP 400)*</td>
<td>0-3</td>
</tr>
</tbody>
</table>
• Cell Biology
• Clinical Translational Science
• Epidemiology and Biostatistics
• Genetics and Genome Sciences
• Immunology (Pathology)
• Molecular Biology and Microbiology
• Molecular Virology
• Neurosciences
• Nutrition
• Pathology (Molecular and Cellular Basis of Disease)
• Pharmacology
• Physiology and Biophysics
• Structural Biology and Biophysics
• Systems Biology and Bioinformatics

All MSTP students are required to take a one-week responsible conduct of research (RCR) course (IBMS 500 On Being a Professional Scientist: The Responsible Conduct of Research) during the spring semester of their second year in the program.

Clinical Tutorial, Clinical Refresher Course and Years Three and Four of Medical School

During the PhD phase, MSTP students take the MSTP Clinical Tutorial, which provides a unique longitudinal part-time clinical experience. The MSTP Clinical Tutorial is a year-long course that enhances clinical skills for year three of medical school. It also serves a special career development objective by allowing students to balance medical and scientific interests and explore the connections between these areas. The MSTP Clinical Tutorial, offered during the PhD phase, is an example of the integration of science and medicine in the Case MSTP. An optional MSTP Clinical Refresher course may be taken before the start of year three. After completion of the PhD, MSTP students are enrolled in medical school to complete the requirements for the MD (see description provided for the University Program (http://bulletin.case.edu/schoolofmedicine/md/#universityprogramtext)).

MSTP Activities

The MSTP supports several activities that enhance the scientific and professional development of students. These activities also foster a vibrant and collegial MSTP community with a strong sense of mission in the training of physician scientists.

Summer retreat: The annual MSTP summer retreat is a two-day event focusing on scientific presentations, professional development and program planning for the upcoming academic year.

Winter retreat: This is a one-day retreat on campus, usually in early March. Students in their research years present their thesis work through an oral or poster presentation.

MSTP Council coordinates many activities of the Case MSTP. The Council meets once each month to discuss activities that are run by different student committees. The overall goals of the MSTP Council are to identify objectives for the program, to allow students to initiate programs to enhance the MSTP; to encourage increased student involvement in the operation of the MSTP; and to enhance development of leadership skills of MSTP students. The president, vice president, and secretary are all elected for a one-year period. Committees are led by 1-3 committee chairs who take charge of committee activities and coordinate the involvement of other students in the committee activities. All students are welcome

The PhD Phase

After completion of the second year of medical school, each student chooses a PhD thesis mentor; joins a specific PhD program, and completes any remaining graduate school course work and other requirements for the PhD degree. The following training programs are affiliated with the MSTP: (If the training program is not itself an independent PhD program, the program through which it is offered is indicated in parentheses.)

- Biochemistry
- Biomedical Engineering
- Cancer Biology (Pathology)
and encouraged to participate in the various committees and to attend the council meetings. Recent Council committees and other program activities have included the following:

1. Monthly Dinner Meeting Committee

This committee is responsible for planning monthly dinner meetings, selecting topics, speakers, and menus. The series is organized by students and is attended by students, Steering Committee members, and research mentors. Invited speakers (students, faculty, alumni and outside speakers) address issues pertinent to research, professional issues, career development or other topics of interest. The informal environment at these gatherings promotes social and professional interactions.

2. Communications and Webpage Committee

This committee organizes communications and the Case MSTP website content.

3. Summer Retreat Committee

This committee plans the summer retreat.

4. Intro to MSTP

This committee organizes events for first year MSTP students, to integrate them into the program and the community.

5. Community Service Committee

Plans events for involvement of MSTP students in community service.

6. Social Committee

This important committee plans fun events throughout the year!

7. Student Representative to Faculty Council

One student is selected to represent the MSTP on Faculty Council.

8. Student Representative to the Committee on Medical Education

9. Representative to the Graduate Student Senate

10. MSTP Women’s Committee

Women in the MSTP organize luncheons or other meetings to discuss issues that face women pursuing careers in science. Students may invite a successful woman scientist who provides a role model as a physician scientist.

Scientific meetings: The program strongly encourages students to present their research at national or international meetings and provides financial support to pay for part of meeting travel expenses (other funding is obtained from the research mentor). In addition to the general meeting support for all students, each year two students are offered the opportunity to attend the annual MD/PhD national student conference in Colorado or the American Physician Scientist Association annual meeting in Chicago, with all expenses paid by the MSTP.

Research symposia: MSTP students are encouraged to present their research at Case student symposia, including the annual graduate student symposium and the Irwin H. Lepow Student Research Day. These symposia feature a nationally recognized keynote speaker, and students have the opportunity to interact extensively with the noted scientist. A committee awards prizes for outstanding student presentations.

Assessment of MSTP Students

Students in the MSTP are assessed for the medical school component of the program in the same manner as students in the University Program, with the exception that grades are awarded for those courses in the MD curriculum in years one and two that receive graduate school credit and are used to satisfy requirements for the PhD degree. Students must satisfactorily complete all requirements for both the MD and the PhD.

IBIS Courses

IBIS 401. Integrated Biological Sciences I. 1 - 9 Units.
A four-semester sequence encompassing anatomy, biochemistry, physiology, pharmacology, pathology, and microbiology.

IBIS 402. Integrated Biological Sciences II. 1 - 9 Units.
A continuation of IBIS 401.

IBIS 403. Integrated Biological Sciences III. 1 - 9 Units.
A continuation of IBIS 402.

IBIS 411. Clinical Science I. 2 Units.

IBIS 412. Clinical Science II. 2 Units.

IBIS 413. Clinical Science III. 2 Units.

IBIS 434. Integrated Biological Sciences in Medicine. 6 Units.
This course is open only to candidates enrolled in the M.D./M.S. program (College plan). Registration is for the Spring semester of the second year in medical school. The course content includes the areas of hematology, gastroenterology and renal physiology. Students will also be required to participate in Process of Discovery. Assessment of performance will be through reaching required levels of competency for the medical areas identified above and by the evaluation of a term paper. Recommended preparation: First three semesters of medical school and currently a medical student in good standing.

IBIS 451. Clinical Science (for M.D./M.A. Bioethics Students). 3 Units.

IBIS 600. Exam in Biomedical Investigation. 0 Unit.
Students are required to pass an examination established for each student, generally reflecting the preparation and oral defense of a written report on the project. Prereq: Must be enrolled in MD/MS Biomedical Investigation program.

MSTP Courses

MSTP 400. Research Rotation in Medical Scientist Training Program. 0 - 9 Units.
All students must complete research rotations in a minimum of three different MSTP-approved laboratories and submit rotation reports and rotation evaluations for each to the MSTP office. All three of the rotations must be completed before the beginning of each student’s third year of the program. The main purpose of research rotations is to aid the student in selecting a laboratory for their thesis work.
MSTP 401. Introduction to MSTP. 0 Unit.
Focus and Scope of Course: The course examines the unique challenges that MSTP students face as they navigate a dual degree program. The course will explore strategies that successful MSTP students employ, including mentor choice, time management, strategy and networking. The course will also offer exposure to the various resources available at CWRU for medical and graduate students. Lastly, through journal clubs and formal lecturing, the critical thinking required of an MSTP student will be explored. Objectives: Students will be able to - Employ successful strategies for research rotation set-up and mentor choice - Enunciate strategies for the reconciliation of dual career training with an emphasis on networking, granting and timing - Employ the critical thinking required for manuscript critique and employ successful strategies in both oral and written presentation. Required Texts: None, however, manuscripts may be assigned and will be provided in pdf format. Format and Expectations: As the class is meant to be in dialogue format, meaningful class participation is expected and required. An individual cannot participate if he or she is absent, therefore, attendance is required. If there is a conflict with a required medical school assignment or activity, the medical school activity takes precedence, and attendance in the MSTP course will be waived for that session. Individual students will at times be assigned responsibility for leading the discussion relevant to specified readings. It is expected that all students will complete the readings and assignments prior to the start of the class at which the reading was assigned. Grading: Grading will be Pass/Fail. If students are present at all sessions (excepting when required for an alternative activity at the medical school and excepting excused absences with permission from the instructor), and if the student makes an attempt at a meaningful contribution to the discussion, it is anticipated that all students will pass.

Physician Assistant Program

Master of Science in Physician Assistant Studies

Cynthia Booth Lord, MHS, PA-C
PA Program Director

David Shafran, MD, MA
Director of Admissions

PAProgram@case.edu or 216.368.0575
https://case.edu/medicine/physician-assistant/

CWRU PA Program Curriculum Overview

The Case Western Reserve University PA program is a 102 credit-hour professional degree program that spans the course of 27 months. The program is a generalist program preparing learners to be leaders in PA practice in a variety of clinical settings. This intensive full-time graduate curriculum awards a Master of Science in Physician Assistant Studies (MSc in Physician Assistant Studies) from the School of Medicine upon completion. The curriculum, which must be successfully completed in order to meet program requirements for graduation, enables graduates to sit for the PA National Certifying Examination (administered by the National Commission on Certification of Physician Assistants) and obtain a state license.

The educational philosophy of the PA program emphasizes the practice of evidence-based, patient-centered medical care as well as accountability to patients, society and the profession through experiential learning and active community involvement. The first 15 months of the program are didactic in nature, divided into four semesters. This is followed by 12 months of clinical instruction comprised of twelve, four-week clinical rotations. Early clinical exposure is accomplished through pre-clinical clerkships in the first year. The PA program begins each year in May and ends in August. Students are recruited from the CASPA system.

The program design utilizes a hybrid blend of learning methodologies and styles including:

- Asynchronous learning
- Clinical simulations
- Case-based learning and clinical correlations
- Experiential learning in the community-the community is the "learning lab" of the PA program. Wellness, prevention, professionalism, communication skills and philanthropy are best taught directly in the community with patients in their own environment.
- Early clinical exposure/Pre-clinical clerkships-by the beginning of November of their first year, PA students are placed in clinical sites in the community for one-half day a week to practice their clinical skills and begin to acculturate to the clinical environment and learn how to function on a team. The focus of this experience is to hone the students’ clinical skills in history, physical exam, oral presentation, medical documentation, communication skills, and professionalism. It also serves as an early critical-thinking activity.
- Medical writing across the curriculum (MWAC) is introduced in the didactic phase through student reflections and progress in the clinical phase to the creation of a scientific poster, hot topic, and oral presentations.

Organization and sequencing of coursework is both horizontally and vertically integrated facilitating a connected flow of systems and conditions, creating a curricular thread intended to enhance the development of critical thinking and problem-solving. Planned redundancies help build a strong pre-clinical knowledge base. Through demonstrations, case discussions and simulation activities, students learn critical thinking and how to synthesize information to formulate and implement a patient management plan. Simulation activities allow the students to participate in scenarios that closely approximate real-life patient encounters and, through a team-based approach (small group), create their care plans. Hands-on activities enhance the student’s ability to develop their critical thinking and technical skills. Experiential learning through community engagement introduces students to some of the concepts of team-based care and population health.

Physician Assistant Program Plan of Study-27 Months

Didactic Curriculum Summer Semester I, Fall Semester I, and Spring Semester I

<table>
<thead>
<tr>
<th>First Year</th>
<th>Summer</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundations of Clinical Medicine-Principles of Interviewing (PAST 401)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostic Methods-Clinical Lab (PAST 403)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Correlations (PAST 404)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional Issues for PA’s-History & Roles of the PA I (PAST 411)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadaver dissection-based human anatomy with histology and physiologic correlations (PAST 410)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 401</td>
<td>Foundations of Clinical Medicine-Principles of Interviewing</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 402</td>
<td>Physical Diagnosis</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 421</td>
<td>Pharmacology II</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 431</td>
<td>Principles of Clinical Medicine-Surgery & Emergency Medicine</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 432</td>
<td>Principles of Clinical Medicine-OB/GYN</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 433</td>
<td>Principles of Clinical Medicine-Pediatrics</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 434</td>
<td>Principles of Clinical Medicine-Behavioral Medicine</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 440</td>
<td>Pre-Clinical Clerkships I</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 441</td>
<td>Pre-Clinical Clerkships II</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 477</td>
<td>Human Physiology</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 406</td>
<td>Ethics in Healthcare Delivery</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 412</td>
<td>Professional Issues for Physician Assistants II</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 407</td>
<td>Clinical Procedures</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 413</td>
<td>Professional Issues for Physician Assistants III</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 450</td>
<td>Culture and Health</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 451</td>
<td>Introduction to Public Health</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 452</td>
<td>Introduction to Evidence Based Medicine</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 453</td>
<td>Medical Spanish Elective</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 454</td>
<td>or Research Methods Elective</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 500</td>
<td>Clinical Residency: Emergency Medicine Rotation</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 501</td>
<td>Clinical Residency: Family Medicine</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 502</td>
<td>Clinical Residency: Geriatrics</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 503</td>
<td>Clinical Residency: Internal Medicine Rotation</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 504</td>
<td>Clinical Residency: Obstetrics & Gynecology</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAST 505</td>
<td>Clinical Residency: Pediatrics</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Required Clinical Experience Credit hours = 39 hours

Total Credit Hours to Complete Program: 102

Courses

PAST 401. Foundations of Clinical Medicine-Principles of Interviewing. 3 Units.

The general purpose of this course is to teach the physician assistant student the skills necessary to conduct a clinical/medical interview with a patient and to be able to present the information to other health care professionals in both an oral and written form. This course, which is designed as small, group seminars, will focus on the skills necessary to question patients in a directed fashion and to listen to the patient with concern and empathy. Instruction will emphasize what data is needed in a complete medical history as well as the focused interview, the proper technique for gathering information, and the format for presentation of the data. Instructional techniques will include role-playing, small group discussion, and observation and critique by instructors, other students and simulated patient models. Prereq: Students must be in Physician Assistant Program.

PAST 402. Physical Diagnosis. 4 Units.

This lecture/discussion/laboratory course presents and explores the techniques for performing a complete and competent physical examination, understanding the pathophysiology presented by the patient, and organizing and reporting the findings in both written and oral format. Synthesis of historical and physical presentations for an accurate evaluation of the patient will be emphasized. The problem-oriented physical examination and special examination tools and techniques will be presented. Instructional techniques will include small group discussion, practical experience with other students and faculty, and the observation and critique of physical examination skills by faculty. Prereq: Students must be in Physician Assistant Program.

PAST 403. Diagnostic Methods-Clinical Lab. 1 Unit.

This course is designed to introduce the student to clinical laboratory and diagnostic medicine. Lectures are designed to review the various types of laboratory tests, acquisition and handling of specimens, normal values as well as interpretation of results and correlation with clinical conditions. This course also includes an introduction to radiology, microbiology and electrocardiogram interpretation. The skills learned here carry over to the principles of medicine series in subsequent semesters. Prereq: Students must be in Physician Assistant Program.
PAST 404. Clinical Correlations. 1 Unit.
This seminar course places emphasis on internal organs with clinical correlation to anatomic conditions. Content will include basic concepts of genetics, the comparison of normal and abnormal structural relationships and the demonstration of how these things relate to health and disease. Students will review on-line genetics learning modules and meet in small seminar groups to review anatomical clinical correlates. Prereq: Students must be in Physician Assistant Program.

PAST 405. Medical Microbiology & Infectious Disease. 2 Units.
This course is the study of microorganisms and the diseases they cause in man. It includes consideration of infectious disease microorganisms including their biochemical, serological and virulence characteristics, and clinical manifestations. An organ system approach is used to examine the fundamentals of pathogenicity, host response, epidemiological aspects of infectious disease, as well as clinical manifestations, diagnosis and treatment of infections with clinical correlations. Prereq: Students must be in Physician Assistant Program.

PAST 406. Ethics in Healthcare Delivery. 1 Unit.
This course is an overview of the discipline of medical ethics presenting the study and application of relevant principles, insights, and understandings of modern medical practice. The course includes a brief overview of ethical theories which lay the foundation for subsequent investigation into specific ethical problems found in medical science and technology. The purpose of the course is to provide a framework which enables the student to reason clearly and effectively about the ethics involved in medical science and technology. The course assumes no prior knowledge of philosophical ethics or medical science. A framework of ethical decision making is introduced and practiced using realistic medical cases via a Medical Ethics Committee. Prereq: Students must be in Physician Assistant Program.

PAST 407. Clinical Procedures. 4 Units.
The purpose is to prepare these future clinicians for clinical management of health and disease by preparing them for common clinical procedures. These will include basic and advanced surgical skills, basic laboratory skills, common out-patient procedures, common emergency procedures, and interpretation of common radiologic tests. Prereq: Students must be in Physician Assistant Program.

PAST 410. Cadaver dissection-based human anatomy with histology and physiologic correlations. 6 Units.
This course will provide students with a sound understanding of the normal human body as a foundation for subsequent pursuing biomedical careers. A combination of daily lectures and laboratories integrates cadaver dissection-based gross anatomy with the associated histology, embryology, neuroanatomy and basic physiology. This course is well-suited to all biomedical careers, including pre-clinical and biomedical undergraduates, post-baccalaureate, pre-clinical master of science graduate programs, plus medical and dental students seeking additional training in the anatomical sciences. It will meet any of the anatomy-oriented prerequisites being implemented for medical and dental school applications, including those preferring or requiring a cadaver-based experience. The assessments will include a combination of written and cadaver-based practical questions. Offered as ANAT 410 and PAST 410. Prereq: Students must be in Physician Assistant Program.

PAST 411. Professional Issues for PA's-History & Roles of the PA I. 1 Unit.
This one semester course explores through lecture and discussion the factors affecting the development of the profession and role socialization with emphasis on history, regulations and organizations governing PA practice. An overview of clinical responsibilities, team based practice, population health and the PAs role, licensing and credentialing practices will be presented and discussed. Prereq: Students must be in Physician Assistant Program.

PAST 412. Professional Issues for Physician Assistants II. 2 Units.
In this three course series students will explore factors affecting the development of the profession, the status of the PA in the U.S. healthcare system and current issues in clinical practice including practice-based improvement and systems-based practice. Through lecture and discussion, this series prepares the student for the transition from classroom to clinical training and clinical practice. Emphasis is given to the responsibilities that come with being a professional, professionalism and practicing quality improvement. Prereq: Students must be in Physician Assistant Program.

PAST 413. Professional Issues for Physician Assistants III. 2 Units.
In this three course series students will explore factors affecting the development of the profession, the status of the PA in the U.S. healthcare system and current issues in clinical practice including practice-based improvement and systems-based practice. Through lecture and discussion, this series prepares the student for the transition from classroom to clinical training and clinical practice. Emphasis is given to the responsibilities that come with being a professional, professionalism and practicing quality improvement. Prereq: Students must be in Physician Assistant Program.

PAST 420. Pharmacology I. 2 Units.
In this two course series, (PAST 421 Pharmacology II) students will be provided with a basic introduction to the principles of pharmacology and to drug classes of particular relevance to the physician assistant. Information concerning drug doses and calculations used in determining doses will be included in this course and PAST 421 Pharmacology. Prereq: Students must be in Physician Assistant Program.

PAST 421. Pharmacology II. 3 Units.
In this two course series (PAST 420 Pharmacology), physician assistant students will be provided with foundational knowledge of the therapeutic uses and effects of drugs. The indications, contraindications and adverse effects of prototypical drugs are covered. Drug dependence and addiction are also discussed. This course also includes a problem-based learning component which will enhance students’ teamwork and clinical reasoning skills by examining and analyzing case scenarios in small groups. Prereq: Students must be in Physician Assistant Program.

PAST 430. Principles of Internal Medicine. 7 Units.
This one semester lecture/discussion course provides students with a detailed study of the etiology, pathophysiology, signs, symptoms, diagnosis and treatment of various disorders encountered in internal medicine. A broad array of diseases in cardiology, dermatology, endocrinology, gastroenterology, gerontology, hepatology, hematology, oncology, urology, nephrology, neurology, pulmonology and rheumatology are explored. Prereq: Students must be in Physician Assistant Program.
PAST 431. Principles of Clinical Medicine-Surgery & Emergency Medicine. 4 Units.
This one semester lecture course presents the fundamentals of surgical disease and care of the acutely injured and ill patients. The purpose is to familiarize the student with the etiology, anatomy, pathophysiology, clinical manifestations and appropriate diagnosis and treatment of selected surgical conditions and conditions encountered in the surgical subspecialty and emergency medical settings. Prereq: Students must be in Physician Assistant Program.

PAST 432. Principles of Clinical Medicine-OB/GYN. 3 Units.
This lecture/case presentation course gives the student an overview of commonly encountered obstetric and gynecologic disorders. Anatomy and physiology of the human reproduction system are examined, including the changes in pregnancy, prenatal care, medical and surgical complications of pregnancy, pre- and postpartum care. Common gynecologic conditions, methods and effectiveness of contraception, cancer detection methods and the diagnosis and treatment of sexually transmitted infections in the female are explored. Prereq: Students must be in Physician Assistant Program.

PAST 433. Principles of Clinical Medicine-Pediatrics. 3 Units.
This course introduces the student to a unique, complex and challenging field of pediatrics. It emphasizes aspects of general pediatrics and provides a foundation for those students who elect to further study the health care of infants, children and adolescents. This course addresses issues unique to childhood and adolescence by focusing on human developmental biology, and by emphasizing the impact of family, community, and society on child health and well-being. Additionally, it focuses on the impact of disease and its treatment on the developing human, and emphasizes growth and development, principles of health supervision, and recognition of common health problems. Prereq: Students must be in Physician Assistant Program.

PAST 434. Principles of Clinical Medicine-Behavioral Medicine. 2 Units.
This one semester course gives students an overview of some of the most important areas in behavioral psychiatry. This course is an overview of basic psychiatric concepts and focuses on assessing patients who manifest psychological symptoms. Topics include diagnosis and treatment of anxiety disorders, mood disorders, common child and adolescent disorders, somatoform and factitious disorders, psychotic disorders, sleep disorders, adjustment and personality disorders, and drug and alcohol abuse and addresses forensic issues in behavioral health. Prereq: Students must be in Physician Assistant Program.

PAST 440. Pre-Clinical Clerkships I. 1 Unit.
This course/clerkship provides the student with clinical experience at clinical sites in the didactic year utilizing what was learned in Foundations of Clinical Medicine (Interviewing and Physical Diagnosis class/lab). During the pre-clinical time at program designated sites, students will continue to develop and apply their history and physical exam skills, interpersonal skills, oral presentation and medical documentation skills. For expanding skills and creating relationships within the community, this course also encompasses community service, experiential learning and interprofessional education activities. This course/clerkship will help to better prepare students to gain experience and develop confidence in approaching patients prior to entering the clinical year. Prereq: Students must be in Physician Assistant Program.

PAST 441. Pre-Clinical Clerkships II. 1 Unit.
This course/clerkship provides the student with clinical experience at clinical sites in the didactic year utilizing what was learned in Foundations of Clinical Medicine (Interviewing and Physical Diagnosis class/lab). During the pre-clinical time at program designated sites, students will continue to develop and apply their history and physical exam skills, interpersonal skills, oral presentation and medical documentation skills. For expanding skills and creating relationships within the community, this course also encompasses community service, experiential learning and interprofessional education activities. This course/clerkship will help to better prepare students to gain experience and develop confidence in approaching patients prior to entering the clinical year. Prereq: Students must be in Physician Assistant Program.

PAST 450. Culture and Health. 2 Units.
This course/discussion course provides students with a detailed understanding of the societal and individual prejudices, preconceptions, and biases that enter into the clinical interaction and how to develop appropriate responses and coping strategies. This course provides the student with common psychosocial problems encountered by health professionals today. Students explore issues related to sexuality, cultural competency, multicultural health, cross-cultural communication, and healthcare disparities. Prereq: Students must be in Physician Assistant Program.

PAST 451. Introduction to Public Health. 1 Unit.
This course will introduce students to concepts of public health and provide experience in public health by completion of a mentored project. The course will enhance the student’s knowledge of the history and philosophy of public health, the Healthy People 2020 initiatives and the social determinants of health and how they can be impacted. Teaching methodologies will include discussion, lecture and development of a mentored public health project. Prereq: Students must be in Physician Assistant Program.

PAST 452. Introduction to Evidence Based Medicine. 2 Units.
This course is intended to provide learners with a basic understanding of the principles of epidemiology, biostatistics and evidence-based medicine. The course involves analysis of prospective and retrospective studies, cross-sectional studies and experimental epidemiology. It will focus on epidemiological scenarios that relate to both infectious disease and chronic disease. In addition, the course will provide the student with a basic understanding of the application of statistical techniques to the biological and health sciences and to demonstrate their areas of application. Emphasis will be placed on probability laws, sampling and parameter estimation, test of hypothesis, correlation, regression and analysis of variance. Finally, students will be introduced to the basic concepts of evidence-based medicine, information mastery, and critical appraisal of the medical literature. Prereq: Students must be in Physician Assistant Program.

PAST 453. Medical Spanish Elective. 1 Unit.
This course will teach students the basics of Spanish as it applies to the medical field such as physical examinations, emergencies, common diseases within the Latino population, and specializations. By familiarizing students with conversational Spanish and medical Spanish, this course will enable students to apply their learning to real-world situations, to assist in communications, and ultimately to break down the barrier between doctors and patients. Prereq: Students must be in Physician Assistant Program.
PAST 454. Research Methods Elective. 1 Unit.
This lecture course introduces students to research design and scientific inquiry and provides them with the skills necessary for interpretation and critical evaluation of the medical literature. It includes a brief review of important statistical principles and methods and their application to problems in medicine and health. Prereq: Students must be in Physician Assistant Program.

PAST 477. Human Physiology. 4 Units.
This lecture/seminar experience is meant to enhance the students fundamental knowledge in human physiology with an emphasis on physiologic concepts in relationship to health, disease and illnesses. The course will provide students with an understanding of the function, regulation and integration of the major organ systems. Offered as PAST 477 and PHOL 477. Prereq: Students must be in Physician Assistant Program.

PAST 500. Clinical Residency: Emergency Medicine Rotation. 3 Units.
This clinical rotation is designed to expose the student to the wide variety of problems encountered in the hospital-based emergency room setting in both the fast track and acute care sides of the emergency department. The rotation experience includes the medical/surgical management of patients of all ages (infant to geriatric) with presenting problems that may be of a life threatening nature. The formulation and understanding of the many and varied medical problems is accomplished via the accurate collection of data through a history and physical exam, interpretation of diagnostic testing, and the development of a plan. The student will also be exposed to and perform diagnostic and therapeutic procedures. These experiences will be under appropriate supervision. Prereq: Students must be in Physician Assistant Program.

PAST 501. Clinical Residency: Family Medicine. 3 Units.
This clinical rotation is designed to give the student an understanding of family medicine/primary care medicine as practiced in office and/ or clinic in an outpatient setting. The student will work with patients from a variety of social, economic and cultural backgrounds across the lifespan. They will experience continuity of care while assessing, diagnosing, monitoring, managing, referring and educating patients. The student will be exposed to both acute and chronic problems as well as the psychosocial problems that are encountered in this setting. Students may encounter and participate in the care of patients of all ages: pediatric, adolescent, adult and geriatric populations. The formulation and understanding of the many and varied medical problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem. Prereq: Students must be in Physician Assistant Program.

PAST 502. Clinical Residency: Geriatrics. 3 Units.
This clinical rotation is designed to give the student an understanding of geriatric medicine. The understanding of the many and varied medical and psycho-social problems in geriatric patients is accomplished via the accurate collection of data through a complete history and physical examination, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem. Teaching rounds and lectures may be used to introduce concepts of geriatric medicine. Prereq: Students must be in Physician Assistant Program.

PAST 503. Clinical Residency: Internal Medicine Rotation. 3 Units.
This clinical rotation is designed to provide the student with an understanding of the wide variety of problems encountered in hospital-based internal medicine. The formulation and understanding of the many and varied medical problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem. Students are assigned to medical teams during their rotation. Teaching rounds and lectures are used to introduce concepts of internal medicine. Prereq: Students must be in Physician Assistant Program.

PAST 504. Clinical Residency: Obstetrics & Gynecology. 3 Units.
This clinical rotation is designed to expose the student to the variety of problems encountered in women's health care. The focus of the learning experience is on recognition and management of common gynecological illnesses, sexually transmitted infections, family planning, birth control, and cancer of the female reproductive system and breast. Obstetrical focus is on pregnancy, labor and delivery, and postpartum care. The student will also have an exposure to the surgical management of gynecological and obstetric problems. Teaching rounds and lectures may be used to introduce concepts of obstetrics and gynecology. Prereq: Students must be in Physician Assistant Program.

PAST 505. Clinical Residency: Pediatrics. 3 Units.
This clinical rotation is designed to emphasize care of the child from birth to adolescence. The focus of the learning experience is on recognition and management of common childhood illnesses, assessment of variations of normal growth and development, and the counseling of parents regarding immunizations, preventative health care visits, growth and development, nutrition, injury prevention and common psychosocial problems. The formulation and understanding of the many and varied medical problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem. Teaching rounds and lectures may be used to introduce concepts of pediatrics. Prereq: Students must be in Physician Assistant Program.

PAST 506. Clinical Residency: Behavioral and Mental Health. 3 Units.
This clinical rotation is designed to give the student an understanding of the psycho-social and behavioral components of health, disease, and disability. The student will be exposed to a variety of mental illnesses and disabilities and will also be able to recognize and categorize psychiatric disorders along with the therapeutic modalities used in their treatment. The formulation and understanding of the varied psychiatric problems is accomplished via the accurate collection of data through a complete history and mental status exam, interpretation of diagnostic testing when appropriate, formulation of a problem list, and the development of a plan for each presenting problem. Emphasis is placed on early recognition, intervention, and psychiatric referral and/or consultation. Teaching rounds and lectures are used to introduce concepts of psychiatric medicine. Prereq: Students must be in Physician Assistant Program.
PAST 507. Clinical Residency: Surgery. 3 Units.
This clinical rotation is designed to expose the student to the varied population with surgically manageable disease from adolescence to geriatrics. The formulation and understanding of the varied medical problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan. The focus of the learning experience is on the pre-operative evaluation and preparation of the patients for surgery, procedures and assisting during the intra-operative period, and the care of patients post-operatively. The student will be exposed to both emergent and non-emergent surgical management of patients. The student may be assigned to surgical teams during his/her rotation. Teaching rounds and lectures are used to introduce concepts of surgical care. Prereq: Students must be in Physician Assistant Program.

PAST 508. Clinical Residency: Primary Care Elective. 3 Units.
This clinical rotation is designed to give the student an understanding of family medicine/primary care medicine as practiced in office and/or clinic in an outpatient setting. The student will work with patients from a variety of social, economic and cultural backgrounds across the lifespan. They will experience continuity of care while assessing, diagnosing, monitoring, managing, referring and educating patients. The student will be exposed to both acute and chronic problems as well as the psychosocial problems that are encountered in this setting. Students may encounter and participate in the care of patients of all ages: pediatric, adolescent, adult and geriatric populations. The formulation and understanding of the many and varied medical problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem. Prereq: Students must be in Physician Assistant Program.

PAST 509. Clinical Residency: Inpatient Medicine Elective. 3 Units.
This clinical rotation is designed to provide the student with an understanding of the wide variety of problems encountered in hospital-based internal/surgical medicine. The formulation and understanding of the many and varied medical and/or surgical problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem. Students are assigned to medical teams during their rotation. Teaching rounds and lectures are used to introduce concepts of hospital based medicine. Prereq: Students must be in Physician Assistant Program.

PAST 510. Clinical Residency: Elective. 3 Units.
This elective clinical rotation is designed to provide the student with the knowledge and skills in an area of interest. Students will gain an understanding of the variety of problems encountered in a medical or surgical sub-specialty discipline. The formulation and understanding of the many and varied medical and/or surgical specialty problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem including pharmacologic and non-pharmacologic management. Acquisition of these skills helps facilitate the PA student to progress through the clinical rotation with increasing complexity of clinical experiences, building confidence, competence and compassion. In addition to gaining clinical skills specific to the specialty of the rotation, the student will also continue to develop skills in systematic medical problem solving and patient management abilities, establish or reinforce patterns of independent learning, self-evaluation, interprofessional relationships and communication skills. Elective rotation sites are chosen based on practice characteristics that are important for the PA student within this rotation. These may include practice location, patient populations, and availability of specific experiences and procedures. Prereq: Students must be in Physician Assistant Program.

PAST 511. Clinical Residency: Elective. 3 Units.
This elective clinical rotation is designed to provide the student with the knowledge and skills in an area of interest. Students will gain an understanding of the variety of problems encountered in a medical or surgical sub-specialty discipline. The formulation and understanding of the many and varied medical and/or surgical sub-specialty problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem including pharmacologic and non-pharmacologic management. Acquisition of these skills helps facilitate the PA student to progress through the clinical rotation with increasing complexity of clinical experiences, building confidence, competence and compassion. In addition to gaining clinical skills specific to the specialty of the rotation, the student will also continue to develop skills in systematic medical problem solving and patient management abilities, establish or reinforce patterns of independent learning, self-evaluation, interprofessional relationships and communication skills. Elective rotation sites are chosen based on practice characteristics that are important for the PA student within this rotation. These may include practice location, patient populations, and availability of specific experiences and procedures. Prereq: Students must be in Physician Assistant Program.
PAST 600. Capstone Quality Improvement Project & Comprehensive Examination. 3 Units.
The Quality Improvement (QI) Project (PAST 600 Capstone) is one of two major components of the capstone of the PA program. This component of the PAST 600 Capstone course provides students with clinical practice opportunities to synthesize practice based improvement knowledge and skills through participation in evaluation of practice based quality improvement projects and quality measures. The Capstone Quality Improvement evaluation project is conducted over the course of the year. The Comprehensive Examination (PAST 600) is the summative evaluation and the second of two major components of the capstone of the PA program. The purpose of the exam is to determine whether the student has been able to integrate knowledge and skills obtained from individual courses (didactic and clinical) into unified concepts and demonstrate the acquisition of the competencies needed for entry into clinical practice. Consisting of a written exam, oral exam and an OSCE, the Comprehensive Examination measures the learner’s knowledge, interpersonal skills, patient care skills and professionalism required to enter clinical practice. It is conducted within the final four months of the program. Prereq: Students must be in Physician Assistant Program.

Within those overall expectations, a specific course of study for each graduate program is required and described in each degree plan of study.

Guiding Principles for Graduate Education in the School of Medicine
Training and educating graduate students in the biomedical sciences is a complex process that continually evolves based on the rapid progression of scientific discovery and ever expanding technological landscape. Graduate programs must continually modify their approaches to meet these modern-day needs. Students are expected to master their overall discipline, become experts in their field of research, as well as gain expertise in a diverse, but interrelated professional skill set. That skill set should be clearly defined, widely communicated and integrated across all PhD disciplines at CWRU SOM. Moreover, a set of common principles or goals for educating all graduate students in the SOM helps to guide our programs in course or curriculum development. The School of Medicine Graduate Education Office, in collaboration with the graduate program directors, developed a formal set of Guiding Principles (http://bulletin.case.edu/schoolofmedicine/graduateprograms/Guiding_Principles.pdf) for the education and training of all Ph.D. students in order to help accomplish these important goals.

Graduate Admissions to School of Medicine Programs
Graduate students are admitted to our programs through several streams, including the Biomedical Sciences Training Program (http://www.case.edu/med/BSTP), the Medical Scientist Training Program (http://mstp.cwru.edu), dual-degree initiatives, and direct admission to specific programs (please see individual program entries under their affiliated department pages). Postdoctoral Fellows and Postdoctoral Scholars are appointed through the Office of Postdoctoral Affairs (http://postdoc.case.edu).

Student Affinity Groups
Graduate students interact in vibrant groups in the School of Medicine including: The Biomedical Graduate Student Organization (BGSO) (http://gsc.case.edu/org/bgso/home) seeks to unite biomedical graduate students pursuing master’s and doctoral degrees in various biomedical graduate programs in the Case Western Reserve University School of Medicine, with the ultimate goal of enriching the student experience and promoting career and professional development.

What We Do:
- Promote greater career and professional development
- Promote more interaction between graduates and professionals of the School of Medicine
- Ease the transition into graduate school by creating a "survival guide"

Get Involved!
It’s your graduate career - why not make sure you get what you want out of it? As a graduate student, you can get involved by becoming a representative for your department or coming to monthly meetings. Please email us for more information or attend our next meeting.

Highlights include:
Hosted the following professional development seminars - “Funding 101: Funding Opportunities for Graduate Students”, “Scientific Journalism”, “Life as a Forensic Scientist”, “Planning Your Graduate

Graduate Programs in the Biomedical Sciences
Graduate Education Office, School of Medicine, RM TG-1 casemed.case.edu/gradprog Phone: 216.368.5655; Fax: 216.368.0795 Paul N. MacDonald, PhD, Associate Dean for Graduate Education paul.macdonald@case.edu
Malana Bey (malana.bey@case.edu), Administrator 216.368.5655

The School of Medicine is proud to administer doctoral, master’s, professional and certificate graduate programs in the biomedical sciences, described fully in this bulletin under their departmental or center affiliations. The Graduate Education Office provides support and information on the graduate and postdoctoral training programs in the School of Medicine, as well as professional skill development and training grant proposal support. Resources for proposal development as well as current training information are available at the SOM Graduate Education (http://casemed.case.edu/gradprog) website.

Case Western Reserve University School of Medicine has a strong commitment to the importance of diversity in its research and educational programs. The CWRU community celebrates how our individual diversity in race, ethnicity, gender, country of origin, sexual orientation or gender identity enhances our work together. CWRU programs welcome diverse individuals, including those individuals of racial and ethnic groups underrepresented in biomedical science, those with physical disabilities, and those with disadvantaged backgrounds.

Common Academic Requirements
Each graduate program follows the overall regulations established and described in Graduate Studies Academic Requirements pages (http://bulletin.case.edu/schoolofgraduatestudies/academicrequirements) and documented to the Regents of the State of Ohio. In particular, students and faculty are directed to sections regarding Academic Requirements for Master’s and Doctoral Degrees regarding total and graded course requirements, dissertation advisory committees, maintenance of quality-point average, and other general aspects of graduate study at CWRU.

The Biomedical Graduate Student Organization (BGSO)
malana.bey@case.edu, Administrator
216.368.5655

The School of Medicine
Graduate students interact in vibrant groups in the School of Medicine including:

Promote greater career and professional development
Promote more interaction between graduates and professionals of the School of Medicine
Ease the transition into graduate school by creating a "survival guide"

Get Involved!
It’s your graduate career - why not make sure you get what you want out of it? As a graduate student, you can get involved by becoming a representative for your department or coming to monthly meetings. Please email us for more information or attend our next meeting.

Highlights include:
Hosted the following professional development seminars - “Funding 101: Funding Opportunities for Graduate Students”, “Scientific Journalism”, “Life as a Forensic Scientist”, “Planning Your Graduate
Years and the Individual Development Plan", "A Day in the Life of a Biotech Scientist"
Hosted New Student Acclimation Luncheons - "Everything You Need to Know About Research Rotations and Surviving C3MB", "Surviving Grad School", and "Choosing a Thesis Lab and Department"
The Community Outreach & Volunteering Committee participated in the following events - Homeless Stand Down 2010 through InterAct Cleveland, School Supplies Drive, and teaching a DNA Lab to underprivileged girls at an inner city middle school in conjunction with the Department of Genetics
Social events included a party at Dive Bar, a pasta dinner social, and group outing to Wicked

In addition, doctoral students in the School of Medicine organize the annual Biomedical Graduate Student Symposium.

The Graduate Student Council (GSC) (http://gsc.case.edu/home) is the governing body for all graduate students at CWRU. The aim is to enrich your experience at CWRU in every way possible. We connect students through social and professional events, provide funding and assistance for their initiatives, and work to insure that they are treated as valued members of the campus community.

The Minority Graduate Student Organization promotes, engages and advances underrepresented minority graduate and postdoctoral trainees in the various fields of biomedical research within the Case Western Reserve University community, in the greater Cleveland area, and in the nation.

Professional Development
The Graduate Education Office provides professional development opportunities for trainees including:

The Professional Enrichment for Trainees Series (PETS)
CWRU SOM Graduate Education Office hosts the PETS seminar series which focuses on developing core competencies of leadership, entrepreneurship, communication skills, appreciative inquiry, emotional intelligence, teamwork and other key areas. This noon luncheon series is held monthly, together with the COTS (described below), for all graduate students and postdoctoral trainees in the SOM, though it often attracts participants from across the entire campus. The format is generally a presentation by faculty experts or a panel discussion among several faculty. A large emphasis is placed on audience discussion and participation throughout the session.

The Career Opportunities for Trainees Series (COTS)
This professional development seminar series is designed to introduce trainees to the array of career paths that are available to PhD biomedical researchers. Local, regional, and national leaders as speakers or panel discussants are invited to present each semester. Presentations include information on the speaker’s career trajectory, their daily activities, and a description of additional training necessary for entering each career path. Major advantages and disadvantages of the career choice are also discussed. These sessions are often followed by an informal networking event allowing trainees to interact with the speaker and each other in a more informal setting.

Creativity Fellows
This program is designed for graduate students who are interested in developing their creativity, teamwork and problem-solving skills. Select students meet for 90 minutes every week for 10 weeks. During each session, students will participate in activities that promote skills in the areas of teamwork, creativity and thinking outside the box as well as problem-solving. Students also reflect on how these skills apply to biomedical research and any future career goals the students may have.

For More Information, Email CREATIVITY_FELLOWS@CASE.EDU

The Enhancing Research and Industry Career Horizons (EnRICH) Program
The CWRU School of Medicine EnRICH Program provides career guidance and support to PhD and Master’s students pursuing biomedical science degrees and simultaneously develops partnerships with organizations and mentors who recognize the skills of such students. A mentor and student spend time together for a paid or non-paid work or exposure experience that is beneficial to both the employer and student. The timeframe and duration of the experience is flexible where the mentor and student agree on the duration of the work experience and to an hourly and weekly work schedule. During the experience, students will clarify career goals as s/he; realizes the results of applied skills in a non-academic career, identifies ways to adapt skills for a variety of occupations and work environments, gains broader perspectives of careers that require his or her skills and talents, identifies ways to adapt skills for a variety of occupations and work environments, learns the business side of science and technology, and develops personal and interpersonal skills for relationship building to broaden professional networks.

For More Information, Email ENRICH@CASE.EDU

The Expanding Teaching Experiences for Doctoral Students (ExTEnd) Program
This program, open to all doctoral students at the CWRU School of Medicine, provides a way for graduate students to get formal experience in teaching at the university or college level by providing training and experiences in post-secondary education.

Students in this program complete program requirements by:

• Attending a one semester seminar-style class taught by Educational Student Services to learn the basics of curricular design, development, and delivery

AND

• Completing two “significant” teaching experiences, such as:
 – Guest lecturing at least 5 class hours
 – Co-teaching a course at CWRU or another accredited university
 – Facilitating small group sessions for certain approved courses
 – Other teaching experiences as approved

• Obtaining students feedback on each of the teaching experiences

Students completing program requirements will get a formal letter from the program director stating their completion of the program, as well as experiences, gained and feedback received as part of the program.

For More Information, Email EXTEND@CASE.EDU

Biomedical Sciences Training Program (BSTP)
Phone: 216.368.3347
http://www.case.edu/med/BSTP/
The Biomedical Sciences Training Program (BSTP) offers a common admission portal to most biomedical PhD degree programs at CWRU School of Medicine. The BSTP includes eleven doctoral programs in the School of Medicine with more than 200 faculty based in both basic science and clinical departments, giving BSTP students a tremendous range of research opportunities in many disciplines. It also provides a distinct advantage over traditional programs, which restrict choices of research area and faculty advisors.

Admissions
Students usually apply in the fall or winter and begin their studies the following summer. The application deadline is January 15th. Priority will be given to applications received by December 1. Applications will be considered by the Admissions Committee as soon as they are complete. In general a year of biology, organic chemistry and mathematics through calculus are required, and biochemistry and molecular biology are strongly recommended. We also seek students with strong backgrounds in physics or math who may be interested in our Structural Biology track (http://sbb-tp.case.edu) or Systems Biology and Bioinformatics (http://bioinformatics.case.edu) programs. Depending on preparation, we may suggest additional biology coursework once graduate training begins. This background prepares most students for success in our programs.

Research Experience and Recommendations
Experience performing original research is essential. This might include an undergraduate honors thesis, summer research internships, or a technical position after graduation. Letters of recommendation from research mentors that describe creativity, handwork, and promise in science are very important.

Exams
The GRE general test is required. Recent classes have earned an average of 70th percentile in each area. A GRE subject test is desirable but is not required. The Test of English as a Foreign Language (TOEFL) is required for foreign students unless they are from an English-speaking country or have a degree from a university where the instruction is primarily in English. Students may be eligible to apply for the transfer of some graduate credit from their previous institution. Please go here (http://gradstudies.case.edu) for more information. Transfer credit must be requested prior to beginning coursework at CWRU.

The First Year
Coursework
Students take integrated courses in Cell and Molecular Biology (CBIO 453 Cell Biology I, CBIO 455 Molecular Biology I). These two courses, offered in the fall semester, emphasize the molecular approaches that form the basis of modern biology. We also seek students with strong quantitative training who may have majored in physics or math, and offer alternative courses for these students to acquire foundations in biology. Qualified students also may take more specialized elective courses. All students take IBMS 500: On Being a Professional Scientist: The Responsible Conduct of Research.

Research Rotations
The research rotations allow students to explore research areas and become familiar with faculty members and their laboratories. The main purpose of these rotations is to aid students in selecting a laboratory for their thesis work. Students are encouraged to begin their rotations in July. Doing so gives them the opportunity to complete rotations during the summer before classes begin at the end of August. Students must complete at least three rotations.

Choosing a Thesis Advisor
During the first year, students select an advisor for their dissertation research. Each student also joins the PhD program with which their advisor is affiliated. Once students choose a PhD program, the requirements of that program are followed to obtain the PhD. The emphasis of the PhD work is on research, culminating in the completion of an original, independent research thesis and publishing the results in the scientific literature. PhD programs also focus on educating students to work as professional scientists.

Participating Training Programs
- Biochemistry (p. 53)
- Cell Biology (p. 102)
- Genetics and Genome Sciences (p. 99)
- Molecular Biology and Microbiology (p. 102)
- Molecular Virology (p. 102)
- Neurosciences (p. 109)
- Nutrition (p. 122)
- Pathology (p. 128)
- Pharmacology (p. 140)
- Physiology and Biophysics (p. 146)
- Systems Biology and Bioinformatics (p. 80)

These programs have tracks that allow specialization in the following areas: Cancer Biology; Cancer Therapeutics; Cell and Molecular Physiology; Developmental Biology; Experimental Pathology; Immunology; Membrane Structural Biology; Molecular and Cellular Biophysics; Molecular Pharmacology and Cell Regulation; Molecular Pharmacology and Cell Regulation; Organ Systems Physiology; RNA Biology; Structural Biology & Biophysics; Translational Therapeutics.

Training faculty, course offerings, and individual degree requirements are described in detail in the separate listings for each of these programs. All PhD programs have similar requirements, including an original thesis, coursework, examinations, publications in scientific journals with lead authorship, seminars, journal clubs, and other activities.

BSTP Course
BSTP 400. Research Rotation in Biomedical Sciences Training Program. 0 - 9 Units.

CBIO Courses
CBIO 453. Cell Biology I. 3 Units.
Part of the first semester curriculum for first year graduate students along with CBIO 455. This course is designed to give students an intensive introduction to prokaryotic and eukaryotic cell structure and function. Topics include membrane structure and function, mechanisms of protein localization in cells, secretion and endocytosis, the cytoskeleton, cell adhesion, cell signaling and the regulation of cell growth. Important methods in cell biology are also presented. This course is suitable for graduate students entering most areas of basic biomedical research. Undergraduate courses in biochemistry, cell and molecular biology are excellent preparation for this course. Recommended preparation: Undergraduate biochemistry or molecular biology.
CBIO 455. Molecular Biology I. 3 Units.
Part of the first semester curriculum for first year graduate students along with CBIO 453. This course is designed to give students an intensive introduction to prokaryotic and eukaryotic molecular biology. Topics include protein structure and function, DNA and chromosome structure, DNA replication, RNA transcription and its regulation, RNA processing, and protein synthesis. Important methods in molecular biology are also presented. This course is suitable for graduate students entering most areas of basic biomedical research. Undergraduate courses in biochemistry, cell and molecular biology are excellent preparation for this course. Recommended preparation: Undergraduate biochemistry or molecular biology.

CBIO 456A. Since You Were Born: Nobel Prize Biomedical Research in the Last 21 Years- Section A. 1 Unit.
This course is one of four sections that will cover major advances in biomedical research by review of Nobel Prize-winning topics from the past 21 years. Each section will cover 8 Nobel prize topics (1 topic/2 hour session/week for 8 weeks). Students will read critical research papers of the Nobel prize scientist(s) in preparation for guided in-class discussion led by the faculty mentor. The CBIO456A section will cover Nobel Prizes related to the areas of Genetics & Genome Science, Systems Biology & Bioinformatics, and RNA Biology. These include: 1) 2012 Prize, J. Gurdon and S. Yamanaka: Mechanisms of pluripotent stem cell development and reprogramming; 2) 2010 Prize, R. Edwards: Development of in vitro fertilization; 3) 2009 Prize, E. Blackburn, C. Greider, and J Szostack: Mechanisms of chromosome protection by telomeres and telomerase; 4) 2009 Prize, Y. Ramakrishnan, T. Steitz, and A. Yonath: Structure/function analysis of ribosomes; 5) 2007 Prize, M. Capechi, M. Evans, and O. Smithies: Discovery/development of transgenic and gene-deletion methods in mice; 6) 2006 Prize, A. Fire and C. Mello: Discovery/development of RNA interference-gene silencing methods; 7) 2006 Prize, R. Kornberg: Mechanisms of eukaryotic transcription; 8) 1995 Prize, L. Hartwell, T. Hunt, and P. Nurse: Mechanisms of cell cycle regulation.

CBIO 456B. Since You Were Born: Nobel Prize Biomedical Research in the Last 21 Years- Section B. 1 Unit.
This course is one of four sections that will cover major advances in biomedical research by review of Nobel Prize-winning topics from the past 21 years. Each section will cover 8 Nobel prize topics (1 topic/2 hour session/week for 8 weeks). Students will read critical research papers of the Nobel prize scientist(s) in preparation for guided in-class discussion led by the faculty mentor. The CBIO456B section will cover Nobel Prizes related to the areas of Molecular Biology & Microbiology, Molecular Virology, Pathology-Immunology, and Cell Biology. These include: 1) 2016 Prize, Y. Ohsumi: Mechanisms of Autophagy; 2) 2015 Prize, W. Campbell, S. Omura, and Y. Tu: Therapies against roundworms & malaria; 3) 2011 Prize, B. Beutler, J. Hoffman, and R. Steinman: Mechanisms underlying innate immunity and adaptive immunity; 4) 2008 Prize, H. zur Hausen, F. Barre-Sinoussi, and L. Montagnier: Discovery of human immunodeficiency virus and oncogenic papilloma viruses; 5) 2008 Prize, O. Shimomura, M. Chalfie, and R. Tsien: Discovery/development of green fluorescent protein for biological applications; 6) 2005 Prize, B. Marshall and J. Warren: Discovery of Helicobacter pyloris as pathogenic mechanism in peptic ulcers/gastritis; 7) 1999 Prize, G. Blobel: Mechanisms of protein sorting and subcellular trafficking; 8) 1996 Prize, P. Doherty and R. Zinkernagel: Mechanisms of cell-mediated immune defense.

CBIO 456C. Since You Were Born: Nobel Prize Biomedical Research in the Last 21 Years- Section C. 1 Unit.
This course is one of four sections that will cover major advances in biomedical research by review of Nobel Prize-winning topics from the past 21 years. Each section will cover 8 Nobel prize topics (1 topic/2 hour session/week for 8 weeks). Students will read critical research papers of the Nobel prize scientist(s) in preparation for guided in-class discussion led by the faculty mentor. The CBIO456B section will cover Nobel Prizes related to the areas of Biochemistry, Nutrition, Pharmacology, and Pathology-Cancer. These include: 1) 2015 Prize, T. Lindahl, P. Modrich, and A. Sancar: Mechanisms of DNA Repair; 2) 2014 Prize, E. Betzig, S. Hell, W. Moerner: Development of super-resolution fluorescence microscopy; 3) 2012 Prize, R. Lefkowitz and B. Kobilka: Structure/function analysis of G protein-coupled receptors; 4) 2004 Prize, A. Ciechanover, A. Hershko, and I. Rose: Mechanisms of ubiquitin-mediated protein degradation; 5) 2003 Prize, P. Lauterbur and P. Mansfield: Development of magnetic resonance imaging (MRI) methods; 6) 2002 Prize, S. Brenner, H.R. Horvitz, and J. Sulston: Mechanisms for genetic regulation of organ development and programmed cell death; 7) 2002 Prize, J. Fenn, K. Tanaka, and K. Wuthrich: Development of mass spec and NMR methods for biological macromolecules; 8) 2001 Prize, L. Hartwell, T. Hunt, and P. Nurse: Mechanisms of cell cycle regulation.

CBIO 456D. Since You Were Born: Nobel Prize Biomedical Research in the Last 21 Years- Section D. 1 Unit.
This course is one of four sections that will cover major advances in biomedical research by review of Nobel Prize-winning topics from the past 21 years. Each section will cover 8 Nobel prize topics (1 topic/2 hour session/week for 8 weeks). Students will read critical research papers of the Nobel prize scientist(s) in preparation for guided in-class discussion led by the faculty mentor. The CBIO456D section will cover Nobel Prizes related to the areas of Neuroscience, Physiology & Biophysics, and Pathology-Molecular Basis of Disease. These include: 1) 2014 Prize, J. O'Keefe, M-B. Moser, and E. Moser: Mechanisms of nerve cell spatial positioning in the brain; 2) 2013 Prize, J. Rothman, R. Schechman, and T. Sudhof: Mechanisms of intracellular vesicle trafficking and biomolecule secretion; 3) 2004 Prize, R. Axel and L. Buck: Structure/function of odorant receptors and organization of olfactory system; 4) 2003 Prize: P. Agre and R. MacKinnon:Structure/function analysis of channel proteins in cell membranes; 5) 2000 Prize, A. Carlsson, P. Greengard, and E. Kandel: Mechanisms of signal transduction in the nervous system; 6) 1998 Prize, R. Furchgott, L. Ignarro, and F. Murad: Discovery/mechanisms of nitric oxide as signaling molecule in cardiovascular system; 7) 1997 Prize, S. Prusiner: Discovery/prions as new biological principle of infection in neurological disease; 8) 1997 Prize, P. Boyer, J. Walker, and J. Skou: Mechanisms of mitochondrial ATP synthesis and Na,K-ATPase pump function.
IBMS Courses

IBMS 450. Fundamental Biostatistics to Enhance Research Rigor & Reproducibility. 1 Unit.
This is a required graduate level course for all first year PhD students in the School of Medicine biomedical PhD programs excluding Biomedical Engineering, Population and Quantitative Health Sciences, Molecular Medicine and Clinical Translation Science. This course focuses on providing students with a basic working knowledge and understanding of best practices in biostatistics that can be applied to common biomedical research activities in numerous fields. Weekly sessions involve a combination of basic programming activities, lectures, exercises, hands-on data manipulation and presentation. Topics include experimental design and power analysis, hypothesis testing, descriptive statistics, linear regression, and others with an emphasis on when and in which experimental design a particular test is properly used. The overall goal of the course is to empower students to use these biostatistics to enhance the rigor of their experimental design and reproducibility of their primary data. The major focus is not on theory, but on a practical acquisition of a working knowledge of basic data processing analysis, interpretation, and presentation skills.

IBMS 500. On Being a Professional Scientist: The Responsible Conduct of Research. 1 Unit.
The goal of this course is to provide graduate students with an opportunity to think through their professional ethical commitments before they are tested, on the basis of the scientific community’s accumulated experience with the issues. Students will be brought up to date on the current state of professional policy and federal regulation in this area, and, through case studies, will discuss practical strategies for preventing and resolving ethical problems in their own work. The course is designed to meet the requirements for “instruction about responsible conduct in research” for BSTP and MSTP students supported through NIH/ADAMHA institutional training grant programs at Case. Attendance is required.

Department of Anatomy

Room WG-46, School of Medicine
http://www.case.edu/med/anatomy/
Phone: 216.368.2433
Clifford V. Harding, MD, PhD, Interim Chair
clifford.harding@case.edu

Christine Marshall (christine.marshall@case.edu), Department Administrator

The Department of Anatomy provides cutting-edge instruction in human anatomy to medical students, graduate students, and undergraduate students and is home to international research programs in paleontology and paleobiology. Our program leading to the Master of Science degree in Applied Anatomy provides rigorous training for students who aspire to careers requiring a solid foundation in human anatomy. This curriculum is ideal for students with a range of career goals, including those who will be future teachers of anatomy or who will pursue careers in medicine or other health professions or scientific fields that involve anatomy. The MS in Applied Anatomy can be combined with the MD curriculum in a four-year joint MD-MS curriculum. This provides an enhanced background for medical students who plan to enter a surgical specialty, radiology, or another field that relies on detailed understanding of human anatomy.

MS Applied Anatomy

The Applied Anatomy program is designed for students who seek a comprehensive education in the anatomical sciences, particularly those individuals pursuing careers as medical health professionals and teachers who desire an advanced degree to enhance their skills and credentials. The Anatomical Sciences Core Curriculum (ASCC) courses emphasize the traditional aspects of anatomical structure, function, and nomenclature with critical aspects of cell and developmental biology, biochemistry, and physiology of cells, tissues, and organs integrated into their content. The elective courses allow curriculum flexibility for students to emphasize their diverse individual interests. The Master of Science in Applied Anatomy serves as an excellent preparation for subsequent studies in schools of medicine, dentistry, and nursing. The knowledge of the human body and its physiological processes gained in this program also forms a significant foundation for physician assistants, physical therapists, dental technicians, and K-12 life sciences teachers.

Students in this post-baccalaureate program earning the Master of Science in Applied Anatomy use their rigorous training in the anatomical sciences to establish an academic basis for their application to professional schools. Case Western Reserve University medical students earning the joint MD/MS degree program seek advanced training in the anatomical sciences. The joint MD/MS program is undertaken and completed concurrently with the medical curriculum, particularly if the student enters the graduate program during the first year of medical school.

Admission

Acceptance into the Master of Science in Applied Anatomy program requires a baccalaureate degree from an accredited institution and is based on undergraduate and/or graduate GPAs, results of admission examinations (GRE, MCAT, DAT), plus letters of recommendation; an Educational Credential Evaluation and Authentication Report is required for foreign transcripts plus documentation (TOEFL) of English language skills for foreign applicants. Acceptance into the joint MD/MS program requires that the medical student be in good academic standing in the CWRU medical curriculum at the time of matriculation into the program, and a letter of approval from their respective Associate (“Society”) Dean of Student Affairs. Each student in the Applied Anatomy program has a faculty advisor from the Department of Anatomy Graduate Executive Committee which coordinates the program and reviews the graduate Planned Program of Study for individual students. Contact the Department of Anatomy for additional program and application information.

Degree Requirements

The Master of Science in Applied Anatomy degree requires a minimum of 30 graduate course credits. Required courses include 19 credits of the Anatomical Sciences Core Curriculum; the remaining credits are elective courses selected to fulfill individual student interests and goals. Medical students are required to take at least one of the Surgical Anatomy courses. A research thesis is not required for the non-thesis type B MS Applied Anatomy, although research experience may be obtained as elective coursework ANAT 499: Independent Study with individual faculty members.

Comprehensive written and oral exams covering the basic scientific principles presented in the core curriculum must be passed after successful completion of the formal coursework comprising the Anatomical Sciences Core Curriculum. All degree requirements must be completed within five years; most students complete the program in 2
Department of Anatomy

years. Tuition or stipends will not be provided for the master of science program (no additional tuition is required for enrolled medical students).

These specific sequences of classes, while common, are not exclusive and are meant only to exemplify the typical program of study leading to the Master of Science in Applied Anatomy degree. The required courses (19 credits) comprising the Anatomical Sciences Core Curriculum are specifically delineated, whereas the elective courses (11 credits minimum) are not identified since they vary significantly between individual students. Students become eligible to take the MS Comprehensive Examination upon successful completion of the ASCC courses.

MS & MD/MS Applied Anatomy, Plan of Study (4 semester)

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ANAT 412</td>
<td>Histology and Ultrastructure (Elective)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ANAT 413</td>
<td>General Histology Laboratory ()</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td></td>
<td>1-3</td>
</tr>
<tr>
<td>Spring</td>
<td>ANAT 411</td>
<td>Gross Anatomy</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td></td>
<td>1-3</td>
</tr>
<tr>
<td>(Medical students apply to MD/MS program)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td></td>
<td>Elective</td>
<td>1-6</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ANAT 414</td>
<td>Neurological Anatomy</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td></td>
<td>1-3</td>
</tr>
<tr>
<td>Spring</td>
<td>ANAT 491</td>
<td>Embryology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td></td>
<td>1-3</td>
</tr>
</tbody>
</table>

Master of Science ASCC Comprehensive Examination (May/June)

(MD/MS Step I Exam)

Summer: MS Graduation (August)

1 Year III & IV MD/MS Only:
[MD/MS: continue clinical/ research rotations]
Surgical Anatomy courses [1 required—1 clinical block each]
Surgical Anatomy I, worth 4 credit hours, to be taken in the fall;
Surgical Anatomy II, worth 4 credit hours, to be taken in the spring.
ANAT 515: ‘Orthopedics’ [Block 4] 4
ANAT 516: ‘Head & Neck’ [Block 11] 4
[Year IV- Spring: MD/MS Graduation]

Pre-Approved Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANAT 445</td>
<td>Mammal Diversity and Evolution</td>
<td>4</td>
</tr>
<tr>
<td>ANAT 467</td>
<td>Topics in Evolutionary Biology</td>
<td>3</td>
</tr>
<tr>
<td>ANAT 475</td>
<td>Human Evolution: The Fossil Evidence</td>
<td>3</td>
</tr>
<tr>
<td>ANAT 477</td>
<td>Human Osteology</td>
<td>4</td>
</tr>
<tr>
<td>ANAT 520</td>
<td>Imaging Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>ANAT 560</td>
<td>Applied Neuroanatomy</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 407</td>
<td>Introduction to Biochemistry: From Molecules To Medical Science</td>
<td>4</td>
</tr>
<tr>
<td>BIOC 408</td>
<td>Molecular Biology</td>
<td>4</td>
</tr>
<tr>
<td>PATH 416</td>
<td>Fundamental Immunology</td>
<td>4</td>
</tr>
<tr>
<td>ANAT 462</td>
<td>Principles of Developmental Biology</td>
<td>3</td>
</tr>
<tr>
<td>PAST 510</td>
<td>Clinical Residency: Elective</td>
<td>3</td>
</tr>
<tr>
<td>ANAT 523</td>
<td>Histopathology of Organ Systems</td>
<td>3</td>
</tr>
<tr>
<td>PHRM 409</td>
<td>Principles of Pharmacology</td>
<td>3</td>
</tr>
<tr>
<td>PHOL 480</td>
<td>Physiology of Organ Systems</td>
<td>4</td>
</tr>
<tr>
<td>ANAT 499</td>
<td>Independent Study</td>
<td>1 - 4</td>
</tr>
<tr>
<td>ANAT 503</td>
<td>Readings and Discussions</td>
<td>1 - 3</td>
</tr>
<tr>
<td>ANAT 611</td>
<td>Practicum in Human Gross Anatomy</td>
<td>3</td>
</tr>
</tbody>
</table>

Courses

ANAT 312. Basic Histology. 3 Units.
Fundamental histology course covering microscopic structure, nomenclature, and function of normal cells, tissues, and organs (human emphasis) to provide a sound foundation for bioengineering, pre-medical and pre-dental students.

ANAT 375. Human Evolution: The Fossil Evidence. 3 Units.
This course will survey the biological and behavioral changes that occurred in the hominin lineage during the past five million years. In addition to a thorough review of the fossil evidence for human evolution, students will develop the theoretical framework in evolutionary biology. Recommended preparation: ANTH 377, BIOL 225. Offered as ANAT 375, ANTH 375, ANAT 475 and ANTH 475. Prereq: ANTH 103.

ANAT 377. Human Osteology. 4 Units.
This course for upper division undergraduates and graduate students will review the following topics: human skeletal development and identification; and forensic identification (skeletal aging, sex identification and population affiliation). Offered as ANAT 377, ANTH 377, ANAT 477 and ANTH 477.

ANAT 391. Embryology. 3 Units.
A detailed description of development will be presented, focusing mainly on the developing human. Discussions and presentations will also include several developing systems that have served as useful models in experimental embryology for deciphering mechanisms responsible for producing adult metazoan organisms. Offered as ANAT 391 and ANAT 491.

ANAT 399. Independent Study. 1 - 4 Units.
Laboratory research project. Student must obtain approval of a supervising Anatomy department professor before registration and list the professor’s name on the schedule card.
ANAT 410. Cadaver dissection-based human anatomy with histology and physiologic correlations. 6 Units.
This course will provide students with a sound understanding of the normal human body as a foundation for subsequent pursuing biomedical careers. A combination of daily lectures and laboratories integrates cadaver dissection-based gross anatomy with the associated histology, embryology, neuroanatomy and basic physiology. This course is well-suited to all biomedical careers, including pre-clinical and biomedical undergraduates, post-baccalaureate, pre-clinical master of science graduate programs, plus medical and dental students seeking additional training in the anatomical sciences. It will meet any of the anatomy-oriented prerequisites being implemented for medical and dental school applications, including those preferring or requiring a cadaver-based experience. The assessments will include a combination of written and cadaver-based practical questions. Offered as ANAT 410 and PAST 410.

ANAT 411. Gross Anatomy. 6 Units.
This in-depth, cadaver dissection-based, course covers all aspects of human gross anatomy. The course is modeled after a traditional medical school gross anatomy curriculum and taught by the CWRU School of Medicine, Department of Anatomy faculty. It is divided into three sections: thorax and abdomen; pelvis/perineum and limbs/back; and head and neck. One hour of lecture will precede 3 hours of dissection laboratory Monday, Wednesday, and Friday. Lectures and dissection labs will cover all human anatomy, and students should be prepared to devote more time that the scheduled hours of 1:00 to 5:00pm. Dissection labs are open 24 hours 7 days a week. Recommended preparation: B.A./B.S., or fourth year undergraduate science major.

ANAT 412. Histology and Ultrastructure. 4 Units.
Comprehensive functional histology course integrating microscopic identification ('structure plus nomenclature') of normal cells, tissues, and organs with aspects of their cell biology, biochemistry, and physiology ('function'). Topical coverage includes complete ('head-to-toe') tissue and organ survey with human emphasis.

ANAT 413. General Histology Laboratory. 2 Units.
Microscopic structure of tissues and organs. Laboratory course associated with ANAT 412 (see ANAT 412 description). Recommended preparation: ANAT 312 or ANAT 412 or concurrent enrollment.

ANAT 414. Neurological Anatomy. 4 Units.
This course employs a variety of teaching-learning methods--among them lectures, small-group discussions, hands-on 'construction' of pathways, and brain dissection. Regional morphology will be studied via examination of the preserved brain and of sections through the CNS; functional systems will be "followed" through the spinal cord, brain stem and/or forebrain.

ANAT 415. Functional Neuroanatomy. 4 Units.
This course focuses on concepts underlying the structure and function of important sensory and motor systems in both the central and peripheral nervous systems. Emphasis is placed on learning how different patterns of neuronal connectivity give rise to certain perceptions and motor behaviors. Additionally, the composition and distribution of peripheral nerves -- spinal, cranial, and autonomic -- is studied. Particular attention is paid to the anatomy and function of those structures innervated by the cranial nerves. A variety of teaching-learning activities is employed among them, lectures, small-group discussions, student presentations, and examination of preserved brains and brain sections.

ANAT 424. Neural Integrative and Regulatory Mechanisms. 3 Units.
This course is designed as a sequence to ANAT 414, Neurological Anatomy, or any other "introductory" course in neuroanatomy. Topics to be addressed include central regulation of pain, the regulation of somatic and visceral motor activity, neurotransmitter substances, the basal forebrain, the blood-brain barrier, levels of consciousness, sleep-wake mechanisms, cognitive behaviors and memory. Appreciation of the three-dimensional anatomy and vasculature of the spinal cord and brain will be gained through brain dissection and study of stained and unstained sections. Recommended preparation: ANAT 414 or permission.

ANAT 431. Statistical Methods I. 3 Units.
Application of statistical techniques with particular emphasis on problems in the biomedical sciences. Basic probability theory, random variables, and distribution functions. Point and interval estimation, regression, and correlation. Problems whose solution involves using packaged statistical programs. First part of year-long sequence. Offered as ANAT 431, BIOL 431, CRSP 431, PQHS 431 and MPHP 431.

ANAT 445. Mammal Diversity and Evolution. 4 Units.
This course focuses on the anatomical and taxonomic diversity of mammals in an evolutionary context. The emphasis is on living (extant) mammals, but extinct mammals are also discussed. By the end of the course, students will be able to: (1) describe the key anatomical and physiological features of mammals; (2) name all orders and most families of living mammals; (3) identify a mammal skull to order and family; (4) understand how to create and interpret a phylogenetic tree; (5) appreciate major historical patterns in mammal diversity and biogeography as revealed by the fossil record; (6) read and critique a scientific article dealing with mammal evolution. One weekend field trip to Cleveland Metroparks Zoo; additional individual and group visits to the Cleveland Museum of Natural History. This course satisfies a laboratory requirement for the biology major. Offered as ANAT 445 and BIOL 345. Prereq: BIOL 214.

ANAT 462. Principles of Developmental Biology. 3 Units.
The descriptive and experimental aspects of animal development. Gametogenesis, fertilization, cleavage, morphogenesis, induction, differentiation, organogenesis, growth, and regeneration. Students taking the graduate-level course will prepare an NIH-format research proposal as the required term paper. Offered as BIOL 362, BIOL 462 and ANAT 462.

ANAT 467. Topics in Evolutionary Biology. 3 Units.
The focus for this course on a special topic of interest in evolutionary biology will vary from one offering to the next. Examples of possible topics include theories of speciation, the evolution of language, the evolution of sex, evolution and biodiversity, molecular evolution. ANAT/ ANTH/EEPS/PHIL/PHOL 467/BIOL 468 will require a longer, more sophisticated term paper, and additional class presentation. Offered as ANTH 367, BIOL 368, EEPS 367, PHIL 367, ANAT 467, ANTH 467, BIOL 468, EEPS 467, PHIL 467 and PHOL 467.

ANAT 475. Human Evolution: The Fossil Evidence. 3 Units.
This course will survey the biological and behavioral changes that occurred in the hominin lineage during the past five million years. In addition to a thorough review of the fossil evidence for human evolution, students will develop the theoretical framework in evolutionary biology. Recommended preparation: ANTH 377, BIOL 225. Offered as ANAT 375, ANTH 375, ANAT 475 and ANTH 475. Prereq: ANTH 103.
ANAT 477. Human Osteology. 4 Units.
This course for upper division undergraduates and graduate students will review the following topics: human skeletal development and identification; and forensic identification (skeletal aging, sex identification and population affiliation). Offered as ANAT 377, ANTH 377, ANAT 477 and ANTH 477.

ANAT 491. Embryology. 3 Units.
A detailed description of development will be presented, focusing mainly on the developing human. Discussions and presentations will also include several developing systems that have served as useful models in experimental embryology for deciphering mechanisms responsible for producing adult metazoan organisms. Offered as ANAT 391 and ANAT 491.

ANAT 497. Scientific Presentations. 1 Unit.
These courses provide a foundation and experience for making scientific presentations. Scheduled simultaneously with ANAT 498 and students from both courses are present, but the requirements for passing differ. Students in ANAT 497 prepare PowerPoint and poster presentations. Oral presentations by students taking ANAT 498 will occur during the class periods for the remainder of the semester. Students taking 497 and 498 must participate in these discussions. Students must take ANAT 497: Scientific Presentations before ANAT 498: Applied Anatomy Seminar.

ANAT 498. Applied Anatomy Seminar. 1 Unit.
These courses provide a foundation and experience for making scientific presentations. Scheduled simultaneously with ANAT 497 and students from both courses are present, but the requirements for passing differ. Students in ANAT 497 prepare PowerPoint and poster presentations. Oral presentations by students taking ANAT 498 will occur during the class periods for the remainder of the semester. Students taking 497 and 498 must participate in these discussions. Students must take ANAT 497: Scientific Presentations before ANAT 498: Applied Anatomy Seminar.

ANAT 499. Independent Study. 1 - 4 Units.
Laboratory research project. Student must obtain approval of a supervising Anatomy department professor before registration and list the professor’s name on the schedule card.

ANAT 503. Readings and Discussions. 1 - 3 Units.
In-depth consideration of special selected topics through critical evaluation of the literature. Student must obtain approval of supervising Anatomy department professor before registration.

ANAT 513. Surgical Anatomy of the Thorax and Abdomen. 4 Units.
This course is intended for graduate and fourth-year medical students interested in surgery and surgical subspecialties. This integrated course will review basic gross anatomy, provide advanced training in gross and surgical anatomy, introduce common clinical problems and their anatomical consequences, and basic surgical approaches. Recommended preparation: ANAT 411 and permission of instructor.

ANAT 515. Surgical Anatomy: Orthopaedic Musculoskeletal. 4 Units.
This orthopaedic musculoskeletal anatomy course is offered to M.S. in Applied Anatomy students and fourth-year medical students. The course will familiarize participants with surgical approaches used to treat musculoskeletal disease. Students will learn to correlate normal and abnormal anatomical findings with radiographical studies. Recommended preparation: ANAT 411.

ANAT 516. Surgical Anatomy: Head and Neck. 4 Units.
This cadaver-based advanced anatomy course is offered to M.S. in Applied Anatomy students and fourth-year medical students. Students will build on their understanding of basic gross, histological, pathologic, and embryonic anatomy of the head and neck. The course will familiarize participants with surgical approaches used to treat pathological conditions of the head and neck including cranial cavity, cranial base, orbit, maxillofacial, oral, otic, pharyngeal, and airway. Students are required to attend and participate in lectures, surgical labs, and discussions in order to successfully complete the course. Instructor consent is required. Recommended preparation: ANAT 411.

ANAT 520. Imaging Anatomy. 3 Units.
Imaging anatomy will reinforce the student’s knowledge of anatomy and introduce the field of radiology. Students would be motivated to broaden their understanding of anatomy by being exposed to the application of that knowledge. The curriculum would introduce radiologic concepts, while stressing the normal anatomy of organ systems by imaging modalities. Anatomical structures will be recognized by projectional and cross-sectional modalities. The student will be expected to demonstrate the anatomical characteristics of that structure by oral or written account, for example course, area of supply, relations, morphology, etc. Recommended Preparation: Comprehensive knowledge of human anatomy, such as ANAT 411.

ANAT 523. Histopathology of Organ Systems. 3 Units.
Comprehensive course covering the underlying basic mechanisms of injury and cell death, inflammation, immunity, infection, and neoplasia followed by pathology of specific organ systems. Material will include histological (‘structure’) and physiological (‘function’) aspects related to pathology (human emphasis). Recommended preparation: ANAT 412 or permission of instructor. Offered as ANAT 523 and PATH 523.

ANAT 560. Applied Neuroanatomy. 3 Units.
This course is constructed to reinforce the student’s understanding of neuroanatomy. Through problem-based learning the student will set their own learning objectives based on a neurosurgical case. Presentations will use imaging, anatomic diagrams, and cadaveric dissection to demonstrate applications. Learning in this clinical context will increase motivation and understanding of this important subject. Primarily for medical students and graduate students, enrollment is by permission of instructor and completing ANAT 414, Neurological Anatomy. Prereq: ANAT 414.

ANAT 610. Oxygen and Physiological Function. 1 Unit.
Lecture/discussion course which explores the significance and consequences of oxygen and oxygen metabolism in living organisms. Topics to be covered include oxygen transport by blood tissues, oxygen toxicity, and mitochondrial metabolism. Emphasis will be placed on mammalian physiology with special reference to brain oxidative metabolism and blood flow as well as whole body energy expenditure and oxidative stress related to disease. The course will cover additional spans of physiology, nutrition and anatomy. Offered as ANAT 610, NTRN 610, and PHOL 610.

ANAT 611. Practicum in Human Gross Anatomy. 3 Units.
A course of study designed especially for the preparation of teachers that involves the supervised practical application of previously studied theory. The teaching experience obtained will be obtained in ANAT 411 - Human Gross Anatomy. Teaching will be guided, supervised, and evaluated by the appropriate faculty from the department of anatomy. The three sections of ANAT 611 and the subjects covered are: Trunk Gross Anatomy (6 weeks), Musculoskeletal Gross Anatomy (3 weeks), Head & Neck Gross Anatomy (4 weeks). Required preparation: ANAT 411 and permission of instructor.
ANAT 612. Practicum in Histology and Ultrastructure. 2 Units.
A course of study designed especially for the preparation of teachers that involves the supervised practical application of previously studied theory. The prerequisite knowledge required for ANAT 612 must have been obtained previously in ANAT 412: Histology and Ultrastructure and the associated laboratory ANAT 413: Histology Laboratory. Required participation in ANAT 612 is defined as: 1. Meet weekly with course instructor to (pre)review course material; 2. Attend all ANAT 412 lectures; 3. Participate/assist in all ANAT 413 laboratory sessions. Teaching will be guided, supervised, and evaluated by the course instructor with reference to the graduate student's overall progress and performance as a teacher. Required prerequisites: ‘A’ grades on ANAT 412 and ANAT 413; permission of instructor required.

ANAT 614. Practicum in Neurological Anatomy. 1 Unit.
A course of study designed especially for the preparation of teachers that involves the supervised practical application of previously studied theory. The graduate student will administer all laboratory sessions, assisting students with identification of structures and with understanding the functional aspects of neuroanatomical pathways. The graduate student will meet with the course director once per week to discuss the student's performance and progress and to plan for upcoming class sessions. The course director will assist the student in developing the organizational skills necessary to be a course director as the student learns to anticipate questions, define problematic areas, and recognize varying learning styles. The graduate student will be evaluated by the course director with reference to the graduate student's overall progress and performance as a teacher. Recommended preparation: ANAT 414.

ANAT 651. Thesis M.S.. 1 - 9 Units.
Master’s Thesis Plan A.

Master of Science in Anesthesia Program

Program Overview

Joseph M. Rifici, CAA, MEd
Executive Program Director
Jennifer Puin, PhD
Admissions Director

info@anesthesiaprogram.com or 216.844.8077
https://case.edu/medicine/msa-program/

The Department of Anesthesiology and Perioperative Medicine of University Hospitals Cleveland Medical Center includes more than fifty attending anesthesiologists on staff supervising resident anesthesiologists and anesthetists to provide the best patient care.

The Master of Science in Anesthesia (MSA) Program at Case Western Reserve University began in 1970, and originally awarded a baccalaureate degree, evolving in 1987 into a professional postgraduate curriculum and granting the Master of Science degree. Beginning in 2016, the MSA Program began awarding students the Master of Science in Anesthesia degree. Admission to the MSA Program requires a bachelor's degree with prescribed prerequisites typical of premedical coursework and successful completion of the MCAT. The application deadline for admission into the program is in October each year, with coursework beginning at the end of May. The 24-month MSA Program is accredited by the Commission on Accreditation of Allied Health Education Programs (CAA) and is based on the Standards for Anesthesiologist Assistant Programs. Graduates must complete a curriculum that includes 70 credit hours (six semesters) of classroom and clinical instruction. The first three semesters integrate basic science and clinical instruction.

CWRU also oversees the Master of Science in Anesthesia Program's Houston, Texas campus (http://case.edu/medicine/msa-program/locations/houston-tx) and Washington, DC campus (http://case.edu/medicine/msa-program/locations/washington-dc).

The program is led by Joseph M. Rifici, CAA, MEd and Matthew P. Norcia, MD. More information can be obtained from Jennifer Puin (info@anesthesiaprogram.com), Admissions Director.

Academic Requirements for Admission

The mission of the Master of Science in Anesthesia (MSA) Program is to graduate skilled and compassionate anesthesiologist assistants. The admission policy reflects this goal. Applicants are considered on a variety of parameters that measure academic ability, communication skills, clinical aptitude, and personality traits.

Admission to the MSA Program requires that the following criteria are met:

A. Bachelor's degree from an accredited college or university

Documentation of each of the prerequisites having been completed with a grade of B- or higher at an accredited American or Canadian institution of higher learning is required. Prerequisites must be taken within five years prior to the application deadline. For those courses that have been repeated, the highest grade will be used in the calculation. Prerequisites include:

- one semester of biochemistry
- one year of biology with laboratory*
- one semester of human anatomy with laboratory
- one semester of human physiology
- one year of chemistry with laboratory*
- one year of organic chemistry with laboratory*
- one year of physics with laboratory*
- one semester of calculus*
- one semester of advanced statistics (preferably for the life sciences)*
- one semester of English with expository writing*

All academic requirements must be completed satisfactorily before matriculation.

* Courses marked with an asterisk that were completed with a grade of B- or higher in excess of five years prior to the application deadline will meet the prerequisite criteria only if the MCAT composite score is 500 or higher.

B. Medical College Admission Test (MCAT)

- minimum composite score of 493
- completed within three years of application deadline
- when the MCAT has been taken more than once, component scores from different exams may not be combined

Applicants with international undergraduate, graduate or advanced degrees must meet the standard admission requirements listed above. International application requirements also include the Test of English as a Foreign Language (TOEFL), the International English Language Testing System (IELTS), or the Pearson Test of

All materials must be received by the deadline. Candidates participate in interviews with members of the Admissions Committee, which is comprised of faculty and staff members of the MSA Program. Prospective candidates are permitted and encouraged to shadow an anesthetist in the OR. Prior approval for this visitation is required.

The 24-month program includes 70 credit hours (six semesters) of classroom and clinical instruction. The first three semesters integrate basic science and clinical instruction. During the remaining three semesters, students complete month-long rotations in all subspecialties of anesthesia: ambulatory surgery, burns and trauma, cardiothoracic surgery, general surgery, neurosurgery, obstetrics, pediatrics, surgical intensive care unit. Clinical training focuses on all types of anesthesia including general, epidural, spinal and peripheral nerve blockade.

Instruction is also provided in advanced patient care monitoring techniques and pre-testing, calibration and operation of anesthesia delivery systems and monitors. At CWRU, our personal approach and rigorous educational standards produce compassionate and highly skilled anesthesiologist assistants.

The MSA Program is accredited by the Commission on Accreditation of Allied Health Education Programs (CAAHEP) and is based on the Standards for Anesthesiologist Assistant Programs. Graduates sit for the Certification Examination administered by the National Commission for Certification of Anesthesiologist Assistants (NCCAA) and co-sponsored by the National Board of Medical Examiners (NBME).

Additional information may be found on the Master of Science in Anesthesia Program website (http://case.edu/medicine/msa-program).

Plan of Study

Basic Science Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Units</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac Electrophysiology (ANES 403)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Physiology for Anesthesiologist Assistants I (ANES 456)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anesthesia Clinical Correlation I (ANES 462)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anesthesia Clinical Experience I (ANES 463)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacology for Anesthesiologist Assistants II (ANES 476)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Decision Making in Anesthesia II (ANES 477)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Anesthetic Sciences I (ANES 480)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiological Model-Based Simulation I (ANES 486)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anesthesia Non-Technical Skills Lab (ANES 488)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Clinical Experience Required = 180 hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient Monitoring and Instrumentation II (ANES 441)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Physiology for Anesthesiologist Assistants II (ANES 458)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: 17 17 8

Clinical Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Units</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anesthesia Clinical Correlation III (ANES 468)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anesthesia Clinical Experience IV (ANES 469)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Anesthetic Sciences III (ANES 580)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiological Model-Based Simulation III (ANES 584)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Clinical Experience Required = 511 hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anesthesia Clinical Correlation IV (ANES 470)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anesthesia Clinical Experience V (ANES 471)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Anesthetic Sciences IV (ANES 581)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiological Model-Based Simulation IV (ANES 585)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Clinical Experience Required = 516 hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anesthesia Clinical Experience III (ANES 467)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethics, Law and Diversity for Anesthesiologist Assistants (ANES 490)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Clinical Experience Required = 413 hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: 11 11 6
Courses

ANES 403. Cardiac Electrophysiology. 2 Units.
In this course students will learn basic and advanced Electrocardiogram interpretation using simulators and electrocardiograms to understand an overview of heart anatomy, function, and neurophysiology.

ANES 440. Patient Monitoring and Instrumentation I. 2 Units.
Students are taught the proper balance between circuits and engineering concepts and the clinical application of anesthesia instrumentation. Monitors and devices used in the operating room are studied with respect to principles of operation, calibration, and interpretation of data. A hands-on laboratory is utilized to maximize direct contact to the instrumentation of the profession.

ANES 441. Patient Monitoring and Instrumentation II. 2 Units.
Continuation of ANES 440. Recommended preparation: ANES 440.

ANES 456. Applied Physiology for Anesthesiologist Assistants I. 3 Units.
Basic and applied human systems physiology with emphasis on topics and areas of special concern to the anesthetist.

ANES 458. Applied Physiology for Anesthesiologist Assistants II. 3 Units.
Continuation of ANES 456. Recommended preparation: ANES 403 and ANES 456.

ANES 460. Introduction to Anesthesia. 2 Units.
Introduction to basic concepts dealing with clinical anesthesia. Medical terminology, human anatomy, medical chart interpretation and drug dosage calculations.

ANES 461. Orientation to Clinical Experience. 3 Units.
Introduction to experience in the operating room with emphasis on the fundamental procedures and techniques used in administering an anesthetic. Preoperative assessment, IV placement techniques, airway management, intraoperative patient care and postoperative management are all emphasized in this course. BLS (basic life support) certification is required for course completion. Recommended preparation: Acceptance in the M.S.A. program.

ANES 462. Anesthesia Clinical Correlation I. 1 Unit.
A series of conferences presented by students that applies to anesthetic theory as it relates to the clinical experience. Specific anesthetic situations are emphasized. Recommended preparation: ANES 460.

ANES 463. Anesthesia Clinical Experience I. 3 Units.
A continuation of the preparation, observation, and hands-on learning format initiated in ANES 461. Patient management and technical skills are refined with close attention to the didactic course work. A comprehensive clinical examination is administered at the end of the semester. ACLS (Advanced Cardiac Life Support) certification is required for course completion. Recommended preparation: ANES 461.

ANES 464. Anesthesia Clinical Correlation II. 1 Unit.
A spectrum of case presentation conferences presented by the students dealing with basic and major problems in anesthesia management. Medical and surgical history of individual patients and the outcomes of anesthesia and surgery are emphasized. Journal Club and Morbidity and Mortality conferences are included. Recommended preparation: ANES 462.

ANES 465. Anesthesia Clinical Experience II. 4 Units.
A continuation of ANES 463. A comprehensive clinical examination is administered at the end of the semester. PALS (Pediatric Advanced Life Support) and ACLS (Advanced Cardiac Life Support) certification is required for course completion. Recommended preparation: ANES 463, BLS Certification, ACLS Certification.

ANES 467. Anesthesia Clinical Experience III. 4 Units.
Extended exposure to all of the clinical subspecialties of anesthesiology (obstetrics, pediatrics, neurosurgery, cardiovascular, etc.). Students alternate through rotations at several area hospitals. Recommended preparation: ANES 465, ACLS certification and PALS.

ANES 468. Anesthesia Clinical Correlation III. 1 Unit.

ANES 469. Anesthesia Clinical Experience IV. 8 Units.
A continuation of ANES 467. A comprehensive clinical examination is administered at the end of the semester. Recommended preparation: ANES 467.

ANES 470. Anesthesia Clinical Correlation IV. 1 Unit.

ANES 471. Anesthesia Clinical Experience V. 8 Units.
A continuation of ANES 469. A comprehensive clinical examination is administered at the end of the semester. Recommended preparation: ANES 469.

ANES 475. Pharmacology for Anesthesiologist Assistants I. 3 Units.
Pharmacodynamics, pharmacokinetics, uptake, distribution and action of the volatile and intravenous anesthetics, muscle relaxants, narcotics, hypnotics and other pharmaceuticals used in the administration of an anesthetic. Prereq: Consent of Department.

ANES 476. Pharmacology for Anesthesiologist Assistants II. 3 Units.
Continuation of ANES 475. Prereq: ANES 475.

ANES 477. Clinical Decision Making in Anesthesia. 2 Units.
An introduction to thinking about clinical situations and problems and coming to safe and effective solutions to these problems. This course focuses on common clinical situations where appropriate decision making is important to the outcome of the case. Numerous areas of medicine and anesthesiology will be covered to provide the student with a wide sampling of decisions made each day with patient care. This course supplements the other courses offered during the spring semester by integrating and applying basic science knowledge to the care of patients. Prereq: Consent of department.

ANES 478. Clinical Decision Making in Anesthesia II. 2 Units.
Guided and targeted discussion on common anesthetic considerations relegated by co-existing disease, comorbidity, anatomy, surgical procedures and common practice. Prereq: ANES 477.

ANES 480. Fundamentals of Anesthetic Sciences I. 1 Unit.
A continuum of courses over the fall and spring semesters that covers a series of topics in basic medical science with special emphasis on the effect of anesthetics on normal physiology. An examination is administered at the end of each semester.

ANES 481. Fundamentals of Anesthetic Sciences II. 1 Unit.
A series of topics in basic medical science with special emphasis on the effect of anesthetics on normal physiology. An examination is administered at the end of the semester. Prereq: ANES 480.
ANES 485. Introduction to Physiological Model-Based Simulation. 1 Unit.
Introduction to physiological model-based simulation using on-screen computer simulation and mannequins. Emphasis is placed on improving appropriate anesthesia-related basic science knowledge, manual skills in anesthesia machine checkout, drug and equipment setup, safety inspections, and performing anesthesia for uncomplicated surgical cases.

ANES 486. Physiological Model-Based Simulation I. 1 Unit.
An extension of ANES 485 with emphasis on improving or exercising knowledge of anesthesia-appropriate basic science, the use of more advanced equipment and techniques for uncomplicated surgical cases with an introduction to crisis management. Recommended preparation: ANES 485.

ANES 487. Physiological Model-Based Simulation II. 1 Unit.
An extension of ANES 486 emphasizing the physical techniques aspects of crisis management, team work and rescue in anesthesia, including support for and review of training in Basic Life Support and Advanced Cardiac Life Support. Recommended preparation: ANES 486.

ANES 488. Anesthesia Non-Technical Skills Lab. 1 Unit.
In this course the student will learn anesthesia non-technical skills, which are used integrally with medical knowledge and clinical techniques. They encompass both interpersonal skills (e.g. communication, team working, leadership) and cognitive skills (e.g. situation awareness, decision making). This course uses modified Crew Resource Management techniques taught in the aviation industry and considers the limitations of human performance and the nature of human error. The goals are to train individuals to avoid, capture and mitigate against the consequences of error. During the course, behaviors shown to minimize errors and maximize patient safety are highlighted and then practiced, with feedback being given to students on their performance.

ANES 490. Ethics, Law and Diversity for Anesthesiologist Assistants. 2 Units.
This course will focus on three topics. First, a discussion of legal practice as it applies to health care including basics of medical jurisprudence, negligence, and how to avoid a lawsuit. Second, a discussion of ethical theory including the principles of medical ethics, do not resuscitate, truth telling, and assessment of competence. Last, a discussion on diversity that will focus on the differences and similarities among people and how these factors influence patient care. The final grade will be based on an essay and a multiple choice exam.

ANES 499. Clinical Remediation. 1 - 10 Units.
(Credit as arranged.) Course offered to the student one time during the program of study which remediates "C" or below work in a clinical course.

ANES 580. Fundamentals of Anesthetic Sciences III. 1 Unit.
The second-year equivalent of ANES 480 and ANES 481. An examination is administered at the end of the semester. Recommended preparation: ANES 480 and ANES 481.

ANES 581. Fundamentals of Anesthetic Sciences IV. 1 Unit.
The second year equivalent of ANES 481. An examination is administered at the end of the semester. Prereq: ANES 480.

ANES 584. Physiological Model-Based Simulation III. 1 Unit.
An extension of ANES 487 emphasizing the physical techniques and aspects of crisis management, team work, and rescue in anesthesia. Prereq: ANES 487.

ANES 585. Physiological Model-Based Simulation IV. 1 Unit.
Extension of ANES 584 emphasizing the physical techniques and aspects of crisis management, team work, and rescue in anesthesia. Prereq: ANES 584.

ANES 599. Clinical Remediation. 1 - 10 Units.
(Credit as arranged.) Course offered to the student one time during the program of study which remediates "C" or below work in a clinical course.

Department of Biochemistry

Biochemistry is the study of the molecular basis of cellular and organismal function, making it a central discipline in the biological sciences. Biochemists ask the question, "How do life processes work at the molecular level?" The Department of Biochemistry offers undergraduate programs leading to the BA and BS degrees in biochemistry and graduate programs leading to the MS and PhD degrees. There are also dual-degree programs, leading to the MD/PhD, MD/MS in Biomedical Investigation, JD/MS, MS/MBA, and MS/MA in Patent Practice degrees. The department also participates in several interdisciplinary and interdepartmental programs in the School of Medicine and at Case Western Reserve University that provide additional avenues of study.

Research by Biochemistry faculty members covers a range of topics aimed at understanding life processes at the molecular level. Our efforts are broadened by collaborations with faculty in other university departments and with scientists at other academic and biotech research institutions. Research in the department is aimed at understanding the structures of biological macromolecules, the functions of proteins and enzymes, and the growth and differentiation of cells. There is also a focus on antibiotics and drug development.

Major

The two undergraduate major programs in Biochemistry, BA and BS, are based on the Arts and Sciences General Education Requirements, but differ in amount and intensity of the mathematics and physical sciences required. Either degree is excellent for students planning to undertake graduate work in biochemistry or in related areas of the biomedical sciences. Both the BA and the BS programs permit students to follow many options after graduation. Graduates are well prepared to pursue further studies in the biological sciences, for a career in medicine, for Doctor of Pharmacy programs, for employment in the chemical, pharmaceutical, and biotechnology industries, or as research assistants in research laboratories. The BA has a reduced emphasis on the quantitative aspects of science and makes available a considerable amount of elective time that permits a student to either concentrate on biochemistry even more intensively than the curriculum requires, or pursue other subjects in science or liberal arts. The BS degree is for the student who has a particularly strong interest in the quantitative physical sciences.

In both programs, undergraduate research is required. As many as nine hours of Research in Biochemistry (BIOC 391 Research Project) may be credited toward the requirements for graduation. At least six credits are highly recommended. The capstone in Biochemistry (BIOC 393 Senior Capstone Experience) is a thesis and presentation of a student's undergraduate research studies.
Bachelor of Arts in Biochemistry

Required Courses:
- BIOC 307 Introduction to Biochemistry: From Molecules To Medical Science 4
- BIOC 308 Molecular Biology 4
- BIOC 373 Biochemistry SAGES Seminar (SAGES Departmental Seminar) 3

Biochemistry elective: 3
- BIOC 312 Proteins and Enzymes
 or BIOC 334 Structural Biology

Two approved technical electives in biochemistry 6
- BIOC 393 Senior Capstone Experience 3

Additional Required Courses:
- BIOL 214 & 214L Genes, Evolution and Ecology and Genes, Evolution and Ecology Lab 4
- BIOL 215 & 215L Cells and Proteins and Cells and Proteins Laboratory 4
- CHEM 105 or CHEM 111 Principles of Chemistry I or Principles of Chemistry for Engineers 3-4
 or ENGR 145 Chemistry of Materials 3
- CHEM 113 Principles of Chemistry Laboratory 3
- CHEM 223 or CHEM 323 Introductory Organic Chemistry I or Organic Chemistry I 3
- CHEM 224 or CHEM 324 Introductory Organic Chemistry II or Organic Chemistry II 3
- CHEM 233 Introductory Organic Chemistry Laboratory I 2
- CHEM 234 Introductory Organic Chemistry Laboratory II 2
- CHEM 301 Introductory Physical Chemistry I 3
- MATH 125 or MATH 121 Math and Calculus Applications for Life, Managerial, and Social Sci I or Calculus for Science and Engineering I 4
- MATH 126 or MATH 122 or MATH 124 Math and Calculus Applications for Life, Managerial, and Social Sci II or Calculus for Science and Engineering II 4
- PHYS 115 or PHYS 121 or PHYS 123 Introductory Physics I or General Physics I - Mechanics or Physics and Frontiers I - Mechanics 4
- PHYS 116 or PHYS 122 or PHYS 124 Introductory Physics II or General Physics II - Electricity and Magnetism or Physics and Frontiers II - Electricity and Magnetism 4

Total Units 66-68

BA Biochemistry, Sample Plan of Study

Freshman

Units
Fall Spring
Math and Calculus Applications for Life, Managerial, and Social Sci I (MATH 125) or Calculus for Science and Engineering I (MATH 121) 4

Sophomore

Units
Fall Spring
Introductory Organic Chemistry I (CHEM 223)a or Organic Chemistry I (CHEM 323) 3
Introductory Organic Chemistry Laboratory I (CHEM 223) 2
Introductory Physics I (PHYS 115)b or General Physics I - Mechanics (PHYS 121) or Physics and Frontiers I - Mechanics (PHYS 123) 4
GER Course 3
SAGES University Seminar II 3
Introductory Organic Chemistry II (CHEM 224)a or Organic Chemistry II (CHEM 324) 3
Introductory Organic Chemistry Laboratory II (CHEM 224) 2
Introductory Physics II (PHYS 116)b or General Physics II - Electricity and Magnetism (PHYS 122) or Physics and Frontiers II - Electricity and Magnetism (PHYS 124) 4
GER Course 3
Elective 3
Year Total: 15 15

Junior

Units
Fall Spring
Introductory Physical Chemistry I (CHEM 301) or Physical Chemistry I (CHEM 335) 3
Introduction to Biochemistry: From Molecules To Medical Science (BIOC 307) 4
GER Course 3
Electives 6
Molecular Biology (BIOC 308) 4
Approved Technical Elective 3
Research Project (BIOC 391) 3
Electives or GER Courses 6
Bachelor of Science in Biochemistry

Required Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 307</td>
<td>Introduction to Biochemistry: From Molecules To Medical Science</td>
<td>4</td>
</tr>
<tr>
<td>BIOC 308</td>
<td>Molecular Biology</td>
<td>4</td>
</tr>
<tr>
<td>BIOC 312</td>
<td>Proteins and Enzymes</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 334</td>
<td>Structural Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 373</td>
<td>Biochemistry SAGES Seminar</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 214 & 214L</td>
<td>Genes, Evolution and Ecology and Genes, Evolution and Ecology Lab</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 215 & 215L</td>
<td>Cells and Proteins and Cells and Proteins Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 105</td>
<td>Principles of Chemistry I (CHEM 105) or Principles of Chemistry for Engineers (CHEM 111)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 106</td>
<td>Principles of Chemistry II (CHEM 106) or Chemistry of Materials (ENGR 145)</td>
<td>3-4</td>
</tr>
<tr>
<td>CHEM 113</td>
<td>Principles of Chemistry Laboratory (CHEM 113)</td>
<td>2</td>
</tr>
</tbody>
</table>

BS Biochemistry, Sample Plan of Study

Freshman

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 121</td>
<td>Calculus for Science and Engineering I</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 214 & 214L</td>
<td>Genes, Evolution and Ecology Lab (BIOL 214L)</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 105</td>
<td>Principles of Chemistry I (CHEM 105) or Principles of Chemistry for Engineers (CHEM 111)</td>
<td>3</td>
</tr>
<tr>
<td>PHED 100</td>
<td>Independent Activity (PHED 100)</td>
<td>0</td>
</tr>
<tr>
<td>ENGR 145</td>
<td>Principles of Chemistry Laboratory (CHEM 113)</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 215</td>
<td>Cells and Proteins and Cells and Proteins Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 214 & 214L</td>
<td>Genes, Evolution and Ecology and Genes, Evolution and Ecology Lab</td>
<td>4</td>
</tr>
</tbody>
</table>

Year Total: 15

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 122</td>
<td>Calculus for Science and Engineering II</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 214 & 214L</td>
<td>Genes, Evolution and Ecology Lab (BIOL 214L)</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 105</td>
<td>Principles of Chemistry I (CHEM 105) or Principles of Chemistry for Engineers (CHEM 111)</td>
<td>3</td>
</tr>
<tr>
<td>PHED 100</td>
<td>Independent Activity (PHED 100)</td>
<td>0</td>
</tr>
</tbody>
</table>

Year Total: 16

Senior

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 224</td>
<td>Introductory Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 225</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 301</td>
<td>Introductory Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 335</td>
<td>Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 302</td>
<td>Introductory Physical Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 336</td>
<td>Physical Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 233</td>
<td>Introductory Organic Chemistry Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 234</td>
<td>Introductory Organic Chemistry Laboratory II</td>
<td>2</td>
</tr>
<tr>
<td>MATH 121</td>
<td>Calculus for Science and Engineering I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 122</td>
<td>Calculus for Science and Engineering II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 123</td>
<td>Calculus for Science and Engineering III</td>
<td>3</td>
</tr>
<tr>
<td>MATH 124</td>
<td>Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 227</td>
<td>Calculus III</td>
<td>3</td>
</tr>
</tbody>
</table>

Year Total: 15

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 224</td>
<td>Elementary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 228</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 121</td>
<td>General Physics I - Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 123</td>
<td>Physics and Frontiers I - Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 122</td>
<td>General Physics II - Electricity and Magnetism</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 124</td>
<td>Physics and Frontiers II - Electricity and Magnetism</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 221</td>
<td>Introduction to Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>STAT 312R</td>
<td>Basic Statistics for Engineering and Science Using R Programming</td>
<td>3</td>
</tr>
</tbody>
</table>

Year Total: 16

Note: At least the 3 credits of undergraduate research, BIOC 391 Research Project, is minimally recommended for the Capstone. An additional 3 credits of BIOC 391 is highly recommended. Students should consult their academic advisers about the elective parts of the curriculum.

a. Selected students may be invited to take CHEM 323 Organic Chemistry I or CHEM 324 Organic Chemistry II.
b. Selected students may be invited to take PHYS 123 Physics and Frontiers I - Mechanics and PHYS 124 Physics and Frontiers II - Electricity and Magnetism in place of PHYS 121 General Physics I - Mechanics and PHYS 122 General Physics II - Electricity and Magnetism.
c. BA students must take either BIOC 312 Proteins and Enzymes or BIOC 334 Structural Biology. For BA students who take both courses, one course will serve as a technical elective.
Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introductory Organic Chemistry I (CHEM 223)<sup>a</sup>, or Organic Chemistry I (CHEM 323)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introductory Organic Chemistry Laboratory I (CHEM 233)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculus for Science and Engineering III (MATH 223), or Calculus III (MATH 227)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Physics I - Mechanics (PHYS 121)<sup>b</sup>, or Physics and Frontiers I - Mechanics (PHYS 123)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAGES University Seminar II</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introductory Organic Chemistry Laboratory II (CHEM 234)<sup>a</sup>, or Organic Chemistry II (CHEM 324)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introductory Organic Chemistry Laboratory II (CHEM 234)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elementary Differential Equations (MATH 224), or Differential Equations (MATH 228)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Physics II - Electricity and Magnetism (PHYS 122)<sup>b</sup>, or Physics and Frontiers II - Electricity and Magnetism (PHYS 124)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GER Course</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introductory Physical Chemistry I (CHEM 301), or Physical Chemistry I (CHEM 335)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Biochemistry: From Molecules To Medical Science (BIOC 307)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GER Course</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GER Course or elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Statistics for Engineering and Science Using R Programming (STAT 312R), or Statistics for Experimenters (STAT 313)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introductory Physical Chemistry II (CHEM 302) or Physical Chemistry II (CHEM 336)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Biology (BIOC 308)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Modern Physics (PHYS 221)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Project (BIOC 391)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GER Course or Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteins and Enzymes (BIOC 312)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemistry SAGES Seminar (BIOC 373)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Project (BIOC 391)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural Biology (BIOC 334)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Capstone Experience (BIOC 393)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Total Units in Sequence: 123

Note: At least the 3 credits of undergraduate research, BIOC 391 Research Project, is a prerequisite to the Capstone. An additional 3 credits of BIOC 391 is highly recommended. Students should consult their academic advisers about the elective parts of the curriculum.

- Selected students may be invited to take CHEM 323 Organic Chemistry I or CHEM 324 Organic Chemistry II
- Selected students may be invited to take PHYS 123 Physics and Frontiers I - Mechanics and PHYS 124 Physics and Frontiers II - Electricity and Magnetism in place of PHYS 121 General Physics I - Mechanics and PHYS 122 General Physics II - Electricity and Magnetism.

Honors Program

Biochemistry majors who have excellent academic records may be admitted to the department's Undergraduate Honors Program. To graduate with departmental honors in biochemistry, a student must satisfy the following requirements:

1. A combined grade point average of at least 3.600
2. A minimum of 6 credit hours of undergraduate research (BIOC 391) in one laboratory
3. A BIOC 393 capstone report approved by the Undergraduate Education Committee of the department on the basis of the quality of the research, the written report, and an oral presentation. An acceptable report:
 a. Should follow a standard journal format
 b. Should demonstrate the student's understanding of the research area, experimental techniques, goals and implications of the project
 c. Should show that the student has advanced his/her knowledge of the applicable techniques and the underlying scientific concepts.
4. Using all or part of the capstone report, the student must be a co-author on a manuscript either submitted, in press or published in a peer reviewed journal.

Minor

Required Courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 307</td>
<td>4</td>
<td>Introduction to Biochemistry: From Molecules To Medical Science</td>
</tr>
<tr>
<td>BIOC 308</td>
<td>4</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>BIOC 312 or BIOC 334</td>
<td>3</td>
<td>Proteins and Enzymes or Structural Biology</td>
</tr>
<tr>
<td>Total Units</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Students may obtain credit for a minor in biochemistry by completing one year of freshman chemistry (including laboratory), one year of organic chemistry (including laboratory), two semesters of approved biology courses, and three semesters of didactic courses in biochemistry.
Masters Degrees

The Biochemistry Department offers a two-year Masters of Science in Biochemistry provides students with advanced study in biochemistry and related fields. This degree may be combined with other degrees in four dual-degree programs: MD/MS, JD/MS, MS/MBA, and MS/MA in Patent Practice.

Prerequisites for admission into any of the Biochemistry MS Programs are one year each of chemistry, organic chemistry, calculus, biology and physics. Applicants must also have a BA, BS or equivalent undergraduate degree. As part of the application process, students are required to take the Graduate Record Examination. Students with excellent qualifications who lack some of the prerequisites may be conditionally admitted and allowed to make up the deficiencies. Students with advanced training (coursework, laboratory research, MS degree, etc.) may be given advanced standing. Please visit the department's web page (http://www.cwru.edu/med/biochemistry) for details about the application process.

MS in Biochemistry

The program leading to the MS degree in biochemistry prepares students for employment in academia and biotechnology and for advancement to other degree programs. Classroom work provides the latest advancements in biochemistry and related fields. In addition, laboratory courses allow students to acquire technical laboratory skills in biotechnology and a solid understanding of the practice of research in this area. Students typically enroll in three courses for each of four semesters.

The duration of the program is 21 months; it follows the Plan B for the Master's degree. The advisor for this program is usually the Graduate Advisor, but another advisor may be selected. The student's progress is monitored by the Graduate Advisor and by the Graduate Education Committee. The program requires 36 hours of academic credit of which 18 hours must be graded coursework. Although the program focuses on coursework, students often take 6-12 hours of BIOC 601 Biochemical Research working in the laboratory of a faculty mentor. All courses must be at the 400 level or higher; they must be on the list of approved electives or be approved by the advisor.

MS in Biochemistry Plan of Study

<table>
<thead>
<tr>
<th>First Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Biochemistry: From Molecules To Medical Science (BIOC 407)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC electives</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Biology (BIOC 408)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC electives</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteins and Enzymes (BIOC 412)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC electives</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural Biology (BIOC 434)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC electives</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master's Comprehensive Exam (EXAM 600)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Total Units in Sequence: 36
MD/MS Biomedical Investigation-Biochemistry Track

The joint MD/MS program combines type B MS programs (http://bulletin.case.edu/schoolofgraduatestudies/academicrequirements) at the School of Medicine with the MD, using a common template. The core activities for this degree include limited credit from the medical core curriculum, 3-6 graduate courses in specific tracks, participation in a common seminar series, scientific integrity training, and a requirement for a special problems project that reflects a full year of research (18 hours of BIOC 601 Biochemical Research) culminating in a written report and examination. Both degrees can be completed within 5 years. Students who wish to join the MD/MS program may apply to the program after arriving at the University any time prior to fall of their second year of medical school. For more information, please see MD Dual Degrees.

The Biochemistry track is designed to provide students with knowledge of the latest advances in biochemistry and related fields. Courses offered by other departments may be included with the approval of the Graduate Advisor. Depending on the research project, students may substitute one of the courses below in lieu of one of the biochemistry electives with permission from the Graduate Advisor.

Students in the Biochemistry track must complete:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBIS 401</td>
<td>Integrated Biological Sciences I</td>
<td>3</td>
</tr>
<tr>
<td>IBIS 402</td>
<td>Integrated Biological Sciences II</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 412</td>
<td>Proteins and Enzymes</td>
<td>3</td>
</tr>
<tr>
<td>or BIOC 434</td>
<td>Structural Biology</td>
<td></td>
</tr>
<tr>
<td>Electives in Biochemistry (graded)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>BIOC 601</td>
<td>Biochemical Research</td>
<td>18</td>
</tr>
<tr>
<td>IBMS 500</td>
<td>On Being a Professional Scientist: The Responsible Conduct of Research</td>
<td>1</td>
</tr>
<tr>
<td>IBIS 600</td>
<td>Exam in Biomedical Investigation</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: Students may finish in 18 months if they devote a summer to research (6 credits of BIOC 601 Biochemical Research).

JD/MS in Biochemistry

This program allows students in the School of Law to earn an MS degree in Biochemistry with an additional year of study. This program is useful for students planning careers in patent law or in areas related to biotechnology or pharmaceutical research.

Students in the School of Law can apply to the Biochemistry program for admission to the JD/MS program. In the dual degree program, students complete 12 fewer hours of law school coursework than they would if they were in the JD program alone. The Department of Biochemistry accepts 9 hours of law school classwork in courses dealing with science issues, in place of 9 credits of other elective work. Thus, the student will take a total of 27 hours of Biochemistry coursework of which at least 12 hours must be letter graded.

Dual degree students are advised about matters related to the JD degree by the Associate Dean for Academic Affairs at the School of Law. In addition, dual degree students are granted priority registration for upper-level courses, ensuring that they will be able to adjust their schedules to take all the required courses. Dual degree students are advised concerning matters related to the MS in Biochemistry by the program’s Graduate Advisor.

JD/MS in Biochemistry Plan of Study (plan B) (http://bulletin.case.edu/schoolofgraduatestudies/academicrequirements)

Because most students will apply for the JD/MS in Biochemistry Program after beginning Law School, the sample schedule below begins with Biochemistry coursework in the third year. However, Biochemistry coursework can be taken in any of the last three years and with a variety of academic requirements.

PhD Biochemistry

The PhD in Biochemistry program prepares students for careers in biochemistry. The emphasis of the doctoral program is on research, culminating in the completion of an original independent research project under the guidance of a faculty member in the biochemistry program. In addition to the research activities, graduate students participate in formal courses both within and outside the department, formal and informal seminars, discussions of current literature, and career development activities. Although students choose from the various tracks within the department, all are broadly trained in modern aspects of biochemistry and become familiar with techniques and literature in a variety of areas. Many collaborative projects with other departments also are available to broaden the spectrum of training offered. Most students begin with an integrated curriculum in cellular and molecular biology in addition to specialized courses in biochemistry. Students are admitted to the Biochemistry PhD program through the Biomedical Sciences Training Program (BSTP) (http://casemed.case.edu/bstp) or via the Medical Scientist Training Program (MSTP) (https://case.edu/medicine/admissions-programs/md-phd-program). The BSTP offers a common entry point to most of our biomedical PhD programs. The MSTP is available for students desiring the dual MD/PhD degrees and research careers in medicine and related biosciences.

Prerequisites for admission into the Biochemistry PhD Program include one year each of chemistry, organic chemistry, calculus, biology and physics. Applicants must also have a BA, BS or equivalent undergraduate degree. Students must submit scores from the Graduate Record Examination and may submit scores from an advanced area test, usually in biology, biochemistry or chemistry. Some students with otherwise excellent qualifications, but lacking some of the prerequisites may be conditionally admitted allowed to make up the deficiencies. Please visit the Department’s web page (http://www.cwru.edu/med/biochemistry) for details about the application process.

To earn a PhD in Biochemistry, a student must complete rotations in at least three laboratories, followed by selection of a research advisor, and complete core and elective coursework, including Responsible Conduct of Research, as described in the Course of Study below. Students who have completed relevant coursework elsewhere, (for example, with an MS) may petition to complete alternative courses.

In addition, each PhD student must complete a qualifying examination on their research topic in the form of a short grant proposal with oral defense for advancement to candidacy. The qualifying examination usually completes during the second year. During the dissertation period, students are expected to meet yearly with their thesis committees, present seminars in the department, and fulfill journal publication requirements. Throughout the doctoral training, students are expected to be enthusiastic participants in seminars, journal clubs, and research meetings in the lab and program. Completion of the PhD degree requires 36 hours of coursework (24 hours of which are graded) and 18 hours of BIOC 701 Dissertation Ph.D.

PhD Biochemistry Plan of Study

§ Please also see Graduate Studies Academic Requirements for Doctoral Degrees (http://bulletin.case.edu/schoolofgraduatestudies/academicrequirements)
First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology I (CBIO 453)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Biology I (CBIO 455)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemical Research (BIOC 601) or Research Rotation in Biomedical Sciences Training Program (BSTP 400) or Research Rotation in Medical Scientist Training Program (MSTP 400)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Since You Were Born: Nobel Prize Biomedical Research in the Last 21 Years - Section A (CBIO 456A) or Since You Were Born: Nobel Prize Biomedical Research in the Last 21 Years - Section B (CBIO 456B) or Since You Were Born: Nobel Prize Biomedical Research in the Last 21 Years - Section C (CBIO 456C) or Since You Were Born: Nobel Prize Biomedical Research in the Last 21 Years - Section D (CBIO 456D)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural Biology (BIOC 434)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemical Research (BIOC 601)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry Seminar I (BIOC 611)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemical Research (BIOC 601) (601 for pre-candidacy, 701 for post-candidacy) or Dissertation Ph.D. (BIOC 701)</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemistry Seminar II (BIOC 612)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (BIOC 701)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposition I (BIOC 641)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation Ph.D. (BIOC 701)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (BIOC 701)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>4</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation Ph.D. (BIOC 701)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Fifth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation Ph.D. (BIOC 701)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses

BIOC 307. Introduction to Biochemistry: From Molecules To Medical Science. 4 Units.

Overview of the macromolecules and small molecules key to all living systems. Topics include: protein structure and function; enzyme mechanisms, kinetics and regulation; membrane structure and function; bioenergetics; hormone action; intermediary metabolism, including pathways and regulation of carbohydrate, lipid, amino acid, and nucleotide biosynthesis and breakdown. The material is presented to build links to human biology and human disease. One semester of biology is recommended. Offered as BIOC 307, BIOC 407, and BIOL 407. Prereq: CHEM 223 and CHEM 224.

BIOC 308. Molecular Biology. 4 Units.

An examination of the flow of genetic information from DNA to RNA to protein. Topics include: nucleic acid structure; mechanisms and control of DNA, RNA, and protein biosynthesis; recombinant DNA; and mRNA processing and modification. Where possible, eukaryotic and prokaryotic systems are compared. Special topics include yeast as a model organism, molecular biology of cancer, and molecular biology of the cell cycle. Current literature is discussed briefly as an introduction to techniques of genetic engineering. Recommended preparation: BIOC 307. Offered as BIOC 308, BIOL 308, BIOC 408, and BIOL 408. Prereq: CHEM 223, BIOL 214, and BIOL 215.

BIOC 312. Proteins and Enzymes. 3 Units.

Aspects of protein and nucleic acid function and interactions are discussed, including binding properties, protein-nucleic acid interactions, kinetics and mechanism of proteins and enzymes, and macromolecular machines. Recommended Preparation: CHEM 301. Offered as BIOC 312 and BIOC 412. Prereq: BIOC 307.

BIOC 315. Nuclear Receptors in Health and Disease. 3 Units.

This course focuses on hormone-gene interactions mediated by the ligand-inducible transcription factors termed nuclear hormone receptors. The class will address the mechanisms of action, regulatory features, and biological activities of several nuclear receptors. The usage of nuclear receptors as therapeutic targets in disease states such as cancer, inflammation, and diabetes will also be discussed. The course aims to teach students to critically evaluate primary literature relevant to nuclear hormone receptors biology, and to reinforce presentation/discussion skills. Grades for undergraduates will be based on midterm, final exam; grades for graduates will be based on midterm, final exam, and presentation of a recently published research article related to the role of nuclear receptors in health and disease. Offered as PHRM 315, BIOC 315, PHRM 415 and BIOC 415.

BIOC 334. Structural Biology. 3 Units.

Introduces basic chemical properties of proteins and discusses the physical forces that determine protein structure. Topics include: the elucidation of protein structure by NMR and by X-ray crystallographic methods; the acquisition of protein structures from data bases; and simple modeling experiments based on protein structures. Offered as BIOC 334, BIOL 334, BIOC 434, and BIOL 434. Prereq: BIOC 307.
BIOC 354. Biochemistry and Biology of RNA. 3 Units.
Systematic overview of RNA biochemistry and biology. Course provides solid foundation for understanding processes of post-transcriptional regulation of gene expression. Topics include: RNA structure, RNA types, RNA-protein interactions, eukaryotic RNA metabolism including mRNA processing, ribosome biogenesis, tRNA metabolism, miRNA processing and function, bacterial RNA metabolism, transcriptomics. BIOC 454 requires an additional research proposal. Recommended preparation for BIOC 354: Undergraduate Biology (1 semester minimum), equivalents of CHEM 301, BIOC 307 or BIOC 308, CHEM 223, CHEM 224. Offered as BIOC 354 and BIOC 454. Prereq: CHEM 223 and CHEM 224.

BIOC 373. Biochemistry SAGES Seminar. 3 Units.
Discussion of current topics in biochemical research using readings from the scientific literature. The goals are for the student: 1) to discuss and critically analyze selections from the biochemical literature; 2) to gain a broader understanding of important topics not formally covered in the didactic courses; and 3) to learn to write in the style of journals in the field of biochemistry. Counts as SAGES Departmental Seminar. Prereq: BIOC 307 and BIOC 308. Restricted to majors in Biochemistry.

BIOC 391. Research Project. 1 - 9 Units.
(Credit as arranged.) Offered on a pass/fail basis only. Maximum 9 hours total credit.

BIOC 393. Senior Capstone Experience. 3 Units.
Students will complete their Capstone Projects, begun in BIOC 391. Pertinent research activities will depend on the nature of the student's project. The student will meet regularly with their Capstone advisor, at least twice monthly, to provide progress reports, discuss the project, and for critique and guidance. By the end of this course, the student will have completed their SAGES Senior Capstone research project, written a project report in the form of a manuscript, and presented their project reports orally in the department and at the Senior Capstone Fair, or its equivalent. Counts as SAGES Senior Capstone. Prereq: BIOC 307 and BIOC 308.

BIOC 405. Principles of Biochemistry: An Introduction to the Molecules of Life. 3 Units.
This summer course provides an introduction to the macromolecules and small molecules that are the foundation of living systems. The focus is on mammalian biochemistry, with links to human biology and human disease. Topics include: protein structure and function; enzyme mechanisms, kinetics and regulation; membranes; hormone action; bioenergetics; intermediary metabolism, including pathways and regulation of carbohydrate, lipid, amino acid, and nucleotide biosynthesis and breakdown. One semester of biology is recommended. Suitable for students interested in careers in the health professions. This course is not open to undergraduate Biochemistry majors or Biochemistry graduate students. Prereq: CHEM 223 and CHEM 224.

BIOC 407. Introduction to Biochemistry: From Molecules To Medical Science. 4 Units.
Overview of the macromolecules and small molecules key to all living systems. Topics include: protein structure and function; enzyme mechanisms, kinetics and regulation; membrane structure and function; bioenergetics; hormone action; intermediary metabolism, including pathways and regulation of carbohydrate, lipid, amino acid, and nucleotide biosynthesis and breakdown. The material is presented to build links to human biology and human disease. One semester of biology is recommended. Offered as BIOC 307, BIOC 407, and BIOL 407. Prereq: CHEM 223 and CHEM 224.

BIOC 408. Molecular Biology. 4 Units.
An examination of the flow of genetic information from DNA to RNA to protein. Topics include: nucleic acid structure; mechanisms and control of DNA, RNA, and protein biosynthesis; recombinant DNA; and mRNA processing and modification. Where possible, eukaryotic and prokaryotic systems are compared. Special topics include yeast as a model organism, molecular biology of cancer, and molecular biology of the cell cycle. Current literature is discussed briefly as an introduction to techniques of genetic engineering. Recommended preparation: BIOC 307. Offered as BIOC 308, BIOL 308, BIOC 408, and BIOL 408.

BIOC 412. Proteins and Enzymes. 3 Units.
Aspects of protein and nucleic acid function and interactions are discussed, including binding properties, protein-nucleic acid interactions, kinetics and mechanism of proteins and enzymes, and macromolecular machines. Recommended Preparation: CHEM 301. Offered as BIOC 312 and BIOC 412.

BIOC 415. Nuclear Receptors in Health and Disease. 3 Units.
This course focuses on hormone-gene interactions mediated by the ligand-inducible transcription factors termed nuclear hormone receptors. The class will address the mechanisms of action, regulatory features, and biological activities of several nuclear receptors. The usage of nuclear receptors as therapeutic targets in disease states such as cancer, inflammation, and diabetes will also be discussed. The course aims to teach students to critically evaluate primary literature relevant to nuclear hormone receptors biology, and to reinforce presentation/discussion skills. Grades for undergraduates will be based on midterm, final exam; grades for graduates will be based on midterm, final exam, and presentation of a recently published research article related to the role of nuclear receptors in health and disease. Offered as PHRM 315, BIOC 315, PHRM 415 and BIOC 415.

BIOC 420. Current Topics in Cancer. 3 Units.
The concept of cancer hallmarks has provided a useful guiding principle in our understanding of the complexity of cancer. The hallmarks include sustaining proliferative signaling, evading growth suppressors, enabling replicative immortality, activating invasion and metastasis, inducing angiogenesis, resisting cell death, deregulating cellular energetics, avoiding immune destruction, tumor-promoting inflammation, and genome instability and mutation. The objectives of this course are to (1) examine the principles of some of these hallmarks, and (2) explore potential therapies developed based on these hallmarks of cancer. This is a student-driven and discussion-based graduate course. Students should have had some background on the related subjects and have read scientific papers in their prior coursework. Students will be called on to present and discuss experimental design, data and conclusions from assigned publications. There will be no exams or comprehensive papers but students will submit a one-page critique (strengths and weaknesses) of one of the assigned papers prior to each class meeting. The course will end with a full-day student-run symposium on topics to be decided jointly by students and the course director. Grades will be based on class participation, written critiques, and symposium presentations. Offered as BIOC 420, Mbio 420, PATH 422, and PHRM 420. Prereq: CBIO 453 and CBIO 455.
BIOC 432. Current Topics in Vision Research. 3 Units.
Vision research is an exciting and multidisciplinary area that draws on the disciplines of biochemistry, genetics, molecular biology, structural biology, neuroscience, and pathology. This graduate level course will provide the student with broad exposure to the most recent and relevant research currently being conducted in the field. Topics will cover a variety of diseases and fundamental biological processes occurring in the eye. Regions of the eye that will be discussed include the cornea, lens, and retina. Vision disorders discussed include age-related macular degeneration, retinal ciliopathies, and diabetic retinopathy. Instructors in the course are experts in their field and are members of the multidisciplinary visual sciences research community here at Case Western Reserve University. Students will be exposed to the experimental approaches and instrumentaion currently being used in the laboratory and in clinical settings. Topics will be covered by traditional lectures, demonstrations in the laboratory and the clinic, and journal club presentations. Students will be graded on their performance in journal club presentations (40%), research proposal (40%), and class participation (20%). Offered as NEUR 432, PATH 432, PHRM 432 and BIOC 432.

BIOC 434. Structural Biology. 3 Units.
Introduces basic chemical properties of proteins and discusses the physical forces that determine protein structure. Topics include: the elucidation of protein structure by NMR and by X-ray crystallographic methods; the acquisition of protein structures from data bases; and simple modeling experiments based on protein structures. Offered as BIOC 334, BIOL 334, BIOC 434, and BIOL 434.

BIOC 452. Nutritional Biochemistry and Metabolism. 3 Units.
Mechanisms of regulation of pathways of intermediary metabolism; amplification of biochemical signals; substrate cycling and use of radioactive and stable isotopes to measure metabolic rates. Recommended preparation: BIOC 307 or equivalent. Offered as BIOC 452 and NTRN 452.

BIOC 454. Biochemistry and Biology of RNA. 3 Units.
Systematic overview of RNA biochemistry and biology. Course provides solid foundation for understanding processes of post-transcriptional regulation of gene expression. Topics include: RNA structure, RNA types, RNA-protein interactions, eukaryotic RNA metabolism including mRNA processing, ribosome biogenesis, tRNA metabolism, miRNA processing and function, bacterial RNA metabolism, transcriptomics. BIOC 454 requires an additional research proposal. Recommended preparation for BIOC 354: Undergraduate Biology (1 semester minimum), equivalents of CHEM 301, BIOC 307 or BIOC 308, CHEM 223, CHEM 224. Offered as BIOC 354 and BIOC 454.

BIOC 460. Introduction to Microarrays. 3 Units.
Microarray technology is an exciting new technique that is used to analyze gene expression in a wide variety of organisms. The goal of this course is to give participants a hands-on introduction to this technology. The course is intended for individuals who are preparing to use this technique, including students, fellows, and other investigators. This is a hands-on computer-based course, which will enable participants to conduct meaningful analyses of microarray data. Participants will gain an understanding of the principles underlying microarray technologies, including: theory of sample preparation, sample processing on microarrays, familiarity with the use of Affymetrix Microarray Suite software and generation of data sets. Transferring data among software packages to manipulate data will also be discussed. Importation of data into other software (GeneSpring and DecisionSite) will enable participants to mine the data for higher-order patterns. Participants will learn about the rationale behind the choice of normalization and data filtering strategies, distance metrics, use of appropriate clustering choices such as K-means, Hierarchical, and Self Organizing Maps. Offered as BIOC 460, PATH 460 and CNCR 460. Prereq: CBIO 455.

BIOC 475. Protein Biophysics. 3 Units.
This course focuses on in-depth understanding of the molecular biophysics of proteins. Structural, thermodynamic and kinetic aspects of protein function and structure-function relationships will be considered at the advanced conceptual level. The application of these theoretical frameworks will be illustrated with examples from the literature and integration of biophysical knowledge with description at the cellular and systems level. The format consists of lectures, problem sets, and student presentations. A special emphasis will be placed on discussion of original publications. Offered as BIOC 475, CHEM 475, PHOL 475, PHRM 475, and NEUR 475.

BIOC 500. Biotechnology Laboratory: Molecular Biology Basics. 1 Unit.
This course provides basic hands-on laboratory experience in molecular biology with a focus on handling and manipulating DNA in bacterial systems. Specific topics include: General laboratory safety, buffers, media, and other reagent preparation, sterile technique, transformation and culture of bacterial cells, DNA molecular biology techniques including DNA isolation and purification, polymerase chain reaction (PCR), restriction digests, ligation, agarose gel electrophoresis, and sequence analysis. Prereq: Biochemistry Graduate student or Requisites Not Met permission.
BIOC 501. Biochemical and Cellular Techniques for Biotechnology. 3 Units.
This lecture course covers the basics of common, essential laboratory and analytical techniques used in biomedical research and the biotechnology industry. The course will cover recombinant protein production and characterization, mammalian cell culture, molecular and cell biology, and mass spectrometry. Specific topics include: general laboratory safety, record keeping, preparation of research reports, manipulation of bacteria, protein overexpression and purification, enzyme assays, high-throughput techniques, high performance liquid chromatography (HPLC) and mass spectrometry, mammalian cell culture, Western blotting, protein-protein interactions, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), immunofluorescence microscopy and assays for gene expression. This course is suitable for Biochemistry MS students interested in pursuing careers in academia or biotechnology. It is also recommended for undergraduate students to enhance their technical skills and position them for productive research experiences. Graduate students in other programs within or outside the School of Medicine are permitted to enroll. Prereq: BIOL 401 and BIOC 501 or Requisites Not Met permission.

BIOC 502. Biotechnology Laboratory: Biochemical and Cellular Techniques for Biotechnology. 5 Units.
This course provides hands-on, project-based laboratory experience in techniques used in biomedical research and the biotechnology industry. Students will perform laboratory projects in expression and characterization of recombinant proteins, mammalian cell culture, molecular and cell biology, and mass spectrometry. Specific topics include: general laboratory safety, good laboratory practices (GLP), standard operating procedures (SOPs), buffers, media, and other reagent preparation, sterile technique, manipulation of bacterial and mammalian cells, mammalian cell culture, work with DNA and RNA, polymerase chain reaction (PCR) techniques including reverse transcription-quantitative PCR (RT-qPCR) and molecular cloning, protein overexpression and purification, assays (enzyme, stability, and reporter), high-throughput techniques, transient transfection reporter assays, immunoprecipitation, immunofluorescence, DNA and protein gel electrophoresis, high performance liquid chromatography (HPLC), and mass spectrometry. Suitable for Biochemistry MS students interested in academia, biotechnology, or industry. All other graduate students and/or undergraduate students must contact the instructor for permission to enroll. Prereq: BIOL 401 and BIOC 501 or Requisites Not Met permission.

BIOC 511. Practice and Professionalism in Biotechnology. 1 Unit.
This course provides an overview of a variety of topics that are relevant to biotechnology research and development in academic and industrial settings. It also provides an opportunity for students to develop professional written and oral communication skills. Specific topics include: Professional communications by email, letters, reports, and oral presentations; data documentation, security, and confidentiality; laboratory safety, certification, and regulation; intellectual property protection and patents; the drug discovery pipeline and approval process; financial aspects of research and development. Prereq: Graduate Student in Biochemistry.

BIOC 519. Molecular Biology of RNA. 3 Units.
Selected topics regarding editing, enzymatic function, splicing, and structure of RNA. Offered as BIOC 519, CLBY 519, and MBIOL 519.

BIOC 528. Contemporary Approaches to Drug Discovery. 3 Units.
This course is designed to teach the students how lead compounds are discovered, optimized, and processed through clinical trials for FDA approval. Topics will include: medicinal chemistry, parallel synthesis, drug delivery and devices, drug administration and pharmacokinetics, and clinical trials. A special emphasis will be placed on describing how structural biology is used for in silico screening and lead optimization. This component will include hands-on experience in using sophisticated drug discovery software to conduct in silico screening and the development of drug libraries. Each student will conduct a course project involving in silico screening and lead optimization against known drug targets, followed by the drafting of an inventory disclosure. Another important aspect of this course will be inclusion of guest lectures by industrial leaders who describe examples of success stories of drug development. Offered as BIOC 528, PHOL 528, PHRM 528, and SYBB 528.

BIOC 601. Biochemical Research. 1 - 18 Units.
Credit as arranged.

BIOC 611. Biochemistry Seminar I. 1 Unit.
Student presentations of topics from the current scientific literature unrelated to the student’s research project. Participants are required to present a seminar.

BIOC 612. Biochemistry Seminar II. 1 Unit.
Discussion of current research.

BIOC 641. Proposition I. 2 Units.
Design of research proposal.

BIOC 651. Thesis M.S.. 1 - 6 Units.
(Credit as arranged.)

BIOC 701. Dissertation Ph.D.. 1 - 9 Units.
(Credit as arranged.) Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.

Department of Bioethics
Room TA-200, School of Medicine
http://www.case.edu/med/bioethics/bioethics.html
Phone: 216.368.8718
Mark P. Aulisio, PhD, Susan E. Watson Professor and Chair
mark.aulisio@case.edu
Marie Norris (marie.norris@case.edu), Program Assistant

The mission of the Department of Bioethics is to improve public and professional understanding of the ethical and contextual issues involved in health sciences research, health care delivery, and health policy development through teaching, research and community dialogue.

The department has offices at the Case’s School of Medicine and MetroHealth Medical Center and has faculty from multiple disciplines, including philosophy, religion, law, political science, anthropology, history, sociology, psychology, nursing and medicine.

Department faculty teach in both core and elective components of the medical school curriculum, undergraduate courses in ethics and medical humanities, and an intensive course in responsible conduct of research for PhD students in the School of Medicine. The department also has a highly successful master’s degree program in bioethics and medical humanities and an undergraduate minor.

Department faculty have gained international prominence for research in many areas of biomedical ethics and medical humanities that collectively
address the concerns of the School of Medicine’s spectrum of biomedical disciplines and questions of health more broadly.

Please visit the department website (http://www.case.edu/med/bioethics) to obtain information about the Master’s degree program and learn about department and faculty activities.

Minor in Bioethics and Medical Humanities

Bioethics and Medical Humanities together comprise a vibrant area of scholarship concerning the most important and cutting-edge ethical issues surrounding biomedical research and the delivery of health care today. The study of such ethical issues calls into action our most central human values and related behaviors, the exploration of which is of crucial importance for all students whether one plans to enter a career in the healthcare professions, biomedical research, law, nonprofit administration, or some other career path. The topics covered in Bioethics and Medical Humanities will help prepare students to become responsible world citizens in an increasingly complex biomedical environment.

The CWRU Minor in Bioethics and Medical Humanities formally recognizes a student’s coordinated course of study comprised of courses currently offered by the Department of Bioethics and other departments in the College of Arts and Sciences. The Bioethics and Medical Humanities Minor is designed to give students ethical and social training centered specifically around the delivery of healthcare and biomedical research, and to do so in a highly interdisciplinary manner.

Plan of Study

I. Students should select three of the following four course offerings. (9 credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BETH 210</td>
<td>Perspectives on Health: Introduction to Medical Humanities and Social Medicine</td>
<td>3</td>
</tr>
<tr>
<td>BETH 271</td>
<td>Bioethics: Dilemmas</td>
<td>3</td>
</tr>
<tr>
<td>BETH 360</td>
<td>Science and Society</td>
<td>3</td>
</tr>
<tr>
<td>BETH 371</td>
<td>Advanced Bioethics</td>
<td>3</td>
</tr>
</tbody>
</table>

II. ELECTIVE COURSES (6 Credit Hours)

Additional Courses may be added in the future to this list of electives. Each new elective course must be approved by Bioethics Department faculty director of the Minor and must have substantial bioethical or medical humanities content (greater than 75%).

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BETH 315</td>
<td>International Bioethics: Policy and Practice</td>
<td>3</td>
</tr>
<tr>
<td>BETH 371C</td>
<td>Advanced Bioethics: Clinical Observation</td>
<td>1</td>
</tr>
<tr>
<td>BETH 406</td>
<td>Society, Religion, and Bioethics</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 217B</td>
<td>Writing for the Health Professions</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 330</td>
<td>Victorian Literature</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 341</td>
<td>Rhetoric of Science and Medicine</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 379</td>
<td>Topics in Language Studies</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 386</td>
<td>Studies in Literature and Culture</td>
<td>3</td>
</tr>
<tr>
<td>HSTY 151</td>
<td>Technology in European Civilization</td>
<td>3</td>
</tr>
<tr>
<td>HSTY 152</td>
<td>Technology in America</td>
<td>3</td>
</tr>
</tbody>
</table>

MA in Bioethics and Medical Humanities

The Department of Bioethics offers a program leading to the Master of Arts degree in Bioethics and Medical Humanities, emphasizing the interdisciplinary and inter-professional nature of the field. This graduate program is designed to provide advanced training in bioethics and medical humanities for students and professionals who anticipate encountering ethical issues in the course of their primary careers.

The 30 credit-hour degree can be earned full-time in one year or part-time in up to three years. Core courses are taught by department faculty and are scheduled so that part-time students can continue their professional responsibilities while completing the degree.

The Master of Arts program provides students with a firm understanding of the intellectual content of the study of bioethics, bioethical literature, medical humanities, and the underlying philosophical arguments and empirical assumptions that inform these areas. Students are taught to understand the institutions, structures, and contexts of health care and the ethical issues that arise in medical practice. They are trained to identify and analyze a range of clinical ethics issues.

All students pursuing a Master of Arts degree in Bioethics and Medical Humanities are required to complete the interdisciplinary core of 12 credit hours (the equivalent of four courses) in the first two semesters of their first year of study.

MA Bioethics and Medical Humanities Plan of Study

First Year

| Course | Title | Units
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BETH 401</td>
<td>Foundations in Bioethics I</td>
<td>3</td>
</tr>
<tr>
<td>BETH 405</td>
<td>Clinical Ethics Rotation</td>
<td>3</td>
</tr>
<tr>
<td>Elective I</td>
<td></td>
<td>1.5 - 3</td>
</tr>
<tr>
<td>Elective II</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Elective III</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>BETH 402</td>
<td>Foundations in Bioethics II</td>
<td>3</td>
</tr>
<tr>
<td>BETH 405</td>
<td>Clinical Ethics Rotation</td>
<td>3</td>
</tr>
<tr>
<td>Elective I</td>
<td></td>
<td>1.5 - 3</td>
</tr>
<tr>
<td>Elective II</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Units

<table>
<thead>
<tr>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
MS/MA in Genetic Counseling and Bioethics in Medical Humanities (plan B)

The Departments of Genetics & Genome Sciences and Bioethics offer a dual degree program between the Masters in Genetic Counseling and the Masters in Bioethics Programs. The dual degree program provides a comprehensive curriculum integrating foundational principles of genetics and ethics. The goal of the program is to train Genetic Counselors who wish to apply additional Bioethics expertise into their clinical practice and/or research.

The dual degree program allows graduates to engage in both contemplative analysis and application of knowledge in the counseling of patients and should allow graduates to be more prepared to participate in the ongoing national dialogue about the ethical, legal, and social implications of advances in genomic technology as well as research within their home institutions and with other counselors nationwide regarding issues of new genomic testing technology, concerns about genetic services, and issues related to genetic discrimination, privacy, and the return of genetic and genomic results.

The curriculum for the Dual Genetic Counseling/Bioethics Degree consists of 59 credit hours to be completed in 2.5 years. Students enrolled in the dual degree program will spend their first year taking courses entirely within the Genetic Counseling Program and then will spread out their Bioethics coursework over the next 1.5 years while continuing with required coursework and clinical rotations in the genetic counseling program.

In addition to both a written and oral comprehensive examination as part of the Genetic Counseling Training Program, the dual degree requires a research project be carried out for the completion of both degrees.

For the dual degree, students will be required to choose a research project that includes ethical, legal, or social issues of genetic counseling practice, clinical genetics or genomics, or genetic research. Students will also be required to include at least one Bioethics Faculty member on their Research Project Committee.

Students who would like to enroll in the dual degree program will apply and be admitted into each program separately. While admissions committees for each program will communicate with each other regarding applicants, each admissions committee will decide independently about the suitability of the applicant to their program.

Once students have been admitted, the Director of the Genetic Counseling Training Program and the Director of the MA Program in Bioethics will act as student advisors for each of the two programs individually but will meet monthly to assess student progress, address any student or faculty concerns, and assure that student progress in each of the programs, and their overlapping components, are being achieved.

MS/MA Plan of Study

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Medical Genetics: Molecular & Cytogenetics (GENE 524)</td>
<td>2</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Practicum in Genetic Counseling (GENE 532)</td>
<td>4</td>
</tr>
<tr>
<td>Advanced Medical Genetics: Biochemical Genetics (GENE 527)</td>
<td>2</td>
</tr>
<tr>
<td>Foundations in Bioethics I (BETH 401)</td>
<td>6</td>
</tr>
<tr>
<td>Clinical Practicum in Genetic Counseling (GENE 532)</td>
<td>4</td>
</tr>
<tr>
<td>Ethical Issues in Genetics/Genomics (BETH 412)</td>
<td>3</td>
</tr>
<tr>
<td>Foundations in Bioethics II (BETH 402)</td>
<td>6</td>
</tr>
<tr>
<td>Research in Genetics (GENE 601)</td>
<td>3</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research in Genetics (GENE 601)</td>
<td>3</td>
</tr>
<tr>
<td>Clinical Ethics Rotation (BETH 405)</td>
<td>3</td>
</tr>
<tr>
<td>BETH Course Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Units in Sequence: 59

Advanced Medical Genetics:
- Quantitative Genetics & Genomics (GENE 526) - 2
- Principles and Practices of Genetic Counseling (GENE 528) - 3
- Direct Practice Generalist Methods & Skills (SASS 477) - 3
- Psychosocial Issues in Genetic Counseling (GENE 529) - 3
- Advanced Medical Genetics: Clinical Genetics (GENE 525) - 2
- Cancer Genetics (GENE 531) - 2
- Research in Genetics (GENE 601) - 2
- Clinical Practicum in Genetic Counseling (GENE 532) - 3

Year Total: 10

Dual Degree Programs

JD/MA

This program combines the Master of Arts in Bioethics and Medical Humanities with the Doctor of Jurisprudence and is offered in cooperation with the School of Law. Advances in health sciences have created new and difficult moral choices for individuals, their families, and the health professionals who work with them.

The Department of Bioethics is dedicated to responding to the challenge of health care choices faced in today’s society. It focuses on the ethical, cultural, and policy dimensions of healthcare, technology, and the life sciences. Professionals from many arenas, including public health, prevention sciences, health sciences, the life sciences, and the social sciences have contributed to and drawn from the field of Bioethics.
The JD Degree is a terminal degree; persons with the degree may pursue a variety of career paths. The MA in Bioethics and Medical Humanities is considered a supplemental degree—it enhances careers in other fields. The combined JD/MA program provides excellent preparation for students who desire to practice health law by giving law students firsthand experience in multiple healthcare settings. It is designed to help students identify and assess challenges facing the medical and health law professions in the coming decades, and explore a broad range of health law and policy issues. The program emphasizes the interdisciplinary and inter-professional nature of the field and includes a significant clinical component.

Students must apply and be accepted to each degree program to qualify. New students can apply to both programs simultaneously; current law students may apply before the end of their first year. Students are expected to complete course requirements for the two degrees in either three-and-one-half years, or three years combined with some summer school work. The curriculum for this dual degree program begins with one year of full-time study in law school.

The Department of Bioethics accepts 6 credits of elective law courses toward MA elective requirements. The law school accepts 12 credits of the required Foundations in Bioethics I and II courses as law elective credits toward the JD degree.

MA/MSN

This program combines the Master of Arts in Bioethics and Medical Humanities with the Master of Science in Nursing, in cooperation with the School of Nursing. The program provides excellent preparation for advanced practice nurses to gain knowledge about the principles and problem resolution techniques that are foundational to bioethics.

The combined MA/MSN program will enable students to obtain graduate preparation in both fields, contributing to the integration of ethics in advanced practice nursing and thereby increasing the availability of ethics expertise to the nursing community.

Students must apply and be accepted to each program to qualify. Students may take courses required for each program concurrently or may complete the requirements for one program prior to beginning the requirements for another. The Department of Bioethics accepts 6 credits of required elective nursing school courses toward the MA elective requirement. The nursing school accepts 5 credits of the required Foundations in Bioethics I course towards the MSN degree requirement.

MA/MPH

This program combines the Master of Arts in Bioethics and Medical Humanities with the Master of Public Health degree. The Master of Public Health Program prepares students to address the broad mission of public health, defined as "enhancing health in human populations, through organized community effort," utilizing education, research, and community service. Public health practitioners must be prepared to identify and assess health needs of different populations, and able to plan, implement and evaluate programs to respond to those needs.

It is the task of the public health practitioner to prevent illness, and to protect and promote the wellness of human-kind. A Master of Public Health degree provides education in public health basics, including biostatistics, epidemiology, environmental health sciences, health policy and social and behavioral sciences.

The Department of Bioethics offers a graduate program leading to the degree of Master of Arts in Bioethics and Medical Humanities. Advances in health sciences have created new and difficult moral choices for individuals, their families, and the health professionals who work with them. The Department of Bioethics is dedicated to responding to the challenge of health care choices faced in today's society. Professionals from many arenas, including public health, prevention sciences, health sciences, the life sciences, and the social sciences have contributed to and drawn from the field of bioethics.

Because of the breadth and scope of the field of public health and the discipline of bioethics, the CWRU MPH and Bioethics Programs are ideally suited to combine in a joint effort. The MPH/Bioethics and Medical Humanities shared degree will enable students to obtain graduate preparation in both fields, contributing to the application of ethics in public health practice and thereby increasing the availability of leadership and scholarship relating to Bioethics in the public health community.

It is anticipated that this collaboration will improve the ethics component of the public health educational experience for all students through closer collaboration between departments, and through peer interactions of dual degree students and their colleagues.

The MPH Degree is a "terminal" degree and persons with the degree may pursue a variety of career paths. The MA in Bioethics and Medical Humanities is considered a supplementary degree in that it enhances careers in other fields, e.g. law, medicine, nursing, or in this case, public health.

The joint bioethics-public health degree would fuel careers in every aspect of public health, including international and global health, public health preparedness and function, environmental health sciences, behavioral sciences, health education, health communications and health policy and management.

Bioethics Masters students receive their degree after 27 hours of study over one year. The School of Graduate Studies awards the MPH degree for 36 credit hours over two years. The joint MA/MPH program can be completed in three years of full-time study to complete a minimum of 57 credit hours. It should be noted that in 2007, changes in national education criteria for the Master of Public Health degree will require increasing credit hour requirements to 42 credits.

Options will be available for part-time pursuit of the degree within five years, or for an accelerated plan competed in five semesters. Students will develop individual education plans (IEP) with their advisors and may customize their approach and pace through the program. Each program has a set of core courses that must be completed; 15 core credits in Public Health and 15 core credits in Bioethics for a combined total of 30 required credit hours. The 9-credit Capstone experience is also required of all public health students.

The stand-alone Bioethics program also requires 12 credits taken from a list of approved elective courses. In addition to its 24 required credits, the stand-alone MPH program requires 9 concentration credits and 3 elective credits. Joint MA/MPH candidates will combine their Bioethics electives and Public Health concentration and elective courses to complete a total of 18 credit hours of advanced electives.

MA/MSSA

This program joins two well-known academic programs to offer students an interdisciplinary experience blending the similar values of social work
and medicine. This is a "side-by-side" program composed of existing elements of ongoing programs provided by the faculty usually engaged in these efforts. These new elements will be supplemented by an integrative experience designed to make the interdisciplinary character of the program concrete.

Dual-degree students must receive the MSSA and MA degrees simultaneously to be granted credit for specific courses taken in the other program. The dual degree program offered by Case Western Reserve's Jack, Joseph and Morton Mandel School of Applied Social Sciences and the Department of Bioethics is unlike other programs in the United States. As the number and complexity of ethical dilemmas in health care, aging, and mental health and social work continue to increase, there is a growing need for advanced practice social workers who are knowledgeable about the principles and problem resolution techniques that are fundamental to Bioethics.

In healthcare settings, ethical consultations are often requested on decisions having to do with end-of-life, organ donation, or initiation or withdrawal of medical treatments. In addition, graduates of this program will be able to help counsel health care providers, organizations, and clients, participate in setting policy and teach others about these issues.

Students must apply separately to the Mandel School and the Department of Bioethics for admission into each program. Admission to one program is not a guarantee that the student will gain admission to the other, and application to both programs should be made simultaneously. A joint committee of the two programs will meet and review the joint degree applications.

MA/MD

This program combines the Master of Arts in Bioethics and Medical Humanities with the MD degree, in cooperation with either the School of Medicine or the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University. This program provides physicians with advanced knowledge and experience in Bioethics integrated into the medical curricula in each program.

MS/MA in Genetic Counseling and Bioethics and Medical Humanities

The Departments of Genetics & Genome Sciences and Bioethics and Medical Humanities offer a dual degree program between the Masters in Genetic Counseling and the Masters in Bioethics and Medical Humanities Programs. The dual degree program provides a comprehensive curriculum integrating foundational principles of genetics and ethics. The goal of the program is to train Genetic Counselors who wish to apply additional Bioethics expertise into their clinical practice and/or research.

The dual degree program allows graduates to engage in both contemplative analysis and application of knowledge in the counseling of patients and should allow graduates to be more prepared to participate in the ongoing national dialogue about the ethical, legal, and social implications of advances in genomic technology as well as research within their home institutions and with other counselors nationwide regarding issues of new genomic testing technology, concerns about genetic services, and issues related to genetic discrimination, privacy, and the return of genetic and genomic results.

The curriculum for the Dual Genetic Counseling/Bioethics Degree consists of 59 credit hours to be completed in 2.5 years. Students enrolled in the dual degree program will spend their first year taking courses entirely within the Genetic Counseling Program and then will spread out their Bioethics coursework over the next 1.5 years while continuing with required coursework and clinical rotations in the genetic counseling program.

In addition to both a written and oral comprehensive examination as part of the Genetic Counseling Training Program, the dual degree requires a research project be carried out for the completion of both degrees. For the dual degree, students will be required to choose a research project that includes ethical, legal, or social issues of genetic counseling practice, clinical genetics or genomics, or genetic research. Students will also be required to include at least one Bioethics Faculty member on their Research Project Committee.

Students who would like to enroll in the dual degree program will apply and be admitted into each program separately. While admissions committees for each program will communicate with each other regarding applicants, each admissions committee will decide independently about the suitability of the applicant to their program.

Once students have been admitted, the Director of the Genetic Counseling Training Program and the Director of the MA Program in Bioethics and Medical Humanities will be act as student advisors for each of the two programs individually but will meet monthly to assess student progress, address any student or faculty concerns, and assure that student progress in each of the programs, and their overlapping components, are being achieved.

Doctoral Program in Bioethics

The goal of the PhD program is to train scholars in the conceptualization, design, and conduct of interdisciplinary research on issues in bioethics, medical humanities, and related areas. Candidates may enter the program from any discipline. All doctoral students will become fluent in the ways in which bioethics and medical humanities scholarship employs concepts and methods from the humanities, social sciences, clinical research, jurisprudence, and health policy. The Department of Bioethics is a multi-disciplinary learning environment, with faculty representing the fields of philosophy, anthropology, psychology, public health, law, medicine, and nursing. The doctoral program's curriculum is organized around core areas which include: normative and social science theory and methods; research ethics; clinical ethics; public health ethics; and medical humanities. Concentrations are available to students interested in 1) problems in genetics and genomics; 2) stem cell research and regenerative medicine; 3) research ethics and public health ethics; 4) clinical ethics; and 5) medical humanities and social medicine.

Requirements: Candidates should have a strong background in the social/behavioral sciences, public health/health services research, legal/health policy research, or philosophy and related humanities disciplines. An overall grade point average of 3.3 out of 4.0 (at the undergraduate level) is preferred. Applicants must demonstrate competency in the English language.
Courses

BETH 210. Perspectives on Health: Introduction to Medical Humanities and Social Medicine. 3 Units.
This survey course is designed to give students a broad overview of medical humanities and medical social sciences. Students will engage materials from a wide range of disciplines and learn how to analyze which perspectives afford and obscure which types of knowledge relevant to health, illness and clinical practice. Students will learn how to identify epistemology, methodology, theory and data from various disciplinary perspectives. This course is relevant for students engaged in pre-clinical education as well as those interested in medical humanities and medical social sciences.

BETH 271. Bioethics: Dilemmas. 3 Units.
We have the genetic technology to change nature and human nature, but should we? We have the medical technology to extend almost any human life, but is this always good? Should we clone humans? Should we allow doctor-assisted suicide for the terminally ill? This course invites students from all academic disciplines and fields to examine current and future issues in bioethics—e.g., theory and methods in bioethics; death and dying; organ transplantation; genetics; aging and dementia; fertility and reproduction; distributive justice in health care access. The course will include guest lecturers from nationally-known Bioethics faculty. Offered as BETH 271 and PHIL 271.

BETH 302. Independent Studies in Bioethics. 1 - 3 Units.
This course is for students with Bioethics-related special interests not adequately addressed in regular courses, and who wish to work independently in consultation with faculty.

BETH 314. Global Health: India. 3 Units.
Bioethics is the study of ethical controversies arising at the intersection of biology, medicine, technology, politics, law, philosophy, religion and culture. This course will discuss and analyze the issue of health in India; recognizing that health is more than the diagnosis and treatment of a disease. Using three diseases (HIV/AIDS, leprosy and tuberculosis) students will explore the relationship between culture and health care outcomes. Relevant issues addressed in the course include the history of British rule in India, Hinduism, the Caste system, poverty, access to education and public policy. Faculty will introduce readings on the history of India, medical anthropology, religion and the law. Students will then be given the opportunity to focus on a particular topic, research the existing literature, present their findings to the class and create a plan to observe the chosen topic while in India during the Summer semester. Course instructors include Nicole Deming, JD, MA Assistant Professor of Bioethics; Deepak Sarma, PhD, Associate Professor of South Asian Religions; and Gopal Yadavalli, MD Assistant Professor of Medicine and Chief of the Infectious Diseases Clinic at the Cleveland VA Medical Center. The course will also invite guest lectures from many different departments and schools to share their expertise and experience in the areas of Global Justice, Anthropology, and Human Rights.

BETH 315. International Bioethics: Policy and Practice. 3 Units.
Taught by Case and international faculty, this course will include 7-10 days of intensive didactic and experiential learning in one of several "host" countries. Examples of sites include: Free University of Amsterdam and University of Utrecht in the Netherlands; University of Paris in France; and Ben Gurion University in Israel. It will afford a unique opportunity to gain perspective on important bioethics issues in different societies, i.e., euthanasia, public health policies, access to healthcare, and stem cell research. At the international site, students will spend 6 hours per day (5 days) in seminar (involving didactics, discussion, and guided-observation clinical experience). There will be two 3-hour preparatory sessions, required reading, and two 3-hour post trip sessions. Requirements: preparation, attendance, and class participation, a 12-15 page paper (undergraduate credit) and a 15-20 page paper (graduate credit). Graduate credit will also require students to prepare a presentation for a post-intensive session. Enrollment will be capped at 25. This course has an additional fee to cover costs of travel and lodging. Limited scholarships are available. Offered as BETH 315 and BETH 415.

BETH 315A. International Bioethics Policy and Practice: Women's Health in the Netherlands. 3 Units.
This 3-credit course allows students to familiarize themselves with social policies and practices related to women's health in the United States and the Netherlands. Issues covered in the course include birth control and family planning, abortion, prenatal testing, childbirth, health care disparities, cosmetic surgery, prostitution and trafficking in women. This course also addresses the US and Dutch national policies regarding the public provision of health care for women. The course places an emphasis on the ways in which social norms shape policies over time, which political actors are involved in shaping women's health policy, and the balance between women's health as a matter of the public good or individual responsibility. This course substantively explores gender-specific cultural values and practices in relation to women's health in the United States and the Netherlands and will help students develop the analytical skills necessary for evaluating social policy and ethical issues related to women's health. Offered as BETH 315A and BETH 415A. Counts for CAS Global & Cultural Diversity Requirement.

BETH 315B. International Bioethics Policy and Practice: Public Health in the Netherlands. 3 Units.
This one week 3-credit intensive course will be held in Amsterdam, The Netherlands. Taught by faculty from Case and Utrecht University, this course offers students a cross-cultural perspective on ethical dilemmas raised by the practice of public health in the United States and Northern Europe. Additionally, this course examines policies related to prostitution, drug use, sex education, infectious disease prevention, and access to health care and how they differ in the cultural and political settings of U.S. and the Netherlands. We will examine both the rationales and outcomes of Dutch and American policies, stimulating course participants to consider their own views on these often controversial issues. Prior to the trip, students will attend lectures at Case, which will acquaint them with the theoretical approaches to public health ethics and major issues raised in the practice of public health. In these pre-trip sessions, students will also analyze and report on a case study designed to stimulate critical thinking on comparative public health ethics. In Amsterdam, students will attend lectures that will be supplemented by site visits and discussion sessions aimed at exploring the ethics of public health policy and practice in the Netherlands. Following the intensive week in Amsterdam, students will meet with instructors at Case for two hours to discuss their experiences and compare policies and practices in the U.S. and the Netherlands. Offered as BETH 315B and BETH 415B. Counts for CAS Global & Cultural Diversity Requirement.
BETH 315C. International Bioethics Policy and Practice: Health Care Costa Rica. 3 Units.
This 3-credit course gives students the unique opportunity to observe patients and practitioners encounter in a radically different health care system. Costa Rica has one of the most comprehensive health care systems in the Western hemisphere, featuring the innovative use of mid-level health care workers organized in basic comprehensive health care teams. This has resulted in a longer life expectancy than the United States, despite a per capita GDP of only $10,000 per person. Students will gain first-hand experience of Costa Rican health care through field experiences at sites including a national hospital in the capital city, San Jose; a peripheral treatment clinic in a smaller town; and observation of the work of an integrated basic health care team in an indigenous reserve. Following each visit, students will discuss the practical and ethical dilemmas that practitioners face in the context of the Costa Rican health care system. Specific topics include: health inequalities within and between nations; the ethics of transplantation, medical research, and end-of-life care; and health care in rural environments and with indigenous populations. Offered as BETH 315C and BETH 415C. Counts for CAS Global & Cultural Diversity Requirement.

BETH 315D. French Connections, A Cross-Cultural Comparison of Medical Ethics. 3 Units.
This 3-credit course is collaboration between Case Western Reserve University and the University of Paris. The course includes a ten-day trip to Paris, France over Spring Break. This course offers a cross-cultural comparison of the French and American medical systems. Students will have the unique opportunity to learn first-hand how the French medical education system is structured and how the social, cultural and political contexts in France shape medical and ethical issues. The trip includes guided field experiences in French clinical settings as well as opportunities to engage with French faculty members and physicians about contemporary issues in bioethics. Ethical issues that may be considered may include reproductive rights, decision-making involving severely impaired newborns, withholding/withdrawing life-sustaining treatment and issues in organ donation and transplant. The course also will also emphasize the role of French culture and history while in Paris with museum and site visits designed to complement seminar content and offer real-life illustrations of course content. Prior to the trip, students attend six hours of lectures, either at Case Western Reserve University or via a web-based tutorial. They are expected to become familiar with the representative articles assigned for the course, and be prepared to integrate those readings into pre-trip class participation and active participation while in France. Following the trip, students meet with the instructor for an additional four hours to discuss and synthesize their experiences. Offered as BETH 315D and BETH 415D. Counts for CAS Global & Cultural Diversity Requirement.

BETH 315E. International Bioethics: Policy and Practice--US and Spanish Perspectives, Salamanca Spain. 3 Units.
This 3-credit hour course will introduce advanced undergraduate and graduate students to theoretical and practical aspects of bioethics in a European context. Continental health professionals and bioethicists work in an environment that differs from the American context in at least three important dimensions: the political structure of their health care systems, the cultural influence of their religious histories, and the theoretical perspective of continental moral philosophy. The University of Salamanca in Spain, one of the oldest universities in Europe (known as the "Oxford of Spain"), will be used in this course as a focal point for examining the interplay of these three dimensions in shaping institutional and professional approaches to specific problems in bioethics, including end of life decisions, organ procurement and allocation, reproductive ethics, health care justice, and environmental bioethics. This course will help advanced students who are already grounded in American bioethics develop the analytical skills necessary for evaluating European bioethical scholarship and policy-making, while helping less advanced students develop a familiarity with fundamental similarities and differences between bioethics in Spain and the U.S. The course will include a one week trip to Salamanca, Spain where students will be taught by instructors and faculty from the University of Salamanca. Teaching will include some guided field experiences and regular discussion sessions with the course faculty. Prior to the trip, students will attend 4 hours of class at Case to become familiar with elements of political theory and moral philosophy relevant to the in-country discussions. Following the trip, students will meet with instructors for an additional 2 hours. Offered as BETH 315E and BETH 415E. Counts for CAS Global & Cultural Diversity Requirement.

BETH 315F. Bioethics Themes as Expressed in Spanish and American Culture: Film, Television, and Literature. 3 Units.
This 3-credit intensive course will be held in San Sebastian, Spain. Taught by faculty from CWRU and University of the Basque Country, this course offers students a cross-cultural perspective on bioethics in the United States and Spain. This course uses the medium of film, complemented by readings in bioethics, film criticism, and medical research, to introduce students to a number of compelling bioethics problems facing physician-scientists today, including: when life begins, the nature and limits of informed consent, use of randomization without equipoise, medical imperialism (or the appearance thereof), the treatment of so-called "orphan" diseases, use of deception in research, and financial conflicts of interests caused by among other things, the involvement of the pharmaceutical industry in the drug invention process. Offered as BETH 315F and BETH 415F. Counts for CAS Global & Cultural Diversity Requirement.
BETH 315G. Death, Dying & Euthanasia: Netherlands & the USA. 3 Units.

Is it ever permissible for physicians to kill their patients? In the Netherlands, the answer is yes. In the United States, it is no. Are the Dutch sliding down a moral slippery slope? Are the Americans compromising the rights and dignity of dying patients? This 3-credit course is a unique opportunity to examine a range of Dutch and American end-of-life policies and practices with special focus on the unique ethical, cultural, religious, and legal contexts in which they developed. This course will compare how two liberal democracies, the United States and the Netherlands, have handled difficult end-of-life issues, including: The Dutch regulation of euthanasia; Regulation of physician-assisted suicide in the state of Oregon; Terminal sedation; End-of-life decisions in newborns; Withholding and withdrawing of artificially-provided fluids and nutrition; The legal basis for end-of-life decision making in the USA; Palliative care and hospice; Public trust in medicine and physicians. In the United States, teaching methods will include lectures, case discussion, and exposure to how some of the course’s themes are reflected in popular culture such as movies. Offered as BETH 315G and BETH 415G. Counts for CAS Global & Cultural Diversity Requirement.

BETH 315H. Water Security and Social Justice in Brazil. 3 Units.

CWRU, through the Center for Global Health and Diseases, has had projects, student exchanges and courses with institutions in Brazil and especially with the state of Bahia for over 30 years. In that time, personal and professional relationships have been developed with branches of the Ministry of Health (Oswaldo Cruz Foundation, the Municipal and State Health Departments), the Federal University of Bahia, and the Bahiana School of Medicine and Public Health. Brazil is the second largest country in the Western Hemisphere and the 7th or 8th largest economy in the world. There are more people who speak Portuguese in South America than Spanish. Despite newly discovered oil, enormous natural and human resources, development in Brazil has been uneven with the Northeast remaining the least developed. The Northeastern state of Bahia ranked 22nd out of 27 states on the UN’s Index of Human Development (http://www.pnud.org.br/IDH/DH.aspx# and http://www.atlasbrasil.org.br/2013/pt/home/). The State capital, Salvador, ranks 14th out of 20 major metropolitan regions and is one site for this study abroad program. The second site, the rural town of Ubaíra, is ranked 4590 out of 5565 municipalities. Even with large social inequities and health care disparities, the Brazilian government and society have produced remarkable social policies, have shown a willingness to implement these policies and have the resources to significantly improve the lives of its most impoverished citizens. Critical basic infrastructure for health and development is water. Its consumption is essential; it is a mechanism for waste disposal, industry and agriculture are dependent on its supply. The problem of water quantity and quality are common all human societies (witness the drought in California and the burning Cuyahoga). Individuals from all walks of life will need to assess issues of water at some time, from doctors, engineers, urban planners, lawyers and politicians. In Brazil the issues of water are more exposed and easier to examine on different scales than in the U.S. The problem also resides within a social, health care, and political context that compares well and at the same time contrasts sharply with that of the USA. As a student in this course, you will gain first-hand knowledge of the social and public health challenges regarding water security in Brazil. Through field experiences in the capital city of Salvador and the rural town of Ubaíra, you will immerse yourself in interdisciplinary perspectives on the public health, scientific, political, and bioethical dimensions of water security in Brazil. This immersive experience will be facilitated by faculty from the CWRU Dept. of Bioethics and the Center for Global Health and Diseases, the Brazilian Ministry of Health, the Federal University of Bahia, the Bahiana School of Medicine and Public Health, and Brazilian graduate student participants. Offered as: INTH 315, INTH 415, BETH 315H, and BETH 415H. Counts for CAS Global & Cultural Diversity Requirement.
BETH 319. Medical Science and Technology in Society. 3 Units.
Science, Technology, and Society (STS) is an interdisciplinary field of scholarship that examines how social, cultural, historical, ethical, and political forces impact scientific research and technological development: and, in turn, how our beliefs, values, and perspectives change in response to scientific and technological innovation. This course will take an STS approach to the study of human health and medicine. We will explore how advances in contemporary biomedicine have affected society and culture, and in turn, how society and culture influence medical science, technology, and clinical practice. Topics we will explore include reproductive technologies, genetics, disability, cyborgs and human enhancement, pharmaceuticals, medical practice, and end-of-life care. The course will prepare students to think critically about scientific and medical knowledge, to thoughtfully examine the relationships between science, technology and culture at large, and to consider the ways that new medical technologies shape and re-shape our understandings of illness, health, and the human body. Weekly course meetings will implement a blend of lectures, discussions, and in-class exercises. Offered as BETH 319 and BETH 419.

BETH 353. Hindu and Jain Bioethics. 3 Units.
This course will provide both an introduction to basic Hinduism and Jainism and an introduction to Hindu and Jain bioethics. We will ask: How would a Hindu or a Jain respond to issues concerning euthanasia, abortion, and other topics of controversy. Are these answers altered in the North American context or in the light of recent technological changes? Offered as RLGN 353, RLGN 453, BETH 353, and BETH 453. Counts for CAS Global & Cultural Diversity Requirement.

BETH 360. Science and Society. 3 Units.
This course examines the complex ethical and other value relationships that exist between science and society. Students will be encouraged to question the simplistic view that science proceeds independently of societal values and contentious ethical commitments. A range of other social factors, such as ethical belief systems, political forces, and large-scale financial interests all influence new scientific and technological developments. In order to illuminate each of these larger themes, this course focuses on three exciting areas of scientific inquiry: stem cell research; synthetic biology; and nanotechnology. Each of these contentious scientific fields provides an excellent view into the challenging ethical, cultural, social, political, and economic issues that will face students, both as scholars and as citizens. No prior technical knowledge is necessary for any of these scientific areas. All relevant scientific information will be provided during the course by the professor. Offered as BETH 360, BETH 460 and PHIL 360.

BETH 370. Advanced Bioethics. 3 Units.
This course offers upper-level instruction on many key bioethical issues introduced in BETH/PHIL 271. The class follows a discussion-intensive seminar format. Students begin with an in-depth analysis of ethical issues surrounding the conduct of clinical trials, both within the U.S. and through U.S.-sponsored research abroad. Next students examine the philosophical and practical challenges involved in medical decision making for adults and pediatric patients. This course concludes by addressing the broader ethical problem of what duties we owe to future generations in terms of our reproductive choices and the allocation of health-related public expenditures. Each of these general topic areas - clinical trials, medical decision making, and future generations - is of crucial importance for all students whether one plans to enter a career in biomedical research, the healthcare professions, or some other career path. Everyone is a potential patient or the family member of a potential patient. The topics covered in Advanced Bioethics will help prepare students to become responsible participants in an increasingly complex biomedical world. Offered as BETH 371 and PHIL 371. Prereq: BETH 271 or PHIL 271.

BETH 371C. Advanced Bioethics: Clinical Observation. 1 Unit.
This course is a one credit class intended to supplement BETH 371: Advanced Bioethics. In this course students will become familiar with the clinical, psychological, social, professional, and institutional context in which bioethical problems arise. Students are exposed to clinical cases as they arise, to hospital ethics committees and ethics consultation programs, to institutional review boards (IRB), and to hospital policies covering “do not resuscitate” orders (DNR), advance directives, withdrawal of artificial feeding, and medical futility. The clinical rotation will consist of 20 hours of supervised observation where students attend structured clinical activities such as ICU rounds, case conferences as well as shadow clinicians that work with the Department of Bioethics and are used to having students at various levels of observers. The purpose of the clinical rotation will be to give students first hand observational experience in the health care system and how the key bioethical issues discussed in BETH 371 manifest in the clinical setting. The primary locations for this course are MetroHealth Medical Center and Louis Stokes Cleveland VA Medical Center. Prereq: BETH 271 or PHIL 271. Coreq: BETH 371 or PHIL 371.

BETH 401. Foundations in Bioethics I. 6 Units.
The first of the two required seminar courses, this course covers five basic topic areas in bioethics: death and dying; health professional-patient relationship; method and theory in bioethics; organ transplantation; and ethics and children. The course meets twice weekly and is taught in seminar format by Center faculty members who are experts on specific topics. Preentry.

BETH 402. Foundations in Bioethics II. 6 Units.
This course completes the required seminar core and covers the basic bioethics topic areas: health care justice; defining ‘health care needs;’ reproduction and fertility ethics; research ethics; and ethics in genetics. The course meets twice weekly and is taught in seminar format by Center faculty members who are experts on specific topics. Recommended preparation: BETH 401.

BETH 403. Mental Illness and Bioethics in Film and Literature. 1.5 Unit.
This course examines bioethical issues that arise in the representation of mental illness and its treatment in film and literature. Course requirements include viewing 3 films and reading 3 or more books during the course of the semester, in-class discussion, and assigned writing. The films and works of literature will be rotated each year, with some possible repetitions. Prereq: Graduate Bioethics student or Requisites Not Met permission.
BETH 405. Clinical Ethics Rotation. 1.5 - 3 Units.
In this course students will become familiar with the clinical, psychological, social, professional, and institutional context in which ethical problems arise. This course exposes students to clinical cases, to hospital ethics committees and ethics consultation programs, to institutional review boards (IRB), and to hospital policies covering the "do not resuscitate" orders (DNR), advance directives, withdrawal of artificial feeding, organ procurement and transplantation, and medical futility. Requires minimum of 8 total hours of rotation experience per week during two semester 10-week rotations. Locations for this course include: MetroHealth Medical Center, University Hospitals of Cleveland, and the Hospice of the Western Reserve. Recommended preparation: BETH 401 or concurrent enrollment.

BETH 406. Society, Religion, and Bioethics. 3 Units.
Focus and Scope of Course: The course examines the interplay of politics, governmental structures, culture and religion and their impact on ethics questions that arise in the health arena. The course provides a broad overview of the basic tenets of several major faith traditions and examines how and why the interpretation of such tenets and their impact on bioethics issues varies across different societies. The specific domains in which we explore such issues, e.g., reproductive health, regenerative medicine, end-of-life issues, infectious disease, may be rotated each year. Objectives: Students will be able to *Describe how religious views and interests affect policymaking with respect to a variety of health-related issues *Enunciate strategies for the reconciliation of bioethics perspectives stemming from diverse religious interests in a pluralistic society *Compare and contrast the perspective of various world religions with respect to specific bioethics issues Prereq: Must be a dual professional degree student.

BETH 407. Interprofessional Integrative Seminar. 0 Unit.
This is an integrative seminar for dual professional degree students in Bioethics, e.g. Bioethics and Law, Bioethics and Public Health, Bioethics and Medicine. It is required for all dual professional degree students in Bioethics who were admitted to Bioethics on or after January 1, 2013. Students are required to take the seminar for two semesters at any time during their Bioethics program. The course focuses on the study of selected texts with respect to ethical issues and interprofessional relationships. Prereq: Must be a dual professional degree student.

BETH 408. Ethics, Law and Health Research. 3 Units.
This course focuses on an examination of issues arising at the juncture of law, ethics, and health research, such as informed consent, the assessment of risks and benefits, conflict of interest, and scientific misconduct. Particular attention is placed on issues arising in the context of study design and community based research. To the extent possible, the class will utilize a case-focused approach.

BETH 410. Foundations of Medicine, Society and Culture. 3 Units.
Topics will include comparative medical systems and concepts of health, medical history, illness narratives and narrative ethics, social determinants of health and health inequalities, analysis of representations of illness and medicine in literature and the arts, and medical rhetoric. Students who complete the course should develop a command of the basic problems, approaches, and literatures in the social and cultural contexts of health sickness, and medicine. Students will be able to identify epistemology, theory, methodology and data from neighboring disciplines and understand affordances and costs in each.

BETH 411. Narrative Medicine: Methodology in patient-centered medical education. 3 Units.
Narrative Medicine, or medicine practiced with narrative skills (as defined by Rita Charon, MD, PhD), is a methodology in patient-centered medical education. Narrative medicine is informed by the theory and practice of reading, writing, telling, and receiving of stories as a clinically empowering practice for anyone engaged (or planning to engage) in the field of healthcare. This course will employ various methods of learning and experiencing narrative, including fundamental skills of close reading and reflective writing and other forms of self-representation. Narrative competence is an important skill that enables a person to "recognize, absorb, interpret, represent, and be moved by the stories of illness". Major themes throughout the course will include caregivers' and patients' empowerment, empathy, narrative ethics, testimony, reflexive writing, and illness and medical stories. The course will be conducted in a seminar-type format. Each session will have readings that relate to the theory of narrative (primarily from the Charon textbook but also from other sources in the Ethics and Humanities professional literature) and related health humanities. Many of the sessions will also include the application of reflective practice/close reading. Additional elements will be writing workshops and use of film and visual art as narrative. The class will meet once weekly for a 3 hour session. This class is open to graduate students in any humanities or healthcare field, and will be especially useful to those who intend to have a future career in which direct care of patients/clients is a part of their work.

BETH 412. Ethical Issues in Genetics/Genomics. 3 Units.
This course is designed to familiarize graduate students with the major controversies over the generation and use of new human genetic information. Topics will include the spread of predictive genetic testing, prenatal diagnosis, genetic discrimination, human genetic variation research, eugenics, genetic counseling, and the limits of human gene therapy. The course will be conducted as a seminar, involving discussions of readings, guest speakers, and student presentations.

BETH 414. International Health Research Ethics. 3 Units.
This course will introduce students in the health and social sciences to key ethical issues that arise in international health research. The course will include intensive reading and case-based discussion of current ethical and moral quandaries posed by research conducted in the international arena. Five full-day sessions are planned. Each day will be divided into a series of formal presentations and active, group-based discussions around topics that include: the historical context of international health research; current international ethics principles, standards, and declarations; key tools and concepts for unpacking ethical issues in international health research; issues in informed consent and conflict of interest; “reasonable availability” and the conduct of clinical trials; cutting-edge international genetics research; and, the responsibility of researchers to the international health community. Course evaluation is based on class participation, a written exercise, and a case analysis.
BETH 415. International Bioethics: Policy and Practice. 3 Units.
Taught by Case and international faculty, this course will include 7-10 days of intensive didactic and experiential learning in one of several “host” countries. Examples of sites include: Free University of Amsterdam and University of Utrecht in the Netherlands; University of Paris in France; and Ben Gurion University in Israel. It will afford a unique opportunity to gain perspective on important bioethics issues in different societies, i.e., euthanasia, public health policies, access to healthcare, and stem cell research. At the international site, students will spend 6 hours per day (5 days) in seminar (involving didactics, discussion, and guided-observation clinical experience). There will be two 3-hour preparatory sessions, required reading, and two 3-hour post-trip sessions. Requirements: preparation, attendance, and class participation, a 12-15 page paper (undergraduate credit) and a 15-20 page paper (graduate credit). Graduate credit will also require students to prepare a presentation for a post-intensive session. Enrollment will be capped at 25. This course has an additional fee to cover costs of travel and lodging. Limited scholarships are available. Offered as BETH 315 and BETH 415.

BETH 415A. International Bioethics Policy and Practice: Women's Health in the Netherlands. 3 Units.
This 3-credit course allows students to familiarize themselves with social policies and practices related to women’s health in the United States and the Netherlands. Issues covered in the course include birth control and family planning, abortion, prenatal testing, childbirth, health care disparities, cosmetic surgery, prostitution and trafficking in women. This course also addresses the US and Dutch national policies regarding the public provision of health care for women. The course places an emphasis on the ways in which social norms shape policies over time, which political actors are involved in shaping women's health policy, and the balance between women's health as a matter of the public good or individual responsibility. This course substantively explores gender-specific cultural values and practices in relation to women's health in the United States and the Netherlands and will help students develop the analytical skills necessary for evaluating social policy and ethical issues related to women's health. Offered as BETH 315A and BETH 415A. Counts for CAS Global & Cultural Diversity Requirement.

BETH 415B. International Bioethics Policy and Practice: Public Health in the Netherlands. 3 Units.
This one week 3-credit intensive course will be held in Amsterdam, The Netherlands. Taught by faculty from Case and Utrecht University, this course offers students a cross-cultural perspective on ethical dilemmas raised by the practice of public health in the United States and Northern Europe. Additionally, this course examines policies related to prostitution, drug use, sex education, infectious disease prevention, and access to health care and how they differ in the cultural and political settings of U.S. and the Netherlands. We will examine both the rationales and outcomes of Dutch and American policies, stimulating course participants to consider their own views on these often controversial issues. Prior to the trip, students will attend lectures at Case, which will acquaint them with the theoretical approaches to public health ethics and major issues raised in the practice of public health. In these pre-trip sessions, students will also analyze and report on a case study designed to stimulate critical thinking on comparative public health ethics. In Amsterdam, students will attend lectures that will be supplemented by site visits and discussion sessions aimed at exploring the ethics of public health policy and practice in the Netherlands. Following the intensive week in Amsterdam, students will meet with instructors at Case for two hours to discuss their experiences and compare policies and practices in the U.S. and the Netherlands. Offered as BETH 315B and BETH 415B. Counts for CAS Global & Cultural Diversity Requirement.

BETH 415C. International Bioethics Policy and Practice: Health Care Costa Rica. 3 Units.
This 3-credit course gives students the unique opportunity to observe patients and practitioners encounter in a radically different health care system. Costa Rica has one of the most comprehensive health care systems in the Western hemisphere, featuring the innovative use of mid-level health care workers organized in basic comprehensive health care teams. This has resulted in a longer life expectancy than the United States, despite a per capita GDP of only $10,000 per person. Students will gain first-hand experience of Costa Rican health care through field experiences at sites including a national hospital in the capital city, San Jose; a peripheral treatment clinic in a smaller town; and observation of the work of an integrated basic health care team in an indigenous reserve. Following each visit, students will discuss the practical and ethical dilemmas that practitioners face in the context of the Costa Rican health care system. Specific topics include: health inequalities within and between nations; the ethics of transplantation, medical research, and end-of-life care; and health care in rural environments and with indigenous populations. Offered as BETH 315C and BETH 415C. Counts for CAS Global & Cultural Diversity Requirement.

BETH 415D. French Connections, A Cross-Cultural Comparison of Medical Ethics. 3 Units.
This 3-credit course is collaboration between Case Western Reserve University and the University of Paris. The course includes a ten-day trip to Paris, France over Spring Break. This course offers a cross-cultural comparison of the French and American medical systems. Students will have the unique opportunity to learn first-hand how the French medical education system is structured and how the social, cultural and political contexts in France shape medical and ethical issues. The trip includes guided field experiences in French clinical settings as well as opportunities to engage with French faculty members and physicians about contemporary issues in bioethics. Ethical issues that may be considered may include reproductive rights, decision-making involving severely impaired newborns, withholding/withdrawing life-sustaining treatment and issues in organ donation and transplant. The course also will also emphasize the role of French culture and history while in Paris with museum and site visits designed to complement seminar content and offer real-life illustrations of course content. Prior to the trip, students attend six hours of lectures, either at Case Western Reserve University or via a web-based tutorial. They are expected to become familiar with the representative articles assigned for the course, and be prepared to integrate those readings into pre-trip class participation and active participation while in France. Following the trip, students meet with the instructor for an additional four hours to discuss and synthesize their experiences. Offered as BETH 315D and BETH 415D. Counts for CAS Global & Cultural Diversity Requirement.
BETH 415E. International Bioethics: Policy and Practice--US and Spanish Perspectives, Salamanca Spain. 3 Units.

This 3-credit hour course will introduce advanced undergraduate and graduate students to theoretical and practical aspects of bioethics in a European context. Continental health professionals and bioethicists work in an environment that differs from the American context in at least three important dimensions: the political structure of their health care systems, the cultural influence of their religious histories, and the theoretical perspective of continental moral philosophy. The University of Salamanca in Spain, one of the oldest universities in Europe (known as the "Oxford of Spain"), will be used in this course as a focal point for examining the interplay of these three dimensions in shaping institutional and professional approaches to specific problems in bioethics, including end of life decisions, organ procurement and allocation, reproductive ethics, health care justice, and environmental bioethics ("eco-ethics"). This course will help advanced students who are already grounded in American bioethics develop the analytical skills necessary for evaluating European bioethical scholarship and policy-making, while helping less advanced students develop a familiarity with fundamental similarities and differences between bioethics in Spain and the U.S. The course will include a one week trip to Salamanca, Spain where students will be taught by instructors and faculty from the University of Salamanca. Teaching will include some guided field experiences and regular discussion sessions with the course faculty. Prior to the trip, students will attend 4 hours of class at Case to become familiar with elements of political theory and moral philosophy relevant to the in-country discussions. Following the trip, students will meet with instructors for an additional 2 hours. Offered as BETH 315E and BETH 415E. Counts for CAS Global & Cultural Diversity Requirement.

BETH 415F. Bioethics Themes as Expressed in Spanish and American Culture: Film, Television, and Literature. 3 Units.

This 3-credit intensive course will be held in San Sebastian, Spain. Taught by faculty from CWRU and University of the Basque Country, this course offers students a cross-cultural perspective on bioethics in the United States and Spain. This course uses the medium of film, complemented by readings in bioethics, film criticism, and medical research, to introduce students to a number of compelling bioethics problems facing physician-scientists today, including: when life begins, the nature and limits of informed consent, use of randomization without equipoise, medical imperialism (or the appearance thereof), the treatment of so-called "orphan" diseases, use of deception in research, and financial conflicts of interests caused by among other things, the involvement of the pharmaceutical industry in the drug invention process. Offered as BETH 315F and BETH 415F. Counts for CAS Global & Cultural Diversity Requirement.

BETH 415G. Death, Dying & Euthanasia: Netherlands & the USA. 3 Units.

Is it ever permissible for physicians to kill their patients? In the Netherlands, the answer is yes. In the United States, it is no. Are the Dutch sliding down a moral slippery slope? Are the Americans compromising the rights and dignity of dying patients? This 3-credit course is a unique opportunity to examine a range of Dutch and American end-of-life policies and practices with special focus on the unique ethical, cultural, religious, and legal contexts in which they developed. This course will compare how two liberal democracies, the United States and the Netherlands, have handled difficult end-of-life issues, including: The Dutch regulation of euthanasia; Regulation of physician-assisted suicide in the state of Oregon; Terminal sedation; End-of-life decisions in newborns; Withholding and withdrawing of artificially-provided fluids and nutrition; The legal basis for end-of-life decision making in the USA; Palliative care and hospice; Public trust in medicine and physicians. In the United States, teaching methods will include lectures, case discussion, and exposure to how some of the course’s themes are reflected in popular culture such as movies. Offered as BETH 315G and BETH 415G. Counts for CAS Global & Cultural Diversity Requirement.
BETH 415H. Water Security and Social Justice in Brazil. 3 Units.
CWRU, through the Center for Global Health and Diseases, has had projects, student exchanges and courses with institutions in Brazil and especially with the state of Bahia for over 30 years. In that time, personal and professional relationships have been developed with branches of the Ministry of Health (Oswaldo Cruz Foundation, the Municipal and State Health Departments), the Federal University of Bahia, and the Bahiana School of Medicine and Public Health. Brazil is the second largest country in the Western Hemisphere and the 7th or 8th largest economy in the world. There are more people who speak Portuguese in South America than Spanish. Despite newly discovered oil, enormous natural and human resources, development in Brazil has been uneven with the Northeast remaining the least developed. The Northeastern state of Bahia ranked 22nd out of 27 states on the UN's Index of Human Development (http://www.pnud.org.br/IDH/DH.aspx# and http://www.atlasbrasil.org.br/2013/pt/home/). The State capital, Salvador, ranks 14th out of 20 major metropolitan regions and is one site for this study abroad program. The second site, the rural town of Ubaíra, is ranked 4590 out of 5565 municipalities. Even with large social inequities and health care disparities, the Brazilian government and society have produced remarkable social policies, have shown a willingness to implement these policies and have the resources to significantly improve the lives of its most impoverished citizens. Critical basic infrastructure for health and development is water. Its consumption is essential; it is a mechanism for waste disposal, industry and agriculture are dependent on its supply. The problem of water quantity and quality are common all human societies (witness the drought in California and the burning Cuyahoga). Individuals from all walks of life will need to assess issues of water at some time, from doctors, engineers, urban planners, lawyers and politicians. In Brazil the issues of water are more exposed and easier to examine on different scales than in the U.S. The problem also resides within a social, health care, and political context that compares well and at the same time contrasts sharply with that of the USA. As a student in this course, you will gain first-hand knowledge of the social and public health challenges regarding water security in Brazil. Through field experiences in the capital city of Salvador and the rural town of Ubaíra, you will immerse yourself in interdisciplinary perspectives on the public health, scientific, political, and bioethical dimensions of water security in Brazil. This immersive experience will be facilitated by faculty from the CWRU Dept. of Bioethics and the Center for Global Health and Diseases, the Brazilian Ministry of Health, the Federal University of Bahia, the Bahiana School of Medicine and Public Health, and Brazilian graduate student participants. Offered as: INTH 315, INTH 415, BETH 315H, and BETH 415H. Counts for CAS Global & Cultural Diversity Requirement.

BETH 417. Introduction to Public Health Ethics. 3 Units.
The course will introduce students to theoretical and practical aspects of ethics and public health. This course will help students develop the analytical skills necessary for evaluating of ethical issues in public health policy and public health prevention, treatment, and research. Will include intensive reading and case-based discussions. Evaluation based on class participation, a written exercise and a case analysis. Open to graduate students with permission from instructors.

BETH 419. Medical Science and Technology in Society. 3 Units.
Science, Technology, and Society (STS) is an interdisciplinary field of scholarship that examines how social, cultural, historical, ethical, and political forces impact scientific research and technological development: and, in turn, how our beliefs, values, and perspectives change in response to scientific and technological innovation. This course will take an STS approach to the study of human health and medicine. We will explore how advances in contemporary biomedicine have affected society and culture, and in turn, how society and culture influence medical science, technology, and clinical practice. Topics we will explore include reproductive technologies, genetics, disability, cyborgs and human enhancement, pharmaceuticals, medical practice, and end-of-life care. The course will prepare students to think critically about scientific and medical knowledge, to thoughtfully examine the relationships between science, technology and culture at large, and to consider the ways that new medical technologies shape and re-shape our understandings of illness, health, and the human body. Weekly course meetings will implement a blend of lectures, discussions, and in-class exercises. Offered as BETH 319 and BETH 419.

BETH 421. Research Ethics Practicum. 1.5 Unit.
The Research Ethics Practicum (80 hours,1.5 CREDITS) is designed to complement the theoretical and conceptual training received in the course, Critical Issues in Research Ethics. By way of a series of campus-wide rotations, students learn about the practical, everyday side of research administration, compliance, and scientific review. Students will work with key staff in research ethics centers, and observe their day-to-day operations, as well as attend institutional review board (IRB) and Institutional Animal Care and Use Committee (IACUC) meetings. They will become familiar with human subjects, animal, and tissue research regulations and policies as these are applied in an institutional/academic research context. Students will also spend time in a clinical trials unit and tour animal care facilities. The practicum has the following overall objectives: (1) students will be able to identify, analyze, and understand research ethics issues as they develop in the context of actual institutional research governance (2) students will gain an understanding of methods of ethical research design and implementation.

BETH 422. Clinical Ethics: Theory & Practice. 3 Units.
This course will focus on both theoretical and practical issues in clinical ethics. Clinical ethics will be distinguished from other areas of bioethics by highlighting distinctive features of the clinical context which must be taken into account in clinical ethics policy and practice. Fundamental moral and political foundations of clinical ethics will be examined, as will the role of bioethical theory and method in the clinical context. Topical issues to be considered may include informed consent; decision capacity; end of life decision making; confidentiality and privacy; the role and function of ethics committees; ethics consultation; the role of the clinical ethicist; decision making in various pediatric settings (from neonatal through adolescent); the role of personal values in professional life (e.g., rights of conscience issues, self disclosure and boundary issues); dealing with the chronically non-adherent patient; ethical issues in organ donation and transplant; health professional-patient communication; medical mistakes; and other ethical issues that emerge in clinical settings.
BETH 430. Bioethics in Literature. 1 Unit.
This course complements the Foundation course in the MA bioethics program by introducing students to narrative literature (fiction, nonfiction and poetry) that addresses ethical issues in medicine. The material is frequently the work of physicians and patients who narrate their respective experiences. As such, narrative provides direct insights into the practice of modern medicine tested against both accepted and controversial moral norms and serves as a vehicle for discussion and analysis of ethical issues. These issues involve topics such as death and dying, reproduction, pediatrics, women as patients and clinicians, public health and medicine as a profession and its practice as a privilege. Students will sample the work, among others, of William Carlos Williams, Lewis Thomas, Toni Morrison, Margaret Atwood, John Donne, Dylan Thomas and Abraham Verghese.

BETH 440. Science and Society Through Literature. 3 Units.
This course will examine the interaction of scientific investigation and discovery with the society it occurred in. What is the effect of science on society and, as importantly, what is the effect of society on science? An introduction will consider the heliocentric controversy with focus on Galileo. Two broad areas, tuberculosis and the Frankenstein myth, will then be discussed covering the period 1800-present. With tuberculosis, fiction, art and music will be examined to understand the changing views of society towards the disease, how society's perception of tuberculosis victims changed, and how this influenced their treatments and research. With Frankenstein, the original novel in its historical context will be examined. Using fiction and film, the transformation of the original story into myth with different connotations and implications will be discussed. Most classes will be extensive discussions coupled with student presentations of assigned materials. Offered as PHRM 340, BETH 440, PHRM 440, and HSTY 440.

BETH 453. Hindu and Jain Bioethics. 3 Units.
This course will provide both an introduction to basic Hinduism and Jainism and an introduction to Hindu and Jain bioethics. We will ask: How would a Hindu or a Jain respond to issues concerning euthanasia, abortion, and other topics of controversy. Are these answers altered in the North American context or in the light of recent technological changes? Offered as RLGN 353, RLGN 453, BETH 353, and BETH 453. Counts for CAS Global & Cultural Diversity Requirement.

BETH 460. Science and Society. 3 Units.
This course examines the complex ethical and other value relationships that exist between science and society. Students will be encouraged to question the simplistic view that science proceeds independently of societal values and contentious ethical commitments. A range of other social factors, such as ethical belief systems, political forces, and large-scale financial interests all influence new scientific and technological developments. In order to illuminate each of these larger themes, this course focuses on three exciting areas of scientific inquiry: stem cell research; synthetic biology; and nanotechnology. Each of these contentious scientific fields provides an excellent view into the challenging ethical, cultural, social, political, and economic issues that will face students, both as scholars and as citizens. No prior technical knowledge is necessary for any of these scientific areas. All relevant scientific information will be provided during the course by the professor. Offered as BETH 360, BETH 460 and PHIL 360.

BETH 466. Promoting Health Across Boundaries. 3 Units.
This course examines the concepts of health and boundary spanning and how the synergy of the two can produce new, effective approaches to promoting health. Students will explore and analyze examples of individuals and organizations boundary spanning for health to identify practice features affecting health, compare and contrast practices and approaches, and evaluate features and context that promote or inhibit boundary spanning and promoting health. Offered as MPHP 466, PQHS 466, SOCI 466, NURS 466 and BETH 466. Prereq: Graduate student status or instructor consent.

BETH 503. Research Ethics and Regulation. 3 Units.
This course is designed to introduce students to the ethical, policy, and legal issues raised by research involving human subjects. It is intended for law students, post-doctoral trainees in health-related disciplines and other students in relevant fields. Topics include (among others): regulation and monitoring of research; research in third-world nations; research with special populations; stem cell and genetic research; research to combat bioterrorism; scientific misconduct; conflicts of interest; commercialization and intellectual property; and the use of deception and placebos. Course will meet once per week for 2 hours throughout the semester. Grades will be given based on class participation and a series of group projects and individual short writing assignments. Offered as BETH 503, CRSP 603 and LAWS 5225.

BETH 505. Methods Normative Bioethics. 3 Units.
The purpose of this intensive graduate seminar is to master and to critique core philosophical concepts that are implicit in a wide array of bioethical issues. We will critically examine in a range of contemporary ethical theories beginning with modern conceptions of individual autonomy and concluding with theories of ethical justification. While no advanced knowledge of ethical theories is presupposed, students are expected to come to class prepared with the course readings and to engage in rigorous philosophical discussions with one another and the professor.

BETH 602. Special Topics in Bioethics. 1 - 3 Units.
Students will explore particular issues and themes in biomedical ethics in depth through independent study and research under the direction of a faculty member.

BETH 603. Bioethics Research. 6 Units.
Research leading toward the MD/MA degree is Bioethics.
BETH 604. Advanced Research Ethics Seminar. 0 Unit.
This course meets for two hours each month and is focused on the following topics and the development of the stated competencies: September Introduction; How to critically analyze the literature; Facilitator critique of assigned manuscript; Designing re-entry projects Critical analysis of literature. October Trainee #1 critique of assigned manuscript; Methodological and ethical issues in designing and reviewing research; Trainee presentation of concept papers for re-entry projects Critical review of research protocols and manuscripts; Issues in designing research. November Trainee #2 critique of assigned manuscript; How to prepare and present professional presentations Critical analysis of literature; Oral presentation skills; Development of teaching skills. January Trainee #1 critique of assigned manuscript; Principles of adult education Critical analysis of literature; Oral presentation skills; Development of teaching skills. February Trainee #2 critique of assigned manuscript; Developing submissions for IRB review Critical analysis of literature; Oral presentation skills; Identifying and addressing ethical issues in research; Preparation of IRB submissions. March Trainee #3 critique of assigned manuscript; Update on development of re-entry projects; Logistical issues related to re-entry projects; Manuscript preparation Critical analysis of literature; Oral presentation skills; Implementing research; Preparing work for publication; Negotiation skills. April Re-entry issued Implementing research; Readjustment. This course is only open to trainees in the Fogarty-funded Training Program in International Research Ethics.

BETH 605. Special Study: IRB Administration. 1.5 Unit.
This course is limited to Fogarty-sponsored trainees in the Training Program in International Research Ethics. The course, which meets 1.5 hours per week, focuses on issues relevant to the management and administrations of the various functions of research ethics review committees. Topics to be covered include identification and selection of appropriate community representatives for membership and/or consultation, utilization of independent experts/consultants, recordkeeping, approaches to communication with investigators, and others. Regular guest lectures will be provided by members of the various local IRBs, staff members of local IRBs, and senior investigators. The course will utilize a case-based approach

BETH 701. Dissertation Ph.D.. 1 - 9 Units.
(Credit as arranged.) Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.

Environmental Health Sciences
Phone: 216.368.5957
Jonathan Haines, PhD, Interim Chair
jonathan.haines@case.edu

Programs in Environmental Health Sciences are on hiatus and are being reevaluated as part of the merger of the Department of Environmental Health Sciences and the Department of Epidemiology & Biostatistics into the new Department of Population & Quantitative Health Sciences (p. 154).

General Medical Sciences
Contact: Main contact information is listed separately under each Center.

The Division of General Medical Sciences was established in 1986 to provide an organizational home for units pursuing interdisciplinary research and education objectives. The division is the equivalent of an academic department, and its constituent units are characterized as Centers. The Dean of the School of Medicine serves as the Chair of the division; each Center is led by a director. The unique nature of each of the General Medical Sciences centers is described in the paragraphs below. (Centers are listed in alphabetical order by full title, and associated academic programs including certificate, MS and PhD programs described in top navigation tabs).

Case Comprehensive Cancer Center
Phone: 216.844.8797
http://cancer.case.edu
Stanton L. Gerson, MD, Director, Case Comprehensive Cancer Center

The Case Comprehensive Cancer Center (Case CCC) is one of only 41 National Cancer Institute-designated Comprehensive Cancer Centers in the country. The Case CCC integrates the cancer research activities of the largest medical collaborative in Ohio, Case Western Reserve University (CWRU), University Hospitals Case Medical Center and Cleveland Clinic - under a single leadership structure. Our researchers dedicate themselves to improving cancer outcomes through basic studies into signaling pathways giving rise to cancer and its genetic and epigenetic causes, pursuing novel therapeutic targets, and analyzing lifestyle interventions to prevent cancer and detect it earlier. The Case CCC has over 360 collaborating scientists and physicians who have successfully competed for over $119 million in annual funding. These investigators are organized into eight interdisciplinary scientific programs and have access to 15 Scientific Core Facilities. A unified clinical research effort consisting of 12 multidisciplinary clinical disease teams develop and prioritize clinical trials among the partner institutions. Located in Cleveland, Ohio, the Case CCC serves a population with higher than average cancer rates. Research programs extend to CWRU affiliates MetroHealth Medical Center (the region's county hospital) and Louis Stokes Veterans Affairs Hospital and to 13 community medical centers operated by University Hospitals and Cleveland Clinic. As a consortium cancer center, Case CCC has become a powerful example of the potential generated by complementary institutions coming together for the benefit of research and discovery, patient treatments and community impact. Through its partners, Cancer Center programs extend throughout Northeast Ohio to offer residents access to cancer care through participation in community outreach, cancer prevention, cancer survivorship initiatives and a robust clinical trials operational effort coordinated across academic medical centers and community sites.

Center for Clinical Investigation
Phone: 216.368.3286
http://cci.case.edu/cci/index.php/Main_Page
James Spilsbury, PhD, Academic Development Core Director

The Center for Clinical Investigation (CCI) was founded in 2007 and is part of Case Western Reserve University School of Medicine's Division of General Medical Sciences. The CCI serves as the academic home of Cleveland's Clinical & Translational Science Collaborative, a partnership of 4 local institutions (Case Western Reserve University, the Cleveland Clinic Foundation, the MetroHealth System, and University Hospitals) and member of a national consortium of approximately 66 institutions funded by the National Institutes of Health to increase the efficiency and speed of clinical and translational research across the country.

The CCI's mission is to enhance clinical and translational research efforts across the Cleveland area by: (1) spurring advances in knowledge of risk factors, outcomes and treatment effectiveness in the population; (2)
Center for Medical Education
Phone: 216.368.1948
Patricia A. Thomas, MD, FACP, Director
Klara Papp, PhD, Director, CAML

The Center for Medical Education, established in 2010, provides an organizational home for teaching and learning programs in the School of Medicine and a supportive environment for those who want to develop special skills in medical education. The Center also sponsors faculty appointments, both full- and part-time, for faculty whose roles are predominantly focused on teaching medical students and physician assistant students. These include community clinicians who welcome medical students into their clinics and practices. The Center for the Advancement of Medical Learning (“CAML”) operates its programs under the auspices of the CMed. CAML supports and promotes the development of teaching and lifelong-learning skills among students, faculty, staff, residents, and alumni. CAML pursues research into educational innovations to advance our knowledge of medical learning and teaching. The Center offers workshops to faculty locally, regionally, and nationally to enhance faculty teaching, research and evaluation skills.

Center for Proteomics and Bioinformatics
Phone: 216.368.0291
http://proteomics.case.edu

The Case Center for Proteomics and Bioinformatics was created, in part, to strengthen Cleveland's presence in modern proteomics and bioinformatics research to make the region a leader in the field. The vision for the Center has been shaped over the past several years by the leadership of the Center's Director, Mark Chance, Ph.D, with over $120 million in grants awarded to the Center and its collaborators since its inception in February 2006. One of the primary goals of the CPB is to develop an infrastructure of sophisticated equipment that facilitates and maximizes shared equipment usage, as well as to offer a wide array of proteomics and bioinformatics services including mass spectrometry, protein expression/interactions, systems biology, and biostatistical analyses.

The CPB has expanded its vision to include education of graduate students in systems biology and bioinformatics. The Center for Proteomics and Bioinformatics developed a graduate program in Systems Biology and Bioinformatics in collaboration with Schools and Departments across the campus. For more information regarding the SYBB graduate program please see "Systems/Bioinformatics" tab above. You may also visit http://bioinformatics.case.edu/.

Proteomics entails the in depth structural analysis of individual proteins in human and animal cells. In studying proteins and their changes, bioinformatics enables researchers to take an integrated -omics approach for discovering networks involved in human disease. The School of Medicine has established the Center for Proteomics and Bioinformatics to perform research to better understand the genetic and environmental bases of disease as well as provide new technologies to diagnose diseases such as cancer, heart disease, and diabetes. New technologies in mass spectrometry are also allowing protein expression, localization, post-translational modifications, and interactions to be studied in increasing detail and on a genome wide scale. The Center is also developing and applying state-of-the-art structural proteomics technologies to understand the function and interactions of macromolecular complexes.
The CPB has three divisions: Proteomics and Genomics, Bioinformatics, and Macromolecular Structure.

Proteomics and Genomics Division
The mission of the Division of Proteomics and Genomics is to support research in protein and gene expression analysis, protein and gene modifications, and protein interactions in a wide variety of biological contexts. The division also develops new tools in Proteomics and Genomics research. Multiple Proteomics Cores support these activities.

Bioinformatics Division
The mission of the Division of Bioinformatics is to support interdisciplinary research and training in many areas of bioinformatics including analysis of DNA and protein sequences, protein interaction networks from whole genome expression data, analysis of signaling pathways from phospho-proteomics data, linkage and association studies for simple and complex traits, and gene and protein expression profiles. This includes a Bioinformatics Core that provides research support for these activities.

Macromolecular Structure Division
The mission of the Division of Macromolecular Structure is to support interdisciplinary research in new methods of structure determination, the combination of computational and experimental structural biology approaches, and developing and maintaining infrastructure for macromolecular structure determination. The Division will work closely and coordinate their activities with faculty and Departments in the University who use structural information to understand function as well as other Centers that provide leadership in Structural Biology and Biophysics.

The CPB also offers a wide range of seminars, workshops, and possibilities for individual training. These activities are posted on the CPB Web site. For a list of services and to explore opportunities to collaborate, please visit the Web site: http://proteomics.case.edu or e-mail: proteomics@case.edu.

Center for Psychoanalytic Child Development
Phone: 216.991.4472
Kimberly Bell (kmb207@case.edu), PhD; John A. Hadden Jr. Assistant Professor of Psychoanalytic Child Development

The Center for Psychoanalytic Child Development was established in 2001 as a memorial to John A. Hadden Jr., past President of the Board of Trustees of the Cleveland Center for Research in Child Development and of the Hanna Perkins School. The mission of the center is to advance the science of psychoanalytic child development at the School of Medicine.

The Center offers medical students and residents who are interested in working with children the opportunity for observational learning in the Hanna Perkins school. In addition, didactic courses, case conferences and supervision are available to deepen students’ understanding of the relationship between physical and psychological development in the first 5 years of life.

The Center for RNA Science and Therapeutics
Phone: 216.368.0299
http://www.case.edu/med/nacenter/home.htm

Jeffery M. Coller, PhD, Director

The Center for RNA Science and Therapeutics is a free standing academic unit in the basic sciences within the School of Medicine at Case Western Reserve University. The RNA Center was established in the mid-nineties as a core entity in recognition of the strong cadre of research laboratories devoted to studying post-transcriptional mechanisms of gene expression focusing on various aspects of RNA Biology. The current mission of the RNA Center is to parlay the strengths of RNA Center scientists towards the development of unique therapeutic initiatives. The RNA Center is combining the usage of nanoparticle technology with RNA science to develop new classes of drugs, leading towards the amelioration of a variety of diseases. Current efforts are focused on metabolic disorders, cancer immunotherapies, immunity, and protein replacement. In addition, we are developing new technologies that promise to improve diagnostics, allowing for earlier detection of a variety of human diseases, especially cancer.

The RNA Center contains one of the largest concentrations of RNA scientists in the nation. The faculty of the RNA Center cover nearly every aspect of RNA research. Current research in the Center focuses on several problems ranging from extremely basic questions such as the mechanism of RNA catalysis and how proteins interact with RNA to the roles of RNA processing in disease. Specific research interests include splicing and its regulation, RNA editing, tRNA maturation, mechanisms of translation regulation, RNA degradation, RNA trafficking, RNA interference and regulation of gene expression by microRNAs and non-coding RNAs.

Collectively, the RNA Center provides a valuable resource for collaborative efforts within the University and its affiliated institutions: the Cleveland Clinic Foundation, MetroHealth Medical Center, the Cleveland VA Medical Center, and University Hospitals Cleveland Medical Center. In addition, the official journal of the RNA Society “RNA” was founded and continues to be housed in the RNA Center. The members of the RNA Center have an excellent funding record and the research performed is regularly published in highly visible journals such as Science, Nature, Molecular Cell, NSMB, Molecular Cell, etc.

Center for Science, Health and Society
Phone: 216.368.2059
http://casemed.case.edu/cshs/
Nathan A. Berger, MD, Director

Recognizing that the successful futures of Case Western Reserve University, the City of Cleveland, and Cuyahoga County are integrally related, the Center for Science, Health and Society (CShS) was created in 2002 to focus the efforts of the University and the community in a significant new collaboration to impact the areas of health and healthcare delivery systems through community outreach, education, and health policy. The Center, based in the School of Medicine, with university wide associations is engaging the many strengths of the University and the community to improve the health of the community.

The Center has engaged the community at the level of the individual and the neighborhood, in public and private schools, at civic and faith-based organizations, and at the level of governmental agencies and community leadership to identify community problems, perceptions, assets and resources; advise the community of faculty skills, assets and expertise; and, catalyze that community service based scholarship that benefits community interests and promotes mutual enhancement. The Center coordinates the Scientific Enrichment Opportunity outreach program that brings Cleveland high school students on to the medical school campus.
in the summer to work along with our distinguished faculty in their research labs, to introduce and stimulate the students and help prepare them to enter careers in the health care professions and biomedical workforce. The Center also coordinates the Mini Medical School Program presented every Spring and Fall to educate the community in the latest developments in healthcare, particularly those developed at CWRU. The overall goal of these programs is to educate and empower the community to become better consumers of healthcare and more informed and stronger advocates for healthcare policy and legislation in their own interests.

Center for the Study of Kidney Biology and Disease

Phone: 216.444.8415

John R. Sedor, MD, Director
Thomas H. Hostetter, MD, Co-director
Jeffrey Garvin, MD, PhD, Co-director
Jeffrey Schelling, MD, Co-director

Chronic Kidney Disease (CKD) is a growing public health problem in the United States. More than seventeen percent of US adults—more than 30 million Americans—have CKD. CKD generally progresses over time, and can cause cardiovascular disease, anemia, bone disease, fluid overload, and eventually end-stage kidney disease (ESKD). Patients with ESKD need renal replacement therapy, either from dialysis or a kidney transplant, to live. The risk of death for patients receiving dialysis is nearly eight times higher than the non-ESRD population, leading to a 20% annual probability of death. Kidney disease disproportionately affects minorities and vulnerable populations. Kidney disease treatment is expensive and uniquely tied to federal expenditures through the Medicare entitlement program. The cost of care for ~ 550,000 ESKD patients is nearly $34 billion annually, exceeding the total NIH budget. Treating all health conditions of CKD and ESRD patients consumes nearly 25% of the Medicare's budget.

The Center's mission is to accelerate discovery and its translation for treatment and cure of kidney diseases in an interdisciplinary environment within the rich, research environment of the CWRU School of Medicine. The faculty is an accomplished and highly interactive group of investigators, based in the adult or pediatric Divisions of Nephrology in CWRU-affiliated hospitals as well as other clinical and basic science departments. Research interests of the faculty include digital pathology image analysis, glomerular diseases, diabetic and other chronic kidney diseases, epithelial cell biology and ion transport, tubular physiology, genetic epidemiology, health services research, renal transplantation, health disparities research and clinical trials. Center faculty are members of the NIDDK-funded Kidney Precision Medicine Project. Research projects use cellular, molecular biological, computational, genetic, genomic and epidemiological methods to study in vitro and animal models and/or patients. Many projects by Center investigators use health data, culled from electronic health records, and biological samples from patients with kidney diseases in order to generate novel hypotheses, which can then tested with animal models and cell lines. Training opportunities are available for undergraduate, pre- and post-doctoral students.

The Center for Regenerative Medicine is a multi-institutional center composed of investigators from Case Western Reserve University, University Hospitals Case Medical Center, the Cleveland Clinic, Athersys, Inc., and The Ohio State University. Building on over 30 years of experience in adult stem cell research in northeast Ohio, the Center was created in 2003 with a $19.4 million award from the State of Ohio as a Wright Center of Innovation. An additional $8M award in 2006 from the State of Ohio's Biomedical Research and Commercialization Program (BRCP) was successfully completed and enabled 3 new clinical trials to enroll patients. In 2009, $5M was awarded by the Ohio Third Frontier (OTF) Research Commercialization Program (RCP) which further validated the Center's ability to achieve its mission to utilize human stem cell and tissue engineering technologies to treat human disease. In 2010, $1M was awarded to the NCRM by the OTF Biomedical Program (OTFBP) to advance the clinical treatment of spinal cord injury, and a $2.1M OTF Wright Program Project (WPP) award was made to create a consortium of quantitative analysis imaging systems for stem cells.

Clinical Research Scholars Program (CRSP) (http://casemed.case.edu/CRSP)

The Clinical Research Scholars Program (CRSP) is designed for individuals committed to a career in clinical investigation in an academic or related field.

CRSP offers a Master's Degree in Clinical Research through two pathways:

1. **CRSP Type A (Thesis)**
 - Curriculum was developed for those with an existing degree in medicine, dentistry, nursing, or an allied science such as pharmacy or biomedical engineering.
 - This pathway is to prepare a new generation of clinical investigators for leadership roles in academia, government, and industry.

2. **CRSP Type B (Capstone)**
 - Curriculum was created for individuals who may not be playing a principal investigator or clinical research study, but who:
 - desire strong preparation in clinical research methods and associated statistical approaches
 - envision themselves playing a critical role on the clinical research team as a research assistant, study coordinator, or data manager
 - This pathway is to provide the student with fundamental knowledge and/or experience in important tasks related to the clinical research endeavor.

A dual degree track has also been established for medical students interested in obtaining dual MD/MS degree. The dual MD/MS program:

- seeks individuals committed to a career in clinical investigation in an academic or related environment
- consists of a total of 30 credits: 21 credit hours of coursework, 9 credit hours of mentored research and a formal oral thesis defense
- both focus and flexibility in its curriculum -
 - Focus is provided through a core curriculum (15-16 credit hours) highlighting clinical research methods, the ethical conduct of research, and a seminar series that introduces the skills necessary for scholarly success.
• Flexibility is provided through elective coursework. Students typically have special interests in a particular area of clinical research, both clinically and methodologically. This program facilitates pursuit of different methodological interests guided by seasoned CWRU research faculty and addressed partly with choice of appropriate electives (5-6 credit hours).

Requirements for the dual MD/MS degree differ to reflect integration with the medical school curriculum. Most graduates of this program are currently working in academic medical settings, with smaller numbers located in research positions in the private sector or private practice.

CURRICULUM FOR THE TYPE A (THESIS)
MASTER’S DEGREE IN CLINICAL RESEARCH

30 credit hours are required (of which 15-16 are core coursework; 9 of thesis research; and 5-6 of elective coursework) for completion of this Master of Science in Clinical Research degree.

Core Courses and Thesis Requirement

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRSP 401</td>
<td>Introduction to Clinical Research Summer Series</td>
<td>3</td>
</tr>
<tr>
<td>CRSP 402</td>
<td>Study Design and Epidemiologic Methods</td>
<td>3</td>
</tr>
<tr>
<td>CRSP 412</td>
<td>Communication in Clinical Research - Grant Writing</td>
<td>1</td>
</tr>
<tr>
<td>CRSP 413</td>
<td>Communication in Clinical Research - Oral Presentation, Posters, and the Mass Media</td>
<td>1</td>
</tr>
<tr>
<td>CRSP 431</td>
<td>Statistical Methods I</td>
<td>3</td>
</tr>
<tr>
<td>CRSP 432</td>
<td>Statistical Methods II</td>
<td>3</td>
</tr>
<tr>
<td>CRSP 603</td>
<td>Research Ethics and Regulation</td>
<td>1 - 2</td>
</tr>
<tr>
<td>CRSP 651</td>
<td>Clinical Research Scholars Thesis</td>
<td>9</td>
</tr>
<tr>
<td>Total Units</td>
<td>24-25</td>
<td></td>
</tr>
</tbody>
</table>

CURRICULUM FOR THE TYPE B (CAPSTONE)
MASTER’S DEGREE IN CLINICAL RESEARCH

30 credit hours are required (of which 11-12 are core coursework; 3 Capstone; and 15-16 are elective coursework) for completion of this Master of Science in Clinical Research degree.

Core Courses and Capstone

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRSP 401</td>
<td>Introduction to Clinical Research Summer Series</td>
<td>1 - 3</td>
</tr>
<tr>
<td>CRSP 402</td>
<td>Study Design and Epidemiologic Methods</td>
<td>3</td>
</tr>
<tr>
<td>CRSP 413</td>
<td>Communication in Clinical Research - Oral Presentation, Posters, and the Mass Media</td>
<td>1</td>
</tr>
<tr>
<td>CRSP 431</td>
<td>Statistical Methods I</td>
<td>3</td>
</tr>
<tr>
<td>CRSP 603</td>
<td>Research Ethics and Regulation</td>
<td>1 - 2</td>
</tr>
<tr>
<td>Total Units</td>
<td>9-12</td>
<td></td>
</tr>
</tbody>
</table>

Each scholar is encouraged to develop his/her own area of concentration based on personal interests and needs. Typical areas of concentration include: Clinical Research Trials, Health Services Research and Outcomes, and Multidisciplinary/Translational Clinical Research. Please consult with CRSP faculty and your Research Mentor on which electives will best suit your needs.

The choices of electives include but are not limited to:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRSP 406</td>
<td>Introduction to R Programming</td>
<td>2</td>
</tr>
<tr>
<td>CRSP 410</td>
<td>Independent Study in Clinical Research</td>
<td>1 - 3</td>
</tr>
<tr>
<td>CRSP 440</td>
<td>Translational & Patient-Oriented Research Theory</td>
<td>3</td>
</tr>
<tr>
<td>CRSP 450</td>
<td>Seminar in Multidisciplinary Clinical & Translational Research</td>
<td>0</td>
</tr>
<tr>
<td>CRSP 500</td>
<td>Design and Analysis of Observational Studies</td>
<td>3</td>
</tr>
<tr>
<td>CRSP 501</td>
<td>Team Science - Working in Interdisciplinary Research Teams</td>
<td>1</td>
</tr>
<tr>
<td>CRSP 502</td>
<td>Leadership Skills for Clinical Research Teams</td>
<td>2</td>
</tr>
<tr>
<td>CRSP 503</td>
<td>Innovation and Entrepreneurship</td>
<td>1</td>
</tr>
<tr>
<td>CRSP 504</td>
<td>Managing Research Records - A System’s Approach</td>
<td>2 - 3</td>
</tr>
<tr>
<td>CRSP 505</td>
<td>Investigating Social Determinants of Health</td>
<td>2 - 3</td>
</tr>
<tr>
<td>CRSP 510</td>
<td>Health Disparities</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 411</td>
<td>Introduction to Health Behavior</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 450</td>
<td>Clinical Trials and Intervention Studies</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 467</td>
<td>Comparative and Cost Effectiveness Research</td>
<td>1</td>
</tr>
</tbody>
</table>

MS Clinical Research Type A (Thesis), Plan of Study

<table>
<thead>
<tr>
<th>Prep Year</th>
<th>Units</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRSP Program starts in the Summer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Term of First Year

Year Total:

<table>
<thead>
<tr>
<th>First Year</th>
<th>Fall</th>
<th>Units</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Design and Epidemiologic Methods (CRSP 402)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Ethics and Regulation (CRSP 603)</td>
<td>1 - 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistical Methods I (CRSP 431)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication in Clinical Research - Oral Presentation, Posters, and the Mass Media (CRSP 413)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design and Analysis of Observational Studies (CRSP 500)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication in Clinical Research - Grant Writing (CRSP 412)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Clinical Research Summer Series (CRSP 401)</td>
<td>8-9</td>
<td>7</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Fall</th>
<th>Units</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Clinical Research Scholars Thesis (CRSP 651) 3
Elective 3
Clinical Research Scholars Thesis (CRSP 651) 3
Clinical Research Scholars Thesis (CRSP 651) 3
Year Total: 6 3 3

Total Units in Sequence: 30-31

MS Clinical Research Type B (Capstone Experience), Plan of Study

<table>
<thead>
<tr>
<th>Prep Year</th>
<th>Units Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRSP Program starts in the Summer Term of First Year</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Year</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Spring</td>
</tr>
<tr>
<td>Study Design and Epidemiologic Methods (CRSP 402)</td>
<td>3</td>
</tr>
<tr>
<td>Research Ethics and Regulation (CRSP 603)</td>
<td>1 - 2</td>
</tr>
<tr>
<td>Statistical Methods I (CRSP 431)</td>
<td>3</td>
</tr>
<tr>
<td>Communication in Clinical Research - Oral Presentation, Posters, and the Mass Media (CRSP 413)</td>
<td>1</td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>9-12</td>
</tr>
<tr>
<td>Introduction to Clinical Research Summer Series (CRSP 401)</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to R Programming (CRSP 406)</td>
<td>2</td>
</tr>
<tr>
<td>Year Total:</td>
<td>11-12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>2-6</td>
</tr>
<tr>
<td>CRSP 560 Capstone Experience</td>
<td>3</td>
</tr>
<tr>
<td>Year Total:</td>
<td>5-9</td>
</tr>
</tbody>
</table>

Total Units in Sequence: 30-38

MD/MS Biomedical Investigation-Clinical Research Track

For information about Program Admission and MD requirements, please see MD Dual Degrees section (p. 26). The Clinical Research track includes formal instruction in methods common to all fields of clinical investigation along with mentored research. In addition to medical school credits, students must complete the track-specific courses and electives listed below.

All students in this track must complete the CRSP Core Curriculum or equivalents:

- IBIS 434 Integrated Biological Sciences in Medicine (**or IBIS 401 and 402) 6
- CMED 401 Intro to Clinical Research and Scientific Writing 3
- or CRSP 401 Introduction to Clinical Research Summer Series
- CMED 402 Statistical Science for Medical Research 3
- CMED 403 Introduction to Clinical Epidemiology 3
- or CRSP 402 Study Design and Epidemiologic Methods
- CMED 404 Clinical Research Seminars (*) 1
- or CRSP 412 Communication in Clinical Research - Grant Writing
- CMED 405 Clinical Research Seminars (*) 1
- or CRSP 413 Communication in Clinical Research - Oral Presentation, Posters, and the Mass Media
- CMED 450 Clinical Trials 3
- CMED 458 Statistical Modeling with Applications in Clinical Research 3
- CMED 500 Scientific Integrity in Biomedical Research 0-1
- or IBMS 500 On Being a Professional Scientist: The Responsible Conduct of Research
- CMED 601 Clinical Research Project 18
- IBIS 600 Exam in Biomedical Investigation 0

Program Advisors: Dr. Chris Moravec (moravec@ccf.org) (College students) and Dr. William Merrick (wcm2@case.edu) (University students).

Certificate in Global Health

Ronald Blanton, MD, Director
216.368.4814

Daniel Tisch, PhD, Co-Director
216.368.0875

The Certificate is the centerpiece of the Framework for Global Health Curricula comprised of faculty from across the Case Western Reserve University campus, whose objective is to promote education in global health issues. Nearly every department at CWRU offers multiple educational activities in global health. Rather than attempt to own all of these activities, the group at CWRU (representing Applied Social Sciences, Anthropology, Bioethics, Biology, Engineering, Mathematics, Medicine, Nursing, Population and Quantitative Health Sciences) elected to develop a structure within which each department could develop independently while taking advantage of what the others had to offer. The organizing structure for this became the certificate program rather than a separate degree. This approach recognizes that student's need to graduate within a recognized discipline as well as recognition of a student's focus, time and effort in training.

Each student in the Certificate program will be grounded in global health by a core course (INTH 301 Fundamentals of Global Health/INTH 401 Fundamentals of Global Health) that will allow them to understand concepts and vocabulary across disciplines and that will facilitate meaningful communication with others based in a different discipline. In
addition to the Certificate, the Framework for Global Health Curricula had identified and is annotating all global health related courses at CWRU. It has supported the recent revival of Medical Spanish and new courses and electives in Global Health.

Requirements for Certificate in Global Health:

Anthropology

Undergraduate:
- INTH 301 Fundamentals of Global Health 3
- ANTH 215 Health, Culture, and Disease: An Introduction to Medical Anthropology 3
- ANTH 359 Introduction to Global Health 3

And one elective selected from list of approved electives in the Anthropology Department

Graduate:
- INTH 401 Fundamentals of Global Health 3
- ANTH 459 Introduction to Global Health 3
- ANTH 511 Seminar in Anthropology and Global Health: Topics 3

And one elective selected from list of approved electives in the Anthropology Department

Contact: Janet McGrath (janet.mcgrath@case.edu), 216.368.2287

Bioethics

- INTH 401 Fundamentals of Global Health 3
- BETH 414 International Health Research Ethics 3

And complete one elective selected from list of approved electives in the Bioethics Department

Contact: Insoo Hyun (insoo.hyun@case.edu), 216.368-8658

Population and Quantitative Health Sciences

- INTH 401 Fundamentals of Global Health 3
- PQHS 484 Global Health Epidemiology 1-3

And complete an epidemiology research project with global perspective (may be substituted with other course work).

Contact: Daniel Tisch (daniel.tisch@case.edu), 216.368.0875

Math/Applied Math specialization:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTH 301</td>
<td>Fundamentals of Global Health</td>
<td>3</td>
</tr>
<tr>
<td>or INTH 401</td>
<td>Fundamentals of Global Health</td>
<td></td>
</tr>
<tr>
<td>PQHS 431</td>
<td>Statistical Methods I</td>
<td>3</td>
</tr>
<tr>
<td>or PQHS 490</td>
<td>Epidemiology: Introduction to Theory and Methods</td>
<td></td>
</tr>
<tr>
<td>MATH 449</td>
<td>Dynamical Models for Biology and Medicine</td>
<td>3</td>
</tr>
<tr>
<td>or EECS 397/600</td>
<td>Special Topics</td>
<td></td>
</tr>
</tbody>
</table>

Complete a heal related modeling project with global perspective (may be substituted with other course work).

Contact: David Gurarie (david.gurarie@case.edu), 216.368.2857

Medicine

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTH 401</td>
<td>Fundamentals of Global Health</td>
<td>3</td>
</tr>
</tbody>
</table>

Compete global health related project (may be student’s thesis or may be substituted with other course work)

Contact: Ronald Blanton (ronald.blanton@case.edu), 216.368.4814

Nursing

Undergraduate:
- INTH 301 Fundamentals of Global Health 3
- NURS 372 Health in the Global Community 3
- NURS 394 Global Health Seminar 3

Complete a global health related project (may be substituted with other course work)

Graduate:
- INTH 401 Fundamentals of Global Health 3
- NURS 394 Global Health Seminar 3

Complete a global health related project (may be substituted with course work)

Contact: Elizabeth Madigan (elizabeth.madigan@case.edu), 216.368.8532

Biology

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTH 301</td>
<td>Fundamentals of Global Health</td>
<td>3</td>
</tr>
<tr>
<td>or INTH 401</td>
<td>Fundamentals of Global Health</td>
<td></td>
</tr>
</tbody>
</table>

Additional Biology electives from approved list

Contact: Christopher Cullis (christopher.cullis@case.edu), 216.368.5362

Engineering

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTH 301</td>
<td>Fundamentals of Global Health</td>
<td>3</td>
</tr>
<tr>
<td>or INTH 401</td>
<td>Fundamentals of Global Health</td>
<td></td>
</tr>
</tbody>
</table>

Approved electives Engineering related courses

Contact: N. Sree Sreenath (n.sreenath@case.edu), 216.368.6219

Mandel School of Applied Social Sciences

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTH 401</td>
<td>Fundamentals of Global Health</td>
<td>3</td>
</tr>
</tbody>
</table>

Additional MSASS elective from approved list

Contact: David B. M (dbm5@case.edu)iller (dbm5@case.edu), 216.368.8755
Certificate in Cancer Biology
216.844.5375
Stanton Gerson, MD, Director
Damian J. Junk (djj40@case.edu), PhD, Assistant Director Cancer Training and Education, Case Comprehensive Cancer Center
http://www.case.edu/cancer/

The Clinical Oncology Research Career Development Program (CORP) provides interdisciplinary training in clinical and translational oncology research for clinical oncology junior faculty physicians who are interested in pursuing academic research careers as physician scientists. This training addresses the need for clinician investigators to translate fundamental cancer research discoveries into medical care of cancer patients. Eligible candidates are physicians (MD, DO or MD/PhD) with a clinical training background in one of a number of oncology disciplines, including medical, surgical, pediatric, dermatological, gynecological and radiation oncology. Scholars select one of three areas of concentration:

- Mechanism Based Therapeutics and Clinical Trials
- Stem Cell Biology and Hematopoietic Malignancy Clinical Trials
- Prevention, Aging and Cancer Genetics and Clinical Trials

The Scholars’ individual training plan consists of a 2-year certificate program which includes a didactic curriculum designed to provide basic background and highly individualized advanced training in both clinical and methodological components of clinical and translational cancer research.

Each Scholar is co-mentored by both a basic or behavioral scientist and a clinical investigator. A mentoring committee comprised of faculty in the Scholar’s focus of oncology research provides additional guidance and support. During the period of mentored laboratory training, the Scholars develop original hypothesis-based experiments related to disease mechanisms at a molecular or cellular level. As the Scholars build on their laboratory conclusions to create and implement clinical trials, they are mentored by clinical investigators. Clinical trials are aimed at developing new methods for diagnosis and testing promising ideas for novel therapeutic interventions. These components come together with the Scholar’s presentations at a national conference, publications in peer review journals and application for independent funding as a physician scientist.

This two-year certificate program is administered through the Case Comprehensive Cancer Center. The overall goal of the K12 CORP certificate program is to foster interdisciplinary training in clinical and translational oncology therapeutic research for physicians. Upon completion of this 15-19 hour two year training, scholars will earn the K12 CORP Certificate.

The formal didactic program includes a course in responsible conduct IBMS 500 On Being a Professional Scientist: The Responsible Conduct of Research (0) or CRSP 603 Research Ethics and Regulation (2 hr); CNCR 501 Translational Cancer Research A (Translational Cancer Research Course (1 hr/semester); and one elective (1-3). Additional required activities include Clinical Protocol Tutorials, Intensive Mentored Research Project, Ongoing seminars, Meetings and Presentations; and applications for independent funding.

Formal Didactic Curriculum Coursework *

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBMS 500</td>
<td>On Being a Professional Scientist: The Responsible Conduct of Research or CRSP 603 Research Ethics and Regulation</td>
<td>1-2</td>
</tr>
<tr>
<td>CNCR 501</td>
<td>Translational Cancer Research A (All four modules required, one each semester of the program (501-1, 501-2, 501-3, 501-4))</td>
<td>1</td>
</tr>
</tbody>
</table>

*Additionally, choose one course from following core courses for credit towards certificate:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRSP 401</td>
<td>Introduction to Clinical Research Summer Series</td>
<td>1 - 3</td>
</tr>
<tr>
<td>CRSP 402</td>
<td>Study Design and Epidemiologic Methods</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 460</td>
<td>Introduction to Microepidemiology Methods</td>
<td>3</td>
</tr>
<tr>
<td>CRSP 406</td>
<td>Introduction to R Programming</td>
<td>2</td>
</tr>
<tr>
<td>CRSP 413</td>
<td>Communication in Clinical Research - Oral Presentation, Posters, and the Mass Media</td>
<td>1</td>
</tr>
<tr>
<td>CRSP 412</td>
<td>Communication in Clinical Research - Grant Writing</td>
<td>1</td>
</tr>
<tr>
<td>CRSP 500</td>
<td>Design and Analysis of Observational Studies</td>
<td>3</td>
</tr>
<tr>
<td>CRSP 501</td>
<td>Team Science - Working in Interdisciplinary Research Teams</td>
<td>1</td>
</tr>
</tbody>
</table>

Graduate Certificate in Clinical Research
James Spilsbury (james.spilsbury@case.edu), PhD, Director
Angela Bowling (angela.bowling@case.edu), Education Administrator
Center for Clinical Investigation
http://case.edu/medicine/crsp/programs/certificate-program/216.368.2601

The Clinical Research Certificate program is a four course, 11 credit hour program. Students who successfully complete the required coursework will receive a Certificate in Clinical Research. Coursework includes: Introduction to Clinical and Translational Research; Study Design and Epidemiologic Methods; Advanced Statistics: Linear Models; and a course on Research Ethics and Regulation.

Admissions will be administered by the Clinical Research Scholars program in the Populations and Quantitative Health Science Department. Individuals who want to participate in the program will complete an online application form that includes a brief personal statement describing the reason(s) for seeking clinical research training and a recent CV or resume. Per CWRU School of Graduate Studies requirements, individuals who are not already graduate-degree-seeking students at CWRU must submit to the School of Graduate Studies a completed non-degree application form. Individuals who are not faculty, staff, or employees of CWRU must also submit a transcript or copy of their diploma, documenting completion of a baccalaureate degree. Once accepted into the Certificate program, participants will register for the courses through the Student Information System. The program will have rolling admissions, and students will be able to start taking courses in the summer or fall semester. The coursework for the Certificate will be listed on the official CWRU transcript. However, the Certificate in Clinical Research will be issued by the Clinical Research Scholars Program, not the University, and will not appear on the official CWRU transcript.
Performance Standards: A grade of B or higher in each graded course will be required for successful completion of the Certificate program. Enrollees will be responsible for keeping track of the courses they take.

Key features of this program include:

- A highly flexible and individually tailored program of study providing each student the preparation that they need to be competitive applicants

Required Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRSP 401</td>
<td>Introduction to Clinical Research Summer Series</td>
<td>3</td>
</tr>
<tr>
<td>CRSP 402</td>
<td>Study Design and Epidemiologic Methods</td>
<td>3</td>
</tr>
<tr>
<td>NURS 630 or CRSP 431</td>
<td>Advanced Statistics: Linear Models Statistical Methods I</td>
<td>3</td>
</tr>
<tr>
<td>CRSP 603</td>
<td>Research Ethics and Regulation</td>
<td>2</td>
</tr>
</tbody>
</table>

Exit Standards: Students who complete all required coursework will submit a checklist to the Clinical Research Scholars Program (http://case.edu/medicine/crsp/programs/certificate-program) notifying the Education Administrator/Manager (axb710@case.edu) that all coursework has been completed. This administrator will verify with the registrar’s office that all requirements have been met and will then issue a certificate to the enrollee, documenting completion of the program.

Post-baccalaureate Readiness Instruction for BioMedical Education (PRIME) Certificate Program

216.368.5296

http://casemed.case.edu/gradprog/PRIME/

Anthony Saar, MEd

prime@case.edu

PRIME is a post-baccalaureate certificate (non-degree) program for students who need additional preparation to have a competitive application for MD or DO programs.

This program is designed for two types of students:

- Career changers - students who have not yet completed all their pre-med requirements.

- Academic enhancers - students who need to improve their undergraduate GPA and their foundation in key pre-med content.

Required Program Coursework:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGRD 310</td>
<td>Introduction to Clinical Inquiry (IQ)</td>
<td>3</td>
</tr>
<tr>
<td>MGRD 311</td>
<td>Introduction to Clinical Inquiry (IQ) II</td>
<td>3</td>
</tr>
</tbody>
</table>

Required Medical School Coursework:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 307</td>
<td>Introduction to Biochemistry: From Molecules To Medical Science</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 214</td>
<td>Genes, Evolution and Ecology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 214L</td>
<td>Genes, Evolution and Ecology Lab</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 215</td>
<td>Cells and Proteins</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 215L</td>
<td>Cells and Proteins Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 216</td>
<td>Development and Physiology</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 105</td>
<td>Principles of Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 106</td>
<td>Principles of Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 113</td>
<td>Principles of Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 223</td>
<td>Introductory Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 224</td>
<td>Introductory Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 233</td>
<td>Introductory Organic Chemistry Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 234</td>
<td>Introductory Organic Chemistry Laboratory II</td>
<td>2</td>
</tr>
<tr>
<td>MATH 125</td>
<td>Math and Calculus Applications for Life, Managerial, and Social Sci</td>
<td>4</td>
</tr>
<tr>
<td>MATH 126</td>
<td>Math and Calculus Applications for Life, Managerial, and Social Sci II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 115</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 116</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>PSCL 101</td>
<td>General Psychology I</td>
<td>3</td>
</tr>
<tr>
<td>SOCI 101</td>
<td>Introduction to Sociology</td>
<td>3</td>
</tr>
</tbody>
</table>

Students may have completed some of these required courses prior to the start of this program and thus the students would be eligible for exemption from taking these courses for the certificate. Depending on course grades, students, with approval of the program director, may waive the required courses. Students may also elect to retake these courses for reference and/or to improve their undergraduate GPA.

Elective Coursework

In consultation with the program director, students will develop the best program of study for their needs. Typically, if a student has already
taken the medical school prerequisites, but needs to improve their overall undergraduate GPA, taking upper level undergraduate courses would show more rigor compared to retaking lower level courses. With successful grades, a student's undergraduate GPA will also improve.

Students may take additional elective coursework (http://casemed.case.edu/gradprog/PRIME/electives.php) across the university with program director and instructor approval. Although science and math classes will be the primary focus for most students, some students may also seek to take graduate coursework to demonstrate academic rigor. Further, some students may also elect to take other courses based on interests or a desire to improve technical skills (such as writing or language skills).

Systems Biology and Bioinformatics MS and PhD Programs

BRB 9th Floor, School of Medicine
http://bioinformatics.case.edu/
Phone: 216.368.6971
David T. Lodowski, PhD, Co-Director
Mark Chance, PhD, Co-Director
Program email: sybb@case.edu (sybb@case.edu)

Do you want to convert big data into understandable models that just might change the world? With a graduate degree in systems biology and bioinformatics, you can combine your love of math, statistics, computers and biology to develop computational models with which to provide new insight and understanding of big data, leading to big discoveries in both laboratory or clinical settings.

Data science is the convergence of data engineering, math, statistics, advanced computing, the scientific method and subject-matter expertise. It involves the collection, management and transformation of "big data" into actionable information that can answer some of the world's most pressing problems. Yet there is a distinct need for data science experts who can efficiently interpret data into information that is useful for strategic decision-making. It is the goal of the Systems Biology and Bioinformatics program to produce the scientists that are needed to assist in extracting meaning from the burgeoning biological 'omics field.

The SYBB program offers a multidisciplinary training program personally customized to the student leading to an MS or PhD. The program draws training faculty (currently 38 trainers) from more than 12 departments and 6 schools across the CWRU campus, ensuring students in the program acquire the core competencies needed to succeed in the bioinformatic analysis of biological big data.

The Systems Biology and Bioinformatics PhD program at CWRU offers trainees the opportunity to combine both experimental and computational or mathematical disciplines to understand complex biological systems. The SYBB program will train scientists who are able to generate and analyze experimental data for biomedical research and to develop physical or computational models of the molecular components that drive the behavior of a biological system. The goal of the program is to produce scientists who are familiar with multiple disciplines and equipped to conduct interdisciplinary research.

The Case Western Reserve University (CWRU) graduate program in **Systems Biology and Bioinformatics (SYBB)** has two tracks:

Translational Bioinformatics - The SYBB track in Translational Bioinformatics poises students to work at the interface of applied ‘omics research and clinical medicine. From integrating genomic and functional genomic data into electronic medical records, to developing meta-analysis tools for communicating genomic risk to patients to utilizing this data in personalized medicine. Students trained in the Translational Bioinformatics track work to integrate bioinformatics tools and technologies into clinical workflows. Graduates of this training track will find ample opportunities within industry and, as genomics enters the clinical arena, within hospitals, as well.

Molecular and Computational Biology - The SYBB track in Molecular and Computational Biology embraces the pursuit of basic science research, employing the application and development of computational approaches to address difficult questions derived from today's "Big data" derived from ‘omics approaches. This track equips students in the acquisition of experimental data utilizing approaches including proteomics, metabolomics, genomics and structural biology and extends this work with interpretation provided by computational analysis. Graduates of this training track will find ample opportunities within the pharmaceutical industry, contract research organizations as well as more traditional academic career paths.

Students can choose either track for both the M.S. and Ph.D. programs.

The SYBB participating departments and centers include:

- Biology
- Biomedical Engineering
- Cleveland Clinic Lerner College of Medicine
- Center for Proteomics and Bioinformatics
- Electrical Engineering and Computer Science
- Epidemiology and Biostatistics
- Genetics and Genome Sciences
- Mathematics
- Nutrition
- Physiology and Biophysics
- Pharmacology

Program Competencies

The specific academic requirements of the SYBB Program are intended to provide students with a required core curriculum in Systems Biology and a set of electives designed both to assure minimum competencies in **Fundamental Core Competencies** and equip them for their particular thesis research discipline. Each trainee will be guided in their customized course of study by a mentoring committee to ensure the completion of training in the program competencies as well as maintenance of a focus on molecular systems theory. These competencies include:

- Evaluation of the scientific discovery process and of the role of bioinformatics in it in detail, including data generation steps and understanding the biology.
- Application of computational and statistical methods appropriate to solve a given scientific problem
- Construction of software systems of varying complexity based on design and development principles.
- Effective teamwork to accomplish a common scientific goal.
- Building knowledge in local and global impact of bioinformatics and systems biology on individuals, organizations, and society.
- Effective communication of bioinformatics and systems biology problems to a range of audiences, including, but not limited to, other bioinformatics professionals.
Masters Degree Plan A Summary

The minimum requirements for the master’s degree under Plan A are 30 semester hours of course work plus a thesis equivalent to at least 9 semester hours of registration for 30 hours total. These must include SYBB 501 Biomedical Informatics and Systems Biology Journal Club, and a minimum of 9 hours of SYBB 651 Thesis MS. Additional required courses for the Translational Bioinformatics and Molecular and Computational Biology tracks are SYBB 459 Bioinformatics for Systems Biology and SYBB 555 Current Proteomics. The curriculum plan must be approved by the program steering committee and include appropriate coverage of the core competencies in genes and proteins, bioinformatics, and quantitative modeling and analysis. At least 18 semester hours of course work, in addition to thesis hours, must be at the 400-level or higher.

Each student must prepare an individual thesis that must conform to regulations concerning format, quality, and time of submission as established by the dean of graduate studies as well as conforming to the SYBB program guidelines. For completion of master's degrees under Plan A, an oral examination (defense) of the master’s thesis is required, where the examination is conducted by a committee of at least three members of the university faculty.

Masters Degree Plan B Summary

The minimum requirements for the master’s degree under Plan B are 21 semester hours of course work (with at least 18 semester hours of course work at the 400 level or higher) and a written comprehensive examination or major project with report to be administered and evaluated by the program steering committee. The coursework must include SYBB 501 Biomedical Informatics and Systems Biology Journal Club. Additional required courses for the Translational Bioinformatics and Molecular and Computational Biology tracks are SYBB 459 Bioinformatics for Systems Biology and SYBB 555 Current Proteomics. The curriculum plan must be approved by the program steering committee and include appropriate coverage of the core competencies in genes and proteins, bioinformatics, and quantitative modeling and analysis.

Sample Plan of Study for MS Degree in Molecular and Computational Biology

Plan of Study includes required courses as well as electives.

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survey of Bioinformatics: Technologies in Bioinformatics (SYBB 411A)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey of Bioinformatics: Data Integration in Bioinformatics (SYBB 411B)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey of Bioinformatics: Translational Bioinformatics (SYBB 411C)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomedical Informatics and Systems Biology Journal Club (SYBB 501)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistical Methods I (PQHS 431)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topical Elective from Elective Course List</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey of Bioinformatics: Programming for Bioinformatics (SYBB 412)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomedical Informatics and Systems Biology Journal Club (SYBB 501)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Proteomics and Bioinformatics (SYBB 555)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional 3 Credit Course TBD</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Year Total: 9

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Learning (EECS 440)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein Biophysics (BIOC 475)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomedical Informatics and Systems Biology Journal Club (SYBB 501)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis M.S. (SYBB 651)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomedical Informatics and Systems Biology Journal Club (SYBB 501)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis M.S. (SYBB 651)</td>
<td>3 or 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Year Total: 3-6

Total Units in Sequence: 30-33

PhD Program Summary

The Systems Biology and Bioinformatics program differs from current CWRU programs in the comprehensive requirement for an understanding of biological systems, bioinformatics, and quantitative analysis & modeling. The program includes a minimal set of required courses including (SYBB 501 Biomedical Informatics and Systems Biology Journal Club) and a course in the Responsible Conduct of research (IBMS 500 On Being a Professional Scientist: The Responsible Conduct of Research). Additional required courses for the Translational Bioinformatics and Molecular and Computational Biology tracks are SYBB 459 Bioinformatics for Systems Biology and SYBB 555 Current Proteomics. At least six additional courses will be required based upon individualized student interests. Other requirements include a qualifier exam, a PhD Dissertation, and oral defense. The total credits required for the PhD is at least 54 credits: 24 graded credits, 12 pre-dissertation research credits, and at least 18 dissertation research credits. Admissions to this program may be obtained through the integrated Biomedical Sciences Training Program, by direct admission to the department in rare cases or via the Medical Scientist Training Program.

Sample Plan of Study for PhD Degree

Please also see Graduate Studies Academic Requirements for Doctoral Degrees (http://bulletin.case.edu/schoolofgraduatestudies/academicrequirements)

Plan of study includes required courses as well as electives. Visit http://bioinformatics.case.edu/ for information regarding Plan of Study for all SYBB Tracks.

Plan of Study Grid for Translational Bioinformatics Track

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomedical Informatics and Systems Biology Journal Club (SYBB 501)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey of Bioinformatics: Technologies in Bioinformatics (SYBB 411A)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey of Bioinformatics: Data Integration in Bioinformatics (SYBB 411B)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey of Bioinformatics: Translational Bioinformatics (SYBB 411C)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course</td>
<td>Units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Biology I (CBIO 453)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Biology I (CBIO 455)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systems Biology and Bioinformatics Research (SYBB 601)</td>
<td>1-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey of Bioinformatics: Programming for Bioinformatics (SYBB 412)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Proteomics and Bioinformatics (SYBB 555)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bioinformatics for Systems Biology (SYBB 459)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural Biology (BIOL 434)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systems Biology and Bioinformatics Research (SYBB 601/651)</td>
<td>1-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomedical Informatics and Systems Biology Journal Club (SYBB 501)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>10-18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14-22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contemporary Approaches to Drug Discovery (SYBB 528)</td>
<td>3</td>
</tr>
<tr>
<td>Fundamentals of Clinical Information Systems (SYBB 421)</td>
<td>3</td>
</tr>
<tr>
<td>Statistical Methods I (PQHS 431)</td>
<td>3</td>
</tr>
<tr>
<td>Biomedical Informatics and Systems Biology Journal Club (SYBB 501)</td>
<td>0</td>
</tr>
<tr>
<td>BioDesign (SYBB 472)</td>
<td>3</td>
</tr>
<tr>
<td>Biomedical Informatics and Systems Biology Journal Club (SYBB 501)</td>
<td>0</td>
</tr>
<tr>
<td>Systems Biology and Bioinformatics Research (SYBB 601)</td>
<td>3</td>
</tr>
<tr>
<td>Statistical Methods II (PQHS 432)</td>
<td>3</td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation Ph.D. (SYBB 701)</td>
<td>1-9</td>
</tr>
<tr>
<td>Year Total:</td>
<td>1-9</td>
</tr>
<tr>
<td></td>
<td>1-9</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation Ph.D. (SYBB 701)</td>
<td>1-9</td>
</tr>
<tr>
<td>Year Total:</td>
<td>1-9</td>
</tr>
<tr>
<td></td>
<td>1-9</td>
</tr>
</tbody>
</table>

Fifth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation Ph.D. (SYBB 701)</td>
<td>1-9</td>
</tr>
<tr>
<td>Year Total:</td>
<td>1-9</td>
</tr>
<tr>
<td></td>
<td>1-9</td>
</tr>
</tbody>
</table>

Footnotes

* MSTP would take MSTP 400 for research rotations

Required Core Courses for the Molecular and Computational Biology and Translational Bioinformatics Tracks of the MS and PhD programs

Course List

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYBB 459</td>
<td>Bioinformatics for Systems Biology</td>
</tr>
<tr>
<td>SYBB 555</td>
<td>Current Proteomics and Bioinformatics</td>
</tr>
<tr>
<td>SYBB 501</td>
<td>Biomedical Informatics and Systems Biology Journal Club</td>
</tr>
<tr>
<td>SYBB 601</td>
<td>Systems Biology and Bioinformatics Research</td>
</tr>
<tr>
<td>SYBB 651</td>
<td>Thesis M.S. (For MS Students only)</td>
</tr>
<tr>
<td>SYBB 701</td>
<td>Dissertation Ph.D. (For PhD students only)</td>
</tr>
</tbody>
</table>

Elective Courses for MS and PhD programs

Genes and Proteins Courses

Course List

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHOL/ CHEM/ PHRM/</td>
<td>Protein Biophysics</td>
</tr>
<tr>
<td>BIOC/ NEUR 475</td>
<td></td>
</tr>
<tr>
<td>PHOL 456</td>
<td>Conversations on Protein Structure and Function</td>
</tr>
<tr>
<td>PHOL 480</td>
<td>Physiology of Organ Systems</td>
</tr>
<tr>
<td>CBIO 453</td>
<td>Cell Biology I</td>
</tr>
<tr>
<td>CBIO 455</td>
<td>Molecular Biology I</td>
</tr>
<tr>
<td>BIOC 452</td>
<td>Nutritional Biochemistry and Metabolism</td>
</tr>
<tr>
<td>BIOC 519</td>
<td>Molecular Biology of RNA</td>
</tr>
<tr>
<td>BIOC 412</td>
<td>Proteins and Enzymes</td>
</tr>
<tr>
<td>BIOC 420</td>
<td>Current Topics in Cancer</td>
</tr>
<tr>
<td>BIOC 454</td>
<td>Biochemistry and Biology of RNA</td>
</tr>
<tr>
<td>SYBB 528</td>
<td>Contemporary Approaches to Drug Discovery</td>
</tr>
<tr>
<td>BETH 412</td>
<td>Ethical Issues in Genetics/ Genomics</td>
</tr>
</tbody>
</table>

Bioinformatics and Computational Biology Courses

Course List

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC/ EECS 419</td>
<td>Applied Probability and Stochastic Processes for Biology</td>
</tr>
<tr>
<td>PQHS 451</td>
<td>A Data-Driven Introduction to Genomics and Human Health</td>
</tr>
<tr>
<td>EECS 458</td>
<td>Introduction to Bioinformatics</td>
</tr>
<tr>
<td>NEUR 478/ BIOL 378/</td>
<td>Computational Neuroscience</td>
</tr>
<tr>
<td>COGS/ MATH 378/</td>
<td></td>
</tr>
<tr>
<td>BIOL 478/ EBME 478</td>
<td></td>
</tr>
<tr>
<td>SYBB 411A</td>
<td>Survey of Bioinformatics: Technologies in Bioinformatics</td>
</tr>
<tr>
<td>SYBB 411B</td>
<td>Survey of Bioinformatics: Data Integration in Bioinformatics</td>
</tr>
</tbody>
</table>
semesters to reach the requisite number of classes needed for the MS. If a student were to take a single class per semester, it would take 11 semesters. However, the availability of summer sessions will result in it taking 6 semesters to get the MS; less if the student takes a class in the summer. Pursuing the MS in 5 semesters and 2 summer sessions is possible. Not taking a class during the summer breaks would result in it taking 7 semesters to get the MS. A part-time student’s tuition benefits are 6 hours/year (6 per semester and 3 per summer session) with which to pursue a degree. A CWRU employee (or spouse) has a total of 15 credit hours/year (6 per semester and 3 per summer session) with which to pursue a degree. Interests and thesis project. This flexibility enables students that are interested in pursuing the MS on a part-time basis to maximize employee tuition benefits. A CWRU employee (or spouse) has a total of 15 credit hours/year (6 per semester and 3 per summer session) with which to pursue a degree. Taking only this number will net a part-time student a part-time MS program.

The program in systems biology and bioinformatics offers a flexible curriculum with a minimal number of required classes (SYBB Journal club (SYBB 501), Bioinformatics for Systems Biology (SYBB 459) and Current Proteomics (SYBB 555) are the only required classes); the majority of classes taken toward the MS are tailored to the student’s research interests and thesis project. This flexibility enables students that are interested in pursuing the MS on a part-time basis to maximize employee tuition benefits. A CWRU employee (or spouse) has a total of 15 credit hours/year (6 per semester and 3 per summer session) with which to pursue a degree. Taking only this number will net a part-time student a part-time MS program.

Quantitative Analysis and Modeling

Course List

- **MPHP 405** Statistical Methods in Public Health
- **PQHS 431** Statistical Methods I
- **PQHS 432** Statistical Methods II
- **EECS 435** Data Mining
- **PQHS 515** Secondary Analysis of Large Health Care Data Bases
- **PQHS 480** Introduction to Mathematical Statistics
- **EECS 440** Machine Learning
- **MATH 441** Mathematical Modeling
- **EBME 300/ MATH 449** Quantitative Introduction to Biology
- **MIDS 301** Introduction to Information: A Systems and Design Approach
- **PQHS 457** Current Issues in Genetic Epidemiology: Design and Analysis of Sequencing Studies
- **PQHS 451** A Data-Driven Introduction to Genomics and Human Health
- **PQHS 452** Statistical Methods for Genetic Epidemiology
- **PQHS 453** Categorical Data Analysis
- **PQHS 459** Longitudinal Data Analysis

Part-time SYBB MS program

The program in systems biology and bioinformatics offers a flexible curriculum with a minimal number of required classes (SYBB Journal club (SYBB 501), Bioinformatics for Systems Biology (SYBB 459) and Current Proteomics (SYBB 555) are the only required classes); the majority of classes taken toward the MS are tailored to the student’s research interests and thesis project. This flexibility enables students that are interested in pursuing the MS on a part-time basis to maximize employee tuition benefits. A CWRU employee (or spouse) has a total of 15 credit hours/year (6 per semester and 3 per summer session) with which to pursue a degree. Taking only this number will net a part-time student a part-time MS program. If a student were to take a single class per semester, it would take 11 semesters to reach the requisite number of classes needed for the MS.

CNCR Courses

CNCR 460. Introduction to Microarrays. 3 Units.

Microarray technology is an exciting new technique that is used to analyze gene expression in a wide variety of organisms. The goal of this course is to give participants a hands-on introduction to this technology. The course is intended for individuals who are preparing to use this technique, including students, fellows, and other investigators. This is a hands-on computer-based course, which will enable participants to conduct meaningful analyses of microarray data. Participants will gain an understanding of the principles underlying microarray technologies, including: theory of sample preparation, sample processing on microarrays, familiarity with the use of Affymetrix Microarray Suite software and generation of data sets. Transferring data among software packages to manipulate data will also be discussed. Importation of data into other software (GeneSpring and DecisionSite) will enable participants to mine the data for higher-order patterns. Participants will learn about the rationale behind the choice of normalization and data filtering strategies, distance metrics, use of appropriate clustering choices such as K-means, Hierarchical, and Self Organizing Maps. Offered as BIOC 460, PATH 460 and CNCR 460.

CNCR 501. Translational Cancer Research A. 1 Unit.

In this course Case K12 Paul Calabresi Scholars will learn about the steps to receive an IRB approval for their research proposal and clinical trials; how to design and conduct clinical trials-designing a protocol, developing a research question, the purpose of the LOI, funding and budge issues, working with pharmaceutical companies; essential writing skills for successfully submitting a manuscript for publication in a peer reviewed journal. The class will discuss Social Intelligence and the Biology of Leadership by Goleman and Boyatzis; the scholars will learn about the Case Cancer Center Core Facilities services and resources which are available for their research projects. Topics also include the expectations of the K12 CORP program and essential elements for advancing their academic and research career. Recommended preparation: Acceptance to Case K12 Clinical Oncology Career Development Training Program as Paul Calabresi Research Scholar.

CNCR 502. Translational Cancer Research B. 1 Unit.

In this course Case K12 Paul Calabresi Scholars will learn how to manage clinical trials; including staffing, multi or single site, contracting issues, translation and incorporation of laboratory research/correlative science into clinical trials design, getting involved with ECOG. The scholars will learn about mentored and independent funding resources, how to select the appropriate mechanism, and strategies for successful grant submissions and resubmissions. They will learn how to present research and clinical trials progress orally and written to peers/faculty for evaluation my making two PowerPoint presentations: on the class and their two K12 mentors and a second to the K12 CORP Advisory Committee for written evaluation. Both of these sections will be videotaped and a copy of the tape will be reviewed with the scholar. Each scholar will also provide a written summary of their research to date along with their goals for the next 12 months on April 1. Recommended preparation: Acceptance to Case K12 Clinical Oncology Career Development Training Program as Paul Calabresi Research Scholar.
CNCR 503. Translational Cancer Research C. 1 Unit.
In this course each Case K12 Paul Calabresi Scholar will present a summary of their experience from attending either the ASCO/AACR or ASH Clinical Trial Protocol Writing Workshop; two sessions will cover how to write a research proposal-hypothesis, specific aims, methods, and study design. Each scholar will write a sample research proposal which will be critiqued by the other members of the class; two sessions will cover the organization and analysis of biostatistic data used in research. One of these sessions will be a working session based on the scholar’s own data. The scholars will learn about the essential components and issues in developing a successful career in clinical and translational research. Recommended preparation: Acceptance to Case K12 Clinical Oncology Career Development Training Program as Paul Calabresi Research Scholars.

CNCR 504. Translational Cancer Research D. 1 Unit.
In this course Case K12 Paul Calabresi Scholars will discuss an article on essential components of leadership in an academic and clinical setting; how to advance their clinical research career to the level that they can present at the ASCO national conference; learn how to present research and clinical trials progress orally and written to peers/ faculty for evaluation by making two PowerPoint presentations: one to the class and their two K12 mentors and a second to the K12 CORP Advisory Committee for written evaluation. Both of these sessions will be videotaped and a copy of the tape will be reviewed with the scholar. Each scholar will also provide a written summary of their research and date along with their goals for the next 12 months on April 1. Recommended preparation: Acceptance to Case K12 Clinical Oncology Career Development Training Program as Paul Calabresi Research Scholar.

CRSP Courses

CRSP 401. Introduction to Clinical Research Summer Series. 1 - 3 Units.
This course is designed to familiarize one with the language and concepts of clinical investigation and statistical computing, as well as provide opportunities for problem-solving, and practical application of the information derived from the lectures. The material is organized along the internal logic of the research process, beginning with mechanisms of choosing a research question and moving into the information needed to design the protocol, implement it, analyze the findings, and draw and disseminate the conclusion(s). Prereq: M.D., R.N., Ph.D., D.D.S., health professionals.

CRSP 402. Study Design and Epidemiologic Methods. 3 Units.
This course will cover the methods used in the conduct of epidemiologic and health services research and considers how epidemiologic studies may be designed to maximize etiologic inferences. Topics include: measures of disease frequency, measures of effect, cross-sectional studies, case-control studies, cohort studies, randomized controlled trials, confounding, bias, effect modification, and select topics. Recommended preparation: CRSP 401 or permission of instructor.

CRSP 406. Introduction to R Programming. 2 Units.
This course will provide students with an introduction to R. Major topics will include session management, data objects, reading and writing data, restructuring and combining data frames, handling missing data, working with dates, statistical analysis concepts, and R traditional graphics. Students will learn R programming conventions, how to create, manage and edit R scripts programs, and how to interpret output. Each class will consist of a demo on each lesson followed by a practice session when time permits. Small research datasets will be used both in class examples and in the exercises for each lesson. Students will be expected to complete all homework assignments on time and submit a take-home final exam.

CRSP 407. Logistic Regression and Survival Analysis. 3 Units.
This course will focus on the conceptual understanding and practical application of multivariable modeling in the context of binary and time to event outcomes. Particular emphasis will be placed on model specification, assessment of model assumptions and proper interpretation and visualization of model results. Classes will generally involve a conceptual discussion of the topic in question, followed by a practical application using R statistical software. Planned topics include contingency tables, logistic regression models, Kaplan-Meier curves, Cox proportional hazard models, and sample size estimation for binary and time to event outcomes. Students will be expected to complete biweekly assignments and two course projects involving problem specification, data collection, analysis using R, and a presentation. Prior to taking this course students should have working knowledge of linear regression and its application using R. Students must have the latest software version of R installed on their laptops. Recommended preparation: CRSP 406. Prereq: NURS 630.

CRSP 410. Independent Study in Clinical Research. 1 - 3 Units.
Independent Study in Clinical Research enables the student to undertake study of advanced topics in clinical research that are not offered as standing courses at Case Western Reserve University. The student(s) and a member of the Clinical Research Scholars Program faculty, or another faculty member at CWRU, submit a 1-2 page proposal for independent study to the CRSP Program Director. The proposal should include a descriptive title (e.g., research method or clinical topic area) to be studied; a list of up to 5 student-centered objectives of the study; how the subject matter will be learned; and how success in achieving the objectives will be measured (e.g., manuscript, essay, grant proposal, or other written product; examination, etc.). It is expected that there will be at least one contact hour per week for each credit hour requested.

CRSP 412. Communication in Clinical Research - Grant Writing. 1 Unit.
Written communication is a critical skill in clinical science. We disseminate our work to others through publications, and we obtain the resources to conduct research through grant proposals. This course has been developed for K12 and CRSP scholars. The course focuses on writing grant proposals and, in particular, specific sections of an NIH-style grant. However, the principles discussed in the course apply to any type of proposal. Prereq: CRSP 401 or equivalent.
CRSP 413. Communication in Clinical Research - Oral Presentation, Posters, and the Mass Media. 1 Unit.
To move their work forward, investigators must be able to present their research effectively to both scientific and lay audiences. Although "the written word" is probably the first medium that comes to mind when we think of communication in scientific circles, other modes of communication are also vital. The main objective of this course is to help scholars improve their oral and poster presentation skills, as well as interaction with the mass media. This objective will be achieved through a combination of didactic sessions, readings, and presentations by the students. Prereq: CRSP 401 or equivalent.

CRSP 431. Statistical Methods I. 3 Units.
Application of statistical techniques with particular emphasis on problems in the biomedical sciences. Basic probability theory, random variables, and distribution functions. Point and interval estimation, regression, and correlation. Problems whose solution involves using packaged statistical programs. First part of year-long sequence. Offered as ANAT 431, BIOL 431, CRSP 431, PQHS 431 and MPHP 431.

CRSP 432. Statistical Methods II. 3 Units.
Methods of analysis of variance, regression and analysis of quantitative data. Emphasis on computer solution of problems drawn from the biomedical sciences. Design of experiments, power of tests, and adequacy of models. Offered as BIOL 432, PQHS 432, CRSP 432 and MPHP 432. Prereq: PQHS/EPBI 431 or equivalent.

CRSP 440. Translational & Patient-Oriented Research Theory. 3 Units.
Clinical (patient-oriented) and translational science has emerged as a new scientific discipline aimed to accelerate scientific discovery into effective practice. This course provides an overview of the theoretical framework, rationale, process, methodologies, and ethics of clinical and translational research. An integral feature of this course is the participation of a multidisciplinary teaching team, whose expertise and perspective will contribute to providing real-world insights into the complexities of translational and patient-oriented research.

CRSP 450. Seminar in Multidisciplinary Clinical & Translational Research. 1 Unit.
The purpose of this monthly seminar is to introduce students to the processes and challenges of multidisciplinary clinical/translational science, through which discoveries in the laboratory or in early clinical studies are transformed into interventions, treatments, and ultimately, best practices and policies on national and international levels. The seminar will use a case-based approach. Examination of active projects at Case Western Reserve University, Cleveland Clinic Foundation, the MetroHealth Medical Center, University Hospitals Case Medical Center, and the Louis Stokes Veterans Administration Medical Center will enable students to learn first-hand about clinical translational science in action.

CRSP 500. Design and Analysis of Observational Studies. 3 Units.
An observational study investigates treatments, policies or exposures and the effects that they cause, but it differs from an experiment because the investigator cannot control assignment. We introduce appropriate design, data collection and analysis methods for such studies, to help students design and interpret their own studies, and those of others in their field. Technical formalities are minimized, and the presentations will focus on the practical application of the ideas. A course project involves the completion of an observational study, and substantial use of the R statistical software. Topics include randomized experiments and how they differ from observational studies, planning and design for observational studies, adjustments for overt bias, sensitivity analysis, methods for detecting hidden bias, and focus on propensity score methods for selection bias adjustment, including multivariate matching, stratification, weighting and regression adjustments. Recommended preparation: a working knowledge of multiple regression, some familiarity with logistic regression, with some exposure to fitting regression models in R. Offered as CRSP 500 and PQHS 500.

CRSP 501. Team Science - Working in Interdisciplinary Research Teams. 1 Unit.
This course will assist learners to understand how different professional disciplines, each representing a body of scientific knowledge, can best work together to develop and disseminate translational knowledge. Learners will develop a set of skills specific to be an effective member and leader of an interdisciplinary research team, including working with different value and knowledge sets across disciplines, understanding the mental models of other disciplines, creating shared mental models, running effective meetings, managing conflict, giving and receiving feedback, and group decision making techniques. Using the small group seminar approach and case studies, learners will practice individual and group communication, reflective and self-assessment techniques, and engage in experiential learning activities regarding effective teamwork in interdisciplinary research teams. Techniques to increase group creativity and frame new insights will be discussed.

CRSP 502. Leadership Skills for Clinical Research Teams. 2 Units.
Leadership Assessment and Development is for participants to learn a method for assessing their knowledge, abilities, and values relevant to management, and for developing and implementing plans for acquiring new management related knowledge and abilities. The major goals of this course include generating data through a variety of assessment methods designed to reveal your interests, abilities, values, and knowledge related to leadership effectiveness; learning how to interpret this assessment data and use it to design/plan developmental activities; small group sharing of insights from the various assessments. Recommended preparation: K grant appointment or consent of instructor.

CRSP 503. Innovation and Entrepreneurship. 1 Unit.
The purpose of this module is to acquaint and ultimately engage clinical researchers with the business of innovation and entrepreneurship. Goals include: (1) to provide researchers with many of the skills that they would need to translate academic research into commercial uses; (2) to sensitize clinical researchers to the goals of the business community and facilitate their ability to work with the private sector on technology development; and (3) to make clinical researchers aware of the processes of academic technology development and transfer. Sessions consist of a lecture and case discussion facilitated by one of the co-directors.
CRSP 504. Managing Research Records - A System's Approach. 2 - 3 Units.

This course will provide an approach to managing data for research studies. Major topics include a discussion of a research study system including database design and development, data management, and clinical data management; how to evaluate the data needs of a study including the impact of required regulations; summary of key regulations; the role of the data manager including protocol review, development of a data management plan, CRF design, data cleaning, locking studies and ensuring best practices. Each session will include a lecture, class discussion, and student presentation.

CRSP 505. Investigating Social Determinants of Health. 2 - 3 Units.

The biopsychosocial model highlights the inter-related roles that biological, psychological, and social factors play in health and illness. This course is geared towards clinical research scholars who would like to incorporate aspects of the "social context" in their research. The course will examine the conceptualization, measurement, and effects of several key socio-cultural determinants of health and illness. Sample studies that incorporate social determinants of health will be reviewed. The course will also consider strategies and techniques to conduct clinical research involving social factors in socially and ethnically diverse settings. Students will be encouraged to develop a prototypical study design to incorporate social determinants in their research. To earn an optional third credit hour for this course, students will be required to complete additional assignments tailored to the students' research needs and interests upon mutual agreement with the instructor at the beginning of the course. Recommended preparation: CRSP 401.

CRSP 510. Health Disparities. 3 Units.

This course aims to provide theoretical and application tools for students from many disciplinary backgrounds to conduct research and develop interventions to reduce health disparities. The course will be situated contextually within the historical record of the United States, reviewing social, political, economic, cultural, legal, and ethical theories related to disparities in general, with a central focus on health disparities. Several frameworks regarding health disparities will be used for investigating and discussing the empirical evidence on disparities among other subgroups (e.g., the poor, women, uninsured, disabled, and non-English speaking populations) will also be included and discussed. Students will be expected to develop a research proposal (observational, clinical, and/or intervention) rooted in their disciplinary background that will incorporate materials from the various perspectives presented throughout the course, with the objective of developing and reinforcing a more comprehensive approach to current practices within their fields. Offered as CRSP 510, PQHS 510, MPHP 510, NURS 510, and SASS 510.

CRSP 550. Meta-Analysis & Evidence Synthesis. 2 - 3 Units.

Systematic reviews use reproducible methods to systematically search the literature and synthesize the results of a specific topic area. Meta-analysis is a specific analytic technique used to pool results of individual studies. Systematic reviews are useful ways to establish one's knowledge in a particular field of study, and can highlight gaps in research which can be pursued in future work. They can also inform the background of a grant. This course is designed to introduce students to the methods of conducting a high quality systematic review and meta-analysis of intervention studies. We will cover the design, methods, and analytic techniques involved in systematic reviews. These concepts will prepare students to conduct their own systematic review or evaluate the systematic reviews of others. Sessions will be lectures, labs, and presentations. Topics include developing a search strategy, abstracting key data, synthesizing the results qualitatively, meta-analytic techniques, grading the quality of studies, grading the strength of the evidence, and manuscript preparation specific to systematic reviews and meta-analysis of intervention studies. Caveat: If you would like to conduct a systematic review of your own that can be published after the course ends, you will need to have several other class members or colleagues willing to work with you on the project. The systematic review should be on a topic where you expect no more than 20-30 included studies in order to be able to complete the review soon after the course ends. Offered as CRSP 550 and PQHS 550. Prereq: CRSP 401, PQHS/EPBI 431, MPHP 405, NURS 532 or Requisites Not Met permission.

CRSP 560. Special Topics in Clinical Research. 1 Unit.

In this 1 credit hour course, students will explore particular issues and themes related to Clinical Research. The course content will vary and is designed to explore content not covered in other CRSP courses or to expand student knowledge on topics introduced by other CRSP courses.

CRSP 601. Research Practicum. 1 - 9 Units.

Research practicum and/or laboratory rotation.

CRSP 603. Research Ethics and Regulation. 1 - 2 Units.

This course is designed to introduce students to the ethical, policy, and legal issues raised by research involving human subjects. It is intended for law students, post-doctoral trainees in health-related disciplines and other students in relevant fields. Topics include (among others): regulation and monitoring of research; research in third-world nations; research with special populations; stem cell and genetic research; research to combat bioterrorism; scientific misconduct; conflicts of interest; commercialization and intellectual property; and the use of deception and placebos. Course will meet once per week for 2 hours throughout the semester. Grades will be given based on class participation and a series of group projects and individual short writing assignments. Offered as BETH 503, CRSP 603 and LAWS 5225.

CRSP 651. Clinical Research Scholars Thesis. 1 - 18 Units.

CRSP Thesis M.S.

CRSP 701. Dissertation Ph.D.. 1 - 9 Units.

Ph.D. Dissertation credits. Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.
INTH Courses

INTH 301. Fundamentals of Global Health. 3 Units.
This course seeks to integrate the multiple perspectives and objectives in global health by investigating how the disciplines of Biology, Medicine, Anthropology, Nursing, Mathematics, Engineering analyze and approach the same set of international health problems. Students will develop a shared vocabulary with which to understand these various perspectives from within their own discipline. The focus sites will emphasize issues related to the health consequences of development projects, emergency response to a health care crisis and diseases of development in presence of underdevelopment. Offered as INTH 301 and INTH 401. Prereq: Junior or senior.

INTH 315. Water Security and Social Justice in Brazil. 3 Units.
CWRU, through the Center for Global Health and Diseases, has had projects, student exchanges and courses with institutions in Brazil and especially with the state of Bahia for over 30 years. In that time, personal and professional relationships have been developed with branches of the Ministry of Health (Oswaldo Cruz Foundation, the Municipal and State Health Departments), the Federal University of Bahia, and the Bahiana School of Medicine and Public Health. Brazil is the second largest country in the Western Hemisphere and the 7th or 8th largest economy in the world. There are more people who speak Portuguese in South America than Spanish. Despite newly discovered oil, enormous natural and human resources, development in Brazil has been uneven with the Northeast remaining the least developed. The Northeastern state of Bahia ranked 22nd out of 27 states on the UN's Index of Human Development (http://www.pnud.org.br/IDH/DH.aspx# and http://www.atlasbrasil.org.br/2013/pt/home/). The State capital, Salvador, ranks 14th out of 20 major metropolitan regions and is one site for this study abroad program. The second site, the rural town of Ubaíra, is ranked 4590 out of 5565 municipalities. Even with large social inequities and health care disparities, the Brazilian government and society have produced remarkable social policies, have shown a willingness to implement these policies and have the resources to significantly improve the lives of its most impoverished citizens. Critical basic infrastructure for health and development is water. Its consumption is essential; it is a mechanism for waste disposal, industry and agriculture are dependent on its supply. The problem of water quantity and quality are common all human societies (witness the drought in California and the burning Cuyahoga). Individuals from all walks of life will need to assess issues of water at some time, from doctors, engineers, urban planners, lawyers and politicians. In Brazil the issues of water are more exposed and easier to examine on different scales than in the U.S. The problem also resides within a social, health care, and political context that compares well and at the same time contrasts sharply with that of the USA. As a student in this course, you will gain first-hand knowledge of the social and public health challenges regarding water security in Brazil. Through field experiences in the capital city of Salvador and the rural town of Ubaíra, you will immerse yourself in interdisciplinary perspectives on the public health, scientific, political, and bioethical dimensions of water security in Brazil. This immersive experience will be facilitated by faculty from the CWRU Dept. of Bioethics and the Center for Global Health and Diseases, the Brazilian Ministry of Health, the Federal University of Bahia, the Bahiana School of Medicine and Public Health, and Brazilian graduate student participants. Offered as: INTH 315, INTH 415, BETH 315H, and BETH 415H. Counts for CAS Global & Cultural Diversity Requirement.

INTH 401. Fundamentals of Global Health. 3 Units.
This course seeks to integrate the multiple perspectives and objectives in global health by investigating how the disciplines of Biology, Medicine, Anthropology, Nursing, Mathematics, Engineering analyze and approach the same set of international health problems. Students will develop a shared vocabulary with which to understand these various perspectives from within their own discipline. The focus sites will emphasize issues related to the health consequences of development projects, emergency response to a health care crisis and diseases of development in presence of underdevelopment. Offered as INTH 301 and INTH 401. Prereq: Graduate student.

INTH 415. Water Security and Social Justice in Brazil. 3 Units.
CWRU, through the Center for Global Health and Diseases, has had projects, student exchanges and courses with institutions in Brazil and especially with the state of Bahia for over 30 years. In that time, personal and professional relationships have been developed with branches of the Ministry of Health (Oswaldo Cruz Foundation, the Municipal and State Health Departments), the Federal University of Bahia, and the Bahiana School of Medicine and Public Health. Brazil is the second largest country in the Western Hemisphere and the 7th or 8th largest economy in the world. There are more people who speak Portuguese in South America than Spanish. Despite newly discovered oil, enormous natural and human resources, development in Brazil has been uneven with the Northeast remaining the least developed. The Northeastern state of Bahia ranked 22nd out of 27 states on the UN's Index of Human Development (http://www.pnud.org.br/IDH/DH.aspx# and http://www.atlasbrasil.org.br/2013/pt/home/). The State capital, Salvador, ranks 14th out of 20 major metropolitan regions and is one site for this study abroad program. The second site, the rural town of Ubaíra, is ranked 4590 out of 5565 municipalities. Even with large social inequities and health care disparities, the Brazilian government and society have produced remarkable social policies, have shown a willingness to implement these policies and have the resources to significantly improve the lives of its most impoverished citizens. Critical basic infrastructure for health and development is water. Its consumption is essential; it is a mechanism for waste disposal, industry and agriculture are dependent on its supply. The problem of water quantity and quality are common all human societies (witness the drought in California and the burning Cuyahoga). Individuals from all walks of life will need to assess issues of water at some time, from doctors, engineers, urban planners, lawyers and politicians. In Brazil the issues of water are more exposed and easier to examine on different scales than in the U.S. The problem also resides within a social, health care, and political context that compares well and at the same time contrasts sharply with that of the USA. As a student in this course, you will gain first-hand knowledge of the social and public health challenges regarding water security in Brazil. Through field experiences in the capital city of Salvador and the rural town of Ubaíra, you will immerse yourself in interdisciplinary perspectives on the public health, scientific, political, and bioethical dimensions of water security in Brazil. This immersive experience will be facilitated by faculty from the CWRU Dept. of Bioethics and the Center for Global Health and Diseases, the Brazilian Ministry of Health, the Federal University of Bahia, the Bahiana School of Medicine and Public Health, and Brazilian graduate student participants. Offered as: INTH 315, INTH 415, BETH 315H, and BETH 415H. Counts for CAS Global & Cultural Diversity Requirement.
INTH 484. Global Health Epidemiology. 1 - 3 Units.
This course provides a rigorous problem-centered training in the epidemiology, prevention, treatment, and control of infectious diseases and, more generally, global health. This is an advanced epidemiology that embraces an active learning environment. Students are expected to invest time out of the classroom reading and working with classmates. Classes will be conducted with discussions, debates, group projects, and group presentations. By taking this course, students will develop a framework for interpreting, assessing, and performing epidemiologic research on issues of global importance. The course will be divided into three modules: 1) Global Health Epidemiology 2) Helminth Epidemiology, and 3) Epidemiology of Disease Elimination. Each module is worth 1 credit hour and may be taken separately. Each module will have a separate project and/or exam. The final exam time will be used for group presentations and panel discussion. Active class participation is required through discussions, case studies, and group projects. Offered as PQHS 484, INTH 484, and MPHP 484.

INTH 551. World Health Seminar. 1 Unit.
This seminar series examines a broad range of topics related to infectious disease research in international settings. Areas of interest are certain to include epidemiology, bioethics, medical anthropology, pathogenesis, drug resistance, vector biology, cell and molecular biology, vaccine development, diagnosis, and socio-cultural factors contributing to or compromising effective health care delivery in endemic countries. Additionally we will discuss intellectual property policies on global access to medical innovations. Topics will also include neglected diseases and the interactions between these diseases with HIV and malaria infections. Speakers will include a diverse group of regional faculty and post-doctoral trainees, as well as visiting colleagues from around the world. Students will be asked to read a journal article written by the speaker and then discuss this article with the speaker after their seminar.

PAST Courses

PAST 401. Foundations of Clinical Medicine-Principles of Interviewing. 3 Units.
The general purpose of this course is to teach the physician assistant student the skills necessary to conduct a clinical/medical interview with a patient and to be able to present the information to other health care professionals in both an oral and written form. This course, which is designed as small, group seminars, will focus on the skills necessary to question patients in a directed fashion and to listen to the patient with concern and empathy. Instruction will emphasize what data is needed in a complete medical history as well as the focused interview, the proper technique for gathering information, and the format for presentation of the data. Instructional techniques will include role-playing, small group discussion, and observation and critique by instructors, other students and simulated patient models. Prereq: Students must be in Physician Assistant Program.

PAST 402. Physical Diagnosis. 4 Units.
This lecture/discussion/laboratory course presents and explores the techniques for performing a complete and competent physical examination, understanding the pathophysiology presented by the patient, and organizing and reporting the findings in both written and oral format. Synthesis of historical and physical presentations for an accurate evaluation of the patient will be emphasized. The problem-oriented physical examination and special examination tools and techniques will be presented. Instructional techniques will include small group discussion, practical experience with other students and faculty, and the observation and critique of physical examination skills by faculty. Prereq: Students must be in Physician Assistant Program.

PAST 403. Diagnostic Methods-Clinical Lab. 1 Unit.
This course is designed to introduce the student to clinical laboratory and diagnostic medicine. Lectures are designed to review the various types of laboratory tests, acquisition and handling of specimens, normal values as well as interpretation of results and correlation with clinical conditions. This course also includes an introduction to radiology, microbiology and electrocardiogram interpretation. The skills learned here carry over to the principles of medicine series in subsequent semesters. Prereq: Students must be in Physician Assistant Program.

PAST 404. Clinical Correlations. 1 Unit.
This seminar course places emphasis on internal organs with clinical correlation to anatomic conditions. Content will include basis concepts of genetics, the comparison of normal and abnormal structural relationships and the demonstration of how these things relate to health and disease. Students will review on-line genetics learning modules and meet in small seminar groups to review anatomical clinical correlates. Prereq: Students must be in Physician Assistant Program.

PAST 405. Medical Microbiology & Infectious Disease. 2 Units.
This course is the study of microorganisms and the diseases they cause in man. It includes consideration of infectious disease microorganisms including their biochemical, serological and virulence characteristics, and clinical manifestations. An organ system approach is used to examine the fundamentals of pathogenicity, host response, epidemiological aspects of infectious disease, as well as clinical manifestations, diagnosis and treatment of infections with clinical correlations. Prereq: Students must be in Physician Assistant Program.

PAST 406. Ethics in Healthcare Delivery. 1 Unit.
This course is an overview of the discipline of medical ethics presenting the study and application of relevant principles, insights, and understandings of modern medical practice. The course includes a brief overview of ethical theories which lay the foundation for subsequent investigation into specific ethical problems found in medical science and technology. The purpose of the course is to provide a framework which enables the student to reason clearly and effectively about the ethics involved in medical science and technology. The course assumes no prior knowledge of philosophical ethics or medical science. A framework of ethical decision making is introduced and practiced using realistic medical cases via a Medical Ethics Committee. Prereq: Students must be in Physician Assistant Program.

PAST 407. Clinical Procedures. 4 Units.
The purpose is to prepare these future clinicians for clinical management of health and disease by preparing them for common clinical procedures. These will include basic and advanced surgical skills, basic laboratory skills, common out-patient procedures, common emergency procedures, and interpretation of common radiologic tests. Prereq: Students must be in Physician Assistant Program.
PAST 410. Cadaver dissection-based human anatomy with histology and physiologic correlations. 6 Units.
This course will provide students with a sound understanding of the normal human body as a foundation for subsequent pursuing biomedical careers. A combination of daily lectures and laboratories integrates cadaver dissection-based gross anatomy with the associated histology, embryology, neuroanatomy and basic physiology. This course is well-suited to all biomedical careers, including pre-clinical and biomedical undergraduates, post-baccalaureate, pre-clinical master of science graduate programs, plus medical and dental students seeking additional training in the anatomical sciences. It will meet any of the anatomy-oriented prerequisites being implemented for medical and dental school applications, including those preferring or requiring a cadaver-based experience. The assessments will include a combination of written and cadaver-based practical questions. Offered as ANAT 410 and PAST 410. Prereq: Students must be in Physician Assistant Program.

PAST 411. Professional Issues for PA’s-History & Roles of the PA I. 1 Unit.
This one semester course explores through lecture and discussion the factors affecting the development of the profession and role socialization with emphasis on history, regulations and organizations governing PA practice. An overview of clinical responsibilities, team based practice, population health and the PAs role, licensing and credentialing practices will be presented and discussed. Prereq: Students must be in Physician Assistant Program.

PAST 412. Professional Issues for Physician Assistants II. 2 Units.
In this three course series students will explore factors affecting the development of the profession, the status of the PA in the U.S. healthcare system and current issues in clinical practice including practice-based improvement and systems-based practice. Through lecture and discussion, this series prepares the student for the transition from classroom to clinical training and clinical practice. Emphasis is given to the responsibilities that come with being a professional, professionalism and practicing quality improvement. Prereq: Students must be in Physician Assistant Program.

PAST 413. Professional Issues for Physician Assistants III. 2 Units.
In this three course series students will explore factors affecting the development of the profession, the status of the PA in the U.S. healthcare system and current issues in clinical practice including practice-based improvement and systems-based practice. Through lecture and discussion, this series prepares the student for the transition from classroom to clinical training and clinical practice. Emphasis is given to the responsibilities that come with being a professional, professionalism and practicing quality improvement. Prereq: Students must be in Physician Assistant Program.

PAST 420. Pharmacology I. 2 Units.
In this two course series, (PAST 421 Pharmacology II) students will be provided with a basic introduction to the principles of pharmacology and to drug classes of particular relevance to the physician assistant. Information concerning drug doses and calculations used in determining doses will be included in this course and PAST 421 Pharmacology. Prereq: Students must be in Physician Assistant Program.

PAST 421. Pharmacology II. 3 Units.
In this two course series (PAST 420 Pharmacology), physician assistant students will be provided with foundational knowledge of the therapeutic uses and effects of drugs. The indications, contraindications and adverse effects of prototypical drugs are covered. Drug dependence and addiction are also discussed. This course also includes a problem-based learning component which will enhance students’ teamwork and clinical reasoning skills by examining and analyzing case scenarios in small groups. Prereq: Students must be in Physician Assistant Program.

PAST 430. Principles of Internal Medicine. 7 Units.
This one semester lecture/discussion course provides students with a detailed study of the etiology, pathophysiology, signs, symptoms, diagnosis and treatment of various disorders encountered in internal medicine. A broad array of diseases in cardiology, dermatology, endocrinology, gastroenterology, gerontology, hepatology, hematology, oncology, urology, nephrology, neurology, pulmonology and rheumatology are explored. Prereq: Students must be in Physician Assistant Program.

PAST 431. Principles of Clinical Medicine-Surgery & Emergency Medicine. 4 Units.
This one semester lecture course presents the fundamentals of surgical disease and care of the acutely injured and ill patients. The purpose is to familiarize the student with the etiology, anatomy, pathophysiology, clinical manifestations and appropriate diagnosis and treatment of selected surgical conditions and conditions encountered in the surgical subspecialty and emergency medical settings. Prereq: Students must be in Physician Assistant Program.

PAST 432. Principles of Clinical Medicine-OB/GYN. 3 Units.
This lecture/case presentation course gives the student an overview of commonly encountered obstetric and gynecologic disorders. Anatomy and physiology of the human reproduction system are examined, including the changes in pregnancy, prenatal care, medical and surgical complications of pregnancy, pre- and postpartum care. Common gynecologic conditions, methods and effectiveness of contraception, cancer detection methods and the diagnosis and treatment of sexually transmitted infections in the female are explored. Prereq: Students must be in Physician Assistant Program.

PAST 433. Principles of Clinical Medicine-Pediatrics. 3 Units.
This course introduces the student to a unique, complex and challenging field of pediatrics. It emphasizes aspects of general pediatrics and provides a foundation for those students who elect to further study the health care of infants, children and adolescents. This course addresses issues unique to childhood and adolescence by focusing on human developmental biology, and by emphasizing the impact of family, community, and society on child health and well-being. Additionally, it focuses on the impact of disease and its treatment on the developing human, and emphasizes growth and development, principles of health supervision, and recognition of common health problems. Prereq: Students must be in Physician Assistant Program.

PAST 434. Principles of Clinical Medicine-Behavioral Medicine. 2 Units.
This one semester course gives students an overview of some of the most important areas in behavioral psychiatry. This course is an overview of basic psychiatric concepts and focuses on assessing patients who manifest psychological symptoms. Topics include diagnosis and treatment of anxiety disorders, mood disorders, common child and adolescent disorders, somatoform and factitious disorders, psychotic disorders, sleep disorders, adjustment and personality disorders, and drug and alcohol abuse and addresses forensic issues in behavioral health. Prereq: Students must be in Physician Assistant Program.
PAST 440. Pre-Clinical Clerkships I. 1 Unit.
This course/ clerkship provides the student with clinical experience at clinical sites in the didactic year utilizing what was learned in Foundations of Clinical Medicine (Interviewing and Physical Diagnosis class/lab). During the pre-clinical time at program designated sites, students will continue to develop and apply their history and physical exam skills, interpersonal skills, oral presentation and medical documentation skills. For expanding skills and creating relationships within the community, this course also encompasses community service, experiential learning and interprofessional education activities. This course/clerkship will help to better prepare students to gain experience and develop confidence in approaching patients prior to entering the clinical year. Prereq: Students must be in Physician Assistant Program.

PAST 441. Pre-Clinical Clerkships II. 1 Unit.
This course/clerkship provides the student with clinical experience at clinical sites in the didactic year utilizing what was learned in Foundations of Clinical Medicine (Interviewing and Physical Diagnosis class/lab). During the pre-clinical time at program designated sites, students will continue to develop and apply their history and physical exam skills, interpersonal skills, oral presentation and medical documentation skills. For expanding skills and creating relationships within the community, this course also encompasses community service, experiential learning and interprofessional education activities. This course/clerkship will help to better prepare students to gain experience and develop confidence in approaching patients prior to entering the clinical year. Prereq: Students must be in Physician Assistant Program.

PAST 450. Culture and Health. 2 Units.
This lecture/discussion course provides students with a detailed understanding of the societal and individual prejudices, preconceptions, and biases that enter into the clinical interaction and how to develop appropriate responses and coping strategies. This course provides the student with common psychosocial problems encountered by health professionals today. Students explore issues related to sexuality, cultural competency, multicultural health, cross-cultural communication, and healthcare disparities. Prereq: Students must be in Physician Assistant Program.

PAST 451. Introduction to Public Health. 1 Unit.
This course will introduce students to concepts of public health and provide experience in public health by completion of a mentored project. The course will enhance the student’s knowledge of the history and philosophy of public health, the Healthy People 2020 initiatives and the social determinants of health and how they can be impacted. Teaching methodologies will include discussion, lecture and development of a mentored public health project. Prereq: Students must be in Physician Assistant Program.

PAST 452. Introduction to Evidence Based Medicine. 2 Units.
This course is intended to provide learners with a basic understanding of the principles of epidemiology, biostatistics and evidence-based medicine. The course involves analysis of prospective and retrospective studies, cross-sectional studies and experimental epidemiology. It will focus on epidemiological scenarios that relate to both infectious disease and chronic disease. In addition, the course will provide the student with a basic understanding of the application of statistical techniques to the biological and health sciences and to demonstrate their areas of application. Emphasis will be placed on probability laws, sampling and parameter estimation, test of hypothesis, correlation, regression and analysis of variance. Finally, students will be introduced to the basic concepts of evidence-based medicine, information mastery, and critical appraisal of the medical literature. Prereq: Students must be in Physician Assistant Program.

PAST 453. Medical Spanish Elective. 1 Unit.
This course will teach students the basics of Spanish as it applies to the medical field such as physical examinations, emergencies, common diseases within the Latino population, and specializations. By familiarizing students with conversational Spanish and medical Spanish, this course will enable students to apply their learning to real-world situations, to assist in communications, and ultimately to break down the barrier between doctors and patients. Prereq: Students must be in Physician Assistant Program.

PAST 454. Research Methods Elective. 1 Unit.
This lecture course introduces students to research design and scientific inquiry and provides them with the skills necessary for interpretation and critical evaluation of the medical literature. It includes a brief review of important statistical principles and methods and their application to problems in medicine and health. Prereq: Students must be in Physician Assistant Program.

PAST 477. Human Physiology. 4 Units.
This lecture/seminar experience is meant to enhance the students fundamental knowledge in human physiology with an emphasis on physiologic concepts in relationship to health, disease and illnesses. The course will provide students with an understanding of the function, regulation and integration of the major organ systems. Offered as PAST 477 and PHOL 477. Prereq: Students must be in Physician Assistant Program.

PAST 500. Clinical Residency: Emergency Medicine Rotation. 3 Units.
This clinical rotation is designed to expose the student to the wide variety of problems encountered in the hospital-based emergency room setting in both the fast track and acute care sides of the emergency department. The rotation experience includes the medical/surgical management of patients of all ages (infant to geriatric) with presenting problems that may be of a life threatening nature. The formulation and understanding of the many and varied medical problems is accomplished via the accurate collection of data through a history and physical exam, interpretation of diagnostic testing, and the development of a plan. The student will also be exposed to and perform diagnostic and therapeutic procedures. These experiences will be under appropriate supervision. Prereq: Students must be in Physician Assistant Program.

PAST 501. Clinical Residency: Family Medicine. 3 Units.
This clinical rotation is designed to give the student an understanding of family medicine/primary care medicine as practiced in office and/or clinic in an outpatient setting. The student will work with patients from a variety of social, economic and cultural backgrounds across the lifespan. They will experience continuity of care while assessing, diagnosing, monitoring, managing, referring and educating patients. The student will be exposed to both acute and chronic problems as well as the psychosocial problems that are encountered in this setting. Students may encounter and participate in the care of patients of all ages: pediatric, adolescent, adult and geriatric populations. The formulation and understanding of the many and varied medical problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem. Prereq: Students must be in Physician Assistant Program.
PAST 502. Clinical Residency: Geriatrics. 3 Units.
This clinical rotation is designed to give the student an understanding of geriatric medicine. The understanding of the many and varied medical and psycho-social problems in geriatric patients is accomplished via the accurate collection of data through a complete history and physical examination, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem. Teaching rounds and lectures may be used to introduce concepts of geriatric medicine. Prereq: Students must be in Physician Assistant Program.

PAST 503. Clinical Residency: Internal Medicine Rotation. 3 Units.
This clinical rotation is designed to provide the student with an understanding of the wide variety of problems encountered in hospital-based internal medicine. The formulation and understanding of the many and varied medical problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem. Students are assigned to medical teams during their rotation. Teaching rounds and lectures are used to introduce concepts of internal medicine. Prereq: Students must be in Physician Assistant Program.

PAST 504. Clinical Residency: Obstetrics & Gynecology. 3 Units.
This clinical rotation is designed to expose the student to the variety of problems encountered in women's health care. The focus of the learning experience is on recognition and management of common gynecological illnesses, sexually transmitted infections, family planning, birth control, and cancer of the female reproductive system and breast. Obstetrical focus is on pregnancy, labor, delivery, and postpartum care. The student will also have an exposure to the surgical management of gynecological and obstetric problems. Teaching rounds and lectures may be used to introduce concepts of obstetrics and gynecology. Prereq: Students must be in Physician Assistant Program.

PAST 505. Clinical Residency: Pediatrics. 3 Units.
This clinical rotation is designed to emphasize care of the child from birth to adolescence. The focus of the learning experience is on recognition and management of common childhood illnesses, assessment of variations of normal growth and development, and the counseling of parents regarding immunizations, preventative health care visits, growth and development, nutrition, injury prevention and common psychosocial problems. The formulation and understanding of the many and varied medical problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem. Teaching rounds and lectures may be used to introduce concepts of pediatrics. Prereq: Students must be in Physician Assistant Program.

PAST 506. Clinical Residency: Behavioral and Mental Health. 3 Units.
This clinical rotation is designed to give the student an understanding of the psycho-social and behavioral components of health, disease, and disability. The student will be exposed to a variety of mental illnesses and disabilities and will also be able to recognize and categorize psychiatric disorders along with the therapeutic modalities used in their treatment. The formulation and understanding of the varied psychiatric problems is accomplished via the accurate collection of data through a complete history and mental status exam, interpretation of diagnostic testing when appropriate, formulation of a problem list, and the development of a plan for each presenting problem. Emphasis is placed on early recognition, intervention, and psychiatric referral and/or consultation. Teaching rounds and lectures are used to introduce concepts of psychiatric medicine. Prereq: Students must be in Physician Assistant Program.

PAST 507. Clinical Residency: Surgery. 3 Units.
This clinical rotation is designed to expose the student to the varied population with surgically manageable disease from adolescence to geriatrics. The formulation and understanding of the varied medical problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan. The focus of the learning experience is on the pre-operative evaluation and preparation of the patients for surgery, procedures and assisting during the intra-operative period, and the care of patients post-operatively. The student will be exposed to both emergent and non-emergent surgical management of patients. The student may be assigned to surgical teams during his/her rotation. Teaching rounds and lectures are used to introduce concepts of surgical care. Prereq: Students must be in Physician Assistant Program.

PAST 508. Clinical Residency: Primary Care Elective. 3 Units.
This clinical rotation is designed to give the student an understanding of family medicine/primary care medicine as practiced in office and/or clinic in an outpatient setting. The student will work with patients from a variety of social, economic and cultural backgrounds across the lifespan. They will experience continuity of care while assessing, diagnosing, monitoring, managing, referring and educating patients. The student will be exposed to both acute and chronic problems as well as the psychosocial problems that are encountered in this setting. Students may encounter and participate in the care of patients of all ages: pediatric, adolescent, adult and geriatric populations. The formulation and understanding of the many and varied medical problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem. Prereq: Students must be in Physician Assistant Program.

PAST 509. Clinical Residency: Inpatient Medicine Elective. 3 Units.
This clinical rotation is designed to provide the student with an understanding of the wide variety of problems encountered in hospital-based internal/surgical medicine. The formulation and understanding of the many and varied medical and or surgical problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem. Students are assigned to medical teams during their rotation. Teaching rounds and lectures are used to introduce concepts of hospital based medicine. Prereq: Students must be in Physician Assistant Program.
PAST 510. Clinical Residency: Elective. 3 Units.
This elective clinical rotation is designed to provide the student with the knowledge and skills in an area of interest. Students will gain an understanding of the variety of problems encountered in a medical or surgical sub-specialty discipline. The formulation and understanding of the many and varied medical and/or surgical sub-specialty problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem including pharmacologic and non-pharmacologic management. Acquisition of these skills helps facilitate the PA student to progress through the clinical rotation with increasing complexity of clinical experiences, building confidence, competence and compassion. In addition to gaining clinical skills specific to the specialty of the rotation, the student will also continue to develop skills in systematic medical problem solving and patient management abilities, establish or reinforce patterns of independent learning, self-evaluation, interprofessional relationships and communication skills. Elective rotation sites are chosen based on practice characteristics that are important for the PA student within this rotation. These may include practice location, patient populations, and availability of specific experiences and procedures. Prereq: Students must be in Physician Assistant Program.

PAST 511. Clinical Residency: Elective. 3 Units.
This elective clinical rotation is designed to provide the student with the knowledge and skills in an area of interest. Students will gain an understanding of the variety of problems encountered in a medical or surgical sub-specialty discipline. The formulation and understanding of the many and varied medical and/or surgical sub-specialty problems is accomplished via the accurate collection of data through a complete history and physical exam, interpretation of diagnostic testing, formulation of a problem list, and the development of a plan for each presenting problem including pharmacologic and non-pharmacologic management. Acquisition of these skills helps facilitate the PA student to progress through the clinical rotation with increasing complexity of clinical experiences, building confidence, competence and compassion. In addition to gaining clinical skills specific to the specialty of the rotation, the student will also continue to develop skills in systematic medical problem solving and patient management abilities, establish or reinforce patterns of independent learning, self-evaluation, interprofessional relationships and communication skills. Elective rotation sites are chosen based on practice characteristics that are important for the PA student within this rotation. These may include practice location, patient populations, and availability of specific experiences and procedures. Prereq: Students must be in Physician Assistant Program.

PAST 600. Capstone Quality Improvement Project & Comprehensive Examination. 3 Units.
The Quality Improvement (QI) Project (PAST 600 Capstone) is one of two major components of the capstone of the PA program. This component of the PAST 600 Capstone course provides students with clinical practice opportunities to synthesize practice based improvement knowledge and skills through participation in evaluation of practice based quality improvement projects and quality measures. The Capstone Quality Improvement evaluation project is conducted over the course of the year. The Comprehensive Examination (PAST 600) is the summative evaluation and the second of two major components of the capstone of the PA program. The purpose of the exam is to determine whether the student has been able to integrate knowledge and skills obtained from individual courses (didactic and clinical) into unified concepts and demonstrate the acquisition of the competencies needed for entry into clinical practice. Consisting of a written exam, oral exam and an OSCE, the Comprehensive Examination measures the learner’s knowledge, interpersonal skills, patient care skills and professionalism required to enter clinical practice. It is conducted within the final four months of the program. Prereq: Students must be in Physician Assistant Program.

SYBB Courses
SYBB 201R. Basic Statistics for Social and Life Sciences Using R Programming. 3 Units.
Designed for undergraduates in the social sciences and life sciences who need to use statistical techniques in their fields. Descriptive statistics, probability models, sampling distributions. Point and confidence interval estimation, hypothesis testing. Elementary regression and analysis of variance. Not for credit toward major or minor in Statistics. Students may earn credit for only one of the following courses: STAT 201, STAT 201R, ANTH 319, PSCL 282 or SYBB 201R. Offered as STAT 201R and SYBB 201R. Counts for CAS Quantitative Reasoning Requirement.

SYBB 311A. Survey of Bioinformatics: Technologies in Bioinformatics. 1 Unit.
SYBB 311A/411A is a 5-week course that introduces students to the high-throughput technologies used to collect data for bioinformatics research in the fields of genomics, proteomics, and metabolomics. In particular, we will focus on mass spectrometer-based proteomics, DNA and RNA sequencing, genotyping, protein microarrays, and mass spectrometry-based metabolomics. This is a lecture-based course that relies heavily on out-of-class readings. Graduate students will be expected to write a report and give an oral presentation at the end of the course. SYBB 311A/411A is part of the SYBB survey series which is composed of the following course sequence: (1) Technologies in Bioinformatics, (2) Data Integration in Bioinformatics, (3) Translational Bioinformatics, and (4) Programming for Bioinformatics. Each standalone section of this course series introduces students to an aspect of a bioinformatics project - from data collection (SYBB 311A/411A), to data integration (SYBB 311B/411B), to research applications (SYBB 311C/411C), with a fourth module (SYBB 311D/411D) introducing basic programming skills. Graduate students have the option of enrolling in all four courses or choosing the individual modules most relevant to their background and goals with the exception of SYBB 411D, which must be taken with SYBB 411A. Offered as SYBB 311A, BIOL 311A and SYBB 411A. Prereq: (BIOL 214 and BIOL 215) or BIOL 250. Coreq: SYBB 311B, SYBB 311C, and SYBB 311D.
SYBB 311B. Survey of Bioinformatics: Data Integration in Bioinformatics. 1 Unit.
SYBB 311B/411B is a five week course that surveys the conceptual models and tools used to analyze and interpret data collected by high-throughput technologies, providing an entry point for students new to the field of bioinformatics. The knowledge structures that we will cover include: biomedical ontologies, signaling pathways, and interaction networks. We will also cover tools for genome exploration and analysis. The SYBB survey series is composed of the following course sequence: (1) Technologies in Bioinformatics, (2) Data Integration in Bioinformatics, (3) Translational Bioinformatics, and (4) Programming for Bioinformatics. Each standalone section of this course series introduces students to an aspect of a bioinformatics project - from data collection (SYBB 311A/411A), to data integration (SYBB 311B/411B), to research applications (SYBB 311C/411C), with a fourth module (SYBB 311D/411D) introducing basic programming. Graduate students have the option of enrolling in all four courses or choosing the individual modules most relevant to their background and goals with the exception of SYBB 411D, which must be taken with SYBB 411A. Offered as SYBB 311B, BIOL 311B, and SYBB 411B. Prereq: (BIOL 214 and BIOL 215) or BIOL 250. Coreq: SYBB 311A, SYBB 311C, and SYBB 311D.

SYBB 311C. Survey of Bioinformatics: Translational Bioinformatics. 1 Unit.
SYBB 311C/411C is a longitudinal course that introduces students to the latest applications of bioinformatics, with a focus on translational research. Topics include: omic drug discovery, pharmacogenomics, microbiome analysis, and genomic medicine. The focus of this course is on illustrating how bioinformatic technologies can be paired with data integration tools for various applications in medicine. The course is organized as a weekly journal club, with instructors leading the discussion of recent literature in the field of bioinformatics. Students will be expected to complete readings beforehand; students will also work in teams to write weekly reports reviewing journal articles in the field. The SYBB survey series is composed of the following course sequence: (1) Technologies in Bioinformatics, (2) Data Integration in Bioinformatics, (3) Translational Bioinformatics, and (4) Programming for Bioinformatics. Each standalone section of this course series introduces students to an aspect of a bioinformatics project - from data collection (SYBB 311A/411A), to data integration (SYBB 311B/411B), to research applications (SYBB 311C/411C), with a fourth module (SYBB 311D/411D) introducing basic programming. Graduate students have the option of enrolling in all four courses or choosing the individual modules most relevant to their background and goals with the exception of SYBB 411D, which must be taken with SYBB 411A. Offered as SYBB 311B, BIOL 311B, and SYBB 411B. Prereq: (BIOL 214 and BIOL 215) or BIOL 250. Coreq: SYBB 311A, SYBB 311C, and SYBB 311D.

SYBB 312R. Basic Statistics for Engineering and Science Using R Programming. 3 Units.
For advanced undergraduate students in engineering, physical sciences, life sciences. Comprehensive introduction to probability models and statistical methods of analyzing data with the object of formulating statistical models and choosing appropriate methods for inference from experimental and observational data and for testing the model's validity. Balanced approach with equal emphasis on probability, fundamental concepts of statistics, point and interval estimation, hypothesis testing, analysis of variance, design of experiments, and regression modeling. Note: Credit given for only one (1) of STAT 312, STAT 312R, STAT 313, STAT 333, STAT 433 or SYBB 312R. Offered as STAT 312R and SYBB 312R. Prereq: MATH 122 or equivalent.

SYBB 319. Applied Probability and Stochastic Processes for Biology. 3 Units.
Applications of probability and stochastic processes to biological systems. Mathematical topics will include: introduction to discrete and continuous probability spaces (including numerical generation of pseudo random samples from specified probability distributions), Markov processes in discrete and continuous time with discrete and continuous sample spaces, point processes including homogeneous and inhomogeneous Poisson processes and Markov chains on graphs, and diffusion processes including Brownian motion and the Ornstein-Uhlenbeck process. Biological topics will be determined by the interests of the students and the instructor. Likely topics include: stochastic ion channels, molecular motors and stochastic ratchets, actin and tubulin polymerization, random walk models for neural spike trains, bacterial chemotaxis, signaling and genetic regulatory networks, and stochastic predator-prey dynamics. The emphasis will be on practical simulation and analysis of stochastic phenomena in biological systems. Numerical methods will be developed using a combination of MATLAB, the R statistical package, MCell, and/or URDME, at the discretion of the instructor. Student projects will comprise a major part of the course. Offered as BIOL 319, EECS 319, MATH 319, SYBB 319, BIOL 419, EBME 419, MATH 419, PHOL 419, and SYBB 419. Prereq: MATH 224 or MATH 223 and BIOL 300 or BIOL 306 and MATH 201 or MATH 307 or consent of instructor.

SYBB 322. Clinical Informatics at the Bedside and the Bench (Part II). 3 Units.
This course is part of a two semester series that provides student with an overview of the field of clinical informatics and its research applications. SYBB 422 focuses on the use of informatics in public health, epidemiology, and translational bioinformatics; topics include: pharmacosurveillance, comparative effectiveness research, and personalized medicine. Through lectures and in-depth readings of literature in the field, students will learn to approach population-level problems in medicine through the lens of "informatics", the science of information, with a focus on application over theory. Students will be required to use R (or another programming language) for data analysis assignments. Offered as SYBB 322 and SYBB 422. Prereq: SYBB 321.

SYBB 387. Undergraduate Research in Systems Biology. 1 - 3 Units.
This course provides students research experience in data science, proteomics, bioinformatics, and clinical informatics under the guidance of faculty affiliated with the Systems Biology and Bioinformatics program. Areas of research include production of big data at bench (cellular proteomics, structural proteomics, genomics, and interaction proteomics) and analysis of big data such as computational/statistical biology, bioinformatics tool development and clinical research informatics. A written report must be approved by the sponsor and submitted to the director of the Center for Proteomics and Bioinformatics before credit is granted.

SYBB 388. Undergraduate Research. 1 - 3 Units.
Guided laboratory research under the sponsorship of a biology faculty member. May be carried out within the biology department or in associated departments. Appropriate forms must be secured in the biology department office. A written report must be approved by the biology sponsor and submitted to the chairman of the biology department before credit is granted. Only 3 credit-hours may count towards the biology majors or minor. Offered as BIOL 388 and SYBB 388.
SYBB 388S. Undergraduate Research - SAGES Capstone. 3 Units.
Guided laboratory research under the sponsorship of a biology faculty member. May be carried out within the biology department or in associated departments. May be taken only one semester during the student's academic career. Appropriate forms must be secured in the biology department office. A written report must be approved by the biology sponsor and submitted to the chairman of the biology department before credit is granted. A public presentation is required. Offered as BIOL 388S and SYBB 388S. Counts as SAGES Senior Capstone.

SYBB 411A. Survey of Bioinformatics: Technologies in Bioinformatics. 1 Unit.
SYBB 311A/411A is a 5-week course that introduces students to the high-throughput technologies used to collect data for bioinformatics research in the fields of genomics, proteomics, and metabolomics. In particular, we will focus on mass spectrometer-based proteomics, DNA and RNA sequencing, genotyping, protein microarrays, and mass spectrometry-based metabolomics. This is a lecture-based course that relies heavily on out-of-class readings. Graduate students will be expected to write a report and give an oral presentation at the end of the course. SYBB 311A/411A is part of the SYBB survey series which is composed of the following course sequence: (1) Technologies in Bioinformatics, (2) Data Integration in Bioinformatics, (3) Translational Bioinformatics, and (4) Programming for Bioinformatics. Each standalone section of this course series introduces students to an aspect of a bioinformatics project - from data collection (SYBB 311A/411A), to data integration (SYBB 311B/411B), to research applications (SYBB 311C/411C), with a fourth module (SYBB 311D/411D) introducing basic programming. Graduate students have the option of enrolling in all four courses or choosing the individual modules most relevant to their background and goals with the exception of SYBB 411D, which must be taken with SYBB 411A. Offered as SYBB 311A, BIOL 311A and SYBB 411A. Prereq: Graduate Standing or Requisites Not Met Permission.

SYBB 411B. Survey of Bioinformatics: Data Integration in Bioinformatics. 1 Unit.
SYBB 311B/411B is a five-week course that surveys the conceptual models and tools used to analyze and interpret data collected by high-throughput technologies, providing an entry point for students new to the field of bioinformatics. The knowledge structures that we will cover include: biomedical ontologies, signaling pathways, and interaction networks. We will also cover tools for genome exploration and analysis. The SYBB survey series is composed of the following course sequence: (1) Technologies in Bioinformatics, (2) Data Integration in Bioinformatics, (3) Translational Bioinformatics, and (4) Programming for Bioinformatics. Each standalone section of this course series introduces students to an aspect of a bioinformatics project - from data collection (SYBB 311A/411A), to data integration (SYBB 311B/411B), to research applications (SYBB 311C/411C), with a fourth module (SYBB 311D/411D) introducing basic programming. Graduate students have the option of enrolling in all four courses or choosing the individual modules most relevant to their background and goals with the exception of SYBB 411D, which must be taken with SYBB 411A. Offered as SYBB 311B, BIOL 311B, and SYBB 411B. Prereq: Graduate Standing or Requisites Not Met Permission.

SYBB 411C. Survey of Bioinformatics: Translational Bioinformatics. 1 Unit.
SYBB 311C/411C is a longitudinal course that introduces students to the latest applications of bioinformatics, with a focus on translational research. Topics include: ‘omic drug discovery, pharmacogenomics, microbiome analysis, and genomic medicine. The focus of this course is on illustrating how bioinformatic technologies can be paired with data integration tools for various applications in medicine. The course is organized as a weekly journal club, with instructors leading the discussion of recent literature in the field of bioinformatics. Students will be expected to complete readings beforehand; students will also work in teams to write weekly reports reviewing journal articles in the field. The SYBB survey series is composed of the following course sequence: (1) Technologies in Bioinformatics, (2) Data Integration in Bioinformatics, (3) Translational Bioinformatics, and (4) Programming for Bioinformatics. Each standalone section of this course series introduces students to an aspect of a bioinformatics project - from data collection (SYBB 311A/411A), to data integration (SYBB 311B/411B), to research applications (SYBB 311C/411C), with a fourth module (SYBB 311D/411D) introducing basic programming. Graduate students have the option of enrolling in all four courses or choosing the individual modules most relevant to their background and goals with the exception of SYBB 411D, which must be taken with SYBB 411A. Offered as SYBB 311C, BIOL 311C and SYBB 411C. Prereq: Graduate Standing or Requisites Not Met Permission.

SYBB 411D. Survey of Bioinformatics: Programming for Bioinformatics. 1 Unit.
SYBB 311D/411D is a 3 credit-course that will introduce students to bioinformatics analysis and basic programming. This course is designed for those with little or no prior programming experience. However, advanced programmers can still learn bioinformatics pipelines and software packages to conduct research. Students will gain hands-on experience working with bioinformatics software, R packages and functions designed for bioinformatics applications. Programming for Bioinformatics course mainly focuses on R (rproject.org), and introduces students to basic programming in R, what packages are available, and teaches an introductory hands-on experience working with R by walking through the students in analyzing large -omics datasets. At the end of the class, the students are assessed with a small-scale project, where they analyze a publicly available dataset and produce a short report. This is an active learning class where adaptive learning and active learning teaching practices are used. Adaptive learning provide personalized learning, where efficient, effective, and customized learning paths to engage each student is offered. Recommended Preparation: BIOL 326 (Genetics) or equivalent Prereq: (SYBB 411A and Graduate Standing) or Requisites Not Met Permission.
SYBB 419. Applied Probability and Stochastic Processes for Biology. 3 Units.
Applications of probability and stochastic processes to biological systems. Mathematical topics will include: introduction to discrete and continuous probability spaces (including numerical generation of pseudo random samples from specified probability distributions), Markov processes in discrete and continuous time with discrete and continuous sample spaces, point processes including homogeneous and inhomogeneous Poisson processes and Markov chains on graphs, and diffusion processes including Brownian motion and the Ornstein-Uhlenbeck process. Biological topics will be determined by the interests of the students and the instructor. Likely topics include: stochastic ion channels, molecular motors and stochastic ratchets, actin and tubulin polymerization, random walk models for neural spike trains, bacterial chemotaxis, signaling and genetic regulatory networks, and stochastic predator-prey dynamics. The emphasis will be on practical simulation and analysis of stochastic phenomena in biological systems. Numerical methods will be developed using a combination of MATLAB, the R statistical package, MCell, and/or URDME, at the discretion of the instructor. Student projects will comprise a major part of the course. Offered as BIOL 319, EECS 319, MATH 319, SYBB 319, BIOL 419, EBME 419, MATH 419, PHOL 419, and SYBB 419.

SYBB 421. Fundamentals of Clinical Information Systems. 3 Units.
Technology has played a significant role in the evolution of medical science and treatment. While we often think about progress in terms of the practical application of, say, imaging to the diagnosis and monitoring of disease, technology is increasingly expected to improve the organization and delivery of healthcare services, too. Information technology plays a key role in the transformation of administrative support systems (finance and administration), clinical information systems (information to support patient care), and decision support systems (managerial decision-making). This introductory graduate course provides the student with the opportunity to gain insight and situational experience with clinical information systems (CIS). Often considered synonymous with electronic medical records, the “art” of CIS more fundamentally examines the effective use of data and information technology to assist in the migration away from paper-based systems and improve organizational performance. In this course we examine clinical information systems in the context of (A) operational and strategic information needs, (B) information technology and analytic tools for workflow design, and (C) subsequent implementation of clinical information systems in patient care. Legal and ethical issues are explored. The student learns the process of “plan, design, implement” through hands-on applications to select CIS problems, while at the same time gaining insights and understanding of the impacts placed on patients and health care providers. Offered as EBME 473, IIME 473 and SYBB 421.

SYBB 422. Clinical Informatics at the Bedside and the Bench (Part II). 3 Units.
This course is part of a two semester series that provides student with an overview of the field of clinical informatics and its research applications. SYBB 422 focuses on the use of informatics in public health, epidemiology, and translational bioinformatics; topics include: pharmacosurveillance, comparative effectiveness research, and personalized medicine. Through lectures and in-depth readings of literature in the field, students will learn to approach population-level problems in medicine through the lens of “informatics”, the science of information, with a focus on application over theory. Students will be required to use R (or another programming language) for data analysis assignments. Offered as SYBB 322 and SYBB 422. Prereq: SYBB 321.

SYBB 437. Laboratory Course in Proteomics. 3 Units.
SYBB 437 is designed to train students, postdoctoral fellows, and senior investigators in advanced methods in quantitative proteomics in the context of investigating the effects of pH on protein expression in the model organism E.coli. This intensive laboratory class is a 3-credit laboratory course and will be offered for a scheduled three hours time block once each week. In this course, we will cover topics in proteomics including protein sample preparation, total protein quantification, gel based separation and quantification methods, quantitative high throughput mass spectrometry and data analysis methods for examining these high throughput data. Students enrolled in SYBB 437 will be expected to turn in weekly lab reports summarizing their findings on each of the lab topics and will write two project reports at the end of labs 9 and 14 interpreting and summarizing the results obtained.

SYBB 459. Bioinformatics for Systems Biology. 3 Units.

SYBB 472. BioDesign. 3 Units.
Medical device innovations that would have been considered science fiction a decade ago are already producing new standards of patient care. Innovation leading to lower cost of care, minimally invasive procedures and shorter recovery times is equally important to healthcare business leaders, educators, clinicians, and policy-makers. Innovation is a driver of regional economic development and wealth creation in organizational units ranging in size from the start-up to the Fortune 500 companies. In a broader context, the pace of translational research leading to product and service innovation is highly interdisciplinary, thus, new products and services result from team efforts, marked by a systematic, structured approach to bringing new medical technologies to market and impacting patient care. In this course we examine medical technology innovations in the context of (A) addressing unmet clinical needs, (B) the process of inventing new medical devices and instruments, and (C) subsequent implementation of these advances in patient care. In short, the student learns the process of “identify, invent, implement” in the field of BioDesign. Offered as EBME 472, IIME 472 and SYBB 472.
SYBB 501. Biomedical Informatics and Systems Biology Journal Club. 0 Unit.
The purpose of this journal club is to provide an opportunity for students to critically discuss a wide variety of informatics and systems biology topics and to present their works in progress. A wide range of informatics and systems theory approaches to conducting biomedical research will be accomplished through the guided selection of articles to be discussed during the club. Potential articles will be chosen from scientific journals including: Nature, Science, BMC Bioinformatics, BMC Systems Biology, the Journal of Bioinformatics and Computational Biology, and the Journal for Biomedical Informatics. During journal presentations, trainees will be expected to lead a discussion of the article that leads to the critical evaluation of the merit of the article and its implication for biomedical informatics and systems biology. The Journal Club will also provide a forum for trainees to present proposed, on-going, and completed research. Trainees will attend and participate in the Journal Club throughout their tenure in the program. The Journal Club will meet twice a month and each trainee will be required to present one journal article and one research in progress presentation yearly. The Journal Club will also include sessions where issues related to the responsible conduct of research are reviewed and extended.

SYBB 502. Clinical Informatics Journal Club. 0 Unit.
The Clinical Informatics Journal Club serves as a forum for students to present current research in the field of clinical informatics. Students are required to co-register for SYBB 421 or SYBB 422; weekly lectures in SYBB 421/422 will introduce topics for discussion in the journal club Coreq: SYBB 421 or SYBB 422

SYBB 528. Contemporary Approaches to Drug Discovery. 3 Units.
This course is designed to teach the students how lead compounds are discovered, optimized, and processed through clinical trials for FDA approval. Topics will include: medicinal chemistry, parallel synthesis, drug delivery and devices, drug administration and pharmacokinetics, and clinical trials. A special emphasis will be placed on describing how structural biology is used for in silico screening and lead optimization. This component will include hands-on experience in using sophisticated drug discovery software to conduct in silico screening and the development of drug libraries. Each student will conduct a course project involving in silico screening and lead optimization against known drug targets, followed by the drafting of an inventory disclosure. Another important aspect of this course will be inclusion of guest lectures by industrial leaders who describe examples of success stories of drug development. Offered as BIOC 528, PHOL 528, PHRM 528, and SYBB 528

SYBB 535. Independent Study in Biomedical Informatics. 1 - 3 Units.
For students pursuing MS or PhD degrees in SYBB, this course provides the opportunity for in-depth exposure to a subfield of systems biology and/or biomedical informatics. Degree-seeking students can enroll in this course prior to beginning 601 or 701 research. In conjunction with their proposed research advisor, enrolled students will undertake a self-directed study of a subfield of systems biology and/or biomedical informatics pertinent to their research area. The selected readings may also represent topics not covered by the student’s coursework. The student’s performance will be evaluated in an end-of-semester presentation or report at their advisor’s discretion.

SYBB 555. Current Proteomics and Bioinformatics. 3 Units.
This course is designed for graduate students across the university who wish to acquire a better understanding of fundamental concepts of proteomics and related bioinformatics as well as hands-on experience with techniques used in current proteomics. Lectures will cover protein/peptide separation techniques, protein mass spectrometry, and biological applications which include quantitative proteomics, protein modification proteomics, interaction proteomics, structural genomics and structural proteomics. Also, it will cover experimental design, basic statistical concept and issues related to high-dimensional data from high-throughput technologies. Laboratory portion will involve practice on the separation of proteins by two-dimensional gel electrophoresis, molecular weight measurement of proteins by mass spectrometry, peptide structural characterization by tandem mass spectrometry. It will also include bioinformatics tools for protein identification and protein-protein interaction networks. The instructors’ research topics will also be discussed. Recommended preparation: CBIO 453, CBIO 455, and PQHS 431. Offered as PHRM 555 and SYBB 555

SYBB 600. Special Topics. 1 - 18 Units.
Offered as EECS 600 and SYBB 600.

SYBB 601. Systems Biology and Bioinformatics Research. 1 - 18 Units.
(Credit as arranged.)

SYBB 651. Thesis M.S.. 1 - 18 Units.
(Credit as arranged.)

SYBB 701. Dissertation Ph.D.. 1 - 9 Units.
(Credit as arranged.) Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.

Department of Genetics and Genome Sciences

Biomedical Research Building
http://genetics.case.edu/
Phone: 216.368.3431
Anthony Wynshaw-Boris, MD, PhD, Chair
ajw168@case.edu
Clarice Young (clarice.young@case.edu), Coordinator

The Department of Genetics & Genome Sciences embraces a unified program devoted to outstanding research and teaching in all areas of genetics, with particular emphases on genomics, human genetics and animal models, development, and chromosome structure and function. Faculty conduct internationally recognized research programs in each of these areas. They also are committed to training the next generations of leading genetics researchers. The department has three special programs: the Center for Human Genetics, the Center for Computational Genomics and the Genomic Medicine Institute (descriptions appear later in this narrative).

Programs offered lead to the PhD, combined MD/PhD degree, MS with a special emphasis in genetic counseling, or MS/MA dual degree in genetic counseling and bioethics. In addition to required and elective coursework, students participate in ongoing journal clubs, research seminars, and grand rounds. A program of departmental and interdepartmental seminars by outstanding visiting scientists provides regular exposure to a broad range of current research in genetics.

Applications to the PhD program in Genetics and Genome Sciences are through the Biomedical Sciences Training Program, which provides access to most of the biomedical science PhD programs at CWRU during
the first semester. Students who wish to join Genetics and Genome Sciences directly should apply to the BSTP by selecting "Biomedical Sciences Training Program" as their Academic Program in the "Enrollment Information" section. Then, select Genetics and Genome Sciences as a Priority Program of Interest (PPI) in the Supplemental portion of the BSTP application form. Selecting the PPI option will identify you as a BSTP applicant who seeks admission only to the Genetics and Genome Sciences PhD program. Students interested in pursuing the combined MD/PhD program are admitted through the Medical Scientist Training Program (MSTP; please see separate listing in this publication). Those students interested in careers in genetic counseling apply directly to the Genetic Counseling Training Program, via the common Graduate Studies application (https://case.edu/gradstudies/prospective-students/admissions-information/graduate-program-applications).

The Center for Human Genetics is an integral part of the Department of Genetics and consists of both research and clinical laboratories involved in human and clinical genetics. This center supports research and clinical programs focusing on the molecular basis of inherited disease, human genetic disease mapping, and the genetic dissection of complex disease, as well as providing clinical care and training for postdoctoral fellows and genetic counseling students.

The Center for Computational Genomics is an interdisciplinary research and training program involving faculty in the Department of Population and Quantitative Health Sciences in the School of Medicine and in the Department of Electrical Engineering and Computer Science in the School of Engineering. The center provides opportunities to combine research in genetics, genomics, epidemiology, biostatistics, computer science, and systems biology.

The Genomic Medicine Institute is a joint program involving the Cleveland Clinic Foundation and Case. Its emphasis involves translating discoveries in basic and clinical research to clinical practice. The mission is to exploit the discoveries in genomics, epidemiology, ethics, pharmacology, genetics, and physiology to revolutionize the practice of medicine.

MS Genetic Counseling (plan B)

The Genetic Counseling Training Program is a 40 credit hour program that spans four academic semesters and an intervening summer. Acquisition and mastery of clinical competencies are reflected in the Program's didactic coursework, clinical rotations, research process and supplementary experiences. The sequence of medical genetics courses and genetic counseling courses are designed to introduce concepts regarding medical genetics, general medical practice, counseling theory and clinical skills such that they build from beginning skills to a more advanced skill set in the order needed for clinical experiences. The goal of the program is to provide students with the knowledge and clinical skills to function as competent and empathetic genetic counselors in a wide range of settings and roles. All of these activities enable successful graduates to meet the clinical competencies as outlined by the Accreditation Council for Genetic Counseling (ACGC) and successfully pass the American Board of Genetic Counseling certification examination (ABGC).

Experiential professional training occurs concurrently with formal coursework and over the summer between years one and two. Clinical settings include a variety of clinics and inpatient services at the Center for Human Genetics at University Hospitals Cleveland Medical Center, the Genomic Medicine Institute at the Cleveland Clinic, Genetic Services at MetroHealth Medical Center and Medical Genetics at Akron Children's Hospital. Students also rotate through the Center for Human Genetics Diagnostic Laboratory which includes experiences in cytogenetics, molecular genetics, cancer cytogenetics and maternal serum screening. Student participation in these and other departmental professional and educational activities such as lectures, seminars, journal club, grand rounds, genetics conferences, and various research, counseling and patient management conferences is expected throughout the program. Coursework and clinical experiences are designed to develop the competencies expected by the ACGC.

The First Year

The major activities during the first year consist of course work (in the plan of study below), clinical observations and defining a research question and preparing a research proposal. Observational clinical rotations begin early in October with students observing in prenatal genetics, cancer genetics, and general genetics clinics at the program's three affiliated institutions. Additionally, students meet several times over the fall semester to discuss the research process, potential topics, development of a research question and are introduced to the faculty's research areas of interest.

In addition to continuing clinical observational rotations and research, students continue with course work including an introduction to research methods and more in-depth theory and practice in the psychosocial aspects of counseling during spring semester.

During the intervening summer of years 1 and 2, students begin clinical rotations at the Medical Genetics Division at Akron Children's Hospital to gain exposure in various clinical settings including prenatal genetics, cancer genetics, and general genetics clinics at the program's three affiliated institutions. Additionally, students meet several times over the fall semester to discuss the research process, potential topics, development of a research question and are introduced to the faculty's research areas of interest.

In addition to continuing clinical observational rotations and research, students continue with course work including an introduction to research methods and more in-depth theory and practice in the psychosocial aspects of counseling during spring semester.

During the intervening summer of years 1 and 2, students begin clinical rotations at the Medical Genetics Division at Akron Children's Hospital to gain exposure in various clinical settings including prenatal genetics, cancer genetics, and general genetics clinics at the program's three affiliated institutions. Additionally, students meet several times over the fall semester to discuss the research process, potential topics, development of a research question and are introduced to the faculty's research areas of interest.

The Second Year

The major focus of the second year is continued clinical experiences, research and taking the comprehensive written and oral examinations. Students also complete their coursework, taking one course each semester.

At the beginning of spring semester in January, the students sit for the written comprehensive examination (covering the didactic and clinical genetic counseling material covered to date in the program) and the oral section of the examination, which is given shortly after the written portion. Both examinations are intended to allow students to expand on their knowledge base of human and medical genetics and genetic counseling. Students are expected to pass both sections of the examination in order to meet graduation requirements by the Program. The written portion of the examination is patterned after the national certification examination given by the American Board of Genetic Counseling.

Students continue to work on data collection and analyses for their research projects, which should result in a publishable document. They meet with the Program Director periodically to review their progress as well as with their research committee and of course, are meeting with their mentor on a more frequent basis. During the fall semester of the second year, the students also attend the National Society of Genetic Counselors annual education meeting. This provides an opportunity for students to meet genetic counselors from across the country, to attend scientific sessions to continue adding to their knowledge base and to meet and discuss job opportunities with prospective employers. Successful completion of the program fulfills the curricular and clinical
training requirements for eligibility to sit for the certification examination given by the ABGC.

The sequence of courses for students is as follows:

MS Plan of Study

<table>
<thead>
<tr>
<th>First Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensive: Medical Terminology (1 week)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Embryology (online course)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Medical Genetics: Molecular & Cytogenetics (GENE 524)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles and Practices of Genetic Counseling (GENE 528)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Medical Genetics: Quantitative Genetics & Genomics (GENE 526) or Advanced Medical Genetics: Biochemical Genetics (GENE 527)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct Practice Generalist Methods & Skills (SASS 477)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intensive: Human Development (1 week)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychosocial Issues in Genetic Counseling (GENE 529)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Medical Genetics: Clinical Genetics (GENE 525)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer Genetics (GENE 531)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research in Genetics (GENE 601)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Practicum in Genetic Counseling (GENE 532)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>10</td>
<td>9</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Medical Genetics: Biochemical Genetics (GENE 527) or Advanced Medical Genetics: Quantitative Genetics & Genomics (GENE 526)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Practicum in Genetic Counseling (GENE 532)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research in Genetics (GENE 601)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethical Issues in Genetics/Genomics (BETH 412)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Practicum in Genetic Counseling (GENE 532)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research in Genetics (GENE 601)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Total Units in Sequence: 40

MS/MA in Genetic Counseling and Bioethics (plan B)

The Departments of Genetics & Genome Sciences and Bioethics offer a dual degree program between the Masters in Genetic Counseling and the Masters in Bioethics Programs. The dual degree program provides a comprehensive curriculum integrating foundational principles of genetics and ethics. The goal of the program is to train Genetic Counselors who wish to apply additional Bioethics expertise into their clinical practice and/or research.

The dual degree program allows graduates to engage in both contemplative analysis and application of knowledge in the counseling of patients and should allow graduates to be more prepared to participate in the ongoing national dialogue about the ethical, legal, and social implications of advances in genomic technology as well as research within their home institutions and with other counselors nationwide regarding issues of new genomic testing technology, concerns about genetic services, and issues related to genetic discrimination, privacy, and the return of genetic and genomic results.

The curriculum for the Dual Genetic Counseling/Bioethics Degree consists of 62 credit hours to be completed in 2.5 years. Students enrolled in the dual degree program will spend their first year taking courses entirely within the Genetic Counseling Program and then will spread out their Bioethics coursework over the next 1.5 years while continuing with required coursework and clinical rotations in the genetic counseling program.

In addition to both a written and oral comprehensive examination as part of the Genetic Counseling Training Program, the dual degree requires a research project be carried out for the completion of both degrees. For the dual degree, students will be required to choose a research project that includes ethical, legal, or social issues of genetic counseling practice, clinical genetics or genomics, or genetic research. Students will also be required to include at least one Bioethics Faculty member on their Research Project Committee.

Students who would like to enroll in the dual degree program will apply and be admitted into each program separately. While admissions committees for each program will communicate with each other regarding applicants, each admissions committee will decide independently about the suitability of the applicant to their program.

Once students have been admitted, the Director of the Genetic Counseling Training Program and the Director of the MA Program in Bioethics will act as student co-advisors for each of the two programs individually as well as collaboratively - meeting monthly to assess student progress, address any student or faculty concerns, and assure that student progress in each of the programs, and their overlapping components, are being achieved.

MS/MA Plan of Study

<table>
<thead>
<tr>
<th>First Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Medical Genetics: Molecular & Cytogenetics (GENE 524)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Medical Genetics: Quantitative Genetics & Genomics (GENE 526)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles and Practices of Genetic Counseling (GENE 528)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Total Units in Sequence: | 40 |
Direct Practice Generalist Methods & Skills (SASS 477) 3
Psychosocial Issues in Genetic Counseling (GENE 529) 3
Advanced Medical Genetics: Clinical Genetics (GENE 525) 2
Cancer Genetics (GENE 531) 2
Research in Genetics (GENE 601) 2
Clinical Practicum in Genetic Counseling (GENE 532) 3
Year Total: 10 9 3

Second Year

Clinical Practicum in Genetic Counseling (GENE 532) 4
Advanced Medical Genetics: Biochemical Genetics (GENE 527) 2
Foundations in Bioethics I (BETH 401) 6
Clinical Practicum in Genetic Counseling (GENE 532) 4
Ethical Issues in Genetics/Genomics (BETH 412) 3
Foundations in Bioethics II (BETH 402) 6
Research in Genetics (GENE 601) 3
Year Total: 12 13 3

Third Year

Research in Genetics (GENE 601) 3
Clinical Ethics Rotation (BETH 405) 3
BETH Elective 3
BETH Elective 3
Year Total: 12

Total Units in Sequence: 62

PhD Genetics

Admissions to the Genetics program may be obtained through the integrated Biomedical Sciences Training Program, by direct admission to the department or via the MSTP program. The following summary pertains to most incoming PhD students, regardless of the route through which they enter the program. Exceptions are occasionally made to reflect previous educational experiences (e.g., a prior MS degree).

The First Year

Course work, rotations in at least three laboratories, and participation in seminars, journal clubs, and research meetings are the major activities of first year students. During the Fall term, most students take core courses in Cell and Molecular Biology (CBIO 453 Cell Biology I/CBIO 455 Molecular Biology I) that are offered for Biomedical Sciences Training Program departments. Laboratory rotations begin in early July and the choice of a thesis advisor is usually made at the end of December (see below for more details on Choosing an Advisor).

During the Spring term, PhD students take the core Advanced Eukaryotic Genetics course sequence (GENE 500 Advanced Eukaryotic Genetics I/GENE 504 Advanced Eukaryotic Genetics II), which is followed by a written comprehensive examination in late May or early June. This core course is designed to acquaint students with fundamental principles and methodologies used in modern genetic research. The focus is on similarities and differences between different model organisms used in genetics research. Also during the Spring term and continuing into the Summer, students begin formulating a doctoral research proposal.

The Second Year and Beyond

During the second year, students participate in a Proposal Writing Workshop (GENE 511 Grant Writing and Reviewing Skills Workshop) and take other advanced elective courses based on the academic background and interest of the student. The remaining elective credits can be satisfied by choosing from the courses offered by departmental faculty or participating training faculty from other departments (see List of Courses below). At the end of the second academic year, students must pass an oral proposal defense in order to advance to candidacy for the PhD degree. An outline of the typical course of study is shown below.

PhD Genetics, Plan of Study Sample

First Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology I (CBIO 453/455)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Biology I (CBIO 455)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Complete 3 lab rotations (July 1 to Dec 15)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choose Ph.D. mentor (end December)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research in Genetics (GENE 601)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBIO 456 Nobel Prize Biomedical Research</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBMS 450 Biostatistics Rigor and Reproducibility</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Eukaryotic Genetics I (GENE 500/504)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph.D. Comprehensive exam (end of May or early June)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Advanced Eukaryotic Genetics II (GENE 504)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Research in Genetics (GENE 601)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Program Directors meet with students to discuss status, mentor; students begin assembling PhD thesis committee</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grant Writing and Reviewing Skills Workshop (GENE 511)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Elective course (Genetics or other)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Research in Genetics (GENE 601)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Elective course (Genetics or other)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Research in Genetics (GENE 601)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Oral Defense of Thesis Proposal (to be completed by June 1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Elective course (Genetics or other)
Year Total: 9 9

Third Year

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>Either semester 1 elective course (Genetics or other)</td>
</tr>
<tr>
<td>Dissertation Ph.D. (GENE 701)</td>
</tr>
<tr>
<td>Dissertation Ph.D. (GENE 701)</td>
</tr>
<tr>
<td>Year Total:</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>Dissertation Ph.D. (GENE 701)</td>
</tr>
<tr>
<td>Dissertation Ph.D. (GENE 701)</td>
</tr>
<tr>
<td>Year Total:</td>
</tr>
</tbody>
</table>

Fifth Year

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>Dissertation Ph.D. (GENE 701)</td>
</tr>
<tr>
<td>Dissertation Ph.D. (GENE 701)</td>
</tr>
<tr>
<td>Year Total:</td>
</tr>
</tbody>
</table>

Total Units in Sequence: 54

Please also see Graduate Studies Academic Requirements for Doctoral Degrees (http://bulletin.case.edu/schoolofgraduatestudies/academicrequirements).

Other Requirements

- Students meet twice per year with Thesis Committee
- Students meet once per year with Genetics Graduate Education Committee
- Genetics Student Seminar (weekly attendance, yearly presentation)
- Genetics Journal Club (weekly attendance, yearly presentation in spring semester)
- Genetics Retreat (yearly participation, organized by students)
- Two first-author, peer-reviewed publications

Courses

BETH 412. Ethical Issues in Genetics/Genomics. 3 Units.
This course is designed to familiarize graduate students with the major controversies over the generation and use of new human genetic information. Topics will include the spread of predictive genetic testing, prenatal diagnosis, genetic discrimination, human genetic variation research, eugenics, genetic counseling, and the limits of human gene therapy. The course will be conducted as a seminar, involving discussions of readings, guest speakers, and student presentations.

GENE 367. Commercialization and Intellectual Property Management. 3 Units.
This interdisciplinary course covers a variety of topics, including principles of intellectual property and intellectual property management, business strategies and modeling relevant to the creation of start-up companies and exploitation of IP rights as they relate to biomedical-related inventions. The goal of this course is to address issues relating to the commercialization of biomedical-related inventions by exposing law students, MBA students, and Ph.D. candidates (in genetics and proteomics) to the challenges and opportunities encountered when attempting to develop biomedical intellectual property from the point of early discovery to the clinic and market. Specifically, this course seeks to provide students with the ability to value a given technological advance or invention holistically, focusing on issues that extend beyond scientific efficacy and include patient and practitioner value propositions, legal and intellectual property protection, business modeling, potential market impacts, market competition, and ethical, social, and healthcare practitioner acceptance. During this course, law students, MBA students, and Ph.D. candidates in genomics and proteomics will work in teams of five (two laws students, two MBA students and one Ph.D. candidate), focusing on issues of commercialization and IP management of biomedical-related inventions. The instructors will be drawn from the law school, business school, and technology-transfer office. Please visit the following website for more information: fusioninnovate.com. Offered as LAWS 5341, MGMT 467, GENE 367, GENE 467, EBME 467 and EECS 467.

GENE 451. A Data-Driven Introduction to Genomics and Human Health. 3 Units.
This course introduces the foundational concepts of genomics and genetic epidemiology through four key principles: 1) Teaching students how to query relational databases using Structure Query Language (SQL); 2) Exposing students to the most current data used in genomics and bioinformatics research, providing a quantitative understanding of biological concepts; 3) Integrating newly learned concepts with prior ones to discover new relationships among biological concepts; and 4) providing historical context to how and why data were generated and stored in the way they were, and how this gave rise to modern concepts in genomics. Offered as PQHS 451, GENE 451, and MPHP 451.
GENE 467. Commercialization and Intellectual Property Management. 3 Units.
This interdisciplinary course covers a variety of topics, including principles of intellectual property and intellectual property management, business strategies and modeling relevant to the creation of start-up companies and exploitation of IP rights as they relate to biomedical-related inventions. The goal of this course is to address issues relating to the commercialization of biomedical-related inventions by exposing law students, MBA students, and Ph.D. candidates (in genetics and proteomics) to the challenges and opportunities encountered when attempting to develop biomedical intellectual property from the point of early discovery to the clinic and market. Specifically, this course seeks to provide students with the ability to value a given technological advance or invention holistically, focusing on issues that extend beyond scientific efficacy and include patient and practitioner value propositions, legal and intellectual property protection, business modeling, potential market impacts, market competition, and ethical, social, and healthcare practitioner acceptance. During this course, law students, MBA students, and Ph.D. candidates in genomics and proteomics will work in teams of five (two laws students, two MBA students and one Ph.D. candidate), focusing on issues of commercialization and IP management of biomedical-related inventions. The instructors will be drawn from the law school, business school, and technology-transfer office. Please visit the following website for more information: fusioninnovate.com. Offered as LAWS 5341, MGMT 467, GENE 367, GENE 467, EBME 467 and EECS 467.

GENE 488. Yeast Genetics and Cell Biology. 3 Units.
This seminar course provides an introduction to the genetics and molecular biology of the yeasts S. cerevisiae and S. pombe by a discussion of current literature focusing primarily on topics in yeast cell biology. Students are first introduced to the tools of molecular genetics and special features of yeasts that make them important model eukaryotic organisms. Some selected topics include cell polarity, cell cycle, secretory pathways, vesicular and nuclear/cytoplasmic transport, mitochondrial import and biogenesis, chromosome segregation, cytoskeleton, mating response and signal transduction. Offered as CLBY 488, GENE 488, MBIO 488, and PATH 488.

GENE 500. Advanced Eukaryotic Genetics I. 3 Units.
Fundamental principles of modern genetics; transmission, recombination, structure and function of the genetic material in eukaryotes, dosage compensation, behavior and consequences of chromosomal abnormalities, mapping and isolation of mutations, gene complementation and genetic interactions. Recommended preparation: BIOL 362.

GENE 503. Readings and Discussions in Genetics. 0 - 3 Units.
(Credit as arranged.) In-depth consideration of special selected topics through critical evaluation of classic and current literature.

GENE 504. Advanced Eukaryotic Genetics II. 3 Units.
Fundamental principles of modern genetics: population and quantitative genetics, dissection of genome organization and function, transgenics, developmental genetics, genetic strategies for dissecting complex pathways in organisms ranging from Drosophila and C. elegans to mouse and human. Recommended preparation: GENE 500 or permission of instructor.

GENE 505. Genetics Journal Club. 1 Unit.
Genetics Journal Club is a graduate level course designed to facilitate discussion of topics in Genetics. Students choose “hot” papers in Genetics and present them to their peers. Group presentations are designed to encourage audience participation. The intent of this class is to expose students to cutting edge topics in Genetics and to instill teaching and leadership skills.

GENE 511. Grant Writing and Reviewing Skills Workshop. 3 Units.
This is an introductory graduate course in grant writing and reviewing skills. During this course each student will write a research grant on a topic of his or her choice. Proposals may form the basis for the written component of the preliminary examination in the Genetics Department. Students will also participate in editing and reviewing the proposals of their classmates. Prereq: GENE 500 and GENE 504 or consent of instructor.

GENE 524. Advanced Medical Genetics: Molecular & Cytogenetics. 2 - 3 Units.
This course provides an in-depth forum for discussion of fundamental principles regarding clinical cytogenetics and molecular genetics and their relevance to medical genetics, genomics and genetic counseling. Following a historical overview, topics include a discussion of numerical and structural aberrations, sex chromosome abnormalities, issues regarding population cytogenetics, clinical relevance of such findings as marker chromosomes, mosaicism, contiguous gene deletions and uniparental disomy. The course will cover principles of molecular genetics including structure, function and regulations of genes (DNA, RNA, proteins), genetic variation, inheritance patterns and both cytogenetic and molecular laboratory techniques (fluorescence in situ hybridization, micro-array, SNP analyses, sequencing) in the clinical laboratory. Students who register for 3.00 credit hours are required to do an additional paper.

GENE 525. Advanced Medical Genetics: Clinical Genetics. 2 - 3 Units.
Fundamental principles regarding congenital malformations, dysmorphology and syndromes. Discussion of a number of genetic disorders from a systems approach: CNS malformations, neurodegenerative disorders, craniofacial disorders, skeletal dysplasias, connective tissue disorders, hereditary cancer syndromes, etc. Discussions also include diagnosis, etiology, genetics, prognosis and management.

GENE 526. Advanced Medical Genetics: Quantitative Genetics & Genomics. 2 - 3 Units.
The purpose of this course is twofold: first, to provide a foundation in quantitative genetics and second, to focus on genomic approaches and technologies which have greatly expanded our understanding of not only rare genetic disorders but common ones as well. We will cover concepts related to risk assessment and calculation and its application to medical genetics including principles and application of Hardy Weinberg equilibrium as well as applying Bayes’ Theorem as a mechanism to refine risk assessment based on data specific to a patient. We will also focus on understanding the clinical implications of the interpretation of next generation sequencing results, identify limitations of genomic technologies, and practice curation / annotation and interpretation of genomic testing results. In addition, we will discuss resources and bioinformatics tools including national databases and clinical labs to aid in the interpretation of genomic test results including variants of uncertain significance. Students who register for 3.00 credit hours are required to do an additional paper.

GENE 527. Advanced Medical Genetics: Biochemical Genetics. 2 - 3 Units.
Fundamental principles of metabolic testing; amino acid disorders; organic acid disorders; carbohydrate disorders; peroxisomal disorders; mitochondrial disorders; etc. Discussion of screening principles and newborn screening as well as approaches to diagnosis, management and therapy for metabolic diseases.
GENE 528. Principles and Practices of Genetic Counseling. 3 Units.
Fundamental principles needed for the practicing genetic counselor. Topics include skills in obtaining histories (prenatal, perinatal, medical, developmental, psychosocial and family); pedigree construction and analysis, physical growth and development; the genetic evaluation; the physical examination and laboratory analyses; prenatal issues, prenatal screening and diagnosis; and teratogenicity.

GENE 529. Psychosocial Issues in Genetic Counseling. 3 Units.
Fundamental principles regarding the psychosocial aspects of genetic disease and birth defects, its psychological and social impact on the individual and family. Topics include the genetic counseling interview process, issues regarding pregnancy and prenatal diagnosis, chronicity, death and loss. Cultural issues and their impact on the genetic counseling session are addressed. Resources for families are also explored. Basic interviewing skills are presented. Students will have an opportunity for practice of skills through role play and actual interviewing situations.

GENE 531. Cancer Genetics. 2 - 3 Units.
This seminar will discuss basic concepts in cancer epidemiology, principles of cancer genetics, inherited cancer syndromes, cytogenetics of cancers, prediagnosis analysis for familial cancer risk and approaches to the differential diagnosis of inherited and familial cancers. Additionally, topics of risk assessment, genetic testing, screening, management and psychosocial issues in providing genetic counseling to patients with familial and inherited cancers will be discussed.

GENE 532. Clinical Practicum in Genetic Counseling. 1 - 6 Units.
This clinical practicum provides the student an opportunity to function as a genetic counselor by preparing for cases; obtaining appropriate histories; determining risks; performing psychosocial assessments; discussing disease characteristics, inheritance, and natural history; providing anticipatory guidance and supportive counseling; using medical and community resources; and follow-up. Students rotate through four clinical areas and one laboratory and will register for a total of 12 hours over the course of the program. Recommended preparation: Admission to Genetic Counseling Training Program.

GENE 537. Microscopy-Principles and Applications. 3 Units.
This course provides an introduction to various types of light microscopy, digital and video imaging techniques, and their applications to biological and biomedical sciences via lectures and hands-on experience. Topics covered include geometrical and physical optics; brightfield, darkfield, phase contrast, DIC, fluorescence and confocal microscopes; and digital image processing. Offered as GENE 537, MBIO 537, and PHOL 537.

GENE 601. Research in Genetics. 1 - 9 Units.
(Credit as arranged.)

GENE 651. Thesis M.S.. 1 - 9 Units.
(Credit as arranged.) Master's Thesis Plan A.

GENE 701. Dissertation Ph.D.. 1 - 9 Units.
(Credit as arranged.) Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.

Molecular Biology and Microbiology

Room W200, School of Medicine
http://www.case.edu/med/microbio/index.htm
Phone: 216.368.3420
Jonathan Karn, PhD, Reinberger Professor, Chair
jonathan.karn@case.edu

Brinn Omabegho (brinn.omabegho@case.edu), Manager
completion of this requirement is encouraged. Up to 4 credit hours can be allocated to the seminar course (one credit per semester).

Molecular Biology and Microbiology/ Molecular Virology and Cell Biology students should take the MBIO 450 Cells and Pathogens/MVIR 450 Cells and Pathogens/CLBY 450 Cells and Pathogens.

In addition, Cell Biology Students must take both of the following fundamental course: CLBY 526 Cell Biology and Human Disease/MBIO 526 Cell Biology and Human Disease and CLBY 488 Yeast Genetics and Cell Biology . Molecular Virology Students must take MVIR 445 Molecular Biology and Pathogenesis of RNA and DNA Viruses.

Beyond that, any combination of graduate courses from within or outside the department can be used to fulfill the requirement as long as the planned program of study has the approval of the student’s advisor and committee.

In addition, each PhD student must successfully complete a qualifier examination for advancement to candidacy in the form of a short grant proposal with oral defense. The qualifier is generally completed in the summer after year two. During the dissertation period, students are expected to meet twice a year with the thesis committee, present seminars in the department, and fulfill journal publication requirements. Throughout the doctoral training, students are expected to be enthusiastic participants in seminars, journal clubs, and research meetings in the lab and program.

Plan of Study

Please also see Graduate Studies Academic Requirements for Doctoral Degrees (http://bulletin.case.edu/schoolofgraduatestudies/academicrequirements).

<table>
<thead>
<tr>
<th>First Year</th>
<th>Fall</th>
<th>Units</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology I (CBIO 453)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Biology I (CBIO 455)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminar in Molecular Biology/ Microbiology (MBIO 435) (optional)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or Seminar in Molecular Biology/ Microbiology (CLBY 435)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or Seminar in Molecular Biology/ Microbiology (MVIR 435)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Rotation in Biomedical Sciences Training Program (BSTP 400) or Research Rotation in Medical Scientist Training Program (MSTP 400)</td>
<td>0-9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminar in Molecular Biology/ Microbiology (MBIO 435)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or Seminar in Molecular Biology/ Microbiology (CLBY 435)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or Seminar in Molecular Biology/ Microbiology (MVIR 435)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective graduate coursework</td>
<td>3-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research in Molecular Biology and Microbiology (MBIO 601) or Special Problems (CLBY 601) or Research (MVIR 601)</td>
<td>1-9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500)</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Year Total: 7-16 5-14 1

Second Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Molecular Biology/ Microbiology (MBIO 435) or Seminar in Molecular Biology/ Microbiology (CLBY 435) or Seminar in Molecular Biology/ Microbiology (MVIR 435)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Elective graduate coursework</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Research in Molecular Biology and Microbiology (MBIO 601) or Special Problems (CLBY 601) or Research (MVIR 601)</td>
<td>1-9</td>
<td></td>
</tr>
</tbody>
</table>

Year Total: 5-14 5-14

Total Units in Sequence: 23-59

Third Year: Either semester, complete elective coursework so that total graded courses = 24 credits; Research credits switch from 601 to 701 once passed into candidacy

Third Year + Full-time thesis research (701) - 18 total credit hours total

CLBY Courses

CLBY 416. Fundamental Immunology. 4 Units.

Introductory immunology providing an overview of the immune system, including activation, effector mechanisms, and regulation. Topics include antigen-antibody reactions, immunologically important cell surface receptors, cell-cell interactions, cell-mediated immunity, innate versus adaptive immunity, cytokines, and basic molecular biology and signal transduction in B and T lymphocytes, and immunopathology. Three weekly lectures emphasize experimental findings leading to the concepts of modern immunology. An additional recitation hour is required to integrate the core material with experimental data and known immune mediated diseases. Five mandatory 90 minute group problem sets per semester will be administered outside of lecture and recitation meeting times. Graduate students will be graded separately from undergraduates, and 22 percent of the grade will be based on a critical analysis of a recently published, landmark scientific article. Offered as BIOL 316, BIOL 416, CLBY 416, PATH 316 and PATH 416. Prereq: Graduate standing.
CLBY 417. Cytokines: Function, Structure, and Signaling. 3 Units.
Regulation of immune responses and differentiation of leukocytes is modulated by proteins (cytokines) secreted and/or expressed by both immune and non-immune cells. Course examines the function, expression, gene organization, structure, receptors, and intracellular signaling of cytokines. Topic include regulatory and inflammatory cytokines, colony stimulating factors, chemokines, cytokine and cytokine receptor gene families, intracellular signaling through STAT proteins and tyrosine phosphorylation, clinical potential, and genetic defects. Lecture format using texts, scientific reviews and research articles. Recommended preparation: PATH 416 or equivalent. Offered as BIOL 417, CLBY 417, and PATH 417.

CLBY 435. Seminar in Molecular Biology/Microbiology. 1 Unit.
Graduate students will attend the departmental seminar given by all graduate students in the Department of Molecular Biology and Microbiology, in the Molecular Virology Program, and in the Cell Biology Program, as well as give a seminar on their own thesis research. Students will be evaluated by the faculty member in charge of that student’s seminar with input from the students’ own thesis committee. After each seminar, the student presenter will meet with other graduate students for peer-review of the content, delivery, and style of the seminar. Peer reviewers will also be evaluated for the quality of their input. Offered as CLBY 435 and MBIO 435 and MVIR 435.

CLBY 450. Cells and Pathogens. 3 Units.
Modern molecular cell biology owes a great debt to viral and bacterial pathogens as model systems. In some instances pathogens operate by faithful mimicry of host proteins, and other cases represent the result of extensive molecular tinkering and convergent evolution. This course will also explore numerous mechanisms utilized by pathogens to subvert the host and enhance their own survival. Topics covered include nuclear regulatory mechanisms, protein synthesis and stability, membrane-bound organelles, endocytosis and phagocytosis, and factors that influence cell behavior such as cytoskeleton rearrangements, cell-cell interactions, and cell migration. Additional topics include cell signaling and co-evolution of pathogens and host cell functions. Students are expected to come to class prepared to discuss pre-assigned readings consisting of brief reviews and seminal papers from the literature. Student assessment will be based on effective class participation (approximately 80%) and successful presentation of an independent research topic (approximately 20%). Offered as CLBY 450, MBIO 450, and MVIR 450. Prereq: CBIO 453 and CBIO 455 or permission of instructor.

CLBY 466. Cell Signaling. 3 Units.
This is an advanced lecture/journal/discussion format course that covers cell signaling mechanisms. Included are discussions of neurotransmitter-gated ion channels, growth factor receptor kinases, cytokine receptors, G protein-coupled receptors, steroid receptors, heterotrimeric G proteins, ras family GTPases, second messenger cascades, protein kinase cascades, second messenger regulation of transcription factors, microtubule-based motility, actin/myosin-based motility, signals for regulation of cell cycle, signals for regulation of apoptosis. Offered as CLBY 466, PHOL 466 and PHRM 466.

CLBY 488. Yeast Genetics and Cell Biology. 3 Units.
This seminar course provides an introduction to the genetics and molecular biology of the yeasts S. cerevisiae and S. pombe by a discussion of current literature focusing primarily on topics in yeast cell biology. Students are first introduced to the tools of molecular genetics and special features of yeasts that make them important model eukaryotic organisms. Some selected topics include cell polarity, cell cycle, secretory pathways, vesicular and nuclear/cytoplasmic transport, mitochondrial import and biogenesis, chromosome segregation, cytoskeleton, mating response and signal transduction. Offered as CLBY 488, GENE 488, MBIO 488, and PATH 488.

CLBY 512. Cell Biology Seminar. 1 Unit.
The Cell Biology Seminar provides a forum for presentation and discussion of contemporary issues in Cell Biology. Students, fellows, local faculty and guest speakers present both research talks and journal clubs.

CLBY 519. Molecular Biology of RNA. 3 Units.
Selected topics regarding editing, enzymatic function, splicing, and structure of RNA. Offered as BIOC 519, CLBY 519, and MBIO 519.

CLBY 525. Protein Misfolding and Human Disease: Molecular Basis and Clinical Implications. 3 Units.
This is a graduate-level seminar course that familiarizes the students with human diseases resulting from aberrations in protein folding, processing, and turnover. Contribution of associated inflammation and heavy metal mis-metabolism will be discussed where appropriate. Specific examples include, but are not limited to, Alzheimer’s Disease, Parkinson’s Disease, Prion disorders multiple sclerosis, amyotrophic lateral sclerosis, Huntington’s Disease, and others based on popular demand. The students will be expected to discuss relevant research publications in an interactive format. Grading will be based on class participation and an R21 grant proposal on the subject of their choice that does not overlap with their current area of research. Recommended Preparation: Concurrent enrollment in PATH 526, on grant-writing skills, is highly recommended but not required. Offered as PATH 525 and CLBY 525.

CLBY 526. Cell Biology and Human Disease. 3 Units.
This course is designed to provide broad base of knowledge regarding cell structure and function. The basic structure of the cell will be discussed, as will the various functional systems that are superimposed upon and interact with this structure. The course will discuss organelle biogenesis, materials movement inside cells, cell interaction with the external environment, cell cycle and cell death regulation, cytoskeleton dynamics, quality control mechanisms, and basic signal transduction concepts. The course will also discuss how abnormal cell function may lead to human disease, and how basic cell function may be harnessed by intracellular pathogens to provide favorable intracellular environments for replication. The major goals of this course are to provide students with a working knowledge of the cell to facilitate understanding of the scientific literature, and to familiarize students with modern experimental approaches in cell biology. The course will rely heavily on student participation. Students will be provided with study guides with the expectation they will come to class prepared to lead interactive group discussions with minimal input from instructors. Offered as CLBY 526, MBIO 526 and MVIR 526.

CLBY 601. Special Problems. 1 - 18 Units.
This is the listing for independent research. Students should enroll in this course once they have selected their laboratory for Ph.D. research. The number of credit hours depends on how many didactic courses they are following at the same time. Once they have passed their qualifying examination they should register for CLBY 701.
MBIO 445. Cells and Pathogens. 3 Units.

Modern molecular cell biology owes a great debt to viral and bacterial pathogens as model systems. In some instances pathogens operate by faithful mimicry of host proteins, and other cases represent the result of extensive molecular tinkering and convergent evolution. This course will also explore numerous mechanisms utilized by pathogens to subvert the host and enhance their own survival. Topics covered include nuclear regulatory mechanisms, protein synthesis and stability, membrane-bound organelles, endocytosis and phagocytosis, and factors that influence cell behavior such as cytoskeleton rearrangements, cell-cell interactions, and cell migration. Additional topics include cell signaling and co-evolution of pathogens and host cell functions. Students are expected to come to class prepared to discuss pre-assigned readings consisting of brief reviews and seminal papers from the literature. Student assessment will be based on effective class participation (approximately 80%) and successful presentation of an independent research topic (approximately 20%). Offered as CLBY 450, MBIO 450, and MVIR 450. Prereq: CBIO 453 and CBIO 455 or permission of instructor.

MBIO 488. Yeast Genetics and Cell Biology. 3 Units.

This seminar course provides an introduction to the genetics and molecular biology of the yeasts S. cerevisiae and S. pombe by a discussion of current literature focusing primarily on topics in yeast cell biology. Students are first introduced to the tools of molecular genetics and special features of yeasts that make them important model eukaryotic organisms. Some selected topics include cell polarity, cell cycle, secretory pathways, vesicular and nuclear/cytoplasmic transport, mitochondrial import and biogenesis, chromosome segregation, cytoskeleton, mating response and signal transduction. Offered as CLBY 488, GEN 488, MBIO 488, and PATH 488.

MBIO 513. Bacterial Virulence and Host Interactions. 3 Units.

The goal of this seminar course is to familiarize students with bacterial virulence mechanisms and how they interact with the host. The focus will be on current literature pertaining to this field. While the molecular basis of bacterial virulence mechanisms will be the main focus, some time will be spent on the host immune response. Topics covered will include adhesins/pili, secretion mechanisms, AB toxins, bacterial invasion and intracellular survival, regulation of virulence gene expression. Prereq: CBIO 453 and CBIO 455 or equivalent courses.

MBIO 519. Molecular Biology of RNA. 3 Units.

Selected topics regarding editing, enzymatic function, splicing, and structure of RNA. Offered as BIOC 519, CLBY 519, and MBIO 519.

MBIO 526. Cell Biology and Human Disease. 3 Units.

This course is designed to provide broad base of knowledge regarding cell structure and function. The basic structure of the cell will be discussed, as will the various functional systems that are superimposed upon and interact with this structure. The course will discuss organelle biogenesis, materials movement inside cells, cell interaction with the external environment, cell cycle and cell death regulation, cytoskeleton dynamics, quality control mechanisms, and basic signal transduction concepts. The course will also discuss how abnormal cell function may lead to human disease, and how basic cell function may be harnessed by intracellular pathogens to provide favorable intracellular environments for replication. The major goals of this course are to provide students with a working knowledge of the cell to facilitate understanding of the scientific literature, and to familiarize students with modern experimental approaches in cell biology. The course will rely heavily on student participation. Students will be provided with study guides with the expectation they will come to class prepared to lead interactive group discussions with minimal input from instructors. Offered as CLBY 526, MBIO 526 and MVIR 526.
MBIO 537. Microscopy-Principles and Applications. 3 Units.
This course provides an introduction to various types of light microscopy, digital and video imaging techniques, and their applications to biological and biomedical sciences via lectures and hands-on experience. Topics covered include geometrical and physical optics; brightfield, darkfield, phase contrast, DIC, fluorescence and confocal microscopes; and digital image processing. Offered as GENE 537, MBIO 537, and PHOL 537.

MBIO 601. Research in Molecular Biology and Microbiology. 1 - 18 Units.
Prereq: CBIO 453 and CBIO 455.

MBIO 701. Dissertation Ph.D.. 1 - 9 Units.
Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.

MVIR Courses

MVIR 435. Seminar in Molecular Biology/Microbiology. 1 Unit.
Graduate students will attend the departmental seminar given by all graduate students in the Department of Molecular Biology and Microbiology, in the Molecular Virology Program, and in the Cell Biology Program, as well as give a seminar on their own thesis research. Students will be evaluated by the faculty member in charge of that student's seminar with input from the students' own thesis committee. After each seminar, the student presenter will meet with other graduate students for peer-review of the content, delivery, and style of the seminar. Peer reviewers will also be evaluated for the quality of their input. Offered as CLBY 435 and MBIO 435 and MVIR 435.

MVIR 445. Molecular Biology and Pathogenesis of RNA and DNA Viruses. 3 Units.
Through a combination of lectures by Case faculty and guest lecturers, along with student discussion of current literature, this course emphasizes mechanisms of viral gene expression and pathogenesis. RNA viruses to be discussed include positive, negative, and retroviruses. DNA viruses include SV40, adenovirus, herpes, papilloma, and others. Important aspects of host defense mechanisms, antiviral agents, and viral vectors will also be covered. Students will be evaluated based on their quality of presentation of course papers assigned to them and their overall participation in class discussions. Offered as MBIO 445 and MVIR 445. Prereq: CBIO 453 and CBIO 455.

MVIR 450. Cells and Pathogens. 3 Units.
Modern molecular cell biology owes a great debt to viral and bacterial pathogens as model systems. In some instances pathogens operate by faithful mimicry of host proteins, and other cases represent the result of extensive molecular tinkering and convergent evolution. This course will also explore numerous mechanisms utilized by pathogens to subvert the host and enhance their own survival. Topics covered include nuclear regulatory mechanisms, protein synthesis and stability, membrane-bound organelles, endocytosis and phagocytosis, and factors that influence cell behavior such as cytoskeleton rearrangements, cell-cell interactions, and cell migration. Additional topics include cell signaling and co-evolution of pathogens and host cell functions. Students are expected to come to class prepared to discuss pre-assigned readings consisting of brief reviews and seminal papers from the literature. Student assessment will be based on effective class participation (approximately 80%) and successful presentation of an independent research topic (approximately 20%). Offered as CLBY 450, MBIO 450, and MVIR 450. Prereq: CBIO 453 and CBIO 455 or permission of instructor.

MVIR 526. Cell Biology and Human Disease. 3 Units.
This course is designed to provide broad base of knowledge regarding cell structure and function. The basic structure of the cell will be discussed, as will the various functional systems that are superimposed upon and interact with this structure. The course will discuss organelle biogenesis, materials movement inside cells, cell interaction with the external environment, cell cycle and cell death regulation, cytoskeleton dynamics, quality control mechanisms, and basic signal transduction concepts. The course will also discuss how abnormal cell function may lead to human disease, and how basic cell function may be harnessed by intracellular pathogens to provide favorable intracellular environments for replication. The major goals of this course are to provide students with a working knowledge of the cell to facilitate understanding of the scientific literature, and to familiarize students with modern experimental approaches in cell biology. The course will rely heavily on student participation. Students will be provided with study guides with the expectation they will come to class prepared to lead interactive group discussions with minimal input from instructors. Offered as CLBY 526, MBIO 526 and MVIR 526.

MVIR 601. Research. 1 - 18 Units.
Grade of S/U only.

MVIR 701. Dissertation Ph.D.. 1 - 9 Units.
Grade of S/U only. Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.

Molecular Medicine Program

Lerner Research Institute, ND-46
http://www.lerner.ccf.org/molecmed/phd/
Phone: 216.445.9417
Jonathan Smith, PhD, Program Director

The Molecular Medicine PhD Program is a unique collaborative graduate training opportunity that integrates medical knowledge into graduate training. The goal of this program is to produce scientists trained in translational research: basic or applied research relevant to human health and disease that can lead to new understanding of disease, clinical and diagnostic tools, medications, and therapies.

Students train rigorously to apply basic science discoveries to human health and to the causes and treatments of human disease. The mastery of competencies necessary to translate scientific observations from the research bench to clinical care is the focus of this PhD program. Graduates will be well prepared to collaborate with physicians and for the challenge of using molecular and cellular biology to advance human health.

PhD in Molecular Medicine

Admission into the Molecular Medicine PhD program is obtained through application directly to the program. Graduate students complete didactic coursework, independent research, and other doctoral requirements to earn the PhD. First-year students complete two to four laboratory rotations among the laboratories of training faculty and are exposed to trainer research projects during the Frontiers of Molecular Medicine seminars. The first year begins mid-July. Students from all years present their research and received feedback in the Student Seminar Series.

During subsequent years, students will devote the majority of their time to thesis research while attending advanced graduate courses, and seminars. Advanced elective courses may be chosen from any department or program on campus with the approval of the graduate.
program director and the student’s thesis committee over the first two years. Students must take a total of 36 semester hours of courses and pre-candidacy thesis research, including 24 graded credit hours, and maintain a B average.

The qualifying exam will be comprised of preparing and defending a grant application in the NIH format. The topic of the grant is the area of the student’s thesis research. At least one aim of this proposal will consist of a specific translational or clinical aim.

All efforts should be made to complete the PhD within five years from the date of matriculation. All students are expected to submit two or more first-authored primary research publications in peer-reviewed scientific journals. At least one manuscript must be accepted for publication prior to the thesis defense.

PRISM Program (Physicians Researchers Innovating in Science and Medicine)

NIH recognizes the need for physician on-ramps into research training, including the option for obtaining a PhD during residency / fellowship. The Molecular Medicine PhD Program offers a track for Cleveland Clinic physician trainees in GME accredited programs, who wish to pursue a PhD in laboratory-based research in the Molecular Medicine PhD Program, a program completely housed and administered at the Cleveland Clinic. If you are a Cleveland Clinic physician trainee and have questions about this opportunity, please email molmedphd@ccf.org.

PhD Program Requirements

Coursework

Students begin in July by taking MMED 402 Tools for Research and MMED 410 Introduction to Human Physiology and Disease. The student will follow a progressive curriculum including Cell Biology; Metabolism and Pharmacology; Nucleic Acids, Gene Expression and Gene Regulation; Mammalian Genetics; and Infection and Immunity. In the second summer, students take Principles of Clinical and Translational Research. During year 2, students are required to take MMED 521, focusing on molecular mechanisms of human disease, and an independent study mentored MMED 612 Clinical Experience.

Research Rotations

The research rotations allow the student to sample areas of research and become familiar with faculty members and their laboratories. The main purpose of these rotations is to aid the student in selecting a laboratory for the thesis work. Students will begin their rotations in July. At least two rotations are highly recommended prior to choosing the thesis advisor.

Choosing a Thesis Advisor

During or after the second semester of the first year, students select an advisor for their dissertation research. The emphasis of the PhD work is on research, culminating in the completion of an original, independent research thesis.

Plan of Study

Please also see Graduate Studies Academic Requirements for Doctoral Degrees (http://bulletin.case.edu/schoolofgraduatestudies/academicrequirements).

<table>
<thead>
<tr>
<th>First Year</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fall</td>
</tr>
<tr>
<td>Research Rotations (MMED 400)*</td>
<td>0</td>
</tr>
<tr>
<td>Tools for Research (MMED 402)</td>
<td>2</td>
</tr>
</tbody>
</table>

Introduction to Human Physiology and Disease (MMED 410) 4
Cell Biology (MMED 415) 2
Student Seminar Series (MMED 504) 1
Research Rotations (MMED 400) 0
Metabolism and Introduction to Principles of Pharmacology (MMED 412) 2
Nucleic Acids, Gene Expression, and Gene Regulation (MMED 413) 2
Mammalian Genetics (MMED 414) 2
Host Defense: Infection and Immunity (MMED 416) 2
Student Seminar Series (MMED 504) 1
Year Total: 9 9

Second Year

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>Principles of Clinical and Translational Research (MMED 501)</td>
</tr>
<tr>
<td>Molecular aspects of the diagnosis, pathology, and treatment of selected human diseases (MMED 521)</td>
</tr>
<tr>
<td>Dissertation Research (MMED 601)*</td>
</tr>
<tr>
<td>Clinical Experience (MMED 612)</td>
</tr>
<tr>
<td>Advanced Electives (approved by program director)**</td>
</tr>
<tr>
<td>Dissertation Research (MMED 601)*</td>
</tr>
<tr>
<td>Year Total:</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>Dissertation Ph.D. (MMED 701)</td>
</tr>
<tr>
<td>Advanced Electives (if necessary)**</td>
</tr>
<tr>
<td>Dissertation Ph.D. (MMED 701)</td>
</tr>
<tr>
<td>Advanced Electives (if necessary)**</td>
</tr>
<tr>
<td>Year Total:</td>
</tr>
</tbody>
</table>

Total Units in Sequence: 38-54

* Starts in July
** Credits vary
+ Credits may vary to yield 9 credits per semester

Third Year and beyond: Complete elective coursework so total graded courses equal at least 24 credits; Research credits switch from MMED 601 to MMED 701 once passed into candidacy. Minimum of 1 credit of 701 is required each regular semester thereafter for a total of 18 credits to graduate.
Courses

MMED 400. Research Rotations. 0 Unit.
Research rotations are conducted to expose the student to several laboratory environments, a variety of research problems and numerous laboratory techniques as well as to assist them in the selection of their Research Advisor. Rotations will begin immediately upon enrollment and continue through the second semester of the first year. Usually rotations will last 12 weeks, however if a student decides that he/she is not interested in the assigned laboratory a shorter rotation is appropriate. The student is responsible for arranging each rotation with an approved trainer with the consultation of the Graduate Program Director. To assist in this endeavor, the Graduate Program Director will provide a list of approved trainers who have space, time and money to support a graduate student. During the rotation, students are expected to participate in all lab and departmental activities, e.g., lab meetings and seminars. At the completion of a rotation the student is required to submit a written Rotation Report including an outline of the problem being studied, a description of the experimental approaches, a discussion of the results of performed experiments as well as future directions.

MMED 402. Tools for Research. 2 Units.
The goal of this course is to provide a thorough and comprehensive review of current laboratory technology essential to research in molecular medicine, focusing on basic underlying principles, important controls and caveats. The students will clone a cytokine during a laboratory component of the course, which will involve designing appropriate primers, obtaining RNA from cytokine-expressing cells, performing RT/PCR, and ligating isolated, characterized fragments into cloning- and expression vectors, followed by transfection into mammalian cells. Additional bench work will include characterizing the cloned product using real time PCR, ELISA, western blot analysis, and immunohistochemistry. Seminars on commonly used molecular techniques will be given intermittently by guest lecturers with the relevant expertise. Evaluation will be based on the student’s lab techniques, class participation, and contribution to the group learning process.

MMED 404. Journal Club / Frontiers in Molecular Medicine. 1 Unit.
This course is a combination of a weekly discussion-based Journal Club with selected articles relevant to the core curriculum of the week and the Frontiers in Molecular Medicine Seminar series. The seminars are presented by Molecular Medicine faculty and guest lecturers to introduce first year students to the opportunities and issues in translational and clinical research.

MMED 410. Introduction to Human Physiology and Disease. 4 Units.
The purpose of this course is to give an introduction to the physiology of the major human organ systems, as well as selected associated pathophysiology. The course will provide a physiological basis for subsequent study and research in Molecular Medicine. The integration of clinical faculty into the course will emphasize the importance of bringing scientific knowledge to bear on clinical problems, a theme which will be stressed throughout the Molecular Medicine curriculum. The course will also acquaint students with medical terminology.

MMED 412. Metabolism and Introduction to Principles of Pharmacology. 2 Units.
The course will include a combination of interactive lectures, research presentations, related journal club article, and group projects with presentations. Topics to be covered include: bioenergetics/oxidative phosphorylation, carbohydrate metabolism; lipid and lipoprotein metabolism, amino acid and nucleotide metabolism; integrative regulation of metabolism; and principals of pharmacology.

MMED 413. Nucleic Acids, Gene Expression, and Gene Regulation. 2 Units.
The course will include a combination of interactive lectures and problem-based learning. Each week will conclude with at least one clinical correlation where the weekly topic is presented in the context of a clinical problem. Topics to be covered include: DNA structure, chromosome structure, replication and repair; RNA synthesis and RNA processing, the organization of eukaryotic genes and the genetic code and translation; and gene regulation.

MMED 414. Mammalian Genetics. 2 Units.
The course focuses on genetics, genomics, and bioinformatics, and it will include a combination of interactive lectures, problem-based learning and a week-long group project. Topics to be covered include: genetic variation; linkage studies; association studies; complex traits, linkage disequilibrium, the Hap Map, pharmacogenetics; genome-wide expression studies, and mouse models of human disease, and bioinformatics.

MMED 415. Cell Biology. 2 Units.
The course will include a combination of interactive lectures and problem-based learning. Each week will conclude with at least one clinical correlation where the weekly topic is presented in the context of a clinical problem. Topics to be covered include: cell structure and organelles, prokaryotes/eukaryotes; intracellular compartments and protein sorting; receptors/endocytosis/rafts; the nucleus; cell communication; and mechanics of cell division.

MMED 416. Host Defense: Infection and Immunity. 2 Units.
The course will include a reading program, lectures, and weekly problem-based student-led presentations. Weeks 1 and 2 are dedicated to establishing the scope of the field and forming vocabulary. Week 3 and part of Week 4 will cover immune mechanisms. The remainder of the course will deal with clinical aspects of immunobiology. On a regular basis Clinical Correlations, relevant to weekly topics, are integrated into the material. Topics to be covered include: biology and molecular biology of infectious agents; fundamentals of immunology; innate and adaptive responses to infection, immune effector mechanisms; and clinical aspects of immunobiology.

MMED 501. Principles of Clinical and Translational Research. 4 Units.
To give an introduction to the ethical, statistical, methodologic and informatics basis of clinical and translational research. Topics will include the history of clinical and translational research, regulatory aspects of human subjects research, clinical trials study design, conflicts of interest, human subjects recruitment, research and publication ethics, technology transfer, biobank construction and utilization, and clinical and research database construction and utilization. In addition, students will be introduced to principles of biostatistics and clinical epidemiology relevant to clinical and translational research and gain expertise in statistical tool using problem based learning sets.

MMED 504. Student Seminar Series. 1 Unit.
This course is designed as a weekly seminar series that will include presentations by the MMED graduate students. The format will be as follows: seminar talks by students in years 3 and beyond to provide a research update presentations by second year students involving basic science-clinical case translation topics, and short presentations on lab rotation accomplishments by first year students. The primary goals of this series are to gain experience and improve oral presentation skills, to share results and thoughts with peers during research discussions, and to learn to take the lead in developing and asking questions during seminars.
MMED 521. Molecular aspects of the diagnosis, pathology, and treatment of selected human diseases. 3 Units.
The goal of this course is to integrate medical knowledge into PhD training. This team-taught seminar course focuses on a top down examination of selected human diseases starting with clinical presentations of the manifestations, diagnoses, and treatment of disease. This is followed by study of the pathology, cell biology, and molecular biology of the disease. This information forms the foundation of a final discussion of current treatment strategies and ongoing research to identify new strategies. Three to four separate disease areas will be discussed during each semester, such as diabetes, cancer, and cardiovascular diseases. The specific areas of discussion are selected to demonstrate the strength of an integrated team of clinical and basic scientists; and to provide a model for students to follow in future studies in their own area of expertise. Emphasis will be given to the basic scientific observations that formed the basis of successful clinical practice, and how this was utilized by integrated teams of basic and clinical investigators to provide better patient care. Students will prepare for discussions with close reading of the literature. Faculty will present an overview in a discussion format. It is anticipated that each disease area will be presented by an integrated team of clinical and basic scientists. The final weeks of the semester will be devoted to student preparation of a research proposal based upon the information discussed during the course. The specific topic of this proposal will be of the students choosing. Grading will be based both upon preparation for and participation in discussions, and upon the research proposal. Recommended Preparation: Introductory Graduate or Medical School courses in Cell Biology, Molecular Biology, and Physiology

MMED 601. Dissertation Research. 1 - 9 Units.
Research leading toward the Ph.D. dissertation in Molecular Medicine

MMED 612. Clinical Experience. 2 Units.
Each student will be assigned a Clinical Mentor who will co-advise the student and serve on both the Qualifying Examination Committee and Thesis Committee. The Clinical Mentor will develop an individualized curriculum for the student in consultation with the Thesis Research Mentor and Program Director. The curriculum will be organized around the integrated, multidisciplinary disease groups at the Clinic. The students will attend and actively participate in the regularly scheduled multidisciplinary clinical conference organized by their disease group (most meet for one hour every week or every other week), usually involving a combination of case presentations and research presentations. At the conclusion of the semester the student will make a presentation to the group focused on a relevant translational research problem. The Clinical Mentor will also organize a series of supervised clinical experiences (with a Mentor) to various locations where students will observe clinician interactions with patients to better understand the disease from the patient perspective and to disease-related diagnostic and research laboratories.

MMED 701. Dissertation Ph.D. 1 - 9 Units.
Research leading toward the Ph.D. dissertation in Molecular Medicine. Recommended preparation: Advancement to candidacy in MMED. Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.

Department of Neurosciences
Room E-653, School of Medicine, Robbins Building
http://case.edu/medicine/neurosciences/
Phone: 216.368.6252; Fax: 216.368.4650
Lin Mei, MD, PhD, Chair
lin.mei@case.edu

Katie Wervey (kathleen.wervey@case.edu), Department Assistant
Understanding how the nervous system develops and functions to process information and mediate behavior and how it is altered by disease, injury and the environment is one of the most exciting frontiers remaining in biological science. Neurosciences is inherently multidisciplinary and integrative and solving the major outstanding problems will require knowledge of molecular, cellular, systems, and behavioral levels of organization. It also requires a multidisciplinary approach combining the tools of electrophysiology, anatomy, biochemistry and molecular biology in studies of animals, brain slices, and tissue culture models.

The department offers a PhD program that provides interdisciplinary training in modern neurosciences through a combination of course work, seminars, and research experience. Medical students are encouraged to pursue research projects with neurosciences faculty. Neuroscientists at CWRU are using state-of-the-art techniques and instrumentation to study diverse aspects of nervous system function, including neural circuitry and plasticity, development and regeneration, and cellular and molecular neurobiology. Techniques used include electrical recording and imaging to study the behavior of neurons from ion channels to how they function in awake, behaving animals; molecular genetic approaches to discover the roles of specific genes in circuit formation, synaptic function, and in neurological disorders; and anatomical, biochemical, computational, and behavioral methods to understand the normal nervous system and how it is affected by disease and injury.

PhD in Neurosciences
The Neurosciences graduate program has a strong emphasis on cellular and molecular mechanisms that mediate the function and development of the nervous system. Admissions to the Neurosciences PhD program may be obtained through the integrated Biomedical Sciences Training Program or via the Medical Scientist Training Program. To earn a PhD in Neurosciences, a student must complete rotations in at least three laboratories, followed by selection of a research advisor, and complete Core and Elective coursework including responsible conduct of research as described in the plan of study, below. In general, students must be registered for a total of 9 credit hours each fall and spring semester until they advance to candidacy, at the end of their 2nd year. Students who previously completed relevant coursework, for example, with a MS, may petition to complete alternative courses. Each graduate program follows the overall regulations established and described in CWRU Graduate Studies and documented to the Regents of the State of Ohio.

In addition, each student must successfully complete a preliminary exam after year one, and a qualifier examination for advancement to candidacy in the form of a short grant proposal with oral defense. The qualifier is generally completed in the summer after year two. During the dissertation period, students are expected to meet at least once a year with their thesis committee, present seminars in the department, and fulfill journal publication requirements. Throughout the doctoral training, students are expected to be enthusiastic participants in seminars, journal clubs, and research meetings in the lab and program. Completion of the PhD degree will require 36 hours of coursework (24 hours of which are graded) and 18 hours of NEUR 701 Dissertation Ph.D.
Plan of Study

§ Please also see Graduate Studies Academic Requirements for Doctoral Degrees (http://bulletin.case.edu/schoolofgraduastudies/academicrequirements)

<table>
<thead>
<tr>
<th>First Year</th>
<th>Fall</th>
<th>Units</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology I (CBIO 453)</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research in Neuroscience (NEUR 601) or Research Rotation in Biomedical Sciences Training Program (BSTP 400) or Research Rotation in Medical Scientist Training Program (MSTP 400)</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Biology I (CBIO 455)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Since You Were Born: Nobel Prize Biomedical Research in the Last 21 Years- Section A (CBIO 456A)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamental Biostatistics to Enhance Research Rigor & Reproducibility (IBMS 450)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective Graduate Course</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuroscience Seminars (NEUR 415)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research in Neuroscience (NEUR 601)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles of Neural Science (NEUR 402)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Begin Thesis Research</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete preliminary exam by July 31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective courses</td>
<td>6</td>
</tr>
<tr>
<td>Research in Neuroscience (NEUR 601)</td>
<td>3</td>
</tr>
<tr>
<td>Critical Thinking in Neuroscience (NEUR 419)</td>
<td>3</td>
</tr>
<tr>
<td>Elective Courses</td>
<td>3</td>
</tr>
<tr>
<td>Research in Neuroscience (NEUR 601)</td>
<td>3</td>
</tr>
<tr>
<td>Complete Qualifier Exam by July 31</td>
<td></td>
</tr>
<tr>
<td>Form Thesis Committee</td>
<td></td>
</tr>
<tr>
<td>Research</td>
<td></td>
</tr>
<tr>
<td>Prepare Individual Fellowship</td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation Ph.D. (NEUR 701)</td>
<td>1-9</td>
</tr>
<tr>
<td>Thesis Committee Meetings every 6 months</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (NEUR 701)</td>
<td>1-9</td>
</tr>
<tr>
<td>Advanced Topics in Neuroscience Ethics (NEUR 540)</td>
<td>0</td>
</tr>
</tbody>
</table>

CBIO Courses

CBIO 453. Cell Biology I. 3 Units.
Part of the first semester curriculum for first year graduate students along with CBIO 455. This course is designed to give students an intensive introduction to prokaryotic and eukaryotic cell structure and function. Topics include membrane structure and function, mechanisms of protein localization in cells, secretion and endocytosis, the cytoskeleton, cell adhesion, cell signaling and the regulation of cell growth. Important methods in cell biology are also presented. This course is suitable for graduate students entering most areas of basic biomedical research. Undergraduate courses in biochemistry, cell and molecular biology are excellent preparation for this course. Recommended preparation: Undergraduate biochemistry or molecular biology.

CBIO 455. Molecular Biology I. 3 Units.
Part of the first semester curriculum for first year graduate students along with CBIO 453. This course is designed to give students an intensive introduction to prokaryotic and eukaryotic molecular biology. Topics include protein structure and function, DNA and chromosome structure, DNA replication, RNA transcription and its regulation, RNA processing, and protein synthesis. Important methods in molecular biology are also presented. This course is suitable for graduate students entering most areas of basic biomedical research. Undergraduate courses in biochemistry, cell and molecular biology are excellent preparation for this course. Recommended preparation: Undergraduate biochemistry or molecular biology.

* NEUR 540 Advanced Topics in Neuroscience Ethics is offered every other spring semester (beginning 2008), so can be taken in 3rd or 4th year.
CBIO 456A. Since You Were Born: Nobel Prize Biomedical Research in the Last 21 Years- Section A. 1 Unit.

This course is one of four sections that will cover major advances in biomedical research by review of Nobel Prize-winning topics from the past 21 years. Each section will cover 8 Nobel prize topics (1 topic/2 hour session/week for 8 weeks). Students will read critical research papers of the Nobel prize scientist(s) in preparation for guided in-class discussion led by the faculty mentor. The CBIO456A section will cover Nobel Prizes related to the areas of Genetics & Genome Science, Systems Biology & Bioinformatics, and RNA Biology. These include: 1) 2012 Prize, J. Gurdon and S. Yamanaka: Mechanisms of pluripotent stem cell development and reprogramming; 2) 2010 Prize, R. Edwards: Development of in vitro fertilization; 3) 2009 Prize, E. Blackburn, C. Greider, and J. Szostack: Mechanisms of chromosome protection by telomeres and telomerase; 4) 2009 Prize, Y. Yamakishan, T. Steitz, and A. Yorkh: Structure/function analysis of ribosomes; 5) 2007 Prize, M. Capecechi, M. Evans, and O. Smithies: Discovery/development of transgenic and gene-deletion methods in mice; 6) 2006 Prize, A. Fire and C. Mello: Discovery/development of RNA interference-gene silencing methods; 7) 2006 Prize, R. Kornberg: Mechanisms of eukaryotic transcription; 8) 1995 Prize, E. Lewis, C. Nusslein-Volhard, and W. Wieschaus: Mechanisms of genetic control in early embryonic development.

CBIO 456B. Since You Were Born: Nobel Prize Biomedical Research in the Last 21 Years- Section B. 1 Unit.

This course is one of four sections that will cover major advances in biomedical research by review of Nobel Prize-winning topics from the past 21 years. Each section will cover 8 Nobel prize topics (1 topic/2 hour session/week for 8 weeks). Students will read critical research papers of the Nobel prize scientist(s) in preparation for guided in-class discussion led by the faculty mentor. The CBIO456B section will cover Nobel Prizes related to the areas of Molecular Biology & Microbiology, Molecular Virology, Pathology-Immunology, and Cell Biology. These include: 1) 2016 Prize, Y. Ohsumi: Mechanisms of Autophagy; 2) 2015 Prize, W. Campbell, S. Omera, and Y. Tu: Therapies against roundworms & malaria; 3) 2011 Prize, B. Butter, J. Hoffman, and R. Steinman: Mechanisms underlying innate immunity and adaptive immunity; 4) 2008 Prize, H. zur Hausen, F. Barre-Sinoussi, and L. Montagani: Discovery of human immunodeficiency virus and oncogenic papilloma viruses; 5) 2008 Prize, O. Shimomura, M. Chaffe, and R. Tsien: Discovery/development of green fluorescent protein for biological applications; 6) 2005 Prize, B. Marshall and J. Warren: Discovery of Helicobacter pyloriss as pathogenic mechanism in peptic ulcers/gastritis; 7) 1999 Prize, G. Blobel: Mechanisms of protein sorting and subcellular trafficking; 8) 1999 Prize, P. Doherty and R. Zinkernagel: Mechanisms of cell-mediated immune defense.

CBIO 456C. Since You Were Born: Nobel Prize Biomedical Research in the Last 21 Years- Section C. 1 Unit.

This course is one of four sections that will cover major advances in biomedical research by review of Nobel Prize-winning topics from the past 21 years. Each section will cover 8 Nobel prize topics (1 topic/2 hour session/week for 8 weeks). Students will read critical research papers of the Nobel prize scientist(s) in preparation for guided in-class discussion led by the faculty mentor. The CBIO456B section will cover Nobel Prizes related to the areas of Biochemistry, Nutrition, Pharmacology, and Pathology-Cancer. These include: 1) 2015 Prize, T. Lindahl, P. Modrich, and A. Sancar: Mechanisms of DNA Repair; 2) 2014 Prize, E. Betzig, S. Hell, W. Moerner: Development of super-resolution fluorescence microscopy; 3) 2012 Prize, R. Lefkowitz and B. Kobilka: Structure/function analysis of G protein-coupled receptors; 4) 2004 Prize, A. Ciechanover, A. Hershko, and I. Rose: Mechanisms of ubiquitin-mediated protein degradation; 5) 2003 Prize, P. Lauterbur and P. Mansfield: Development of magnetic resonance imaging (MRI) methods; 6) 2002 Prize, S. Brenner, H.R. Horvitz, and J. Sulston: Mechanisms for genetic regulation of organ development and programmed cell death; 7) 2002 Prize, J. Fenn, K. Tanaka, and K. Wuthrich: Development of mass spec and NMR methods for biological macromolecules; 8) 2001 Prize, L. Hartwell, T. Hunt, and P. Nurse: Mechanisms of cell cycle regulation.

CBIO 456D. Since You Were Born: Nobel Prize Biomedical Research in the Last 21 Years- Section D. 1 Unit.

This course is one of four sections that will cover major advances in biomedical research by review of Nobel Prize-winning topics from the past 21 years. Each section will cover 8 Nobel prize topics (1 topic/2 hour session/week for 8 weeks). Students will read critical research papers of the Nobel prize scientist(s) in preparation for guided in-class discussion led by the faculty mentor. The CBIO456D section will cover Nobel Prizes related to the areas of Neuroscience, Physiology & Biophysics, and Pathology-Molecular Basis of Disease. These include: 1) 2014 Prize, J. O’Keefe, M-B. Moser, and E. Moser: Mechanisms of nerve cell spatial positioning in the brain; 2) 2013 Prize, J. Rothman, R. Schechman, and T. Sudhof: Mechanisms of intracellular vesicle trafficking and biomolecule secretion; 3) 2004 Prize, R. Axel and L. Buck: Structure/function of odorant receptors and organization of olfactory system; 4) 2003 Prize: P. Agre and R. MacKinnon: Structure/function analysis of channel proteins in cell membranes; 5) 2000 Prize, A. Carlson, P. Greengard, and E. Kandel: Mechanisms of signal transduction in the nervous system; 6) 1998 Prize, R. Furchgott, L. Ignarro, and F. Murad: Discovery/mechanisms of nitric oxide as signaling molecule in cardiovascular system; 7) 1997 Prize, S. Prusiner: Discovery/prions as new biological principle of infection in neurological disease; 8) 1997 Prize, P. Boyer, J. Walker, and J. Skou: Mechanisms of mitochondrial ATP synthesis and Na, K-ATPase pump function.
IBMS Courses

IBMS 450. Fundamental Biostatistics to Enhance Research Rigor & Reproducibility. 1 Unit.
This is a required graduate level course for all first year PhD students in the School of Medicine biomedical PhD programs excluding Biomedical Engineering, Population and Quantitative Health Sciences, Molecular Medicine and Clinical Translation Science. This course focuses on providing students with a basic working knowledge and understanding of best practices in biostatistics that can be applied to common biomedical research activities in numerous fields. Weekly sessions will include a combination of basic programming activities, lectures, exercises, hands-on data manipulation and presentation. Topics include experimental design and power analysis, hypothesis testing, descriptive statistics, linear regression, and others with an emphasis on when and in which experimental design a particular test is properly used. The overall goal of the course is to empower students to use these biostatistics to enhance the rigor of their experimental design and reproducibility of their primary data. The major focus is not on theory, but on a practical acquisition of a working knowledge of basic data processing analysis, interpretation, and presentation skills.

IBMS 500. On Being a Professional Scientist: The Responsible Conduct of Research. 1 Unit.
The goal of this course is to provide graduate students with an opportunity to think through their professional ethical commitments before they are tested, on the basis of the scientific community’s accumulated experience with the issues. Students will be brought up to date on the current state of professional policy and federal regulation in this area, and, through case studies, will discuss practical strategies for preventing and resolving ethical problems in their own work. The course is designed to meet the requirements for “instruction about responsible conduct in research” for BSTP and MSTP students supported through NIH/ADAMHA institutional training grant programs at Case. Attendance is required.

NEUR Courses

NEUR 402. Principles of Neural Science. 3 Units.
Lecture/discussion course covering concepts in cell and molecular neuroscience, principles of systems neuroscience as demonstrated in the somatosensory system, and fundamentals of the development of the nervous system. This course will prepare students for upper level Neuroscience courses and is also suitable for students in other programs who desire an understanding of neurosciences. Recommended preparation: CBIO 453. Offered as CBIO 402 and NEUR 402.

NEUR 405. Cellular and Molecular Neurobiology. 3 Units.
Cell biology of nerve cells, including aspects of synaptic structure physiology and chemistry. The application of molecular biological tools to questions of synaptic function will be addressed. Recommended preparation: BIOL 473. Prereq: NEUR 402.

NEUR 415. Neuroscience Seminars. 1 Unit.
Current topics of interest in neurosciences. Students attend weekly seminars. From this series, students prepare critiques. No credit is given for less than 75% attendance.

NEUR 419. Critical Thinking in Neuroscience. 3 Units.
The goal of this course is to develop the student’s critical reasoning skills through reading and discussing primary research papers. Each year, the course will focus on 3-4 different topics selected by participating Neuroscience faculty members. Students will receive a letter grade based on their contributions to discussions, and at the discretion of the faculty, performance on exams and/or term paper. Prereq: NEUR 402.

NEUR 424. Sensory Neuroscience. 3 Units.
How do our brains and those of other animals allow for the acquisition and processing of unique sensory percepts? In what manners might sensory systems interact to enhance perception? Further, what happens to sensory system function in cases of neurological disorders? This course is a topic introduction to sensory neuroscience, a major area of modern neuroscience with connections to neurology, psychology, ethology, and related topics. Topics include visual, auditory, somatosensory, gustatory, and olfactory neuroscience. We will also examine the mechanisms and uses of magnetoreception, electoreception, echolocation, and other “special” senses. All of the above topics will be covered under the theme of how animals actively sample their sensory environments for information. Prereq: BIOL 402 or BIOL 473 or NEUR 402 or PSCL 403 or Consent of Instructor.

NEUR 432. Current Topics in Vision Research. 3 Units.
Vision research is an exciting and multidisciplinary area that draws on the disciplines of biochemistry, genetics, molecular biology, structural biology, neuroscience, and pathology. This graduate level course will provide the student with broad exposure to the most recent and relevant research currently being conducted in the field. Topics will cover a variety of diseases and fundamental biological processes occurring in the eye. Regions of the eye that will be discussed include the cornea, lens, and retina. Vision disorders discussed include age-related macular degeneration, retinal ciliopathies, and diabetic retinopathy. Instructors in the course are experts in their field and are members of the multidisciplinary visual sciences research community here at Case Western Reserve University. Students will be exposed to the experimental approaches and instrumentation currently being used in the laboratory and in clinical settings. Topics will be covered by traditional lectures, demonstrations in the laboratory and the clinic, and journal club presentations. Students will be graded on their performance in journal club presentations (40%), research proposal (40%), and class participation (20%). Offered as NEUR 432, PATH 432, PHRM 432 and BIOL 432.

NEUR 466. Cell Signaling. 3 Units.
This is an advanced lecture/journal/discussion format course that covers cell signaling mechanisms. Included are discussions of neurotransmitter-gated ion channels, growth factor receptor kinases, cytokine receptors, G protein-coupled receptors, steroid receptors, heterotrimeric G proteins, ras family GTPases, second messenger cascades, protein kinase cascades, second messenger regulation of transcription factors, microtubule-based motility, actin/myosin-based motility, signals for regulation of cell cycle, signals for regulation of apoptosis. Offered as CLBY 466, PHOL 466 and PHRM 466.

NEUR 473. Introduction to Neurobiology. 3 Units.
How nervous systems control behavior. Biophysical, biochemical and molecular biological properties of nerve cells, their organization into circuitry, and their function within networks. Emphasis on quantitative methods for modeling neurons and networks, and on critical analysis of the contemporary technical literature in the neurosciences. Term paper required for graduate students. This course satisfies a lab requirement for the B.A. in Biology, and a Quantitative Laboratory requirements for the B.S. in Biology. Offered as BIOL 373, BIOL 473, and NEUR 473.
NEUR 474. Neurobiology of Behavior. 3 Units.
In this course, students will examine how neurobiologists interested in animal behavior study the linkage between neural circuitry and complex behavior. Various vertebrate and invertebrate systems will be considered. Several exercises will be used in this endeavor. Although some lectures will provide background and context on specific neural systems, the emphasis of the course will be on classroom discussion of specific journal articles. In addition, students will each complete a project in which they will observe some animal behavior and generate both behavioral and neurobiological hypotheses related to it. In lieu of examinations, students will complete three written assignments, including a theoretical grant proposal, a one-page Specific Aims paper related to the project, and a final project paper. These assignments are designed to give each student experience in writing biologically-relevant documents. Classroom discussions will help students understand the content and format of each type document. They will also present their projects orally to the entire class. Offered as BIOL 374, BIOL 474 and NEUR 474. Counts as SAGES Departmental Seminar.

NEUR 475. Protein Biophysics. 3 Units.
This course focuses on in-depth understanding of the molecular biophysics of proteins. Structural, thermodynamic and kinetic aspects of protein function and structure-function relationships will be considered at the advanced conceptual level. The application of these theoretical frameworks will be illustrated with examples from the literature and integration of biophysical knowledge with description at the cellular and systems level. The format consists of lectures, problem sets, and student presentations. A special emphasis will be placed on discussion of original publications. Offered as BIOL 475, CHEM 475, PHOL 475, PHRM 475, and NEUR 475.

NEUR 478. Computational Neuroscience. 3 Units.
Computer simulations and mathematical analysis of neurons and neural circuits, and the computational properties of nervous systems. Students are taught a range of models for neurons and neural circuits, and are asked to implement and explore the computational and dynamic properties of these models. The course introduces students to dynamical systems theory for the analysis of neurons and neural learning, models of brain systems, and their relationship to artificial and neural networks. Term project required. Students enrolled in MATH 478 will make arrangements with the instructor to attend additional lectures and complete additional assignments addressing mathematical topics related to the course. Recommended preparation: MATH 223 and MATH 224 or BIOL 300 and BIOL 306. Offered as BIOL 378, COGS 378, MATH 378, BIOL 478, EBME 478, EECS 478, MATH 478 and NEUR 478.

NEUR 540. Advanced Topics in Neuroscience Ethics. 0 Unit.
This course offers continuing education in responsible conduct of research for advanced graduate students. The course will cover the nine defined areas of research ethics through a combination of lectures, online course material and small group discussions. Six 2-hr meetings per semester. Maximum enrollment of 15 students with preference given to graduate students in the Neurosciences program. All neurosciences graduate students must complete this course during their 3rd or 4th year.

NEUR 601. Research in Neuroscience. 1 - 18 Units.
NEUR 651. Master’s Thesis (M.S.). 1 - 6 Units.
(Credit as arranged.) Recommended preparation: M.S. candidates only.

NEUR 701. Dissertation Ph.D.. 1 - 9 Units.
Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.

Department of Nutrition
School of Medicine, Room WG 48
https://case.edu/medicine/nutrition/
Phone: 216.368.2440; Fax: 216.368.6846
Hope Barkoukis, PhD, RDN, LD, Chair
hdb@case.edu

For general questions please email nutrition@case.edu.

The department’s focus is on human nutrition and the application of the science of nutrition to health promotion and disease prevention. Undergraduate programs are designed for students interested in nutritional biochemistry and metabolism, clinical nutrition, professional study in dietetics, public health nutrition, medicine, physical therapy, pharmacy or dentistry. Graduate programs emphasize dietetics, public health nutrition, nutritional biochemistry and clinical nutrition.

The Department of Nutrition offers programs leading to the bachelor of arts degree in nutrition, the bachelor of science degree in nutrition, the bachelor of arts degree in nutritional biochemistry and metabolism, the bachelor of science degree in nutritional biochemistry and metabolism, the master of science degree in nutrition, the dual degree of master of public health/master of science nutrition, and the doctor of philosophy degree. Two minors are available: the minor in nutrition and the minor in sports nutrition. Graduate certificate programs are available in areas such as maternal and child nutrition, nutrition for health care professionals, global health nutrition and gerontology. The certificates are in addition to the basic graduate degree. Students are able to pursue certificates at no additional cost to the student.

Undergraduate Degrees (NTRN)

Major Programs
The undergraduate degree in nutrition is appropriate for students who wish to:

1. pursue graduate programs in nutritional biochemistry, dietetics, public health and community nutrition or other biomedical sciences
2. enter professional schools of dentistry, medicine, physical therapy, or pharmacy
3. apply to dietetic internships or approved experience programs in order to prepare for the professional practice of dietetics
4. pursue careers with the government or in the food or pharmaceutical industry

This major offers flexibility in course selection within a framework of general program requirements. The selection of courses depends on the student’s choice of emphasis. Students wishing to qualify for admission to professional or graduate programs need to include specific courses considered prerequisites for admission. Students interested in applying to dietetic internships must meet specific course requirements (Didactic Program in Dietetics) as required by the Accreditation Council for Education in Nutrition and Dietetics of the Academy of Nutrition and Dietetics. These requirements are met in the courses that comprise the Didactic Program in Dietetics (DPD). The DPD at Case Western Reserve University is currently granted Accreditation by the Accreditation Council for Education in Nutrition and Dietetics of the Academy of Nutrition and Dietetics, 120 South Riverside Plaza, Suite 2000, Chicago, IL 60606-6995, 800.877.1600. A department advisor should be consulted in the freshman year to plan the dietetics coursework.
Human Nutrition

Bachelor of Science degree requires:

Required Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTRN 201</td>
<td>Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 342</td>
<td>Food Science</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 342L</td>
<td>Food Science Lab</td>
<td>2</td>
</tr>
<tr>
<td>NTRN 343</td>
<td>Dietary Patterns</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 363</td>
<td>Human Nutrition I: Energy, Protein, Minerals</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 364</td>
<td>Human Nutrition II: Vitamins</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 397</td>
<td>SAGES Capstone Proposal Seminar</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 398</td>
<td>SAGES Senior Capstone Experience</td>
<td>3</td>
</tr>
</tbody>
</table>

Three nutrition electives chosen from:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTRN 300</td>
<td>Healthy Lifestyles as Preventive Medicine</td>
</tr>
<tr>
<td>NTRN 328</td>
<td>Child Nutrition, Development and Health</td>
</tr>
<tr>
<td>NTRN 338</td>
<td>Dietary Supplements</td>
</tr>
<tr>
<td>NTRN 341</td>
<td>Food as Medicine: How what we eat influences how we feel, think, and our health status</td>
</tr>
<tr>
<td>NTRN 351</td>
<td>Food Service Systems Management</td>
</tr>
<tr>
<td>NTRN 360</td>
<td>Clinical Assessment and Diagnosis: Nutritional, Functional, Physical</td>
</tr>
<tr>
<td>NTRN 361</td>
<td>Metabolic Dysregulation of Energy from Obesity to Anorexia</td>
</tr>
<tr>
<td>NTRN 362</td>
<td>Exercise Physiology and Macronutrient Metabolism</td>
</tr>
<tr>
<td>NTRN 365</td>
<td>Nutrition for the Prevention and Management of Disease: Pathophysiology</td>
</tr>
<tr>
<td>NTRN 366</td>
<td>Nutrition for the Prevention and Management of Disease: Clinical Applications</td>
</tr>
<tr>
<td>NTRN 367</td>
<td>Nutrition Strategies and Wellness Programming</td>
</tr>
<tr>
<td>NTRN 371</td>
<td>Special Problems *</td>
</tr>
<tr>
<td>NTRN 388</td>
<td>Seminar in Sports Nutrition</td>
</tr>
<tr>
<td>NTRN 390</td>
<td>Undergraduate Research *</td>
</tr>
<tr>
<td>NTRN 435</td>
<td>Nutrition during Pregnancy and Lactation</td>
</tr>
<tr>
<td>NTRN 436</td>
<td>Pediatric Nutrition</td>
</tr>
<tr>
<td>NTRN 437</td>
<td>Evaluation of Nutrition Information for Consumers</td>
</tr>
<tr>
<td>NTRN 438</td>
<td>Dietary Supplements</td>
</tr>
<tr>
<td>NTRN 439</td>
<td>Food Behavior: Physiological, Psychological and Environmental Determinants</td>
</tr>
<tr>
<td>NTRN 440</td>
<td>Nutrition for the Aging and Aged</td>
</tr>
<tr>
<td>NTRN 452</td>
<td>Nutritional Biochemistry and Metabolism</td>
</tr>
<tr>
<td>NTRN 550A or NTRN 528</td>
<td>Advanced Community Nutrition or Introduction to Public Health Nutrition</td>
</tr>
</tbody>
</table>

Additional Required Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 106</td>
<td>Principles of Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 113</td>
<td>Principles of Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 223</td>
<td>Introductory Organic Chemistry I (before NTRN 363)</td>
<td></td>
</tr>
<tr>
<td>BIOL 214</td>
<td>Genes, Evolution and Ecology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 216</td>
<td>Development and Physiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 340 & BIOL 346</td>
<td>Human Physiology and Human Anatomy</td>
<td></td>
</tr>
<tr>
<td>BIOL 216L</td>
<td>Development and Physiology Lab</td>
<td>1</td>
</tr>
<tr>
<td>BIOC 307</td>
<td>Introduction to Biochemistry: From Molecules To Medical Science</td>
<td>4</td>
</tr>
<tr>
<td>ANTH 319</td>
<td>Introduction to Statistical Analysis in the Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>PSCL 282</td>
<td>Quantitative Methods in Psychology</td>
<td></td>
</tr>
<tr>
<td>STAT 201</td>
<td>Basic Statistics for Social and Life Sciences</td>
<td></td>
</tr>
<tr>
<td>PQHS 431</td>
<td>Statistical Methods I</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Units: 60

* Only one of these courses is permitted. 400 level courses require instructor consent for undergraduates to enroll.

Bachelor of Arts degree requires:

Required Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTRN 201</td>
<td>Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 342</td>
<td>Food Science</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 342L</td>
<td>Food Science Lab</td>
<td>2</td>
</tr>
<tr>
<td>NTRN 343</td>
<td>Dietary Patterns</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 363</td>
<td>Human Nutrition I: Energy, Protein, Minerals</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 364</td>
<td>Human Nutrition II: Vitamins</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 397</td>
<td>SAGES Capstone Proposal Seminar</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 398</td>
<td>SAGES Senior Capstone Experience</td>
<td>3</td>
</tr>
</tbody>
</table>

Two nutrition electives chosen from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTRN 300</td>
<td>Healthy Lifestyles as Preventive Medicine</td>
</tr>
<tr>
<td>NTRN 328</td>
<td>Child Nutrition, Development and Health</td>
</tr>
<tr>
<td>NTRN 338</td>
<td>Dietary Supplements</td>
</tr>
<tr>
<td>NTRN 360</td>
<td>Clinical Assessment and Diagnosis: Nutritional, Functional, Physical</td>
</tr>
<tr>
<td>NTRN 361</td>
<td>Metabolic Dysregulation of Energy from Obesity to Anorexia</td>
</tr>
<tr>
<td>NTRN 362</td>
<td>Exercise Physiology and Macronutrient Metabolism</td>
</tr>
<tr>
<td>NTRN 365</td>
<td>Nutrition for the Prevention and Management of Disease: Pathophysiology</td>
</tr>
<tr>
<td>NTRN 366</td>
<td>Nutrition for the Prevention and Management of Disease: Clinical Applications</td>
</tr>
<tr>
<td>NTRN 367</td>
<td>Nutrition Strategies and Wellness Programming</td>
</tr>
<tr>
<td>NTRN 371</td>
<td>Special Problems *</td>
</tr>
<tr>
<td>NTRN 388</td>
<td>Seminar in Sports Nutrition</td>
</tr>
<tr>
<td>NTRN 390</td>
<td>Undergraduate Research *</td>
</tr>
<tr>
<td>NTRN 435</td>
<td>Nutrition during Pregnancy and Lactation</td>
</tr>
<tr>
<td>NTRN 436</td>
<td>Pediatric Nutrition</td>
</tr>
<tr>
<td>NTRN 437</td>
<td>Evaluation of Nutrition Information for Consumers</td>
</tr>
<tr>
<td>NTRN 438</td>
<td>Dietary Supplements</td>
</tr>
<tr>
<td>NTRN 439</td>
<td>Food Behavior: Physiological, Psychological and Environmental Determinants</td>
</tr>
<tr>
<td>NTRN 440</td>
<td>Nutrition for the Aging and Aged</td>
</tr>
<tr>
<td>NTRN 452</td>
<td>Nutritional Biochemistry and Metabolism</td>
</tr>
<tr>
<td>NTRN 550A or NTRN 528</td>
<td>Advanced Community Nutrition or Introduction to Public Health Nutrition</td>
</tr>
</tbody>
</table>

Additional Required Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 106</td>
<td>Principles of Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 113</td>
<td>Principles of Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 223</td>
<td>Introductory Organic Chemistry I (before NTRN 363)</td>
<td></td>
</tr>
<tr>
<td>BIOL 214</td>
<td>Genes, Evolution and Ecology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 216</td>
<td>Development and Physiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 340 & BIOL 346</td>
<td>Human Physiology and Human Anatomy</td>
<td></td>
</tr>
<tr>
<td>BIOL 216L</td>
<td>Development and Physiology Lab</td>
<td>1</td>
</tr>
<tr>
<td>BIOC 307</td>
<td>Introduction to Biochemistry: From Molecules To Medical Science</td>
<td>4</td>
</tr>
<tr>
<td>ANTH 319</td>
<td>Introduction to Statistical Analysis in the Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>PSCL 282</td>
<td>Quantitative Methods in Psychology</td>
<td></td>
</tr>
<tr>
<td>STAT 201</td>
<td>Basic Statistics for Social and Life Sciences</td>
<td></td>
</tr>
<tr>
<td>PQHS 431</td>
<td>Statistical Methods I</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Units: 60

* Only one of these courses is permitted. 400 level courses require instructor consent for undergraduates to enroll.
Bachelor of Science in Nutrition - Human Nutrition Major Example Plan of Study

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of Chemistry I (CHEM 105)</td>
<td>3</td>
</tr>
<tr>
<td>Nutrition (NTRN 201)</td>
<td>3</td>
</tr>
<tr>
<td>SAGES First Seminar</td>
<td>4</td>
</tr>
<tr>
<td>Genes, Evolution and Ecology (BIOL 214)</td>
<td>3</td>
</tr>
<tr>
<td>Principles of Chemistry II (CHEM 106)</td>
<td>3</td>
</tr>
<tr>
<td>Principles of Chemistry Laboratory (CHEM 113)</td>
<td>2</td>
</tr>
<tr>
<td>SAGES Breadth Requirements (CHEM 113)</td>
<td>9</td>
</tr>
<tr>
<td>Year Total:</td>
<td>13 14</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTRN Electives</td>
<td>6</td>
</tr>
</tbody>
</table>

Introductory Organic Chemistry I (CHEM 223) 3
SAGES University Seminar 3
Development and Physiology (BIOL 216) 3
Development and Physiology Lab (BIOL 216L) 1
SAGES University Seminar 3
Basic Statistics for Social and Life Sciences (STAT 201) 3
Electives 6
Dietary Patterns (NTRN 343) 3
Year Total: 16 15

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Biochemistry: From Molecules To Medical Science (BIOC 307)</td>
<td>4</td>
</tr>
<tr>
<td>SAGES Breadth Requirements (BIOC 307)</td>
<td>6</td>
</tr>
<tr>
<td>Food Science (NTRN 342)</td>
<td>3</td>
</tr>
<tr>
<td>Food Science Lab (NTRN 342L)</td>
<td>2</td>
</tr>
<tr>
<td>Nutrition Elective</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>SAGES Capstone Proposal Seminar (NTRN 397)</td>
<td>3</td>
</tr>
<tr>
<td>SAGES Breadth Requirements (NTRN 397)</td>
<td>6</td>
</tr>
<tr>
<td>Year Total:</td>
<td>15 15</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAGES Senior Capstone Experience (NTRN 398)</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>9</td>
</tr>
<tr>
<td>Human Nutrition I: Energy, Protein, Minerals (NTRN 363)</td>
<td>3</td>
</tr>
<tr>
<td>Human Nutrition II: Vitamins (NTRN 364)</td>
<td>3</td>
</tr>
<tr>
<td>Nutrition Elective</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>9</td>
</tr>
<tr>
<td>Year Total:</td>
<td>15 15</td>
</tr>
</tbody>
</table>

Total Units in Sequence: 118

Nutritional Biochemistry and Metabolism

Bachelor of Arts degree requires:

Required courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTRN 201 Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 343 Dietary Patterns</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 363 Human Nutrition I: Energy, Protein, Minerals</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 364 Human Nutrition II: Vitamins</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 397 SAGES Capstone Proposal Seminar</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 398 SAGES Senior Capstone Experience</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 452 Nutritional Biochemistry and Metabolism</td>
<td>3</td>
</tr>
</tbody>
</table>

Three nutrition electives at 300-level (or above with instructor consent) chosen from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTRN 300 Healthy Lifestyles as Preventive Medicine</td>
<td>9</td>
</tr>
</tbody>
</table>
NTRN 328 Child Nutrition, Development and Health
NTRN 338 Dietary Supplements
NTRN 341 Food as Medicine: How what we eat influences how we feel, think, and our health status
NTRN 351 Food Service Systems Management
NTRN 360 Clinical Assessment and Diagnosis: Nutritional, Functional, Physical
NTRN 361 Metabolic Dysregulation of Energy from Obesity to Anorexia
NTRN 365 Nutrition for the Prevention and Management of Disease: Pathophysiology
NTRN 366 Nutrition for the Prevention and Management of Disease: Clinical Applications
NTRN 367 Nutrition Strategies and Wellness Programming
NTRN 371 Special Problems
NTRN 388 Seminar in Sports Nutrition
NTRN 390 Undergraduate Research

Additional required courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 125</td>
<td>Math and Calculus Applications for Life, Managerial, and Social Sci I</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 121</td>
<td>Calculus for Science and Engineering I</td>
<td></td>
</tr>
<tr>
<td>MATH 126</td>
<td>Math and Calculus Applications for Life, Managerial, and Social Sci II</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 122</td>
<td>Calculus for Science and Engineering II</td>
<td></td>
</tr>
<tr>
<td>CHEM 105</td>
<td>Principles of Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 106</td>
<td>Principles of Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 113</td>
<td>Principles of Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 223</td>
<td>Introductory Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 323</td>
<td>Organic Chemistry I</td>
<td></td>
</tr>
<tr>
<td>CHEM 224</td>
<td>Introductory Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 324</td>
<td>Organic Chemistry II</td>
<td></td>
</tr>
<tr>
<td>CHEM 233</td>
<td>Introductory Organic Chemistry Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 234</td>
<td>Introductory Organic Chemistry Laboratory II</td>
<td>2</td>
</tr>
<tr>
<td>BIOL 214</td>
<td>Genes, Evolution and Ecology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 215</td>
<td>Cells and Proteins</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 216</td>
<td>Development and Physiology</td>
<td>3</td>
</tr>
<tr>
<td>or BIOL 340</td>
<td>Human Physiology</td>
<td></td>
</tr>
<tr>
<td>& BIOL 346</td>
<td>and Human Anatomy</td>
<td></td>
</tr>
<tr>
<td>BIOL 216L</td>
<td>Development and Physiology Lab</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 115</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>or PHYS 121</td>
<td>General Physics I - Mechanics</td>
<td></td>
</tr>
<tr>
<td>PHYS 116</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>or PHYS 122</td>
<td>General Physics II - Electricity and Magnetism</td>
<td></td>
</tr>
<tr>
<td>BIOC 307</td>
<td>Introduction to Biochemistry: From Molecules To Medical Science</td>
<td>4</td>
</tr>
<tr>
<td>BIOC 334</td>
<td>Structural Biology</td>
<td>3</td>
</tr>
<tr>
<td>or BIOC 312</td>
<td>Proteins and Enzymes</td>
<td></td>
</tr>
</tbody>
</table>

or NTRN 454 Advanced Nutrition and Metabolism: Investigative Methods

Total Units 81

Bachelor of Science degree requires:

Required courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTRN 201</td>
<td>Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 343</td>
<td>Dietary Patterns</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 363</td>
<td>Human Nutrition I: Energy, Protein, Minerals</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 364</td>
<td>Human Nutrition II: Vitamins</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 397</td>
<td>SAGES Capstone Proposal Seminar</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 398</td>
<td>SAGES Senior Capstone Experience</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 452</td>
<td>Nutritional Biochemistry and Metabolism</td>
<td>3</td>
</tr>
<tr>
<td>Three nutrition electives at 300-level (or above with instructor consent) chosen from the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTRN 300</td>
<td>Healthy Lifestyles as Preventive Medicine</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 328</td>
<td>Child Nutrition, Development and Health</td>
<td></td>
</tr>
<tr>
<td>NTRN 338</td>
<td>Dietary Supplements</td>
<td></td>
</tr>
<tr>
<td>NTRN 341</td>
<td>Food as Medicine: How what we eat influences how we feel, think, and our health status</td>
<td></td>
</tr>
<tr>
<td>NTRN 351</td>
<td>Food Service Systems Management</td>
<td></td>
</tr>
<tr>
<td>NTRN 360</td>
<td>Clinical Assessment and Diagnosis: Nutritional, Functional, Physical</td>
<td></td>
</tr>
<tr>
<td>NTRN 361</td>
<td>Metabolic Dysregulation of Energy from Obesity to Anorexia</td>
<td></td>
</tr>
<tr>
<td>NTRN 365</td>
<td>Nutrition for the Prevention and Management of Disease: Pathophysiology</td>
<td></td>
</tr>
<tr>
<td>NTRN 366</td>
<td>Nutrition for the Prevention and Management of Disease: Clinical Applications</td>
<td></td>
</tr>
<tr>
<td>NTRN 367</td>
<td>Nutrition Strategies and Wellness Programming</td>
<td></td>
</tr>
<tr>
<td>NTRN 371</td>
<td>Special Problems</td>
<td></td>
</tr>
<tr>
<td>NTRN 388</td>
<td>Seminar in Sports Nutrition</td>
<td></td>
</tr>
<tr>
<td>NTRN 390</td>
<td>Undergraduate Research</td>
<td></td>
</tr>
</tbody>
</table>

Additional required courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 121</td>
<td>Calculus for Science and Engineering I</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 122</td>
<td>Calculus II</td>
<td></td>
</tr>
<tr>
<td>MATH 123</td>
<td>Calculus for Science and Engineering III</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 224</td>
<td>Calculus III</td>
<td></td>
</tr>
<tr>
<td>MATH 222</td>
<td>Calculus for Science and Engineering III</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 227</td>
<td>Calculus III</td>
<td></td>
</tr>
<tr>
<td>MATH 224</td>
<td>Elementary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 228</td>
<td>Differential Equations</td>
<td></td>
</tr>
<tr>
<td>CHEM 105</td>
<td>Principles of Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 106</td>
<td>Principles of Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 113</td>
<td>Principles of Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>BIOL 214</td>
<td>Genes, Evolution and Ecology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 215</td>
<td>Cells and Proteins</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 216</td>
<td>Development and Physiology</td>
<td>3</td>
</tr>
<tr>
<td>or BIOL 340</td>
<td>Human Physiology</td>
<td></td>
</tr>
<tr>
<td>& BIOL 346</td>
<td>and Human Anatomy</td>
<td></td>
</tr>
<tr>
<td>BIOL 216L</td>
<td>Development and Physiology Lab</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 115</td>
<td>Introductory Physics I</td>
<td>4</td>
</tr>
<tr>
<td>or PHYS 121</td>
<td>General Physics I - Mechanics</td>
<td></td>
</tr>
<tr>
<td>PHYS 116</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>or PHYS 122</td>
<td>General Physics II - Electricity and Magnetism</td>
<td></td>
</tr>
<tr>
<td>BIOC 307</td>
<td>Introduction to Biochemistry: From Molecules To Medical Science</td>
<td>4</td>
</tr>
<tr>
<td>BIOC 334</td>
<td>Structural Biology</td>
<td>3</td>
</tr>
<tr>
<td>or BIOC 312</td>
<td>Proteins and Enzymes</td>
<td></td>
</tr>
</tbody>
</table>
Bachelor of Arts in Nutrition - Nutritional Biochemistry and Metabolism Major Example Plan of Study

First Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math and Calculus Applications for Life, Managerial, and Social Sci I (MATH 125)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Nutrition (NTRN 201)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Genes, Evolution and Ecology (BIOL 214)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SAGES First Seminar</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Principles of Chemistry I (CHEM 105)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SAGES Breadth Requirements</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Cells and Proteins (BIOL 215)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Principles of Chemistry Laboratory (CHEM 113)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Math and Calculus Applications for Life, Managerial, and Social Sci II (MATH 126)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Principles of Chemistry II (CHEM 106)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Year Total: 17 \(\text{Fall} \) \ 15 \(\text{Spring} \)

Second Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introductory Organic Chemistry Laboratory I (CHEM 233)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Introductory Organic Chemistry I (CHEM 223)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Development and Physiology (BIOL 216) & Development and Physiology Lab (BIOL 216L)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>SAGES University Seminar</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Introductory Organic Chemistry II (CHEM 224)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Introductory Organic Chemistry Laboratory II (CHEM 234)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Nutrition Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SAGES University Seminar</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Year Total: 15 \(\text{Fall} \) \ 14 \(\text{Spring} \)

Third Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Biochemistry: From Molecules To Medical Science (BIOC 307)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Introductory Physics I (PHYS 115)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Food Science (NTRN 342)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Food Science Lab (NTRN 342L)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SAGES Capstone Proposal Seminar (NTRN 397)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Introductory Physics II (PHYS 116)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>SAGES Breadth Requirement</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Year Total: 13 \(\text{Fall} \) \ 16 \(\text{Spring} \)

Fourth Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAGES Senior Capstone Experience (NTRN 398)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Nutritional Biochemistry and Metabolism (NTRN 452)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Human Nutrition I: Energy, Protein, Minerals (NTRN 363)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Nutrition Elective (if not already taken)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Human Nutrition II: Vitamins (NTRN 364)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Structural Biology (BIOC 334)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Year Total: 12 \(\text{Fall} \) \ 12 \(\text{Spring} \)

Total Units in Sequence: 114

Minor in Nutrition

Minor in Nutrition

Nutrition majors are not eligible for this minor.

Non Nutrition majors may only take one minor: either Minor in Nutrition or Minor in Sports Nutrition.

Required courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTRN 201</td>
<td>Nutrition</td>
<td>3</td>
</tr>
</tbody>
</table>
Minor in Sports Nutrition

Nutrition majors are not eligible for this minor.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTRN 201</td>
<td>Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 361</td>
<td>Metabolic Dysregulation of Energy from Obesity to Anorexia</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 362</td>
<td>Exercise Physiology and Macronutrient Metabolism</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 363</td>
<td>Human Nutrition I: Energy, Protein, Minerals</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 388</td>
<td>Seminar in Sports Nutrition</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Units</td>
<td>15</td>
</tr>
</tbody>
</table>

Didactic Program in Dietetics (DPD)

The following courses must be included in the program.

Required courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTRN 201</td>
<td>Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 342</td>
<td>Food Science</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 342L</td>
<td>Food Science Lab</td>
<td>2</td>
</tr>
<tr>
<td>NTRN 343</td>
<td>Dietary Patterns</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 351</td>
<td>Food Service Systems Management</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 360</td>
<td>Clinical Assessment and Diagnosis: Nutritional, Functional, Physical</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 363</td>
<td>Human Nutrition I: Energy, Protein, Minerals</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 364</td>
<td>Human Nutrition II: Vitamins</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 365</td>
<td>Nutrition for the Prevention and Management of Disease: Pathophysiology</td>
<td>4</td>
</tr>
<tr>
<td>NTRN 366</td>
<td>Nutrition for the Prevention and Management of Disease: Clinical Applications</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Units</td>
<td>15</td>
</tr>
</tbody>
</table>

Masters Degrees

The Department of Nutrition offers six distinct programs leading to Masters Degrees: (1) MS in Nutrition (2) MS in Public Health Nutrition (3) MS in Public Health Nutrition Dietetic Internship (4) Combined Dietetic Internship/Master’s Degree Program (5) Master of Public Health/ Master of Science in Nutrition Dual Degree Program and (6) MD/MS in Biomedical Investigation - Nutrition Track.

MS in Nutrition

This degree program offers two options. For those pursuing the thesis option, 30 semester hours of a planned program of study are required, including six to nine semester hours of research, as well as a final oral defense of the thesis. The non-thesis option requires 30 semester hours and a final written, comprehensive examination.

All candidates are required to take 21 semester hours of nutrition, including seven hours of advanced human nutrition. In addition, students are encouraged to pursue complementary studies in the biomedical, social and behavioral sciences. The plan of study may vary considerably depending on the education, goals and specific interests of each student. Students may elect to focus on nutritional biochemistry and metabolism or molecular nutrition. The individual program also may be planned to fulfill the academic requirements for dietetic registration (Didactic Program in Dietetics).
MS in Public Health Nutrition

The primary goal of this 16-month program is to prepare students for employment in public health or community agencies where you will work to promote health and reduce the risk of chronic disease and advance the nutritional health of our population. Coursework includes training in public health theory, program development and evaluation, nutritional epidemiology, human nutrition and life-cycle specific nutritional needs and concerns. A minimum of 31 semester hours of academic coursework is required to earn the degree. Note: students who have not previously earned an undergraduate degree in nutrition must complete NTRN 401 before beginning this program.

In addition to the general public health nutrition curriculum, students may elect to complete a certificate in Maternal and Child Nutrition or Gerontology. Specialty certificates may require completion of additional coursework.

Sample Program of Study-Fall Start

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

First Year

- Introduction to Public Health Nutrition (NTRN 528)
- Nutritional Epidemiology (NTRN 529)
- Advanced Human Nutrition I (NTRN 433)
- Nutrition for the Aging and Aged (NTRN 440)
- Public Health Nutrition (NTRN 530)

Second Year

- Pediatric Nutrition (NTRN 436)
- Any two NTRN or related 400 or 500 level courses

Year Total: 31

Sample Program of Study-Spring Start

<table>
<thead>
<tr>
<th>Units</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

First Year

- Pediatric Nutrition (NTRN 436)
- Any two NTRN or related 400 or 500 level courses

Second Year

- Introduction to Public Health Nutrition (NTRN 528)
- Nutritional Epidemiology (NTRN 529)
- Nutrition for the Aging and Aged (NTRN 440)
- Public Health Nutrition (NTRN 530)
- Any two NTRN or related 400 or 500 level courses

Year Total: 31

MS in Public Health Nutrition Dietetic Internship Program

The primary goal of this program is to prepare Registered Dietitian Nutritionists (RDNs) for employment in public health or community agencies. A minimum of 30 semester hours of combined academic work and supervised practice is required to earn the degree. Supervised practice is concurrent with coursework utilizing local agencies for translation of theory and science into practice. The program includes a ten-twelve week experience in an out of town public health agency that has a strong nutrition program.

In addition to the public health nutrition curriculum, students may elect to complete a certificate in Maternal and Child Nutrition or Gerontology. Specialty certificates may require completion of additional coursework. If a certificate program is selected, supervised practice will be geared toward the specific population group.

Upon completion of the program, students are eligible to take the Registered Dietitian Nutritionist (RDN) exam. The program is accredited by the Accreditation Council for Education in Nutrition and Dietetics (ACEND). This program is a non-thesis program of study.

General Track: Plan of Study

Note: Students must take either NTRN 436 or NTRN 440.

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First Year

- Introduction to Public Health Nutrition (NTRN 528)
- Nutritional Epidemiology (NTRN 529)
- Nutrition for the Aging and Aged (NTRN 440)
- Seminar in Dietetics I (NTRN 516)
- Public Health Nutrition (NTRN 530)
- Elective: Any NTRN 400 or 500 level course
- NTRN 531 Public Health Nutrition Field Experience
- Advanced Public Health Nutrition Field Experience (NTRN 534)

Second Year

- Pediatric Nutrition (NTRN 436)
- NTRN 531 Public Health Nutrition Field Experience
- Or Elective at 400 level or higher.

Year Total: 33

Combined Dietetic Internship/Master's Degree Program

The Combined Dietetic Internship/Master’s Degree Program combines academic work with clinical practice at a dietetic internship at University...
Hospitals Case Medical Center, the Louis Stokes Cleveland Department of Veterans Affairs Medical Center, or the Cleveland Clinic. A minimum of 30 semester hours is required. Admission is contingent on the student being selected and matched to one of the hospitals’ dietetic internship programs. Appointment to these internships follows the admission procedure outlined by the Accreditation Council for Education in Nutrition and Dietetics of the Academy of Nutrition and Dietetics.

Coursework is planned individually with the student’s academic advisor. This program is a non-thesis program of study.

First Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Dietetics I (NTRN 516)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>NTRN 561 Investigative Methods in Nutrition</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Seminar in Dietetics II (NTRN 517)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Research Practicum (NTRN 562)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives: Any NTRN 400 or 500 level courses and/or graduate course in basic science or social science</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electives: Any NTRN 400, 500, or 600 level courses and/or graduate course in basic science or social science</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Total Units in Sequence: 30

Master of Public Health/Master of Science in Nutrition Dual Degree Program

This is a dual degree program that is offered jointly by the Departments of Epidemiology and Biostatistics, and Nutrition. The core Master Degree courses include a mixture of those from nutrition, biochemistry and public health.

The trained graduate could be employed in a wide variety of settings, including (but not limited to) local, state, national, or global public policy, governmental public health, hospital outreach, community-based health non-profit organizations, health organizations, research projects; or the Food and Drug Administration. Additionally, these graduates could serve as health emissaries to foreign countries regarding nutrition, sufficient food supply, sanitary environment, food safety, oral rehydration, or the advisability of food supplements.

The MPH/Nutrition dual degree is envisioned with students able to apply for either degree, then later join the other; or apply directly for the joint degree. Both the MPH and MS programs confer degrees through the School of Graduate Studies and as such are subject to Graduate Studies rules and procedures. Both programs are housed in the School of Medicine. This program is a non-thesis program of study.

First Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Biochemistry: From Molecules To Medical Science (BIOC 407)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>History and Philosophy of Public Health (MPHP 406)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Human Nutrition I (NTRN 433)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Introduction to Health Behavior (MPHP 411)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NTRN Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Advanced Human Nutrition II (NTRN 434)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Public Health Practicum (MPHP 650)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Public Health Major Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>10</td>
<td>9</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutritional Biochemistry and Metabolism (NTRN 452)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Public Health Capstone Experience (MPHP 652)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NTRN Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NTRN Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Public Health Capstone Experience (MPHP 652)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Master’s Comprehensive Exam (EXAM 600)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>

Total Units in Sequence: 61

MD/MS Biomedical Investigation-Nutrition Track

For Admissions and MD requirements, see the MD Dual Degree Programs section (p. 26). This track is designed to provide medical students with more in-depth knowledge and research experience in nutrition. Students may elect to focus on nutrition biochemistry and metabolism or molecular nutrition or clinical nutrition. The student’s mentor or the Graduate Program Director will assist the student in selecting the appropriate courses for their interests.

Students in Nutrition must complete:

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTRN 433</td>
<td>Advanced Human Nutrition I</td>
<td>4</td>
</tr>
<tr>
<td>NTRN 434</td>
<td>Advanced Human Nutrition II</td>
<td>3</td>
</tr>
<tr>
<td>NTRN 551</td>
<td>Seminar in Advanced Nutrition 2 semesters required, 1 unit each</td>
<td>1</td>
</tr>
<tr>
<td>NTRN 601</td>
<td>Special Problems</td>
<td>1 - 18</td>
</tr>
<tr>
<td>IBIS 600</td>
<td>Exam in Biomedical Investigation</td>
<td>0</td>
</tr>
<tr>
<td>IBIS 401</td>
<td>Integrated Biological Sciences I</td>
<td>1 - 9</td>
</tr>
<tr>
<td>IBMS 500</td>
<td>On Being a Professional Scientist: The Responsible Conduct of Research</td>
<td>1</td>
</tr>
</tbody>
</table>
And 2-3 credits or one course from those listed below:

NTRN 435 Nutrition during Pregnancy and Lactation 3
NTRN 436 Pediatric Nutrition 3
NTRN 438 Dietary Supplements 3
NTRN 439 Food Behavior: Physiological, Psychological and Environmental Determinants 3
NTRN 440 Nutrition for the Aging and Aged 3
NTRN 452 Nutritional Biochemistry and Metabolism 3
NTRN 448 Integrative and Functional Nutrition 3
NTRN 459 Advanced Nutrition and Metabolism: Investigative Methods 3
NTRN 454 Molecular Nutrition 3
NTRN 460 Sports Nutrition 3
NTRN 461 Metabolic Dysregulation of Energy from Obesity to Anorexia 3
NTRN 529 Nutritional Epidemiology 3
NTRN 530 Public Health Nutrition 3
NTRN 533 Nutritional Care of Neonate 3

Health Care Professionals

Certificate Requirements: A maximum of 6 credits may be double counted for this certificate and the certificate in Maternal and Child Nutrition. Students must maintain an average GPA of 3.0 to successfully complete this 15 credit certificate.

Required Courses

NTRN 401 Nutrition for Community and Health Care Professionals 2
NTRN 433 Advanced Human Nutrition I 4
3 additional NTRN electives at a 400 level or higher from the list below. 9

NTRN 434 Advanced Human Nutrition II
NTRN 435 Nutrition during Pregnancy and Lactation
NTRN 436 Pediatric Nutrition
NTRN 437 Evaluation of Nutrition Information for Consumers
NTRN 438 Dietary Supplements
NTRN 439 Food Behavior: Physiological, Psychological and Environmental Determinants
NTRN 440 Nutrition for the Aging and Aged
NTRN 446 Advanced Maternal Nutrition: Special Topics
NTRN 448 Integrative and Functional Nutrition
NTRN 452 Nutritional Biochemistry and Metabolism
NTRN 454 Advanced Nutrition and Metabolism: Investigative Methods
NTRN 455 Molecular Nutrition
NTRN 459 Diabetes Prevention and Management
NTRN 460 Sports Nutrition
NTRN 461 Metabolic Dysregulation of Energy from Obesity to Anorexia
NTRN 462 Exercise Physiology and Macronutrient Metabolism
NTRN 528 Introduction to Public Health Nutrition
NTRN 529 Nutritional Epidemiology

Total Units 15

Global Health Nutrition

Certificate Requirements: A maximum of 6 credits may be double counted for this certificate. Students must maintain an average GPA of 3.0 to successfully complete this certificate.

INTH 401 Fundamentals of Global Health 3
PQHS 484 Global Health Epidemiology 3
NURS 494 Global Health Seminar 3
NTRN 602 Special Project in Nutrition 3

Total Units 12
Gerontology Certificate Requirements
NTRN 440 Nutrition for the Aging and Aged 3
GERO 498 Seminar in Gerontological Studies 3
NTRN 532C Specialized Public Health Nutrition Field Experience 3
One Gerontology Elective 3
Total Units 12

PhD in Nutrition
The PhD degree in Nutrition is awarded for study and research in nutrition. Areas of concentration are nutritional biochemistry and metabolism, and molecular nutrition. Admissions to the PhD in Nutrition program are obtained through the integrated Biomedical Scientist Training Program (BSTP), by direct admission to the department or via the Medical Scientist Training Program (MSTP).

In order to earn a PhD in Nutrition, a student must complete rotations in at least three laboratories followed by selection of a research advisor, completion of Core and Elective coursework, including responsible conduct of research, as described in the plan of study. Each graduate program follows the overall regulations established and described in CWRU Graduate Studies and documented to the Regents of the State of Ohio. Completion of the PhD degree will require 36 hours of coursework (24 hours of which are graded) and 18 hours of NTRN 701 Dissertation Ph.D.

In addition, each student must successfully complete a qualifier examination for advancement to candidacy in the form of a short grant proposal with oral defense. During the dissertation period, students are expected to meet twice a year with the thesis committee, present seminars in the department, and fulfill journal publication requirements. Throughout the doctoral training, students are expected to be enthusiastic participants in seminars, journal clubs, and research meetings in the lab and program.

Sample Plan of Study
§ Please also see Graduate Studies Academic Requirements for Doctoral Degrees (http://bulletin.case.edu/schoolofgraduatestudies/academicrequirements)

First Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology I (CBIO 453)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminar in Advanced Nutrition (NTRN 551)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Research Rotation in Biomedical Sciences Training Program (BSTP 400) or Research Rotation in Medical Scientist Training Program (MSTP 400) or Special Problems (NTRN 601)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Biology I (CBIO 455)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Human Nutrition II (NTRN 434)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminar in Advanced Nutrition (NTRN 551)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Nutrition and Metabolism: Investigative Methods (NTRN 454) or Molecular Nutrition (NTRN 455)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Investigative Methods in Nutrition (NTRN 561) 1 - 4
Special Problems (NTRN 601) 1-9
On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500) 1
Year Total: 7 9-20 1

Second Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Human Nutrition I (NTRN 433)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Nutritional Biochemistry and Metabolism (NTRN 452)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Seminar in Advanced Nutrition (NTRN 551)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Investigative Methods in Nutrition (NTRN 561)</td>
<td></td>
<td>1 - 4</td>
<td></td>
</tr>
<tr>
<td>Special Problems (NTRN 601)</td>
<td></td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Seminar in Advanced Nutrition (NTRN 551)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives: 2 courses - Any NTRN 400 and/or graduate course in SOM basic science departments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investigative Methods in Nutrition (NTRN 561)</td>
<td></td>
<td>1 - 4</td>
<td></td>
</tr>
<tr>
<td>Special Problems (NTRN 601)</td>
<td></td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (NTRN 701)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>10-21</td>
<td>9-20</td>
<td>1-9</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Advanced Nutrition (NTRN 551)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Dissertation Ph.D. (NTRN 701)</td>
<td></td>
<td>1-9</td>
</tr>
<tr>
<td>Seminar in Advanced Nutrition (NTRN 551)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Dissertation Ph.D. (NTRN 701)</td>
<td></td>
<td>1-9</td>
</tr>
<tr>
<td>Year Total:</td>
<td>2-10</td>
<td>2-10</td>
</tr>
</tbody>
</table>

Total Units in Sequence: 41-98

After completion of required coursework, student enrolls in a minimum of one credit of NTRN 701 Dissertation Ph.D. Fall and Spring Semesters until graduation.
Courses

NTRN 200. Case Cooks: Ethnic Eats. 1 Unit.
In a world as connected as ours, it is important to learn about others’ cultures; and what better way to learn than through the medium of food! Something as simple as food can be interpreted thousands of ways and can serve as a link from our culture to ethnicities around the world. This half-semester class focuses on exploring cultural diversity in a way that everyone can relate to while also incorporating healthy, simple, budget friendly cooking skills. Course is geared towards the beginner skill level. Weekly cooking topics include, Treasures from the earth, Keep it simple & Make it quick, Protein power, Grocery game plans & Mastering Student Meals, Make it lighter. Note: Please email instructor before registering if you have food allergies.

NTRN 200H. Case Cooks: Healthy Lifestyles. 1 Unit.
Studies say that those who frequently cook meals at home eat healthier, consume fewer calories and are happier than those who eat out. Isn’t it time you learn to cook? Join your classmates for a fun, edible education. This half-semester class focuses on healthy, simple, budget friendly cooking skills to increase your confidence in the kitchen. Course is geared towards the beginner skill level. Weekly cooking topics include, Treasures from the earth, Keep it simple & Make it quick, Protein power, Grocery game plans & Mastering Student Meals, Make it lighter. Note: Please email instructor before registering if you have food allergies.

NTRN 201. Nutrition. 3 Units.
The nutrients, their functions, food sources, and factors affecting human needs throughout life.

NTRN 300. Healthy Lifestyles as Preventive Medicine. 3 Units.
Decades of research have shown that a healthy lifestyle will significantly reduce the risk of chronic disease, improve health and quality of life. Because of this research, support has emerged that healthy lifestyles are in fact the “best preventive medicine”. This course will focus on learning the key components of these healthy lifestyle principles and developing the skills necessary to practice and advocate a healthy lifestyle. It is designed for any student interested in learning how to practice and promote healthy lifestyles, but it is particularly helpful for all pre-health, public health, and nutrition majors. *A unique feature of this course is the opportunity for enrolled students, (who are interested), to pair with advanced nutrition students throughout the semester for ‘healthy eating’ guidance. Enrolled students will have healthy eating coaches!

NTRN 328. Child Nutrition, Development and Health. 3 Units.
The relationship between nutrition and physical/cognitive growth and development of the child from the prenatal period through adolescence, including individuality, maturation and biological needs. Nutritional influences (nutrient requirements, food choices, and nutritional/feeding problems) and effects on health are emphasized. Prereq: NTRN 201.

NTRN 338. Dietary Supplements. 3 Units.
An examination of dietary supplements specific to health promotion and disease prevention/treatment throughout the life cycle. Topics and concepts include regulation, controversies, safety, efficacy, and the surrounding scientific evidence for dietary supplement use. For NTRN 338, preference will be given to senior level Nutrition majors. Offered as NTRN 338 and NTRN 438. Prereq: Junior or Senior Standing.

NTRN 341. Food as Medicine: How what we eat influences how we feel, think, and our health status. 3 Units.
This course will discuss key aspects of the interplay between food and health/wellness and in particular food synergy - interactions among dietary components and the effects on health. What are “whole foods” vs. basic nutrients? What are the most common nutrient deficiencies in men, women and children, including the elderly? Students will learn to interpret dietary recommendations/guidelines and which foods are used to improve digestion, optimize cardiovascular health and immune function, and help prevent cancer. Basic discussion of importance of gut micro-flora. Diet and body weight; also pros and cons of different dieting strategies. Increasing awareness of “culinary medicine” (i.e. how food acts as an integrated therapy). How what we eat influences how we feel, think and our general health status. There is an integrated culinary experience. Prereq: NTRN 201 or requisites not met permission.

NTRN 342. Food Science. 3 Units.
Chemical, physical and biological properties of food constituents and their interactions in food preparation and processing and practical application of processing methods and their effect on nutritional quality and acceptability. Prereq: CHEM 106.

NTRN 342L. Food Science Lab. 2 Units.

NTRN 343. Dietary Patterns. 3 Units.
Examination of the food supply in the United States as it is affected by production, processing, marketing, government programs, regulation, and consumer selection. Nutritional evaluation of dietary patterns of different cultures. Counts for CAS Global & Cultural Diversity Requirement. Prereq: NTRN 201.

NTRN 351. Food Service Systems Management. 3 Units.
The application of organizational theory and skills in the preparation and service of quantity food. Laboratory experience in professional food services are included. Graduate students will analyze one aspect of food service management in depth. Offered as NTRN 351 and NTRN 451. Prereq: Nutrition major or consent of instructor.

NTRN 360. Clinical Assessment and Diagnosis: Nutritional, Functional, Physical. 3 Units.
Methods for the provision of nutrition services to individuals and groups. Principles of professional practice including ethics, standards, and regulatory issues. Prereq: NTRN 201 and NTRN 363 or MS in Nutrition or MS in Public Health Nutrition.
NTRN 361. Metabolic Dysregulation of Energy from Obesity to Anorexia. 3 Units.

Energy imbalance and the implications on health will be explored in this course. Key concepts covered in this class include: 1. Energy imbalance refers to positive and negative states of energy balance and occurs when energy intake does not match energy expended in metabolic processes, daily living activities, and physical activity; 2. Obesity is a result of chronic positive energy balance whereas anorexia nervosa is a condition of chronic negative energy balance; 3. Energy metabolism is controlled by a complex array of neural and hormonal signaling; 4. Energy imbalance disrupts the neural and hormonal signaling pathways of energy metabolism resulting in unfavorable health consequences such as pro-inflammatory state, oxidative stress, immune dysregulation, menstrual dysfunction, sarcopenia, and low bone mineral density; and 5. Exercise training can impact energy imbalance health-related outcomes. Learning Outcomes: Students will be able to 1. define energy balance and explain the components of energy expenditure; 2. define disordered eating, female athlete triad, and disordered eating; 3. explain the relationship among energy intake, energy expenditure, and body composition in energy imbalance; 4. describe alterations in skeletal muscle and adipose physiology in energy imbalance; 5. diagram neural control of feeding and energy homeostasis and hormonal control of energy metabolism; 6. explain the neural and hormonal changes that occur in chronic energy imbalance and describe current theories in how it results in menstrual dysfunction, inflammatory response, oxidative stress, immune dysregulation, sarcopenia, and low bone mineral density; and 7. explain how exercise training can influence inflammatory response, oxidative stress, immune function, and musculoskeletal health in energy imbalance. Offered as NTRN 361 and NTRN 461. Prereq: NTRN 201 or requisites not met permission.

NTRN 362. Exercise Physiology and Macronutrient Metabolism. 3 Units.

The purpose of this course is to provide students with the knowledge of theoretical and applied concepts of exercise physiology. Students will gain an understanding of the acute and chronic physiological responses and adaptations of the cardiovascular, metabolic, hormonal, and neuromuscular systems in response to exercise. Additional topics include factors effecting performance, assessing cardiorespiratory and muscular fitness, designing exercise programs for health and wellness, special populations, and athletes, environmental considerations and nutrition’s role in sport and exercise performance. Offered as NTRN 362 and NTRN 462. Prereq: NTRN 201 and BIOL 216.

NTRN 363. Human Nutrition I: Energy, Protein, Minerals. 3 Units.

Chemical and physiological properties of specific nutrients, including interrelationships and multiple factors, in meeting nutritional needs throughout the life cycle. Prereq: BIOL 216 and (Junior or Senior status).

NTRN 364. Human Nutrition II: Vitamins. 3 Units.

Chemical and physiological properties of vitamins, including interrelationships and multiple factors, in meeting nutritional needs throughout the life cycle. Prereq: NTRN 363.

NTRN 365. Nutrition for the Prevention and Management of Disease: Pathophysiology. 4 Units.

Interplay among etiology, metabolic perturbations, pathophysiology, clinical signs and symptoms, and nutrition principles for the prevention and management of disease. Prereq: NTRN 363 and BIOC 307 or equivalent or consent of instructor.

NTRN 366. Nutrition for the Prevention and Management of Disease: Clinical Applications. 3 Units.

Application of nutrition principles and knowledge for the prevention and management of disease. Case studies and other educational approaches and techniques will be used. Course includes evidence-based assessments and interpretation of key data (biochemical, dietary, physical) to develop nutritional interventions. Coreq: NTRN 365.

NTRN 367. Nutrition Strategies and Wellness Programming. 3 Units.

Wellness and its implication on nutritional choices will be explored in this class. Key concepts covered in this class include: 1. Overall well-being extends beyond smart dietary choices including social, emotional, spiritual, occupational, intellectual, and physical wellness. 2. The interrelationship among the wellness areas can alter adherence to a healthy diet. 3. Cultural differences in wellness exist and have an impact on nutritional choices. 4. Nutritional strategies must be individualized taking into account all aspects of wellness and cultural differences. 5. Interprofessional teams that include experts from each area of wellness are essential to provide optimal health care to individuals. Prereq: NTRN 201.

NTRN 368. THE BEST OF THE BEST: Nobel Prizes in Biomedical Research. 3 Units.

According to the will of Alfred Nobel, the prize that bears his name should be awarded "to the person(s) who shall have made the most important discovery within the domain of physiology or medicine (or chemistry)" that year. The Nobel awards are well known and highly publicized: they signify the "absolute best" - a concept close to the hearts of all, especially young students. Yet, the body of scientific work that has been carried out by the award recipient(s), and the criteria used to justify that particular choice are not trivial. Often, thorough understanding of complicated biological processes and experimental systems is required in order to fully appreciate why a particular discovery was chosen by the Nobel committee. In addition to covering in depth critical issues in biomedical research, the course will also address general questions: what is "best" or "most important"? How were the criteria developed and how applied? How do the criteria and findings endure the test of time? Offered as NTRN 368 and NTRN 468. Prereq: BIOC 307 and BIOC 308 and Senior standing.

NTRN 371. Special Problems. 1 - 3 Units.

Independent reading, research, or special projects supervised by a member of the nutrition faculty. Prereq: Junior or senior standing.

NTRN 388. Seminar in Sports Nutrition. 3 Units.

Study of energy and nutrient needs to support recreational exercise and competitive athletics, dietary supplements and specific foods and beverages that are marketed to athletes, and how nutrition can provide optimal muscle development, recovery and sports performance. Prereq: Junior or senior standing.

NTRN 390. Undergraduate Research. 3 - 9 Units.

Guided laboratory research in nutritional biochemistry or molecular nutrition under the sponsorship of a nutrition faculty member.
NTRN 397. SAGES Capstone Proposal Seminar. 3 Units.
In this departmental seminar course, students will conceptualize, develop
and prepare a written plan, known as the "Capstone Proposal," for their
senior Capstone project (NTRN 398: Senior Capstone Experience).
Discussion will include, but not be limited to basic research principles,
different types of research, ethics and IRB procedures. The Capstone
Proposal shall include the project design, aims, methodology, budget,
data analysis and presentation. Upon completion of this course, students
will have confirmed student/Capstone advisor and, if applicable,
mentor relationships, written a Capstone proposal and given an oral
presentation of their proposal at a departmental colloquium. Counts as
SAGES Departmental Seminar. Prereq: Declared Nutrition or Nutritional
Biochemistry and Metabolism major and junior standing.

NTRN 398. SAGES Senior Capstone Experience. 3 Units.
Students will implement their "Capstone Proposal" projects as designed in
NTRN 397: Capstone Proposal Seminar. Pertinent research activities
will depend on the nature of the student's "Capstone Proposal" project.
The student will meet regularly with their Capstone advisor, at least twice
monthly, to provide progress reports, discuss the project, and for critique
and guidance. By the end of this course, the student will have completed
their SAGES Senior Capstone research project and presented their project
results/findings orally at the Senior Capstone Fair and at a departmental
colloquium. Counts as SAGES Senior Capstone. Prereq: NTRN 397.

NTRN 399. Senior Project. 3 Units.
Formal investigation of a topic in nutrition culminating in a paper and oral
presentation. Requires definition of a problem, evaluation of the scientific
literature and delineation of problem-solving approaches. Recommended
preparation: Twenty-one hours of Nutrition.

NTRN 401. Nutrition for Community and Health Care Professionals. 2 - 3
Units.
This course will focus on understanding how diet and nutrition impact
health and wellness throughout the life cycle. There are core concepts
in human nutrition that all health care providers should understand to
optimize their care of individuals, themselves, and the community. These
core concepts are the focus of this course. Students who complete
all course modules and assignments with a passing grade will earn 2
credits. In order to earn 3 credits, students must complete all course
modules and assignments with a passing grade and complete an
additional 20 page paper on a nutrition topic approved by the instructor.

NTRN 402. Culinary and Lifestyle Medicine Coaching I. 3 Units.
This course will focus on learning the key components of healthy lifestyle
principles* and develop the counseling and behavior change skills
necessary to promote these competencies to advocate a healthy lifestyle.
Participation in culinary medicine food labs, (which is the blending of
the science of nutrition with skills in fundamental cooking and food
education) is also a key component of this class. Culinary medicine
is designed to foster a greater understanding of the core principles in
medical nutrition therapy and foundational food and nutrition education,
which is critical to overall well-being. Students will also have the elective
opportunity to participate in the first core online tele-class module
towards certification as a health coach by Wellcoaches®. Module 1 is the
required first step towards a Wellcoaches® health coaching certification,
with two additional online/hybrid modules required to participate in the
certification exam, (modules 2 and 3 not provided by the University).
These remaining modules and accompanying oral and written skill
assessments must be completed within an 18 month period of time
after completion of Module 1 to be fully eligible for the Wellcoaches®
Health Coach certificate. Certification as a Health and Wellness Coach
is available for health care professionals. Certified Personal Coach is
available for the non-health care professional. See Wellcoaches website
link for more program details, (found under student outcomes).

NTRN 410. Basic Oxygen & Physiological Function. 3 Units.
On-line lecture only course which explores the significance and
consequences of oxygen and oxygen metabolism in living organisms.
Topics to be covered include transport by blood tissues, oxygen toxicity,
and mitochondrial metabolism. Emphasis will be placed on mammalian
physiology with special reference to brain oxidative metabolism and
blood flow as well as whole body energy expenditure and oxidative stress
related to disease. The course will cover additional spans of physiology,
nutrition and anatomy. Offered as NTRN 410 and PHOL 410.

NTRN 433. Advanced Human Nutrition I. 4 Units.
Emphasis on reading original research literature in energy, protein and
minerals with development of critical evaluation and thinking skills.
Recommended preparation: NTRN 201 and CHEM 223 and BIOL 348 or
equivalent.

NTRN 434. Advanced Human Nutrition II. 3 Units.
Emphasis on reading original research literature on vitamins with
development of critical evaluation and thinking skills. Recommended
preparation: NTRN 433 or consent.

NTRN 435. Nutrition during Pregnancy and Lactation. 3 Units.
Study of current research literature on nutrition for pregnancy and
lactation including nutrient requirements, nutrition assessment, and
nutrition intervention. Prereq: Graduate Student in Nutrition or Public
Health Nutrition or (NTRN 363 and NTRN 364) or requisites not met
permission.

NTRN 436. Pediatric Nutrition. 3 Units.
This course will focus on understanding the nutritional needs of infants,
children and adolescents. Evidence based guidelines will be used as we
discuss best clinical practice for the management of pediatric nutrition
issues. Anthropometric measurements used in growth assessment will
be reviewed. Nutrient requirements for each stage of development will be
explored with a specific focus on micronutrients relevant to pediatrics
such as fluoride, iron, calcium and vitamin D. Abnormal growth resulting
in malnutrition and obesity will be examined with a focus on prevention,
diagnosis and treatment. Skills necessary to complete a pediatric
nutrition assessment will be reviewed with opportunities to practice and
demonstrate competency. Prereq: NTRN 435.
NTRN 437. Evaluation of Nutrition Information for Consumers. 3 Units.
Reading and appraisal of food and nutrition literature written for the
general public, including books, magazines, newsletters. Prereq: Graduate
standing and Nutrition or Public Health Nutrition major or consent of
instructor.

NTRN 438. Dietary Supplements. 3 Units.
An examination of dietary supplements specific to health promotion
and disease prevention/treatment throughout the life cycle. Topics
and concepts include regulation, controversies, safety, efficacy, and
the surrounding scientific evidence for dietary supplement use. For
NTRN 338, preference will be given to senior level Nutrition majors.
Offered as NTRN 338 and NTRN 438. Prereq: NTRN 364 or requisites not
met permission.

NTRN 439. Food Behavior: Physiological, Psychological and
Environmental Determinants. 3 Units.
Good dietary habits are associated with improved population health.
Despite this, a large proportion of individuals do not meet current
dietary recommendations and there are significant disparities between
groups based on sociodemographic characteristics. Why is this?
Traditional views on this question focused solely on individual decision
making without taking into account the complex influence of biology,
social forces, and environment on dietary behavior. This course will
introduce students to the major influences on dietary behavior and their
interactions and modifying factors in the context of the socioecological
model.

NTRN 440. Nutrition for the Aging and Aged. 3 Units.
Consideration of the processes of aging and needs which continue
throughout life. The influences of food availability, intake, economics,
culture, physical and social conditions and chronic disease as they affect
the ability of the aged to cope with living situations. Recommended
preparation: Nutrition major or consent of instructor.

NTRN 441. Human Lactation. 3 Units.
This course explores the complexities and importance of human milk
and breastfeeding. Using lectures, group discussion, and experiential
learning we will explore the following topics: nutrition and development
in the breastfeeding infant/mother dyad; the physiology of breastfeeding;
maternal and infant disease states and their effects on breastfeeding;
common pathologies in breastfeeding; pharmacology and breastfeeding;
psychological, social, and cultural issues and breastfeeding; clinical
skills and techniques in advising the breastfeeding mother; public health,
ethical, and legal issues in breastfeeding and breastfeeding advocacy;
current research topics in breast milk and breastfeeding; and options for
certification in lactation education. Prereq: NTRN 363 or NTRN 433 or
NTRN 401 or Requisites Not Met permission.

NTRN 446. Advanced Maternal Nutrition: Special Topics. 3 Units.
Analysis of the problems commonly associated with high-risk
pregnancies and fetal outcome. Discussion of causes, mechanisms,
management and current research. Recommended preparation: NTRN 435 or consent.

NTRN 448. Integrative and Functional Nutrition. 3 Units.
An examination of the core concepts and principles surrounding
integrative and functional medical nutrition therapy (IFMNT). The
course will emphasize a whole systems approach to addressing clinical
imbalance and creating personalized therapeutic interventions based
upon an individual's genetics, environment and lifestyle. Topics include
precision medicine, IFMNT nutrition care plans processes, IFMNT
laboratory tests and interpretation, dietary supplementation, and
discussion of the evidence for integrative therapeutic nutrition/diet plans
related to the gut microbiome/gastrointestinal disorders, food sensitivity/
tolerance, methylhyation, immune function, detoxification, cardiometabolic
intervention, energy, hormones, and wellness.

NTRN 451. Food Service Systems Management. 3 Units.
The application of organizational theory and skills in the preparation
and service of quantity food. Laboratory experience in professional food
services are included. Graduate students will analyze one aspect of food
service management in depth. Offered as NTRN 351 and NTRN 451.
Prereq: Nutrition major.

NTRN 452. Nutritional Biochemistry and Metabolism. 3 Units.
Mechanisms of regulation of pathways of intermediary metabolism;
amplification of biochemical signals; substrate cycling and use
of radioactive and stable isotopes to measure metabolic rates.
Recommended preparation: BIOC 307 or equivalent. Offered as BIOC 452
and NTRN 452.

NTRN 454. Advanced Nutrition and Metabolism: Investigative Methods. 3
Units.
Lecture/discussion course on the use of analytical techniques in
metabolic research on whole body metabolism, energy balance, and
disease (diabetes, obesity, and neuropathologies); discussions include
the design of in-vitro and in-vivo investigative protocols in humans and
animals using stable isotope tracer and mass spectrometric analysis;
critical interpretation of data from the literature with emphasis on
metabolic pathway identification, regulation and kinetics. Recommended
preparation: BIOC 407.

NTRN 455. Molecular Nutrition. 3 Units.
Students will gain in-depth understanding of the basic science and
translational aspects of 'hot topics' in current molecular nutrition. Class
will be conducted by interactive discussion of assigned primary research
articles. Prereq: BIOC 407 or Requisites Not Met permission.

NTRN 456. Pediatric Obesity. 3 Units.
This course will examine the epidemiology, potential causes, assessment,
and treatment of pediatric obesity. Special topics from the current
pediatric obesity literature will also be covered. This course has a large
discussion component and incorporates weekly readings from the
scientific literature.

NTRN 459. Diabetes Prevention and Management. 3 Units.
In this course, we will explore the diabetes epidemic, its effects on the
healthcare system, and strategies for prevention. The pathophysiology
of the disease will be examined as well as environmental factors leading
to the increase in diagnoses. Comorbid conditions and acute and
chronic complications of diabetes and hyperglycemia will be addressed.
Rationale for current therapeutic strategies will be explored, including
the use of blood glucose monitoring, physical activity, nutrition counseling,
oral medications, and insulin therapy. Patient education and health
literacy will be studied in the context of patient centered goal setting.
Requirements for developing a Diabetes Self-Management Education
Program will be discussed. Community program development will be
examined in the context of population-based prevention strategies.
Prereq: Graduate Standing.
NTRN 460. Sports Nutrition. 3 Units.
Study of the relationships of nutrition and food intake to body composition and human performance. Laboratory sessions include demonstrations of body composition and measurements and participation in a research project. Recommended preparation: NTRN 363 or NTRN 433 or consent.

NTRN 461. Metabolic Dysregulation of Energy from Obesity to Anorexia. 3 Units.
Energy imbalance and the implications on health will be explored in this course. Key concepts covered in this class include: 1. Energy imbalance refers to positive and negative states of energy balance and occurs when energy intake does not match energy expended in metabolic processes, daily living activities, and physical activity; 2. Obesity is a result of chronic positive energy balance whereas anorexia nervosa is a condition of chronic negative energy balance; 3. Energy metabolism is controlled by a complex array of neural and hormonal signaling; 4. Energy imbalance disrupts the neural and hormonal signaling pathways of energy metabolism resulting in unfavorable health consequences such as pro-inflammatory state, oxidative stress, immune dysregulation, menstrual dysfunction, sarcopenia, and low bone mineral density; and 5. Exercise training can impact energy imbalance health-related outcomes. Learning Outcomes: Students will be able to 1. define energy balance and explain the components of energy expenditure; 2. define disordered eating, female athlete triad, and disordered eating; 3. explain the relationship among energy intake, energy expenditure, and body composition in energy imbalance; 4. describe alterations in skeletal muscle and adipose physiology in energy imbalance; 5. diagram neural control of feeding energy homeostasis and hormonal control of energy metabolism; 6. explain the neural and hormonal changes that occur in chronic energy imbalance and describe current theories in how it results in menstrual dysfunction, inflammatory response, oxidative stress, immune dysregulation, sarcopenia, and low bone mineral density; and 7. explain how exercise training can influence inflammatory response, oxidative stress, immune function, and musculoskeletal health in energy imbalance. Offered as NTRN 361 and NTRN 461. Prereq: NTRN 201 or requisites not met permission.

NTRN 462. Exercise Physiology and Macronutrient Metabolism. 3 Units.
The purpose of this course is to provide students with the knowledge of theoretical and applied concepts of exercise physiology. Students will gain an understanding of the acute and chronic physiological responses and adaptations of the cardiovascular, metabolic, hormonal, and neuromuscular systems in response to exercise. Additional topics include factors effecting performance, assessing cardiorespiratory and muscular fitness, designing exercise programs for health and wellness, special populations, and athletes, environmental considerations and nutrition's role in sport and exercise performance. Offered as NTRN 362 and NTRN 462. Prereq: Nutrition Major.

NTRN 468. THE BEST OF THE BEST: Nobel Prizes in Biomedical Research. 3 Units.
According to the will of Alfred Nobel, the prize that bears his name should be awarded "to the person(s) who shall have made the most important discovery within the domain of physiology or medicine (or chemistry)" that year. The Nobel awards are well known and highly publicized: they signify the "absolute best" - a concept close to the hearts of all, especially young students. Yet, the body of scientific work that has been carried out by the award recipient(s), and the criteria used to justify that particular choice are not trivial. Often, thorough understanding of complicated biological processes and experimental systems is required in order to fully appreciate why a particular discovery was chosen by the Nobel committee. In addition to covering in depth critical issues in biomedical research, the course will also address general questions: what is "best" or "most important"? How were the criteria developed and how applied? How do the criteria and findings endure the test of time? Offered as NTRN 368 and NTRN 468.

NTRN 516. Seminar in Dietetics I. 4 Units.
Study of evidence-based guidelines for dietetic practice in medical nutrition therapy. Emphasis on life cycle stages and common disease states that require specialized nutrition care. Enrollment restricted to those accepted into Case Coordinated Dietetic Internship/Master Degree Program.

NTRN 517. Seminar in Dietetics II. 4 Units.
Study of scientific basis for clinical and community nutrition practice and developments in food service systems management. Recommended preparation: Dietetic internship.

NTRN 528. Introduction to Public Health Nutrition. 3 Units.
An introduction to the field of public health/community nutrition with a focus on three key themes: (1) The role of nutrition in population based health, (2) the multilevel nature of key influences on dietary behavior, and (3) skills needed to be a successful public health practitioner. Prereq: Graduate Student in Nutrition or Public Health Nutrition or Requisites Not Met permission.

NTRN 529. Nutritional Epidemiology. 3 Units.
This course uses epidemiology as a tool for assessing potential causal associations between dietary excesses, deficiencies and imbalances to the prevalent chronic diseases. It addresses the epidemiologic aspects of nutrition related chronic diseases, for example, the multi-factorial nature of etiology. A prior statistics course is required for this course.

NTRN 530. Public Health Nutrition. 3 Units.
Exploration of the professional role of the Public Health Dietitian/ Nutritionist with a focus on three key themes: (1) The conduct of research and interpretation of research findings related to public health nutrition; (2) development of skills in the domains of public health management, program design and implementation, and communications and marketing; and (3) approaches to thinking about public health more broadly through the use of entrepreneurship and community building. Prereq: Graduate Student in Nutrition or Public Health Nutrition or Requisites Not Met permission.

NTRN 531. Public Health Nutrition Field Experience. 1 - 6 Units.
Individually planned public health experience. May be concurrent with course work in local agencies or in blocks of full-time work with a city, county, or state health agency. Prereq: Open to public health nutrition students only. Consent of instructor.

NTRN 532C. Specialized Public Health Nutrition Field Experience. 1 - 3 Units.
Individually arranged clinical experience. Prereq: Public Health Nutrition students only. Consent of instructor.
NTRN 533. Nutritional Care of Neonate. 3 Units.
Nutritional assessment and management of high-risk newborns with emphasis on prematurity and low birth weight. Review of current literature coordinated with clinical experience in the neonatal intensive care unit. Issues on follow-up included. Recommended preparation: NTRN 435 or consent.

NTRN 534. Advanced Public Health Nutrition Field Experience. 1 - 6 Units.
Individually planned advanced public health experience. Prereq: Open to public health nutrition students only.

NTRN 550A. Advanced Community Nutrition. 3 Units.
An introduction to the field of public health/community nutrition with a focus on three key themes: (1) The role of nutrition in population based health, (2) the multilevel nature of key influences on dietary behavior, and (3) skills needed to be a successful public health practitioner. Prereq: Senior Nutrition major or Requisites Not Met permission.

NTRN 551. Seminar in Advanced Nutrition. 1 Unit.
Ph.D. students meet weekly to discuss topical journal articles. Students gain experience in critical evaluation of research and develop presentation/communication skills. Discussion of research integrity and ethics. Students participate in departmental seminars with invited speakers.

NTRN 561. Investigative Methods in Nutrition. 1 - 4 Units.
Research methods appropriate for nutrition. Methods for conducting research in nutrition and food sciences, food service management and dietetics. Designing research proposals. Prereq: Nutrition major.

NTRN 562. Research Practicum. 1 - 4 Units.
Students will participate in nutrition-related research activities that employ a variety of research methodologies (clinical research, bench science, surveys, systematic reviews, etc.). Students will be engaged in the acquisition of scientific data, and data entry, analysis and interpretation.

NTRN 601. Special Problems. 1 - 18 Units.
NTRN 602. Special Project in Nutrition. 1 - 3 Units.
Under the supervision of the instructor, the student will develop and/or implement an individual or group special project in global nutrition, community nutrition, wellness, or other area of food and nutrition practice. Prereq: Graduate Standing.

NTRN 610. Oxygen and Physiological Function. 1 Unit.
Lecture/discussion course which explores the significance and consequences of oxygen and oxygen metabolism in living organisms. Topics to be covered include oxygen transport by blood tissues, oxygen toxicity, and mitochondrial metabolism. Emphasis will be placed on mammalian physiology with special reference to brain oxidative metabolism and blood flow as well as whole body energy expenditure and oxidative stress related to disease. The course will cover additional spans of physiology, nutrition and anatomy. Offered as ANAT 610, NTRN 610, and PHOL 610.

NTRN 651. Thesis M.S.. 1 - 18 Units.
NTRN 701. Dissertation Ph.D.. 1 - 9 Units.
Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.

Department of Pathology
Wolstein Research Building 5537
http://www.case.edu/med/pathology/
Phone: 216.368.1993; Fax: 216.368.0494

Clifford V. Harding, MD, PhD, Chair
clifford.harding@case.edu

Christine Kehoe (christine.kehoe@case.edu), Student Affairs

The clinical, research and educational activities of the CWRU Department of Pathology (https://case.edu/medicine/pathology) are centered at CWRU School of Medicine and University Hospitals Cleveland Medical Center (UHCMC). There are five Divisions within the Department, including two basic science units housed in the School of Medicine (the Division of Experimental Pathology and the Center for Global Health and Diseases) and three clinical divisions housed at University Hospitals (the Division of Anatomic Pathology, the Division of Clinical Pathology, and the Division of Community Hospitals Pathology). In addition, our affiliates include the Cuyahoga County Medical Examiner’s Office and the Pathology Department at the Louis Stokes Veteran’s Administration Medical Center.

The CWRU Department of Pathology NIH funding level is ranked in the top 10 nationally. World-class research is conducted in the department in many areas with the largest research focus areas being, immunology, cancer biology and neurodegenerative diseases. The department’s research activities are characterized by highly cooperative and collaborative interactions within the department, and with many other departments at Case and its affiliated institutions. Research laboratories of the department are located primarily in the Wolstein Research Building and Institute of Pathology.

Educational programs include graduate programs, clinical residency and fellowships and contributions to medical student and undergraduate teaching. The Pathology Graduate Program includes a PhD program with three constituent training programs (Immunology Training Program, Cancer Biology Training Program, Molecular and Cellular Basis of Disease Training Program) and two MS programs (Plan A and Plan B). For information about graduate programs, please see here (https://case.edu/medicine/pathology). The Pathology Residency includes 24 residency training positions, and the Department provides three clinical fellowship programs (Cytopathology, Hematopathology and Transfusion Medicine). For information about the Pathology Residency, please see here (https://case.edu/medicine/pathology/training/residency-and-clinical-fellowships).

Master’s Degrees
MS in Pathology (Plan B)
The Molecular and Cellular Basis of Disease (MCBD) Program is intended for students with a background in the biological sciences (BA, BS, or MBBS), who are interested in pursuing advanced coursework in the basis of disease. The core curriculum and electives include many topics of medical relevance, including cell and molecular biology, disease pathogenesis, cancer biology, immunology, histology, and gross anatomy. This coursework may be useful for those interested in pursuing a professional doctoral degree (e.g., MD, DO, PhD, DDS, or DMD) or opportunities in basic or clinical research, teaching, biotechnology, pharmaceuticals, healthcare, or government. The time of matriculation in the MCBD Program is flexible; a typical time to degree for the full-time program is 4 semesters, but part-time and accelerated 13-month programs are also available. The course of study will be determined by the student, their Academic advisor, and the Graduate Program Committee and will consist of 30 credit hours of coursework. Flexible electives allow students to focus on an area of interest. While the Master’s may be a terminal degree, it may also lead to admission to doctoral programs. For information on the Pathology MS Program,
please contact Pamela Wearsch, PhD, paw28@case.edu/216.368.5059, or Christy Kehoe, cxk15@case.edu/216.368.1993.

Description of Program
Students will earn a Plan B Masters from Case Western Reserve University. The degree program is comprised of core courses in cell biology and disease pathogenesis (PATH 475 or CBIO 455/453; PATH 510), elective coursework from related disciplines, and a comprehensive final project in the form of a review paper that will ideally be suitable for publication. The topic of the review paper will be determined by the student and their academic advisor. In the final two semesters, student will register for 1-3 credits of PATH 650 Independent Study while writing their paper. An advisor for the paper should be identified by mutual interest during the first year.

Typical Curriculum

First Year

<table>
<thead>
<tr>
<th>FALL REQUIREMENTS (choose one):</th>
<th>Fall</th>
<th>Units</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell and Molecular Foundations of Pathology (PATH 475)*</td>
<td>3-6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Biology I (CBIO 453) & Molecular Biology I (CBIO 455)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FALL ELECTIVES (choose one or two):</th>
<th>3-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Biochemistry: From Molecules To Medical Science (BIOC 407)</td>
<td></td>
</tr>
<tr>
<td>Introduction to Clinical Inquiry (IQ) (MGRD 410)</td>
<td></td>
</tr>
<tr>
<td>Histology and Ultrastructure (ANAT 412) & General Histology Laboratory (ANAT 413)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPRING REQUIREMENTS:</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Pathologic Mechanisms (PATH 510)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPRING ELECTIVES (choose one or two):</th>
<th>3-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamental Immunology (PATH 416)</td>
<td></td>
</tr>
<tr>
<td>Basic Cancer Biology and the Interface with Clinical Oncology (PATH 406)</td>
<td></td>
</tr>
<tr>
<td>Introduction to Clinical Inquiry (IQ) II (MGRD 411)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUMMER TERM: Optional coursework and activities</th>
<th>0-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadaver dissection-based human anatomy with histology and physiologic correlations (ANAT 410)</td>
<td></td>
</tr>
</tbody>
</table>

Year Total: 6-13 7-11

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALL REQUIREMENTS:</td>
<td>1-3</td>
</tr>
<tr>
<td>Independent Study (PATH 650)</td>
<td></td>
</tr>
<tr>
<td>FALL ELECTIVES (choose one or two):</td>
<td>3-7</td>
</tr>
<tr>
<td>Current Topics in Cancer (PATH 422)</td>
<td></td>
</tr>
<tr>
<td>Advanced Immunobiology (PATH 465)</td>
<td></td>
</tr>
<tr>
<td>Protein Misfolding and Human Disease: Molecular Basis and Clinical Implications (PATH 525)</td>
<td></td>
</tr>
<tr>
<td>Oxidative Stress and Disease Pathogenesis (PATH 430)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPRING REQUIREMENTS:</th>
<th>1-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent Study (PATH 650)</td>
<td></td>
</tr>
<tr>
<td>SPRING ELECTIVES (if needed to reach 30 credits):</td>
<td>0-7</td>
</tr>
<tr>
<td>Experimental Pathology Seminar II (PATH 512)</td>
<td></td>
</tr>
<tr>
<td>Immunology Journal Club (PATH 513)</td>
<td></td>
</tr>
<tr>
<td>Neurodegenerative Diseases: Pathological, Cell & Molecular Perspectives (PATH 444)</td>
<td></td>
</tr>
<tr>
<td>Special Topics in Cancer Biology and Clinical Oncology (PATH 521)</td>
<td></td>
</tr>
<tr>
<td>Cell Biology of Neurodegenerative Disorders (PATH 524)</td>
<td></td>
</tr>
<tr>
<td>Other electives upon approval</td>
<td></td>
</tr>
</tbody>
</table>

Year Total: 4-10 1-10

Total Units in Sequence: 18-50

Admission Criteria
Applicants will be screened by the Pathology Department Admissions Committee. Students will be required to supply a GRE, MCAT, DAT, or USMLE score, a transcript, three letters of recommendation and an application essay that details the student’s interest in the Program. Students will be interviewed on campus or via electronic media (i.e. FaceTime or Skype). Although there are no set requirements, successful applicants would be expected to have an MCAT >500, GRE verbal and quantitative >150, and an undergraduate GPA around 3.0. Applications are accepted on a rolling basis for matriculation during any academic term.

Tuition
Financial aid will not be provided by the Department. Students may apply for financial aid through the federal government at http://www.fafsa.ed.gov/.

MS in Pathology (Plan A)
A part-time program leading to the Master of Science degree in Pathology is available to laboratory staff who are employed by Case
Western Reserve University. Students in this program must be full-time university employees and must have the agreement of their supervisor to begin studies as a part-time student. Courses are available as an employee fringe benefit (up to 6 credits per semester for Fall and Spring, and 3 credits for Summer) and can only be taken as limited by the fringe benefit regulations.

A formal application for this program must be submitted to the graduate school. Prior to submission of this application, the employee, the supervisor, and the Director of the Pathology Graduate Program must meet to review and facilitate the student’s application for admission.

This program can lead to an M.S. degree through Plan A. Required core courses include CBIO 453 Cell Biology I (3 credits), CBIO 455 Molecular Biology I (3 credits), PATH 510 Basic Pathologic Mechanisms (4 credits), and participation in a seminar course (PATH 511 Experimental Pathology Seminar I and/or PATH 512 Experimental Pathology Seminar II) for at least one semester. CBIO 453 Cell Biology I, CBIO 455 Molecular Biology I and must be taken as graded courses (not P/F).

Plan A requires a minimum of 30 total coursework credits. In addition to the required core courses, the student must take a minimum of 6 credits of PATH 651 Thesis, which involves research in the laboratory of the supervisor (who serves as the MS Thesis Mentor) and thesis preparation. The student must register for at least one credit of PATH 651 Thesis M.S. every semester until graduation. A GPA of 2.75 or better must be maintained for a terminal MS degree. (Students considering using the MS in Pathology as a “stepping stone” to the PhD degree must maintain a GPA of 3.0 or better.) An MS thesis must be prepared based on the research, and the student must pass an MS Degree Examination in which the thesis is defended.

MD/MS Biomedical Investigation--Pathology Track

For Program Admissions and MD requirements, see MD Dual Degree Programs (p. 26). This track is designed to provide students with an in-depth understanding of the cellular basis of disease or immunity. During the first year of medical school, the student should identify a mentor and begin planning coursework and a research project leading to the MS degree. Because the background and interest of applicants vary widely, members of the Program Oversight Committee will assist each student in designing an individualized schedule of graduate courses for any track.

Students are expected to complete at least two graduate courses (3 credits each or total 6 credits) before beginning the laboratory research period (year 3), and students should take three graduate courses before the research period if this is possible. For students to receive graduate credit for any medical coursework (as IBIS credit, e.g. IBIS 403 Integrated Biological Sciences III), they must register at the beginning of the semester. Students in the MD/MS joint degree program must attain a cumulative GPA of 3.0 in the graduate courses. Students in this program may participate in any of the three tracks of the Department of Pathology Graduate Program.

For information about the Pathology Track in the MD/MS program, contact Pamela Wearsch, PhD, paw28@case.edu/216.368.5059, or Christy Kehoe, cxx15@case.edu/216.368.1993.

Students in the Pathology track must complete:

<table>
<thead>
<tr>
<th>Graduate Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATH 601 Special Problems</td>
<td>18</td>
</tr>
<tr>
<td>PATH 511 Experimental Pathology Seminar I</td>
<td>1</td>
</tr>
</tbody>
</table>

or PATH 512 Experimental Pathology Seminar II

IBIS 600 Exam in Biomedical Investigation 0

And 9 credits from the Pathology courses listed below or other Approved courses. Other department’s graduate level course may be accepted provided it is appropriate to the student’s project and is approved by his/her Thesis Committee or the Graduate Program Director in Pathology.

<table>
<thead>
<tr>
<th>Graduate Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATH 410 Aging and the Nervous System</td>
<td>1</td>
</tr>
<tr>
<td>PATH 416 Fundamental Immunology</td>
<td>4</td>
</tr>
<tr>
<td>PATH 417 Cytokines: Function, Structure, and Signaling</td>
<td>3</td>
</tr>
<tr>
<td>PATH 430 Oxidative Stress and Disease Pathogenesis</td>
<td>1</td>
</tr>
<tr>
<td>PATH 432 Current Topics in Vision Research</td>
<td>3</td>
</tr>
<tr>
<td>PATH 444 Neurodegenerative Diseases: Pathological, Cellular & Molecular Perspectives</td>
<td>3</td>
</tr>
<tr>
<td>PATH 480 Logical Dissection of Biomedical Investigations</td>
<td>3</td>
</tr>
<tr>
<td>PATH 488 Yeast Genetics and Cell Biology</td>
<td>3</td>
</tr>
<tr>
<td>PATH 510 Basic Pathologic Mechanisms</td>
<td>4</td>
</tr>
<tr>
<td>PATH 525 Protein Misfolding and Human Disease: Molecular Basis and Clinical Implications</td>
<td>3</td>
</tr>
</tbody>
</table>

Example Plan of Study of Minimum Coursework:

First Year

<table>
<thead>
<tr>
<th>Graduate Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD Curriculum Graduate course</td>
<td>3</td>
</tr>
<tr>
<td>MD Curriculum Special Problems (PATH 601) (optional)</td>
<td>1-3</td>
</tr>
<tr>
<td>Year Total:</td>
<td>3 1-3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graduate Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Biological Sciences III (IBIS 403)</td>
<td>6</td>
</tr>
<tr>
<td>Graduate Course</td>
<td>3</td>
</tr>
<tr>
<td>MD Curriculum Graduate Course</td>
<td>3</td>
</tr>
<tr>
<td>Year Total:</td>
<td>9 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graduate Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Problems (PATH 601)</td>
<td>8</td>
</tr>
<tr>
<td>Special Problems (PATH 601)</td>
<td>7</td>
</tr>
<tr>
<td>Experimental Pathology Seminar I (PATH 511) or Experimental Pathology Seminar II (PATH 512)</td>
<td>1</td>
</tr>
<tr>
<td>Exam in Biomedical Investigation (IBIS 600)</td>
<td>0</td>
</tr>
<tr>
<td>Year Total:</td>
<td>8 8</td>
</tr>
</tbody>
</table>
PhD in Pathology

PhD Training in the Pathology Graduate Program occurs in three tracks that share a common core curriculum but provide additional track-specific curricular offerings. This provides a cohesive program that addresses the specific needs of different Pathology-related areas of research training. Section II of the handbook "Pathology PhD Program" describes core features of the program that are shared and provides detailed descriptions of the three training tracks:

- Molecular and Cellular Basis of Disease Training Program (MCBTP)
- Immunology Training Program (ITP)
- Cancer Biology Training Program (CBTP)

To earn a PhD in Pathology, a student must complete rotations in at least three laboratories followed by selection of a research advisor, and complete Core and Elective coursework including responsible conduct of research as described in the Course of Study, below. Students who previously completed relevant coursework, (for example, with a MS) may petition to complete alternative courses. Each training track follows the overall regulations established and described in CWRU Graduate Studies and documented to the Regents of the State of Ohio. Completion of the PhD degree will require 36 hours of coursework (24 hours of which are graded) and 18 hours of PATH 701 Dissertation Ph.D..

In addition, each PhD student must successfully complete a qualifier examination for advancement to candidacy in the form of a short grant proposal with oral defense. The qualifier is generally completed in the summer after year two. During the dissertation period, students are expected to meet twice a year with the thesis committee, present seminars in the department, and fulfill journal publication requirements. Throughout the doctoral training, students are expected to be enthusiastic participants in seminars, journal clubs, and research meetings in the lab and program.

§ Please also see Graduate Studies Academic Requirements for Doctoral Degrees (http://bulletin.case.edu/schoolofgraduatestudies/academicrequirements)

Molecular and Cellular Basis of Disease Training Program (MCBTP)

First Year

Units	**Fall**	**Spring**	**Summer**
Cell Biology I (CBIO 453)* | 3 | | |
Molecular Biology I (CBIO 455)* | 3 | | |
Research Rotation in Biomedical Sciences Training Program (BSTP 400)* | 0 - 9 | | |
Mentor and track chosen | | | |
Basic Pathologic Mechanisms (PATH 510)* | 4 | | |
Fundamental Immunology (PATH 416)* | 4 | | |
Experimental Pathology Seminar II (PATH 512) | 1 | | |
Thesis committee chosen; preproposal meeting scheduled | | | |
Special Problems (PATH 601) | 1-9 | | |
On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500) | | 1 | |
Year Total: | 6-15 | 10-18 | 1 |

Second Year

Units	**Fall**	**Spring**	**Summer**
Experimental Pathology Seminar I (PATH 511) | 1 | | |
MCBDTP Track Elective | 3 | | |
MCBDTP Track or other Elective | 3 | | |
Special Problems (PATH 601) | 1-9 | | |
Thesis proposal defense and advancement to candidacy within next 9 months* | | | |
Experimental Pathology Seminar I (PATH 511) | 1 | | |
Electives (Core, MCBDTP track or other) | 4-6 | | |
Special Problems (PATH 601) or Dissertation Ph.D. (PATH 701) | 1-9 | | |
Thesis proposal defense and advancement to candidacy must be completed** | | | |
Year Total: | 8-16 | 6-16 | |

Third Year

Units	**Fall**	**Spring**
Experimental Pathology Seminar I (PATH 511) | 1 | | |
Dissertation Ph.D. (PATH 701)** | 1-9 | | |
Experimental Pathology Seminar II (PATH 512) | 1 | | |
Dissertation Ph.D. (PATH 701)** | 1-9 | | |
Year Total: | 2-10 | 2-10 | |

Fourth Year

Units	**Fall**	**Spring**
Experimental Pathology Seminar I (PATH 511) | 1 | | |
Immunology Training Program (ITP)

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology I (CBIO 453)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Biology I (CBIO 455)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Rotation in Biomedical Sciences Training Program (BSTP 400) *</td>
<td>0 - 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunology Journal Club (optional this semester)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mentor and Track chosen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Pathologic Mechanisms (PATH 510)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamental Immunology (PATH 416)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar II (PATH 512)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunology Journal Club (optional this semester)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Problems (PATH 601)</td>
<td>1-9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500)

Year Total: 6-15 10-18 1

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Pathology Seminar I (PATH 511)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701) **</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives (Core, ITP Track or other) **</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Problems (PATH 601)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunology Journal Club (required this semester)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis proposal and advancement to candidacy within 9 months +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar II (PATH 512)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives (Core, ITP Track or other) **</td>
<td>4-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Problems (PATH 601) or Dissertation Ph.D. (PATH 701)</td>
<td>1-9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Year Total: 9-17 6-16

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Pathology Seminar I (PATH 511)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701) ***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunology Journal Club (required this semester)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar II (PATH 512)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701) ***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunology Journal Club (required this semester)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Year Total: 2-10 2-10

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Pathology Seminar I (PATH 511)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701) ***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunology Journal Club (required this semester)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar II (PATH 512)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701) ***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunology Journal Club (required this semester)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Year Total: 2-10 2-10

Fifth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Pathology Seminar I (PATH 511)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dissertation Ph.D. (PATH 701) | 1-9
---|---
Immunology Journal Club (required this semester) | 0
Experimental Pathology Seminar II (PATH 512) | 1
Dissertation Ph.D. (PATH 701)** | 1-9
Year Total: | 2-10 2-10
Total Units in Sequence: | 44-127

* Alternate courses for MSTP students: IBIS 401-404. MSTP students in the ITP do not need to take CBIO 453 Cell Biology I, CBIO 455 Molecular Biology I or PATH 510 Basic Pathologic Mechanisms. PATH 416 Fundamental Immunology is required for MSTP students in the ITP unless they have sufficient prior immunology background as determined by the ITP Chair and curriculum coordinators (e.g. Drs. Harding and Nedrud).

** Alternate course is MSTP 400 Research Rotation in Medical Scientist Training Program for MSTP students and PATH 601 Special Problems for direct admit students.

** Alternate course is MSTP 400 Research Rotation in Medical Scientist Training Program for MSTP students with PATH 601 Special Problems for direct admit students.

Cancer Biology Training Program (CBTP)

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology I (CBIO 453)*</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Biology I (CBIO 455)*</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Rotation in Biomedical Sciences Training Program (BSTP 400)*</td>
<td>0-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mentor and track chosen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Pathologic Mechanisms (PATH 510)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Basic Cancer Biology and the Interface with Clinical Oncology (PATH 520)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Special Topics in Cancer Biology and Clinical Oncology (PATH 521)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar II (PATH 512)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Special Problems (PATH 601)</td>
<td></td>
<td>1-9</td>
<td></td>
</tr>
</tbody>
</table>

Thesis committe chosen: prepropsal committee meeting scheduled

Year Total: | 6-15 11-19

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Pathology Seminar I (PATH 511)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBTP Track Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives (Core, CBTP track or other)**</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Pathology Seminar I (PATH 511)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701)**</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar II (PATH 512)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701)**</td>
<td></td>
<td>1-9</td>
</tr>
</tbody>
</table>

Year Total: | 2-10 2-10

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Pathology Seminar I (PATH 511)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701)**</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar II (PATH 512)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701)**</td>
<td></td>
<td>1-9</td>
</tr>
</tbody>
</table>

Year Total: | 2-10 2-10

Fifth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Pathology Seminar I (PATH 511)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701)**</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Experimental Pathology Seminar II (PATH 512)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Dissertation Ph.D. (PATH 701)**</td>
<td></td>
<td>1-9</td>
</tr>
</tbody>
</table>

Year Total: | 2-10 2-10

Total Units in Sequence: | 43-126

* Alternative courses for MSTP students: IBIS 401-404. MSTP students in the CBTP do not need to take CBIO 453 Cell Biology I, CBIO 455 Molecular Biology I, PATH 510 Basic Pathologic Mechanisms, or PATH 416 Fundamental Immunology, although PATH 416 Fundamental Immunology may still be taken as a Track Elective.

^ Alternate course is MSTP 400 Research Rotation in Medical Scientist Training Program for MSTP students with PATH 601 Special Problems for direct admit students.
** PATH 416 Fundamental Immunology is included as a Track Elective for CBTP students

+ Petition to convert 601 credits to 701 credits for semester in which advancement occurs

++ Once 36 credits including 24 graded credits have been completed, register for up to 6 credits of PATH 701 Dissertation Ph.D.

Exception: Take 1-3 credits of PATH 701 Dissertation Ph.D.

*** Important: Students should take the following steps to reduce charges to their mentor and department: AFTER ADVANCE TO CANDIDACY, IT IS NO LONGER NECESSARY TO REGISTER FOR 9 CREDITS PER SEMESTER TO MAINTAIN FULL-TIME STUDENT STATUS. In the first semester after advancement to candidacy, students should register only for the number of credits of PATH 701 Dissertation Ph.D. needed to bring their total number of accumulated credits of PATH 701 to 9 by the end of the semester (and should register for no other courses).

In subsequent semesters, students should register for only 1 credit of PATH 701 (and no other courses), except that in the final semester registration should be for the number of credits of PATH 701 needed to complete a total of 18 credits by the end of the semester. EXCEPTION: IT IS IMPORTANT TO MAXIMIZE THE NUMBER OF PATH 701 CREDITS THAT CAN BE COMPLETED DURING PERIODS WHERE TRAINING GRANT SUPPORT IS AVAILABLE. If the student is on the NIH T32 training grant of NRSA award or other funding mechanism that supports this level of tuition, registration should be for the full 9 credits during semesters when grant support for tuition will be available, until a total of 18 credits of PATH 701 is accumulated, after which registration should be for only 1 credit of PATH 701 each semester until graduation. Even prior to advancing to candidacy, if a student has completed 36 "foundation" credits of graduate courses (at least 24 of which must be graded courses), the student should enroll in as many credits of PATH 701 as possible up to a maximum of 6 credits with the remaining credits to be graded courses or PATH 601. In the semester in which the student advances to candidacy, any PATH 601 credits for that semester that are beyond the 36 "foundation" credits should be converted to PATH 701 by petition to Graduate Studies. Students registering for PATH 601, PATH 651 or PATH 701 must indicated their thesis advisor as the Instructor. If a Class Section does not exist with your Thesis Advisor as Instructor, please see the Student Affairs Coordinator to add the Section in order for you to register.

NOTE: Schedule beyond year 5 will generally be the same as year 5.

Courses

PATH 316. Fundamental Immunology. 4 Units.

Introductory immunology providing an overview of the immune system, including activation, effector mechanisms, and regulation. Topics include antigen-antibody reactions, immunologically important cell surface receptors, cell-cell interactions, cell-mediated immunity, innate versus adaptive immunity, cytokines, and basic molecular biology and signal transduction in B and T lymphocytes, and immunopathology. Three weekly lectures emphasize experimental findings leading to the concepts of modern immunology. An additional recitation hour is required to integrate the core material with experimental data and known immune mediated diseases. Five mandatory 90 minute group problem sets per semester will be administered outside of lecture and recitation meeting times. Graduate students will be graded separately from undergraduates, and 22 percent of the grade will be based on a critical analysis of a recently published, landmark scientific article. Offered as BIOL 316, BIOL 416, CLBY 416, PATH 316 and PATH 416. Prereq: BIOL 215 and BIOL 215L.

PATH 390. Undergraduate Research in Cancer Biology, Immunology, or Pathology. 1 - 3 Units.

Students undertake a research project directly related to ongoing research in the investigator's/instructor's laboratory. Written proposal outlining research topic, a schedule of meetings and format and length of final written report to be prepared prior to registration for credit. Recommended preparation: One year of college chemistry and consent of instructor.

PATH 405. Discussions in Molecular Immunology (Health and Disease). 2 Units.

Targeted student population would be undergraduate (Biology major), PhD, MD, or MD/PhD students interested in emerging research on the mechanisms of molecular immunology and effects on health and defects in disease. Readings will be assigned, and students will come to class prepared for discussions. P/NP grades will be based on these discussions. 5 or fewer students will be selected for this class. Prereq: Undergraduate Biology majors, PhD, MD, or MD/PhD students.
PATH 406. Basic Cancer Biology and the Interface with Clinical Oncology. 3 Units.
This is a graduate-level introductory course in cancer biology taught through the Departments of Pharmacology and Pathology. This course will give students a broad overview of current basic cancer biology, highlight recent advances in cancer therapeutics, and provide a clinical perspective of the pathogenesis and treatment of common cancers. Classes will be of lecture and discussion format, and will also include student discussion of journal research articles to develop critical thinking in cancer research and experimental design as well as presentation/communication skills. About 1 to 3 students per class will be scheduled to lead the presentation and discussion of the selected journal articles. However, all students will be required to read the material in advance and be ready for discussion. Topics will cover growth factor action and signal transduction, oncogenes, tumor suppressor genes, DNA damage, apoptosis, cancer immunology, cancer stem cells, metastasis, angiogenesis, chemotherapy, radiation therapy, targeted therapeutics, photodynamic therapy, targeting cancer stem cells, chemoprevention, and clinical aspects of cancers of the breast, prostate, lymphatic tissue, and colon. Course grades for PHRM/PATH 520 (Ph.D. track): will be determined by class participation/presentation (40%), an original research grant proposal (35%) and written and oral critiques of two research proposals (25%). Course grades for PHRM/PATH 406 (M.S. and non-degree track): will be determined by class participation/presentation (40%), a literature review term paper (35%) and oral defense of term paper with course directors (25%). Presentations/Participation: Instructors will complete a standardized evaluation form to provide you uniform feedback in a timely manner. Required Reading: Assigned reviews, original articles (in blackboard) Recommended Reading: The Biology of Cancer (2nd Edition), by Robert A. Weinberg Garland Science, copyright 2014 Recommended Preparation: A course in Cell Biology. A course in Molecular Biology. Offered as PATH 406, PATH 520, PHRM 406 and PHRM 520.

PATH 410. Aging and the Nervous System. 1 Unit.
Lectures and discussion on aspects of neurobiology of aging in model systems; current research on Alzheimer’s, Parkinson’s, and Huntington’s diseases.

PATH 416. Fundamental Immunology. 4 Units.
Introductory immunology providing an overview of the immune system, including activation, effector mechanisms, and regulation. Topics include antigen-antibody reactions, immunologically important cell surface receptors, cell-cell interactions, cell-mediated immunity, innate versus adaptive immunity, cytokines, and basic molecular biology and signal transduction in B and T lymphocytes, and immunopathology. Three weekly lectures emphasize experimental findings leading to the concepts of modern immunology. An additional recitation hour is required to integrate the core material with experimental data and known immune mediated diseases. Five mandatory 90 minute group problem sets per semester will be administered outside of lecture and recitation meeting times. Graduate students will be graded separately from undergraduates, and 22 percent of the grade will be based on a critical analysis of a recently published, landmark scientific article. Offered as BIOL 316, BIOL 416, CLBY 416, PATH 316 and PATH 416. Prereq: Graduate standing and consent of instructor.

PATH 417. Cytokines: Function, Structure, and Signaling. 3 Units.
Regulation of immune responses and differentiation of leukocytes is modulated by proteins (cytokines) secreted and/or expressed by both immune and non-immune cells. Course examines the function, expression, gene organization, structure, receptors, and intracellular signaling of cytokines. Topic include regulatory and inflammatory cytokines, colony stimulating factors, chemokines, cytokine and cytokine receptor gene families, intracellular signaling through STAT proteins and tyrosine phosphorylation, clinical potential, and genetic defects. Lecture format using texts, scientific reviews and research articles. Recommended preparation: PATH 416 or equivalent. Offered as BIOL 417, CLBY 417, and PATH 417.

PATH 418. Tumor Immunology. 3 Units.
Interactions between the immune system and tumor cells. Topics include the historical definition of tumor specific transplantation antigens, immune responses against tumor cells, the effects of tumor cell products on host immune responses, molecular identification of tumor specific transplantation antigens and recent advances in the immunotherapy of human cancers. Prereq: PATH 416.

PATH 420. Topics in Evolution and Medicine. 3 Units.
The course will be based primarily on the textbook, as well as additional readings to supplement this lucid but relatively brief introduction to the field. Topics to be covered include the overview of the relevance of evolution to medicine; human demography, history and disease; basic and evolutionary genetics; cystic fibrosis; life history trade-offs and the evolutionary biology of aging; cancer; host-pathogen interactions and co-evolution; somatic cell mutation, selection, and evolution in health and disease (not in textbook); sexually transmitted diseases; malaria; gene culture co-evolution; and man-made diseases. Recommended Preparation: Undergraduate knowledge of genetics, biochemistry, cell biology, microbiology, and immunology is advisable. Prior consultation and permission from the Course Director is strongly advised.

PATH 422. Current Topics in Cancer. 3 Units.
The concept of cancer hallmarks has provided a useful guiding principle in our understanding of the complexity of cancer. The hallmarks include sustaining proliferative signaling, evading growth suppressors, enabling replicative immortality, activating invasion and metastasis, inducing angiogenesis, resisting cell death, deregulating cellular energetics, avoiding immune destruction, tumor-promoting inflammation, and genome instability and mutation. The objectives of this course are to (1) examine the principles of some of these hallmarks, and (2) explore potential therapies developed based on these hallmarks of cancer. This is a student-driven and discussion-based graduate course. Students should have had some background on the related subjects and have read scientific papers in their prior coursework. Students will be called on to present and discuss experimental design, data and conclusions from assigned publications. There will be no exams or comprehensive papers but students will submit a one-page critique (strengths and weaknesses) of one of the assigned papers prior to each class meeting. The course will end with a full-day student-run symposium on topics to be decided jointly by students and the course director. Grades will be based on class participation, written critiques, and symposium presentations. Offered as BIOC 420, MBOI 420, PATH 422, and PHRM 420. Prereq: CBIO 453 and CBIO 455.
PATH 430. Oxidative Stress and Disease Pathogenesis. 1 Unit.
Oxidative stress and free radicals are implicated in a number of disease processes including aging, arthritis, emphysema, Alzheimer’s disease and cancer. Lecture course with discussion of recent studies concerning the formation and destructive mechanisms of free radicals in the context of various disease processes. Students read assigned papers and discuss these in class.

PATH 432. Current Topics in Vision Research. 3 Units.
Vision research is an exciting and multidisciplinary area that draws on the disciplines of biochemistry, genetics, molecular biology, structural biology, neuroscience, and pathology. This graduate level course will provide the student with broad exposure to the most recent and relevant research currently being conducted in the field. Topics will cover a variety of diseases and fundamental biological processes occurring in the eye. Regions of the eye that will be discussed include the cornea, lens, and retina. Vision disorders discussed include age-related macular degeneration, retinal ciopathies, and diabetic retinopathy. Instructors in the course are experts in their field and are members of the multidisciplinary visual sciences research community here at Case Western Reserve University. Students will be exposed to the experimental approaches and instrumentation currently being used in the laboratory and in clinical settings. Topics will be covered by traditional lectures, demonstrations in the laboratory and the clinic, and journal club presentations. Students will be graded on their performance in journal club presentations (40%), research proposal (40%), and class participation (20%). Offered as NEUR 432, PATH 432, PHRM 432 and BIOC 432.

PATH 444. Neurodegenerative Diseases: Pathological, Cell. & Molecular Perspectives. 3 Units.
This course, taught by several faculty members, encompasses the full range of factors that contribute to the development of neurodegeneration. Subjects include pathological aspects, neurodegeneration, genetic aspects, protein conformation and cell biology in conditions such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis and prion diseases. Students read assigned primary literature and present and discuss these in class.

PATH 450. Interdisciplinary Musculoskeletal Research: Selected Topics and Grant Writing Workshop. 3 Units.
This is an introductory graduate course in MSK research topics, grant writing, and reviewing skills. During this course, each student will be introduced to diverse multidisciplinary topics in MSK research and will write a research grant on a MSK topic of his/her choice that is not regurgitation of their mentor’s grant. Students will also participate in editing and reviewing the proposals of their classmates. Proposals can form the basis of fellowship applications (F30/F31). For predocs, your department/program may allow the proposal to form the basis for the written component of your preliminary examination. Recommended Preparation: Current engagement in musculoskeletal research.

PATH 460. Introduction to Microarrays. 3 Units.
Microarray technology is an exciting new technique that is used to analyze gene expression in a wide variety of organisms. The goal of this course is to give participants a hands-on introduction to this technology. The course is intended for individuals who are preparing to use this technique, including students, fellows, and other investigators. This is a hands-on computer-based course, which will enable participants to conduct meaningful analyses of microarray data. Participants will gain an understanding of the principles underlying microarray technologies, including: theory of sample preparation, sample processing on microarrays, familiarity with the use of Affymetrix Microarray Suite software and generation of data sets. Transferring data among software packages to manipulate data will also be discussed. Importation of data into other software (GeneSpring and DecisionSite) will enable participants to mine the data for higher-order patterns. Participants will learn about the rationale behind the choice of normalization and data filtering strategies, distance metrics, use of appropriate clustering choices such as K-means, Hierarchical, and Self Organizing Maps. Offered as BIOC 460, PATH 460 and CNCR 460.

PATH 465. Advanced Immunobiology. 4 Units.
This course will cover fundamental (innate and adaptive responses, antigen recognition, cell activation, etc.) and applied (immune evasion, autoimmunity, allergy, transplantation, vaccines, etc.) immunology topics, highlighting the most important and recent advancements found in the primary literature. Lectures will be derived largely from the primary literature, but will also include modern techniques and fundamental background knowledge to enhance the learning environment for the immunology concepts presented. Course organization consists of two lectures per week by the immunology faculty, midterm and final examinations, and an oral presentation. Enrolled students have the option of concurrent enrollment in PATH 466 Writing for Immunologists. Prereq: PATH 416

PATH 466. Proposal Writing for Immunologists. 1 Unit.
This course is an introduction to research proposal writing and evaluation for immunology graduate students. One of the most important aspects of being an active investigator in academia, biotechnology, or pharmaceutical industries is being a skilled communicator of one’s ideas. This course is designed to teach these practical writing skills and will include lectures and discussions of key writing strategies. Throughout the semester, students will write a research proposal on a topic outside of their thesis research focus (but it can be related), present their ideas in front of the class, and take part in an end-of-semester review panel of the proposals of their classmates. Enrollment requires concurrent enrollment in PATH 465 Advanced Immunobiology and instructor permission. Prereq: PATH 416. Coreq: PATH 465.

PATH 475. Cell and Molecular Foundations of Pathology. 3 Units.
This course is designed for M.S. students in the Pathology Graduate Program, and is an introductory course covering normal cell and molecular biology as well as cell physiology. Additional topics to be discussed in the course will include cell structure and function, as well as correlates to cellular and molecular pathology. Recommended Preparation: Should have undergrad-level cell biology and biochemistry.
PATH 480. Logical Dissection of Biomedical Investigations. 3 Units.
PATH 480 is an upper level graduate course encompassing discussion and critical appraisal of both published and pre-published research papers, book chapters, commentaries and review articles. Emphasis will be placed on evaluating the logical relationships connecting hypotheses to experimental design and experimental data to conclusions drawn. Thus, the course will aim to develop students' capacities for independent thinking and critical analysis. Half of the course will be devoted to an analysis of fundamental conceptual issues pertaining to immunology, but this material will be applicable to a wide variety of fields. The other half of the course will be devoted to the analysis of papers that have been submitted for publication (with the students acting as primary reviewers of these papers). Our expectation is that this course will have practical relevance for students by providing them with methods to review their own prepublication manuscripts and eliminate common errors. It should also give students the tools to question widely held beliefs in diverse biomedical fields. Recommended preparation is completion of the C3MB curriculum and 2nd year or higher graduate school training. Previous exposure to immunology and molecular biology will be helpful but not required.

PATH 488. Yeast Genetics and Cell Biology. 3 Units.
This seminar course provides an introduction to the genetics and molecular biology of the yeasts S. cerevisiae and S. pombe by a discussion of current literature focusing primarily on topics in yeast cell biology. Students are first introduced to the tools of molecular genetics and special features of yeasts that make them important model eukaryotic organisms. Some selected topics include cell polarity, cell cycle, secretory pathways, vesicular and nuclear/cyttoplasmic transport, mitochondrial import and biogenesis, chromosome segregation, cytoskeleton, mating response and signal transduction. Offered as CLBY 488, GENE 488, MBIO 488, and PATH 488.

PATH 510. Basic Pathologic Mechanisms. 4 Units.
An interdisciplinary introduction to the fundamental principles of molecular and cellular biology as they relate to the pathologic basis of disease. Lectures, laboratories, conferences.

PATH 511. Experimental Pathology Seminar I. 1 Unit.
Weekly discussions of current topics and research by students, staff and distinguished visitors.

PATH 512. Experimental Pathology Seminar II. 1 Unit.
Weekly discussions of current topics and research by students, staff and distinguished visitors.

PATH 513. Immunology Journal Club. 1 Unit.
The Immunology Journal Club is a weekly seminar course in which enrolled students present recently published articles from the primary immunology literature for discussion by the group. Registered students are required to present one article and participate in discussions. Articles are selected by the students, must not be directly related to their own research project, and are approved by the course director. The purpose of the course is to provide the opportunity to practice presentation skills and to foster discussion of recent and high profile advances in immunology. Prereq: Enrolled in M.S. Pathology program.

PATH 520. Basic Cancer Biology and the Interface with Clinical Oncology. 3 Units.
This is a graduate-level introductory course in cancer biology taught through the Departments of Pharmacology and Pathology. This course will give students a broad overview of current basic cancer biology, highlight recent advances in cancer therapeutics, and provide a clinical perspective of the pathogenesis and treatment of common cancers. Classes will be of lecture and discussion format, and will also include student discussion of journal research articles to develop critical thinking in cancer research and experimental design as well as presentation/communication skills. About 1 to 3 students per class will be scheduled to lead the presentation and discussion of the selected journal articles. However, all students will be required to read the material in advance and be ready for discussion. Topics will cover growth factor action and signal transduction, oncogenes, tumor suppressor genes, DNA damage, apoptosis, cancer immunology, cancer stem cells, metastasis, angiogenesis, chemotherapy, radiation therapy, targeted therapeutics, photodynamic therapy, targeting cancer stem cells, chemoprevention, and clinical aspects of cancers of the breast, prostate, lymphatic tissue, and colon. Course grades for PHRM/PATH 520 (Ph.D. track): will be determined by class participation/presentation (40%), an original research grant proposal (25%) and written and oral critiques of two research proposals (25%). Course grades for PHRM/PATH 406 (M.S. and non-degree track): will be determined by class participation/presentation (40%), a literature review term paper (35%) and oral defense of term paper with course directors (25%). Presentations/Participation: Instructors will complete a standardized evaluation form to provide you uniform feedback in a timely manner. Required Reading: Assigned reviews, original articles (in blackboard). Recommended Reading: The Biology of Cancer (2nd Edition), by Robert A. Weinberg Garland Science, copyright 2014 Recommended Preparation: A course in Cell Biology. A course in Molecular Biology. Offered as PATH 406, PATH 520, PHRM 406 and PHRM 520.

PATH 521. Special Topics in Cancer Biology and Clinical Oncology. 1 Unit.
This one credit hour course in Cancer Biology is intended to give students an opportunity to do independent literature research while enrolled in PHRM 520/PATH 520. Students must attend weekly Hematology/Oncology seminar series and write a brief summary of each of the lectures attended. In addition, students must select one of the seminar topics to write a term paper which fully reviews the background related to the topic and scientific and clinical advances in that field. This term paper must also focus of Clinical Oncology, have a translational research component, and integrate with concepts learned in PHRM 520/PATH 520. Pharmacology students must provide a strong discussion on Therapeutics, while Pathology students must provide a strong component on Pathophysiology of the disease. Recommended preparation: CBIO 453 and CBIO 455, or concurrent enrollment in PHRM 520 or PATH 520. Offered as PATH 521 and PHRM 521.

PATH 523. Histopathology of Organ Systems. 3 Units.
Comprehensive course covering the underlying basic mechanisms of injury and cell death, inflammation, immunity, infection, and neoplasia followed by pathology of specific organ systems. Material will include histological (‘structure’) and physiological (‘function’) aspects related to pathology (human emphasis). Recommended preparation: ANAT 412 or permission of instructor. Offered as ANAT 523 and PATH 523.
PATH 524. Cell Biology of Neurodegenerative Disorders. 3 Units.
PATH 524 is a 3 credit hour introductory course on neurodegenerative disorders intended for Master's and first and second-year medical students. This course attempts to bridge the gap between molecular mechanisms at the cellular level with disease presentation and therapeutic options for neurodegenerative disorders of protein misfolding and metal mis-metabolism. The course will cover topics related to Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Amyotrophic lateral sclerosis, Multiple sclerosis, Prion diseases, disorders of iron and copper metabolism, and other disorders of interest to the students. The class will meet once every week, and following an introductory lecture, the students will discuss relevant scientific reports from recent literature. Students are expected to participate actively in class discussion, and write a 5-6 page research proposal following NIH guidelines for the final exam. The students are expected to present and defend their proposal in class. Grading criteria: Class participation (70%), final paper and presentation (30%).

PATH 525. Protein Misfolding and Human Disease: Molecular Basis and Clinical Implications. 3 Units.
This is a graduate-level seminar course that familiarizes the students with human diseases resulting from aberrations in protein folding, processing, and turnover. Contribution of associated inflammation and heavy metal mis-metabolism will be discussed where appropriate. Specific examples include, but are not limited to, Alzheimer’s Disease, Parkinson’s Disease, Prion disorders multiple sclerosis, amyotrophic lateral sclerosis, Huntington’s Disease, and others based on popular demand. The students will be expected to discuss relevant research publications in an interactive format. Grading will be based on class participation and an R21 grant proposal on the subject of their choice that does not overlap with their current area of research. Recommended Preparation: Concurrent enrollment in PATH 526, on grant-writing skills, is highly recommended but not required. Offered as PATH 525 and CLBY 525.

PATH 526. Introduction to Scientific Grant Writing. 1 Unit.
PATH 526 is a graduate-level course that will familiarize students with grant writing and reviewing skills. The students will be exposed to material pertaining to different grant opportunities, the grant review process, and strategies for maximizing chances of success. Grading will be based on class participation and the preparation and presentation of a R21 grant proposal in class. Coreq: PATH 525.

PATH 601. Special Problems. 1 - 18 Units.
Research on the nature and causation of disease and on host factors which tend to protect against disease. Special courses and tutorials in subspecialty areas of general and/or systemic anatomical and/or clinical pathology.

PATH 650. Independent Study. 1 - 9 Units.
Laboratory rotation experience in a selected faculty research laboratory designed to introduce the M.S. student to all aspects of modern laboratory research including the design, execution and analysis of original experimental work.

PATH 651. Thesis M.S.. 1 - 18 Units.
Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.

Masters Degrees
Although training efforts by the Department of Pharmacology are primarily directed toward the award of the PhD degree, training for the MS degree is offered also in a variety of contexts. For example, research assistants in the Department who seek educational advancement may pursue the MS degree via Plan A (thesis) or Plan B (coursework only). Medical students who seek to specialize in Pharmacology during the preclinical curriculum of the School of Medicine (University Program), which features clinical correlation of basic biologic concepts. Combined degree students who select the PhD in pharmacology undertake a series of advanced courses, research rotations, preliminary examinations and dissertation research in the same manner as that described for the PhD program.

Facilities
The Department of Pharmacology occupies about 25,000 net square feet distributed among several locations, namely the School of Medicine Harland Goff Wood Building and the adjacent Wood Research Tower, as well as facilities in the West Quad Bldg. Facilities include extensive chromatographic and tissue culture facilities, a transgenic mouse laboratory, imaging and confocal microscopy equipment, and ready access to specialized research techniques, including various aspects of recombinant DNA and hybridoma technology, in situ hybridization histochemistry, fluorescence cell sorting, NMR spectroscopy and mass spectrometry, X-ray crystallography, and cryo electron microscopy.

Masters Plan B (Coursework, MS direct admit)
This program is aimed at students who seek a Master’s Degree but do not intend to specialize in research following their Master’s work. To satisfy the requirement for a Comprehensive Exam for the MS Degree, students register for 1 credit of EXAM 600 during their final semester and sit for
a integrative essay question-style examination on the content of the required coursework. A total of 30 credit hours are required (see below).

The advancement of understanding and practice of therapeutics is based on research. Therefore all students in degree programs in Pharmacology are expected to become involved in independent research and scholarship. Registration for PHRM 601 Independent Study and Research requires a pre-arrangement with a faculty mentor who will oversee the combination of study and bench research and proscribe the basis for satisfactory performance, including oral and written reports. With pre-approval of the Departmental Director of Graduate Studies, a student’s study plan may substitute additional specific advanced courses to replace PHRM 601 Independent Study and Research credits.

Sample Plan of Study for Plan B

<table>
<thead>
<tr>
<th>First Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology I (CBIO 453)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Biology I (CBIO 455)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Since You Were Born: Nobel Prize Biomedical Research in the Last 21 Years- Section A (CBIO 456A)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamental Biostatistics to Enhance Research Rigor & Reproducibility (IBMS 450)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles of Pharmacology I: The Molecular Basis of Therapeutics (PHRM 401)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles of Pharmacology II: The Physiological Basis of Therapeutics (PHRM 402)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent Study and Research (PHRM 601)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacology Seminar Series (PHRM 511)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHRM Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent Study and Research (PHRM 601)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacology Seminar Series (PHRM 511)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHRM Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent Study and Research (PHRM 601)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master’s Comprehensive Exam (EXAM 600)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>6</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Masters Plan A (Research, direct admit)

In addition to the course requirements below, candidates for this degree are required to submit an acceptable written thesis based on their original research, and register for at least 9 credit hours of PHRM 651 Thesis M.S. (master’s dissertation research). The acceptability of the thesis will be determined by an oral examination administered by the student’s Thesis Advisory Committee. This committee must be chaired by a member of the primary Faculty of Pharmacology, and it should include the research mentor and two other faculty members (total of four faculty members, two from the Department of Pharmacology). As above, a minimum of 27 credit hours are required. For these students, passing the final exams in PHRM 401 Principles of Pharmacology I: The Molecular Basis of Therapeutics and PHRM 402 Principles of Pharmacology II: The Physiological Basis of Therapeutics satisfies the requirement for a Comprehensive Exam for the MS Degree.

Required courses for Plan A

<table>
<thead>
<tr>
<th>First Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology I (CBIO 453)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Biology I (CBIO 455)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis M.S. (PHRM 651)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Since You Were Born: Nobel Prize Biomedical Research in the Last 21 Years- Section A (CBIO 456A)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamental Biostatistics to Enhance Research Rigor & Reproducibility (IBMS 450)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles of Pharmacology I: The Molecular Basis of Therapeutics (PHRM 401)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles of Pharmacology II: The Physiological Basis of Therapeutics (PHRM 402)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis M.S. (PHRM 651)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacology Seminar Series (PHRM 511)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHRM Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis M.S. (PHRM 651)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Total Units in Sequence: 36

MD/MS Biomedical Sciences - Pharmacology

For Program Admissions information and MD requirements, see MD Dual Degree Programs (p. 26). A sample plan of study for the Pharmacology track is below.

<table>
<thead>
<tr>
<th>First Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Biological Sciences I (IBIS 401)</td>
<td>1</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamental Biostatistics to Enhance Research Rigor & Reproducibility (IBMS 450)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated Biological Sciences II (IBIS 402)</td>
<td>1</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent Study and Research (PHRM 601) (Optional)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>2-10</td>
<td>1-9</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Biological Sciences III (IBIS 403)</td>
<td>1</td>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The PhD program is divided into three phases. The first phase allows students to follow an integrated first-year sequence of course work that involves a core curriculum in cell and molecular biology. In addition, the first year includes three research rotations that allow the students to sample areas of research and become familiar with faculty members and their laboratories. Selection of a specific training program and thesis advisor is made before the end of the first year. The second phase involves a two part core course in the fundamentals of pharmacology, oral presentations, and laboratory experience, which is concluded with a comprehensive written exam designed to challenge students to apply key concepts in new contexts. Successful completion of this phase leads to admission to PhD candidacy.

After advancing to PhD candidacy, students enter one of four Research Interest Groups according to the interest of the student, the mentor and the anticipated nature of the thesis project. The four Interest Groups are: Cancer Therapeutics, Membrane & Structural Biology and Pharmacology, Molecular Pharmacology and Cellular Regulation, and Translational Therapeutics.

Upon completion of coursework requirements (54 total credits, see below), the PhD degree is awarded to students who also complete and defend a research project leading to two original and meritorious scientific contributions that are submitted for publication to leading journals in the field of study; at least one manuscript must be accepted for publication before scheduling the PhD thesis defense.

Core course requirements for the PhD in Pharmacology

The first year consists of the Core curriculum in Cell Biology and Molecular Biology (CBIO 453 Cell Biology I, CBIO 455 Molecular Biology I), research rotations, scientific ethics, part one of the Pharmacology core course, and an advanced course (18 credit hours total). During Year two, part two of the Pharmacology core course, a second advanced course, two seminar presentation courses, and independent study complete the course requirements. In all, 24 credits of graded coursework and 12 credits of P/N coursework are completed. Then 18 credits of dissertation research fulfill the program of study.

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBIO 453</td>
<td>3</td>
</tr>
<tr>
<td>CBIO 455</td>
<td>3</td>
</tr>
<tr>
<td>PHRM 401</td>
<td>3</td>
</tr>
<tr>
<td>PHRM 402</td>
<td>3</td>
</tr>
<tr>
<td>PHRM 511</td>
<td>2</td>
</tr>
<tr>
<td>Two advanced electives (from the Advanced Track offerings)</td>
<td>6</td>
</tr>
</tbody>
</table>

| Preliminary Comprehensive Examination | 1 |

PhD in Pharmacology

Students seeking the PhD degree in Pharmacology are admitted into the Department of Pharmacology through the administrative structure of Biomedical Sciences Training Program (http://casemed.case.edu/bstp) which provides an introduction to many related training areas within the biomedical field during the first year. PhD applicants may indicate Pharmacology as their "primary program of interest" (PPI) during the application process. Alternatively, admission may be through the Medical Scientist Training Program (MSTP) (https://case.edu/medicine/admissions-programs/md-phd-program/prospective-students/mstp-admissions).
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHRM 701</td>
<td>Dissertation Ph.D.</td>
<td>18</td>
</tr>
</tbody>
</table>

Plan of Study

<table>
<thead>
<tr>
<th>Year Total:</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation Ph.D. (PHRM 701)</td>
<td>2</td>
</tr>
</tbody>
</table>

First Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology I (CBIO 453)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Molecular Biology I (CBIO 455)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Research Rotation 2,3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Fundamental Biostatistics to Enhance Research Rigor & Reproducibility (IBMS 450)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Since You Were Born: Nobel Prize Biomedical Research in the Last 21 Years- Section A (CBIO 456A)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Independent Study and Research (PHRM 601)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Selection of Thesis Advisor</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Principles of Pharmacology I: The Molecular Basis of Therapeutics (PHRM 401)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Pharmacology Seminar Series (PHRM 511)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Elective approved by department</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Independent Study and Research (PHRM 601)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of Pharmacology II: The Physiological Basis of Therapeutics (PHRM 402)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Elective approved by department</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Pharmacology Seminar Series (PHRM 511)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Independent Study and Research (PHRM 601)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Admission to candidacy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacology Seminar Series (PHRM 511)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Independent Study and Research (PHRM 601)</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PHRM 701)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grant Writing Tutorial (PHRM 526)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Dissertation Ph.D. (PHRM 701)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Dissertation Ph.D. (PHRM 701)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Fall</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation Ph.D. (PHRM 701)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Dissertation Ph.D. (PHRM 701)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Fall</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Fifth Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation Ph.D. (PHRM 701)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Dissertation Ph.D. (PHRM 701)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Total Units in Sequence: 54

* Rotation 1 takes place during Summer prior to First Year Fall Semester.

Courses

PHRM 309. Principles of Pharmacology. 3 Units.

Principles of Pharmacology introduces the basic principles that underlie all of Pharmacology. The first half of the course introduces, both conceptually and quantitatively, drug absorption, distribution, elimination and metabolism (pharmacokinetics) and general drug receptor theory and mechanism of action (pharmacodynamics). Genetic variation in response to drugs (pharmacogenetics) is integrated into these basic principles. The second half of the course covers selected drug classes chosen to illustrate these principles. Small group/recitation sessions use case histories to reinforce presentation of principles and to discuss public perceptions of therapeutic drug use. Graduate students will be expected to critically evaluate articles from the literature and participate in a separate weekly discussion session. Recommended preparation for PHRM 409: Undergraduate degree in science or permission of instructor. Offered as PHRM 309 and PHRM 409. (CHEM 223 and CHEM 224), or (CHEM 323 and CHEM 324), or (EBME 201 and EBME 202), or (BIOL 116 and BIOL 117).

PHRM 315. Nuclear Receptors in Health and Disease. 3 Units.

This course focuses on hormone-gene interactions mediated by the ligand-inducible transcription factors termed nuclear hormone receptors. The class will address the mechanisms of action, regulatory features, and biological activities of several nuclear receptors. The usage of nuclear receptors as therapeutic targets in disease states such as cancer, inflammation, and diabetes will also be discussed. The course aims to teach students to critically evaluate primary literature relevant to nuclear hormone receptors biology, and to reinforce presentation/discussion skills. Grades for undergraduates will be based on midterm, final exam; grades for graduates will be based on midterm, final exam, and presentation of a recently published research article related to the role of nuclear receptors in health and disease. Offered as PHRM 315, BIOL 315, PHRM 415 and BIOL 415.

PHRM 340. Science and Society Through Literature. 3 Units.

This course will examine the interaction of scientific investigation and discovery with the society it occurred in. What is the effect of science on society and, as importantly, what is the effect of society on science? An introduction will consider the heliocentric controversy with focus on Galileo. Two broad areas, tuberculosis and the Frankenstein myth, will then be discussed covering the period 1800-present. With tuberculosis, fiction, art and music will be examined to understand the changing views of society towards the disease, how society’s perception of tuberculosis victims changed, and how this influenced their treatments and research. With Frankenstein, the original novel in its historical context will be examined. Using fiction and film, the transformation of the original story into myth with different connotations and implications will be discussed. Most classes will be extensive discussions coupled with student presentations of assigned materials. Offered as PHRM 340, BETH 440, PHRM 440, and HSTY 440.
PHRM 400. Research Experience in Pharmacology. 0 - 1 Units.
Research rotation in pharmacology.

PHRM 401. Principles of Pharmacology I: The Molecular Basis of Therapeutics. 3 Units.
This core course focuses on the chemical and biochemical properties of therapeutic agents and molecular mechanisms of therapeutic action, including kinetic and thermodynamic principles of enzyme catalysis and drug-receptor interactions. Moreover, emphasis is placed on fundamental principles of pharmacokinetics, including the absorption, distribution, metabolism, and excretion of drugs. Mathematical concepts needed to understand appropriate administration of drugs and maintaining therapeutic concentrations of drugs in the body are discussed. A second broad area of emphasis is on fundamental principles of pharmacodynamics, including drug-receptor theory, log dose-response relationships, therapeutic index, receptor turnover, and signal transduction mechanisms. The primary learning objective is to develop a self-directed, critical approach to the evaluation and design of experimental research in the broad context of receptor interactions with endogenous ligands and therapeutic agents in the context of disease models. This is a team-coordinated course involving session organized by faculty to facilitate student-directed learning experiences including discussion of study questions, problem solving applications, and primary literature presentations. A two-part laboratory exercise introduces experimental methodologies widely applied during the study of molecular interactions between therapeutic agents and receptor targets to reinforce fundamental principles of drug action. This 3-credit hour course meets 3 hr per week during the spring semester of year 1.

PHRM 402. Principles of Pharmacology II: The Physiological Basis of Therapeutics. 3 Units.
This course focuses on human physiology of organ systems including the central nervous system, cardiovascular system, and those systems (gastrointestinal, hepatic, and renal) that are involved in determining the pharmacokinetics or time course of drug action in vivo. A second major emphasis is placed on disease-based sessions where normal physiology, pathophysiology, and key drug classes to treat pathophysologies are discussed. The students learn key concepts in endocrine pathologies, inflammatory disorders, pulmonary diseases, infectious diseases, and cancer. The main learning objectives are for the student to gain an understanding of basic principles of modern pharmacology and physiology and to build self-directed learning skills. This is a highly interactive course in which faculty lectures are minimized. A heavy emphasis is placed on student-directed learning experiences including presentation and discussion of primary literature, problem solving applications, small group discussion and team-based learning. This 3-credit hour course meets 3 hr per week during the fall semester of year 2.

PHRM 403. Public and Professional Views of Modern Therapeutics. 3 Units.
This course will present the students with headline news stories from the popular press along with pertinent published articles from the scientific literature. The object is to engage the students in critical evaluation of the scientific literature and news reports to discern the scientific basis for decisions such as removal of drugs from the market. The course will focus on topics such as Cox-2 Inhibitors and Heart Disease, Antidepressant Use for Adolescents, and Parkinson’s Disease and Stem Cell Therapy, among others. Evaluation will be based on participation in student-led discussion sessions, weekly topical quizzes, and on written critiques of the primary literature.

PHRM 406. Basic Cancer Biology and the Interface with Clinical Oncology. 3 Units.
This is a graduate-level introductory course in cancer biology taught through the Departments of Pharmacology and Pathology. This course will give students a broad overview of current basic cancer biology, highlight recent advances in cancer therapeutics, and provide a clinical perspective of the pathogenesis and treatment of common cancers. Classes will be of lecture and discussion format, and will also include student discussion of journal research articles to develop critical thinking in cancer research and experimental design as well as presentation/communication skills. About 1 to 3 students per class will be scheduled to lead the presentation and discussion of the selected journal articles. However, all students will be required to read the material in advance and be ready for discussion. Topics will cover growth factor action and signal transduction, oncogenes, tumor suppressor genes, DNA damage, apoptosis, cancer immunology, cancer stem cells, metastasis, angiogenesis, chemotherapy, radiation therapy, targeted therapeutics, photodynamic therapy, targeting cancer stem cells, chemoprevention, and clinical aspects of cancers of the breast, prostate, lymphatic tissue, and colon. Course grades for PHRM/PATH 520 (Ph.D. track): will be determined by class participation/presentation (40%), an original research grant proposal (25%) and written and oral critiques of two research proposals (25%). Course grades for PHRM/PATH 406 (M.S. and non-degree track): will be determined by class participation/presentation (40%), a literature review term paper (35%) and oral defense of term paper with course directors (25%). Presentations/Participation: Instructors will complete a standardized evaluation form to provide you uniform feedback in a timely manner. Required Reading: Assigned reviews, original articles (in blackboard) Recommended Reading: The Biology of Cancer (2nd Edition), by Robert A. Weinberg Garland Science, copyright 2014 Recommended Preparation: A course in Cell Biology. A course in Molecular Biology. Offered as PATH 406, PATH 520, PHRM 406 and PHRM 520.

PHRM 409. Principles of Pharmacology. 3 Units.
Principles of Pharmacology introduces the basic principles that underlie all of Pharmacology. The first half of the course introduces, both conceptually and quantitatively, drug absorption, distribution, elimination and metabolism (pharmacokinetics) and general drug receptor theory and mechanism of action (pharmacodynamics). Genetic variation in response to drugs (pharmacogenetics) is integrated into these basic principles. The second half of the course covers selected drug classes chosen to illustrate these principles. Small group/recitation sessions use case histories to reinforce presentation of principles and to discuss public perceptions of therapeutic drug use. Graduate students will be expected to critically evaluate articles from the literature and participate in a separate weekly discussion session. Recommended preparation for PHRM 409: Undergraduate degree in science or permission of instructor. Offered as PHRM 309 and PHRM 409.

PHRM 412. Membrane Transport Processes. 3 Units.
Membranes and membrane transporters are absolutely required for all cells to take up nutrient, maintain membrane potential and efflux toxins. This course will consider the classification and structure of membrane transport proteins and channels, examine the common mechanistic features of all systems and the specific features of different classes of transporter. Understanding the physiological integration of transport processes into cell homeostasis and consideration of transporters and channels as drug targets will be a goal. Course format is minimal lecture, primarily student presentations of primary literature papers. Offered as PHOL 412 and PHRM 412. Prereq: CBIO 453 and CBIO 455.
PHRM 415. Nuclear Receptors in Health and Disease. 3 Units.
This course focuses on hormone-gene interactions mediated by the
ligand-inducible transcription factors termed nuclear hormone receptors.
The class will address the mechanisms of action, regulatory features,
and biological activities of several nuclear receptors. The usage of
nuclear receptors as therapeutic targets in disease states such as
cancer, inflammation, and diabetes will also be discussed. The course
aims to teach students to critically evaluate primary literature relevant
to nuclear hormone receptors biology, and to reinforce presentation/discussion skills. Grades for undergraduates will be based on midterm, final exam; grades for graduates will be based on midterm, final exam, and presentation of a recently published research article related to the role of nuclear receptors in health and disease. Offered as PHRM 315, BIO 315, PHRM 415 and BIO 415.

PHRM 420. Current Topics in Cancer. 3 Units.
The concept of cancer hallmarks has provided a useful guiding principle
in our understanding of the complexity of cancer. The hallmarks include
sustaining proliferative signaling, evading growth suppressors, enabling
replicative immortality, activating invasion and metastasis, inducing
angiogenesis, resisting cell death, deregulating cellular energetics,
avoiding immune destruction, tumor-promoting inflammation, and
genome instability and mutation. The objectives of this course are to
(1) examine the principles of some of these hallmarks, and (2) explore
potential therapies developed based on these hallmarks of cancer. This
is a student-driven and discussion-based graduate course. Students
should have had some background on the related subjects and have read
scientific papers in their prior coursework. Students will be called on to
present and discuss experimental design, data and conclusions from
assigned publications. There will be no exams or comprehensive papers but students will submit a one-page critique (strengths and weaknesses)
of one of the assigned papers prior to each class meeting. The course
will end with a full-day student-run symposium on topics to be decided
jointly by students and the course director. Grades will be based on class
participation, written critiques, and symposium presentations. Offered
as BIOL 420, MBIO 420, PATH 422, and PHRM 420. Prereq: CBIO 453 and
BIO 455.

PHRM 432. Current Topics in Vision Research. 3 Units.
Vision research is an exciting and multidisciplinary area that draws on
the disciplines of biochemistry, genetics, molecular biology, structural
biology, neuroscience, and pathology. This graduate level course
will provide the student with broad exposure to the most recent and
relevant research currently being conducted in the field. Topics will
cover a variety of diseases and fundamental biological processes
occurring in the eye. Regions of the eye that will be discussed include the
cornea, lens, and retina. Vision disorders discussed include age-related
macular degeneration, retinal ciliopathies, and diabetic retinopathy.
Instructors in the course are experts in their field and are members
of the multidisciplinary visual sciences research community here at
Case Western Reserve University. Students will be exposed to the
experimental approaches and instrumentation currently being used in the
laboratory and in clinical settings. Topics will be covered by traditional
lectures, demonstrations in the laboratory and the clinic, and journal
club presentations. Students will be graded on their performance in
journal club presentations (40%), research proposal (40%), and class
participation (20%). Offered as NEUR 432, PATH 432, PHRM 432 and
BIO 432.

PHRM 440. Science and Society Through Literature. 3 Units.
This course will examine the interaction of scientific investigation and
discovery with the society it occurred in. What is the effect of science
on society and, as importantly, what is the effect of society on science?
An introduction will consider the heliocentric controversy with focus on
Galileo. Two broad areas, tuberculosis and the Frankenstein myth, will
then be discussed covering the period 1800-present. With tuberculosis,
fiction, art and music will be examined to understand the changing views
of society towards the disease, how society's perception of tuberculosis
victims changed, and how this influenced their treatments and research.
With Frankenstein, the original novel in its historical context will be
examined. Using fiction and film, the transformation of the original
story into myth with different connotations and implications will be
discussed. Most classes will be extensive discussions coupled with
student presentations of assigned materials. Offered as PHRM 340,
BETH 440, PHRM 440, and HSTY 440.

PHRM 466. Cell Signaling. 3 Units.
This is an advanced lecture/journal/discussion format course that covers
cell signaling mechanisms. Included are discussions of neurotransmitter-gated ion channels, growth factor receptor kinases, cytokine receptors,
G protein-coupled receptors, steroid receptors, heterotrimeric G proteins,
ras family GTPases, second messenger cascades, protein kinase
cascades, second messenger regulation of transcription factors,
microtubule-based motility, actin/myosin-based motility, signals for
regulation of cell cycle, signals for regulation of apoptosis. Offered as
CLBY 466, PHOL 466 and PHRM 466.

PHRM 475. Protein Biophysics. 3 Units.
This course focuses on in-depth understanding of the molecular
biophysics of proteins. Structural, thermodynamic and kinetic aspects
of protein function and structure-function relationships will be considered
at the advanced conceptual level. The application of these theoretical
frameworks will be illustrated with examples from the literature and
integration of biophysical knowledge with description at the cellular and
systems level. The format consists of lectures, problem sets, and student
presentations. A special emphasis will be placed on discussion of original
publications. Offered as BIOC 475, CHEM 475, PHOL 475, PHRM 475, and
NEUR 475.

PHRM 511. Pharmacology Seminar Series. 0 - 1 Units.
Current topics of interest in the pharmacologist sciences.

PHRM 513. Structural Journal Club. 1 Unit.
Current topics of interest in structural biology, and protein biophysics.
Offered as PHOL 513 and PHRM 513.
PHRM 520. Basic Cancer Biology and the Interface with Clinical Oncology. 3 Units.
This is a graduate-level introductory course in cancer biology taught through the Departments of Pharmacology and Pathology. This course will give students a broad overview of current basic cancer biology, highlight recent advances in cancer therapeutics, and provide a clinical perspective of the pathogenesis and treatment of common cancers. Classes will be lecture and discussion format, and will also include student discussion of journal research articles to develop critical thinking in cancer research and experimental design as well as presentation/communication skills. About 1 to 3 students per class will be scheduled to lead the presentation and discussion of the selected journal articles. However, all students will be required to read the material in advance and be ready for discussion. Topics will cover growth factor action and signal transduction, oncogenes, tumor suppressor genes, DNA damage, apoptosis, cancer immunology, cancer stem cells, metastasis, angiogenesis, chemotherapy, radiation therapy, targeted therapeutics, photodynamic therapy, targeting cancer stem cells, chemoprevention, and clinical aspects of cancers of the breast, prostate, lymphatic tissue, and colon. Course grades for PHRM/PATH 520 (Ph.D. track): will be determined by class participation/presentation (40%), an original research grant proposal (25%) and written and oral critiques of two research proposals (25%). Course grades for PHRM/PATH 406 (M.S. and non-degree track): will be determined by class participation/presentation (40%), a literature review term paper (35%) and oral defense of term paper with course directors (25%). Presentations/Participation: Instructors will complete a standardized evaluation form to provide you uniform feedback in a timely manner. Required Reading: Assigned reviews, original articles (in blackboard) Recommended Reading: The Biology of Cancer (2nd Edition), by Robert A. Weinberg Garland Science, copyright 2014 Recommended Preparation: A course in Cell Biology: A course in Molecular Biology. Offered as PATH 406, PATH 520, PHRM 406 and PHRM 520.

PHRM 521. Special Topics in Cancer Biology and Clinical Oncology. 1 Unit.
This one credit hour course in Cancer Biology is intended to give students an opportunity to do independent literature research while enrolled in PHRM 520/PATH 520. Students must attend weekly Hematology/Oncology seminar series and write a brief summary of each of the lectures attended. In addition, students must select one of the seminar topics to write a term paper which fully reviews the background related to the topic and scientific and clinical advances in that field. This term paper must also focus of Clinical Oncology, have a strong component on Pathophysiology of the disease. Recommended preparation: CBIO 453 and CBIO 455, or concurrent enrollment in PHRM 520 or PATH 520. Offered as PATH 521 and PHRM 521.

PHRM 525. Topics in Cell and Molecular Pharmacology. 0 - 18 Units.
Individual library research project under the guidance of a pharmacology sponsor. Projects will reflect the research interest of the faculty sponsor, including molecular endocrinology, neuropharmacology, receptor activation and signal transduction, molecular mechanisms of enzyme action and metabolic regulation.

PHRM 526. Grant Writing Tutorial. 1 - 3 Units.
Students will be expected to provide critiques of a grant proposal to bring to a workshop. At the workshop, a faculty review panel will discuss the grant proposal and provide critiques to illustrate the key components that are necessary for any grant proposal, and the specific items that enhance the quality of the proposal or detract from it. The students will be able to compare what they emphasized in their critiques to what the expert panel focused on. After completing the workshop, each student will prepare a proposal based on their thesis topic; this document will be scored, and the student will also be evaluated for an oral defense of the proposal.

PHRM 527. Pathways to Personalized Medicine. 3 Units.
This is a course of independent study designed to take the student from the bedside to the bench and back again. Students will select a problem from a list of important therapeutic issues related to variability in drug responsiveness and design a research program to elucidate its molecular, biochemical, genetic and pathophysiological basis. The resulting research proposal is expected to be multidimensional and include molecular, cellular, whole animal and clinical investigations. To guide the process students will assemble a mentoring group including at least one member of the Translational Therapeutics Track Faculty, a clinician working in the clinical realm in which the problem originates and a basic scientist with relevant experience. The written proposal will be defended orally. Recommended preparation: 1st year Pharm Graduate required courses.

PHRM 528. Contemporary Approaches to Drug Discovery. 3 Units.
This course is designed to teach the students how lead compounds are discovered, optimized, and processed through clinical trials for FDA approval. Topics will include: medicinal chemistry, parallel synthesis, drug delivery and devices, drug administration and pharmacokinetics, and clinical trials. A special emphasis will be placed on describing how structural biology is used for in silico screening and lead optimization. This component will include hands-on experience in using sophisticated drug discovery software to conduct in silico screening and the development of drug libraries. Each student will conduct a course project involving in silico screening and lead optimization against known drug targets, followed by the drafting of an inventory disclosure. Another important aspect of this course will be inclusion of guest lectures by industrial leaders who describe examples of success stories of drug development. Offered as BIOL 528, PHOL 528, PHRM 528, and SYBB 528.

PHRM 555. Current Proteomics and Bioinformatics. 3 Units.
This course is designed for graduate students across the university who wish to acquire a better understanding of fundamental concepts of proteomics and related bioinformatics as well as hands-on experience with techniques used in current proteomics. Lectures will cover protein/peptide separation techniques, protein mass spectrometry, and biological applications which include quantitative proteomics, protein modification proteomics, interaction proteomics, structural genomics and structural proteomics. Also, it will cover experimental design, basic statistical concept and issues related to high-dimensional data from high-throughput technologies. Laboratory portion will involve practice on the separation of proteins by two-dimensional gel electrophoresis, molecular weight measurement of proteins by mass spectrometry, peptide structural characterization by tandem mass spectrometry. It will also include bioinformatics tools for protein identification and protein-protein interaction networks. The instructors’ research topics will also be discussed. Recommended preparation: CBIO 453, CBIO 455, and PQHS 431. Offered as PHRM 555 and SYBB 555.
PGRM 600. Preparation for Qualifying Exam. 1 Unit.
Students pursuing the M.S. or Ph.D. degrees in Pharmacology are required to prepare systematically for the comprehensive qualifying exam by reviewing the concepts of cellular and molecular biology and pharmacology. The qualifier is comprised of a two-part written exam administered simultaneously to all eligible students. It is designed to evaluate their understanding of concepts presented in the various core courses. It also assesses their skills in critical reading of research articles and design of experiments. The division into two parts allows each student to receive feedback on deficient areas and work toward improvement on the second segment. Eligibility: Students may register for the exam when they have fulfilled two criteria: (a) Successful completion (grade B or better) in all of the Core Courses, and an overall GPA of 3.0 or better. (b) Satisfactory performance in all research rotations and consistent research effort in the thesis laboratory as documented formally by the Ph.D. mentor. No student on probation may sit for the Qualifying Exam (Prelim I). Prereq: CBIO 453, CBIO 455, PGRM 401 and PGRM 402.

PGRM 601. Independent Study and Research. 1 - 18 Units.

PGRM 651. Thesis M.S.. 1 - 18 Units.

PGRM 701. Dissertation Ph.D.. 1 - 9 Units.
Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.

Department of Physiology and Biophysics

Room E-524, School of Medicine
http://physiology.case.edu/
Phone: 216.368.2084
Walter F. Boron, MD, PhD, Chair
walter.boron@case.edu

Bart Jarmusch (bjj2@case.edu), Manager of Graduate Education

The Department of Physiology and Biophysics at Case is a multidisciplinary department that takes great pride in its history of conducting research and training graduate students. The department includes 20 Primary and 33 Secondary faculty members, more than 25 post-doctoral associates, and over 300 full-time PhD, MD/PhD, and Master of Science degree students. The training programs are designed to provide a mentored training environment that maximizes faculty-student interaction.

As outlined below, the department offers PhD, MD/PhD, and Master of Science degrees. These programs are tailored to prepare students for successful careers in biomedical, pharmaceutical and industrial research. The department offers multiple graduate-level programs, each of which uses state-of-the-art molecular, cell biology, and biophysical approaches to study physiological questions at a variety of different organizational levels. The goal is to provide an outstanding training opportunity. The major goals of the PhD and Tech Masters programs are to provide students with a broad knowledge base in organ systems and integrated physiology and in-depth expertise and outstanding research potential in the fields of cellular and molecular physiology and molecular and cellular biophysics. These goals are accomplished using a series of foundation and advanced topic courses, skill development courses, laboratory rotations and thesis research. The MS in Medical Physiology program is a post-baccalaureate program designed to help students prepare for admission to medical, dental, pharmacy, or veterinary school or for opportunities to work in the biotechnology industry.

Master's Degrees

The Master’s Program in Medical Physiology is designed for students with at least a bachelor's degree in a chemical, physical, or biological science who are seeking advanced training in the physiological sciences, typically in preparation for admission to a professional medical program (e.g., Medical School, Dental School). The program is flexible in duration. It can take as little as 1 year (2 semesters, 9 months) to complete the required 30 credit hours of course work. However, students who wish to decompress the program can take 14 months or more to complete the requirements. Core courses and flexible electives allow students to focus their work in key areas of medical physiology, including Anatomy, Biochemistry, or Pharmacology. Graduates of the Medical Physiology Master’s Program also can pursue careers in basic and clinical research, research administration, teaching or management in academia, the pharmaceutical and biotechnology industries, private research institutions, government science or regulatory agencies, or medicine and health care.

MS Medical Physiology - Type B Non-Thesis Option

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical Physiology I (PHOL 481)</td>
<td>6</td>
</tr>
<tr>
<td>Translational Physiology I (PHOL 483)</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>6</td>
</tr>
<tr>
<td>Physiology and Biophysics Department Seminar for Medical Physiology Students (PHOL 498C)</td>
<td>1</td>
</tr>
<tr>
<td>Medical Physiology II (PHOL 482)</td>
<td>6</td>
</tr>
<tr>
<td>Translational Physiology II (PHOL 484)</td>
<td>3</td>
</tr>
<tr>
<td>Independent Study (PHOL 451)</td>
<td>1 - 18</td>
</tr>
<tr>
<td>On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500)</td>
<td>1</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>Physiology MSMP Seminar B (Spring Semester) (PHOL 498D)</td>
<td>1</td>
</tr>
</tbody>
</table>

Year Total: 16 15-32

Total Units in Sequence: 31-48

MS Physiology - Type A Thesis Option

The Department of Physiology and Biophysics encourages research staff members to expand their critical research knowledge and skills by enrolling in our Master's of Science in Physiology and Biophysics program. This Tech Master's Program is specifically designed for staff working full time. Each employer has their own policy on allowing staff to take classes and enroll in graduate programs. CWRU's policy is to allow staff, with their supervisor's permission, to take up to 6 credit hours per term, with tuition being covered by CWRU as part of the employee benefits package. Staff are expected to make up the time they spend in class during the day, after hours.

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversations on Protein Structure and Function (PHOL 456)</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Research Rotation (PHOL 505)</td>
<td>1</td>
</tr>
</tbody>
</table>
Physiology and Biophysics Departmental Seminar (PHOL 498A) 1
Cell Signaling (PHOL 466) 3
Physiology of Organ Systems (PHOL 480) 4
On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500) 1
Laboratory Research Rotation (PHOL 505) 1
Elective 3
Physiology Seminar B (Spring Semester) (PHOL 498B) 1
Year Total: 4 13

Total Units in Sequence: 17

MD/MS Biomedical Investigation - Physiology Track
This track offers training in physiology and biomedical laboratory technology, including emphasis on mentored independent research training which includes both laboratory experience and formal course work in modern laboratory methodology and instrumentation.

Students in Physiology and Biotechnology track must complete:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHOL 498A</td>
<td>Physiology and Biophysics Departmental Seminar</td>
<td>1</td>
</tr>
<tr>
<td>PHOL 498B</td>
<td>Physiology Seminar B (Spring Semester)</td>
<td>1</td>
</tr>
<tr>
<td>PHOL 601</td>
<td>Research</td>
<td>1 - 18</td>
</tr>
<tr>
<td>IBIS 600</td>
<td>Exam in Biomedical Investigation</td>
<td>0</td>
</tr>
</tbody>
</table>

And 9 credits from the following course list:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHOL 456</td>
<td>Conversations on Protein Structure and Function</td>
<td>2</td>
</tr>
<tr>
<td>PHOL 466</td>
<td>Cell Signaling</td>
<td>3</td>
</tr>
<tr>
<td>PHOL 480</td>
<td>Physiology of Organ Systems</td>
<td>4</td>
</tr>
<tr>
<td>PHOL 530</td>
<td>Technology in Physiological Sciences</td>
<td>3</td>
</tr>
</tbody>
</table>

PhD in Physiology and Biophysics

The Physiology and Biophysics Graduate Program provides comprehensive training leading to the PhD degree and MD/PhD degrees. This program has three tracks of study with emphasis on Cell and Molecular Physiology, Structural Biology and Biophysics, and Organ Systems Physiology. Admissions to the Physiology and Biophysic program may be obtained in the integrated Biomedical Sciences Training Program (http://casemed.case.edu/bstp), by direct admission to the department or via the Medical Scientist Training Program (http://mstp.case.edu/default.asp).

To earn a PhD in Physiology and Biophysics, a student must complete rotations in at least three laboratories followed by selection of a research advisor, and complete Core and Elective coursework including responsible conduct of research as described in the course of study, below. Students who previously completed relevant coursework, for example with a MS, may petition to complete alternative courses. Each graduate program follows the overall regulations established and described in CWRU Graduate Studies and documented to the Regents of the State of Ohio. Completion of the PhD degree will require 36 hours of coursework (24 hours of which are graded) and 18 hours of PHOL 701 Dissertation Ph.D.

In addition, each student must successfully complete a qualifier examination for advancement to candidacy in the form of a short grant proposal with oral defense. The qualifier is generally completed in the summer after year two. During the dissertation period, students are expected to meet twice a year with the thesis committee, present seminars in the department, and fulfill journal publication requirements. At the completion of the program, successful defense of a doctoral dissertation is required. Throughout the doctoral training, students are expected to be enthusiastic participants in seminars, journal clubs, and research meetings in the lab and program.

Plan of Study for PhD in Cell and Molecular Physiology *

Please also see Graduate Studies Academic Requirements for Doctoral Degrees (http://bulletin.case.edu/schoolofgraduatestudies/academicrequirements)

<table>
<thead>
<tr>
<th>First Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology I (CBIO 453)</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory Research Rotation (PHOL 505)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conversations on Protein Structure and Function (PHOL 456)</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology and Biophysics Departmental Seminar (PHOL 498A)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory Research Rotation (PHOL 505)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology of Organ Systems (PHOL 480)</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology Seminar B (Spring Semester) (PHOL 498B)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory Research Rotation (PHOL 505)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Signaling (PHOL 466)</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td></td>
<td>7</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiology and Biophysics Departmental Seminar (PHOL 498A)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Research (PHOL 601)</td>
<td></td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Physiology Seminar B (Spring Semester) (PHOL 498B)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Research (PHOL 601)</td>
<td></td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td></td>
<td>2-10</td>
<td>2-10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiology and Biophysics Departmental Seminar (PHOL 498A)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Program of Study for PhD in Organ Systems and Integrated Physiology *</td>
<td>Fall</td>
<td>Spring</td>
<td>Summer</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Cell Biology I (CBIO 453)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conversations on Protein Structure and Function (PHOL 456)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology and Biophysics Departmental Seminar (PHOL 498A)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory Research Rotation (PHOL 505)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology of Organ Systems (PHOL 480)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology Seminar B (Spring Semester) (PHOL 498B)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory Research Rotation (PHOL 505)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiovascular Physiology (PHOL 514)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardio-Respiratory Physiology (PHOL 519)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>7</td>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Spring</td>
</tr>
<tr>
<td>Physiology and Biophysics Departmental Seminar (PHOL 498A)</td>
<td>1</td>
</tr>
<tr>
<td>Research (PHOL 601)</td>
<td>1-9</td>
</tr>
<tr>
<td>Physiology Seminar B (Spring Semester) (PHOL 498B)</td>
<td>1</td>
</tr>
<tr>
<td>Research (PHOL 601)</td>
<td>1-9</td>
</tr>
<tr>
<td>Year Total:</td>
<td>2-10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Spring</td>
</tr>
<tr>
<td>Physiology and Biophysics Departmental Seminar (PHOL 498A)</td>
<td>1</td>
</tr>
<tr>
<td>Dissertation Ph.D. (PHOL 701)</td>
<td>1-9</td>
</tr>
<tr>
<td>Physiology Seminar B (Spring Semester) (PHOL 498B)</td>
<td>1</td>
</tr>
<tr>
<td>Dissertation Ph.D. (PHOL 701)</td>
<td>1-9</td>
</tr>
<tr>
<td>Year Total:</td>
<td>2-10</td>
</tr>
</tbody>
</table>

* After passing qualifying exam - full-time thesis research (701) - 18 total credit hours total
Courses

PHOL 351. Independent Study. 1 - 6 Units.
This course is a guided program of study in physiology textbooks, reviews, and original articles. Guided laboratory projects to reproduce and extend classical physiological experiments are offered to the undergraduate science major. This course is being offered in conjunction with the Graduate level course PHOL 451. Students are required to consult with the faculty member whose work they have interest in and plan their individual experience.

PHOL 401A. Physiology and Biophysics of Molecules and Cells. 2 Units.
Physiology and Biophysics of Molecules and Cells is a graduate-level introductory course designed to provide the fundamental principles of modern physiology, protein science and structural biology, and to prepare students for advanced courses in the biomedical sciences. The course is divided into 2 blocks that can be taken independently as PHOL 401A or PHOL 401B (2 credit hrs each) during the Spring semester of each year. The first block will cover the structure and function of proteins and lipids, and the organization of cellular membranes. Topics will include primary, secondary, tertiary and quaternary protein structure and analysis, enzyme kinetics, allosteric cooperativity, lipid membrane organization and domain structure, and protein-protein and protein-lipid interactions. The second block will cover molecular pathways and processes critical for cellular homeostasis, function, and signaling. Topics will include molecular mechanisms of transport across biological membranes and cellular compartments, ionic basis of the resting membrane potential, action potential generation and propagation, osmosis and Gibbs-Donnan equilibria, regulation of voltage-gated channels and electrogenic transporters, cellular pH regulation, and the biophysics of epithelial transport. Format will be a combination of lecture, discussion-based problem sets, journal paper presentations, and computer lab exercises and demonstrations. Grading will be based on performance on two essay-type exams administered in the middle and at the end of each block (80%), and on class participation (20%).

PHOL 401B. Physiology and Biophysics of Molecules and Cells. 2 Units.
Physiology and Biophysics of Molecules and Cells is a graduate-level introductory course designed to provide the fundamental principles of modern physiology, protein science and structural biology, and to prepare students for advanced courses in the biomedical sciences. The course is divided into 2 blocks that can be taken independently as PHOL 401A or PHOL 401B (2 credit hrs each) during the Spring semester of each year. The first block will cover the structure and function of proteins and lipids, and the organization of cellular membranes. Topics will include primary, secondary, tertiary and quaternary protein structure and analysis, enzyme kinetics, allosteric cooperativity, lipid membrane organization and domain structure, and protein-protein and protein-lipid interactions. The second block will cover molecular pathways and processes critical for cellular homeostasis, function, and signaling. Topics will include molecular mechanisms of transport across biological membranes and cellular compartments, ionic basis of the resting membrane potential, action potential generation and propagation, osmosis and Gibbs-Donnan equilibria, regulation of voltage-gated channels and electrogenic transporters, cellular pH regulation, and the biophysics of epithelial transport. Format will be a combination of lecture, discussion-based problem sets, journal paper presentations, and computer lab exercises and demonstrations. Grading will be based on performance on two essay-type exams administered in the middle and at the end of each block (80%), and on class participation (20%).

PHOL 402. Physiological Basis for Disease. 4 Units.
Physiological Basis for Disease is a graduate-level introductory course designed to provide the fundamental physiology of a select group of organ systems and examples of how the molecular basis of disease affects physiological function of these systems. As such PHOL 402 will prepare students for future study in advanced biomedical sciences courses. Select diseases of the endocrine, central nervous, pulmonary, cardiac and renal systems will be covered. The course is 4 credit hours and will be given in the Fall semester of each year. The format will be a combination of lecture and journal paper presentations and discussion. Grading will be based on five short answer/essay examinations given at the end of each section (50%), class participation (30%) and a final presentation (20%).

PHOL 410. Basic Oxygen & Physiological Function. 3 Units.
On-line lecture only course which explores the significance and consequences of oxygen and oxygen metabolism in living organisms. Topics to be covered include transport by blood tissues, oxygen toxicity, and mitochondrial metabolism. Emphasis will be placed on mammalian physiology with special reference to brain oxidative metabolism and blood flow as well as whole body energy expenditure and oxidative stress related to disease. The course will cover additional spans of physiology, nutrition and anatomy. Offered as NTRN 410 and PHOL 410.

PHOL 412. Membrane Transport Processes. 3 Units.
Membranes and membrane transporters are absolutely required for all cells to take up nutrient, maintain membrane potential and efflux toxins. This course will consider the classification and structure of membrane transport proteins and channels, examine the common mechanistic features of all systems and the specific features of different classes of transporter. Understanding the physiological integration of transport processes into cell homeostasis and consideration of transporters and channels as drug targets will be a goal. Course format is minimal lecture, primarily student presentations of primary literature papers. Offered as PHOL 412 and PHRM 412. Prereq: CBIO 453 and CBIO 455.

PHOL 419. Applied Probability and Stochastic Processes for Biology. 3 Units.
Applications of probability and stochastic processes to biological systems. Mathematical topics will include: introduction to discrete and continuous probability spaces (including numerical generation of pseudo random samples from specified probability distributions), Markov processes in discrete and continuous time with discrete and continuous sample spaces, point processes including homogeneous and inhomogeneous Poisson processes and Markov chains on graphs, and diffusion processes including Brownian motion and the Ornstein-Uhlenbeck process. Biological topics will be determined by the interests of the students and the instructor. Likely topics include: stochastic ion channels, molecular motors and stochastic ratchets, actin and tubulin polymerization, random walk models for neural spike trains, bacterial chemotaxis, signaling and genetic regulatory networks, and stochastic predator-prey dynamics. The emphasis will be on practical simulation and analysis of stochastic phenomena in biological systems. Numerical methods will be developed using a combination of MATLAB, the R statistical package, MCell, and/or URDME, at the discretion of the instructor. Student projects will comprise a major part of the course. Offered as BIOL 319, EECS 319, MATH 319, SYBB 319, BIOL 419, EBME 419, MATH 419, PHOL 419, and SYBB 419.
PHOL 430. Advanced Methods in Structural Biology. 1 - 6 Units.
The course is designed for graduate students who will be focusing on
one or more methods of structural biology in their thesis project. This
course is divided into 3-6 sections (depending on demand). The topics
offered will include X-ray crystallography, nuclear magnetic resonance
spectroscopy, optical spectroscopy, mass spectrometry, cryo-electron
microscopy, and computational and design methods. Students can select
one or more modules. Modules will be scheduled so that students can
take all the offered modules in one semester. Each section is given in 5
weeks and is worth 1 credit. Each section covers one area of structural
biology at an advanced level such that the student is prepared for
graduate level research in that topic.

PHOL 451. Independent Study. 1 - 18 Units.
Guided program of study using physiology textbooks, research reviews,
and original research articles. An independent laboratory research project
may also be included.

PHOL 456. Conversations on Protein Structure and Function. 2 Units.
The goal of this course is to supplement the short and basic presentation
of Proteins in C3MB by lectures and discussions for students with
backgrounds in physical-chemical sciences or students who already
have a good basic background in protein science. The course presents an
overview of Protein structure/function. Following an introduction to the
principles of protein structure, the physical basis of protein folding and
stability, and a brief overview of structural and bioinformatics approaches
to protein analysis is presented. Typically two lecture/discussion style
presentations are followed by a student lead journal club on recent high
profile papers. The way the Journal club is done is that one student
presents a paper (background and figures in powerpoint slides) while
presentation of the main figures is shared between the class. Papers
and Figures will be assigned by instructor. Typically two papers will be
presented per session. Offered as PHOL 456 and BIOL 457.

PHOL 466. Cell Signaling. 3 Units.
This is an advanced lecture/journal/discussion format course that covers
cell signaling mechanisms. Included are discussions of neurotransmitter-
gated ion channels, growth factor receptor kinases, cytokine receptors,
G protein-coupled receptors, steroid receptors, heterotrimeric G proteins,
ras family GTPases, second messenger cascades, protein kinase
cascades, second messenger regulation of transcription factors,
microtubule-based motility, actin/myosin-based motility, signals for
regulation of cell cycle, signals for regulation of apoptosis. Offered as
CLBY 466, PHOL 466 and PHRM 466.

PHOL 467. Topics in Evolutionary Biology. 3 Units.
The focus for this course on a special topic of interest in evolutionary
biology will vary from one offering to the next. Examples of possible
topics include theories of speciation, the evolution of language, the
evolution of sex, evolution and biodiversity, molecular evolution. ANAT/
ANTH/EEPS/PHEL/PHOL 467/BIOL 468 will require a longer, more
sophisticated term paper, and additional class presentation. Offered as
ANTH 367, BIOL 368, EEPS 367, PHIL 367, ANAT 467, ANTH 467,
BIOL 468, EEPS 467, PHIL 467 and PHOL 467.

PHOL 475. Protein Biophysics. 3 Units.
This course focuses on in-depth understanding of the molecular
biophysics of proteins. Structural, thermodynamic and kinetic aspects of
protein function and structure-function relationships will be considered
at the advanced conceptual level. The application of these theoretical
frameworks will be illustrated with examples from the literature and
integration of biophysical knowledge with description at the cellular and
systems level. The format consists of lectures, problem sets, and student
presentations. A special emphasis will be placed on discussion of original
publications. Offered as BIOC 475, CHEM 475, PHOL 475, PHRM 475, and
NEUR 475.

PHOL 477. Human Physiology. 4 Units.
This lecture/seminar experience is meant to enhance the students
fundamental knowledge in human physiology with an emphasis on
physiologic concepts in relationship to health, disease and illnesses.
The course will provide students with an understanding of the function,
regulation and integration of the major organ systems. Offered as
PAST 477 and PHOL 477.

PHOL 478. Lifestyle Medicine. 3 Units.
While the current acute care model of medicine focuses on disease and
treatment of individual organ systems by specialists, 50-60% of the public
use complementary and alternative medicine (CAM), which focuses on
prevention rather than disease. In CAM, damage caused by Western
diets is avoided with low fat, vegetarian, or vegan diets, and with herbs
and supplements. Damage mediated by emotional responses to stress
is counteracted with relaxation practices such as yoga, meditation or
hypnosis. In support of CAM, NIH-funded research performed over the
past decade has shown that 70-90% of chronic diseases such as obesity,
atherosclerosis, and cancer result from lifestyle. Moreover, mechanisms
of lifestyle-induced disease as well as mechanisms by which these
can be prevented or reversed by CAM practices have been described.
This course examines interrelationships between lifestyle, health and
disease and influences of CAM practices in terms of physiological health.
Topics include evidence that Western diets, chronic emotional stress
resulting from pervasive environmental, societal, workplace, financial,
or relationship issues, and changes in circadian rhythms resulting from
behaviors such as not getting enough sleep or working night-shifts
facilitate disease by inducing cellular events that include epigenetic
modification, changes in gene expression, and decreased telomere
length. Mechanisms by which CAM practices prevent or reverse these
lifestyle-mediated changes are also covered. In addition, the course
considers the broader issue of how economic and political pressures are
forcing rapid changes in healthcare and the influence that lifestyle-based
approaches is likely to have on evolving delivery models, healthcare
costs, and public health policies. The course is presented over a period
of 8 weeks during the summer session. It is heavily discussion-based
delivered in the form of slide presentations, discussions of the literature,
video segments, and experiential relaxation instructions. Grading is based
on class discussion and a written discussion paper.

PHOL 479. Clinical Reasoning: Applied Medical Physiology. 3 Units.
Physicians, detectives, scientists and mechanics all use deductive
reasoning with multiple hypotheses to solve problems. The primary
objective of this course is to help students apply their knowledge of
medical physiology to solving clinical problems. The second objective
is to develop an overall view of the clinical reasoning process as a
problem-solving method. This will be done primarily through problem-
based case studies of patients with cardiovascular, pulmonary and renal
disease. Case studies will be supplemented by video presentations
of patient history and physical exam, and student-led presentations. Prereq:
PHOL 482 and PHOL 484.
PHOL 480. Physiology of Organ Systems. 4 Units.
Our intent is to expand the course from the current 3 hours per week (1.5 hour on Monday and Wednesday) to 4 hours per week (1.5 hours on Monday and Wednesday plus 1 hour on Friday). Muscle structure and function, Myasthenia gravis and Sarcopenia; Central Nervous System, (Synaptic Transmission, Sensory System, Autonomic Nervous System, CNS circuits, Motor System, Neurodegenerative Diseases, Paraplegia and Nerve Compression); Cardiovascular Physiology (Regulation of Pressure and flow; Circulation, Cardiac Cycle, Electrophysiology, Cardiac Function, Control of Cardiovascular function, Hypertension); Hemorraghy, Cardiac Hypertrophy and Fibrillation; Respiratory Physiology (Gas Transport and Exchange, Control of Breathing, Acid/base regulation, Cor Pulmonaris and Cystic Fibrosis, Sleeping apnea and Emphysema); Renal Physiology (Glomerular Filtration, Tubular Function/transport, Glomerulonephritis, Tubulopathies); Gastro-Intestinal Physiology (Gastric motility, gastric function, pancreas and bile function, digestion and absorption, Liver Physiology; Pancreatitis, Liver Disease and cirrhosis); Endocrine Physiology (Thyroid, Adrenal glands, endocrine pancreas, Parathyroid, calcium sensing receptor, Cushing and diabetes, Reproductive hormones, eclampsia); Integrative Physiology (Response to exercise, fasting and feeding, aging). For all the classes, the students will receive a series of learning objectives by the instructor to help the students address and focus their attention to the key aspects of the organ physiology (and physiopathology). The evaluation of the students will continue to be based upon the students' participation in class (60% of the grade) complemented by a mid-term and a final exam (each one accounting for 20% of the final grade). Offered as BIOL 480 and PHOL 480.

PHOL 481. Medical Physiology I. 6 Units.
Physiology is the dynamic study of life. It describes the vital functions of living organisms and their organs, cells, and molecules. For some, physiology is the function of the whole person. For many practicing clinicians, physiology is the function of an individual organ system. For others, physiology may focus on the cellular principles that are common to the function of all organs and tissues. Medical physiology deals with how the human body functions, which depends on how the individual organ systems function, which in turn depends on the interactions among subcellular organelles and countless molecules. Thus, it requires an integrated understanding of events at the level of molecules, cells, and organs. Medical Physiology I is a lecture course (1, 2 hr. lecture/week, and 1, 1 hr. lecture/week) taught by clinical and basic science faculty. The 2 hour lecture will be given primarily by clinical faculty and is focused on applying physiological principles to clinical cases of pathophysiology. The 1 hour lecture will be given primarily by basic science faculty and will expose students to the process of translating fundamental basic science research to the clinic, that is bench-to-bedside. It is the first of a two-part course that follows the topics being simultaneously covered in the Medical Physiology I course. It is divided into 4 blocks: Block 1 covers the physiology of cells and molecules, signal transduction, basic electrophysiology, and muscle physiology; Block 2 covers the nervous system; Block 3 covers the cardiovascular system, and; Block 4 covers the respiratory system. Grading in the course will be based on performance on multiple choice/short essay examinations administered at the end of each block with each examination weighted according to the number of lectures contained in that block.

PHOL 482. Medical Physiology II. 6 Units.
Physiology is the dynamic study of life. It describes the vital functions of living organisms and their organs, cells, and molecules. For some, physiology is the function of the whole person. For many practicing clinicians, physiology is the function of an individual organ system. For others, physiology may focus on the cellular principles that are common to the function of all organs and tissues. Medical physiology deals with how the human body functions, which depends on how the individual organ systems function, which in turn depends on the interactions among subcellular organelles and countless molecules. Thus, it requires an integrated understanding of events at the level of molecules, cells, and organs. Medical Physiology II is a lecture course (3, 2 hr. lectures/week). It is the second of a two-part, comprehensive survey of physiology that is divided into five blocks: Block 5 covers the physiology of the urinary system; Block 6 covers the gastrointestinal system; Block 7 covers the endocrine system; Block 8 covers reproduction; and Block 9 covers the physiology of everyday life. Grading in the course will be based on performance on multiple choice/short essay examinations administered at the end of each block with each examination weighted according to the number of lectures contained in that block.

PHOL 483. Translational Physiology I. 3 Units.
Physiology is the dynamic study of life, describing the vital functions of living organisms and their organs, cells, and molecules. For some clinicians, physiology is the function of an individual organ system. For others, it focuses on the cellular principles that are common to the function of all organs and tissues. Medical physiology deals with how the human body functions, which depends on individual organ systems function, which depends on cellular function, which in turn depends on molecular interactions. Translational Physiology I is a lecture course (1, 2 hr lecture/week, and 1, 1 hr lecture/week) taught by clinical and basic science faculty. The 2 hour lecture will be given primarily by clinical faculty and is focused on applying physiological principles to clinical cases of pathophysiology. The 1 hour lecture will be given primarily by basic science faculty and will expose students to the process of translating fundamental basic science research to the clinic, that is bench-to-bedside. It is the first of a two-part course that follows the topics being simultaneously covered in the Medical Physiology I course. It is divided into 4 blocks: Block 1 covers the physiology of cells and molecules, signal transduction, basic electrophysiology, and muscle physiology; Block 2 covers the nervous system; Block 3 covers the cardiovascular system, and; Block 4 covers the respiratory system. Grading in the course will be based on performance on multiple choice examinations administered at the end of each block with each examination weighted according to the number of lectures contained in the block.
PHOL 484. Translational Physiology II. 3 Units.
Physiology is the dynamic study of life, describing the vital functions of living organisms and their organs, cells, and molecules. For some clinicians, physiology is the function of an individual organ system. For others, it focuses on the cellular principles that are common to the function of all organs and tissues. Medical physiology deals with how the human body functions, which depends on how the individual organ systems function, which depends on how the component cells function, which in turn depends on the interactions among subcellular organelles and countless molecules. Translational Physiology II will explore examples of how the latest basic research in physiology and biophysics is being applied to the treatment of human disease. For example, while the students are studying the basic physiology of the urinary system, they will also be investigating how these principles are being applied to treat/cure human kidney disorders such as renal failure, high blood pressure, glomerular disease, etc. Translational Physiology II is a lecture course (1, 2 hr lecture/week, and 1, 1 hr lecture/week) taught by clinical and basic science faculty. The 2-hour lecture will be given primarily by clinical faculty and is focused on applying physiological principles to clinical cases of pathophysiology. The 1-hour lecture will be given primarily by basic science faculty and will expose students to the process of translating fundamental basic science research to the clinic, that is bench-to-bedside. It is the second of a two-part course that follows topics being simultaneously covered in the Medical Physiology I course. It is divided into 4 blocks: Block 5 covers the physiology of the urinary system; Block 6 covers the gastrointestinal system and metabolism; Block 7 covers the endocrine system and reproduction, and, Block 8 covers the physiology of everyday life. Grading in the course will be based on performance on multiple choice examinations administered at the end of each block with each examination weighted according to the number of lectures contained in the block. Coreq: PHOL 482.

PHOL 485. Comparative & Evolutionary Physiology. 4 Units.
This course presents physiological concepts from the comparative and evolutionary perspective. Aspects of vertebrate and mammalian evolution will be considered with respect to the generation of adaptive advantages for organisms to changing environmental challenges since the Cambrian. Comparative physiological concepts include scaling, variations in nutrition, energy metabolism and work efficiency. The important influences of time, temperature, water and energy on mammalian biology will be presented. The course is a lecture based course that can be taken in person or on-line. Evaluations will be by regular quizzes, a mid-term and a final exam, all MCQ. Offered as PHOL 485 and ORIG 485.

PHOL 492. Clinical Reasoning II. 3 Units.
The objective of this course is to help students use principles of medical physiology to solve clinical problems. The second objective is to develop an overall view of clinical reasoning and improve critical thinking skills. The topics in Clinical Reasoning II are neurology, gastroenterology and endocrine/metabolic diseases. PHOL 479 Clinical Reasoning I, which covers cardiovascular, pulmonary and renal diseases, is not required. I anticipate that you will learn to: - Recognize physiologic mechanisms underlying abnormal physical findings, laboratory tests and imaging. - Use signs, symptoms, physical findings, laboratory tests and imaging to generate patient problem lists. - Develop and refine diagnostic hypotheses, i.e., differential diagnosis. - Understand the physiological basis of appropriate treatment plans. Prereq: PHOL 481.

PHOL 497. Journal Club in Structural Biology and Biophysics. 1 Unit.
Biweekly Journal club to engage faculty and students in discussion of recent high profile papers in structural biology and protein biophysics. Registered students have to present one entire seminar on an assigned topic and attend all seminars, as well as participate in discussion. Recommended Preparation: undergraduate biochemistry or equivalent.

PHOL 497A. Neurology Grand Rounds. 1 Unit.
This course is a weekly seminar series offered summer, fall, and spring semesters by the Department of Neurology at University Hospitals Case Medical Center. To earn a Passing grade in this course, students must attend at least 75% of the grand rounds offered by the Department of Neurology during the semester (signing in at the session) and submit to the course director within the week following the Grand Rounds, a one page report containing: 1) the name of the presenter and their professional affiliation; 2) the title of the presentation; 3) time and place of the Grand Rounds; 4) a one paragraph synopsis of the content of the presentation. Recommended Preparation: Pass the NBME Subject Exam in Physiology and Neurophysiology. Prereq: PHOL 481, PHOL 482, PHOL 483, PHOL 484, PHOL 498A and PHOL 498B.

PHOL 497B. Neurology Grand Rounds. 1 Unit.
This course is a weekly seminar series offered summer, fall, and spring semesters by the Department of Neurology at University Hospitals Case Medical Center. To earn a Passing grade in this course, students must attend at least 75% of the grand rounds offered by the Department of Neurology during the semester (signing in at the session) and submit to the course director within the week following the Grand Rounds, a one page report containing: 1) the name of the presenter and their professional affiliation; 2) the title of the presentation; 3) time and place of the Grand Rounds; 4) a one paragraph synopsis of the content of the presentation. Recommended Preparation: Pass the NBME Subject Exam in Physiology and Neurophysiology. Prereq: PHOL 481, PHOL 482, PHOL 483, PHOL 484, PHOL 497A, PHOL 498A and PHOL 498B.

PHOL 497C. Clinical Nephrology Conference. 1 Unit.
Clinical Nephrology Conference (CNC) at MetroHealth Medical Center, Dept. Medicine, Division of Nephrology. This course must be taken at least once and can be taken up to 2 times for a total of 2 credit hours. For the 15-week semester, students are responsible for attending and reporting on 12 of the scheduled CNC. For each CNC, the student must submit to the course director (Dr. Liedtke) within the week following the CNC, a one page report stating: a) The name of the presenter and their professional affiliation b) The title of the presentation c) Time and place of the CNC d) A one paragraph synopsis of the presentation The course director is responsible for assigning the grades for this course. Prior or concurrent CITI training must be completed. Prereq: PHOL 481, PHOL 482, PHOL 483, PHOL 484, PHOL 497A, PHOL 498A and PHOL 498B.

PHOL 497D. Clinical Nephrology Conference. 1 Unit.
Clinical Nephrology Conference (CNC) at MetroHealth Medical Center, Dept. Medicine, Division of Nephrology. This course must be taken at least once and can be taken up to 2 times for a total of 2 credit hours. For the 15-week semester, students are responsible for attending and reporting on 12 of the scheduled CNC. For each CNC, the student must submit to the course director (Dr. Liedtke) within the week following the CNC, a one page report stating: a) The name of the presenter and their professional affiliation b) The title of the presentation c) Time and place of the CNC d) A one paragraph synopsis of the presentation The course director is responsible for assigning the grades for this course. Prior or concurrent CITI training must be completed. Prereq: PHOL 481, PHOL 482, PHOL 483, PHOL 484, PHOL 497A and PHOL 498B.
PHOL 497E. Pulmonary Grand Rounds. 1 Unit.
Students are responsible for attending 10 of 15 sessions for that semester. Pulmonary Science Grand Rounds (adult pulmonology) and Pediatric Basic Science Seminar Series are convened Friday mornings at UH Case Medical Center at 8:00 am and 9:00 am, respectively. For each session attended, the student must submit to the course director (Dr. Liedtke) within the week following the session, a one page report stating: a. name of the presenter and their professional affiliation, b. title of the presentation, c. time and place of the session, and d. one paragraph synopsis of the presentation. The course director is responsible for assigning the grades for this course. Prereq: PHOL 481, PHOL 482, PHOL 483, PHOL 484, PHOL 498A, and PHOL 498B.

PHOL 497F. Pulmonary Grand Rounds. 1 Unit.
This course must be taken once and can be taken up to 2 times for a total of 2 credit hours. Students are responsible for attending 10 of 15 sessions for that semester. Pulmonary Science Grand Rounds (adult pulmonology) and Pediatric Basic Science Seminar Series are convened Friday mornings at UH Case Medical Center at 8:00 am and 9:00 am, respectively. For each session attended, the student must submit to the course director (Dr. Liedtke) within the week following the session, a one page report stating: a. name of the presenter and their professional affiliation, b. title of the presentation, c. time and place of the session, and d. one paragraph synopsis of the presentation. The course director is responsible for assigning the grades for this course. Prereq: PHOL 481, PHOL 482, PHOL 483, PHOL 484, PHOL 498A, and PHOL 498B.

PHOL 498A. Physiology and Biophysics Departmental Seminar. 1 Unit.
Weekly one-hour reviews by invited speakers of their research. Students present literature reviews or summaries of their research.

PHOL 498B. Physiology Seminar B (Spring Semester). 1 Unit.
Weekly one-hour reviews by invited speakers of their research. Offered spring semester.

PHOL 498C. Physiology and Biophysics Department Seminar for Medical Physiology Students. 1 Unit.
Weekly one-hour research reviews offered by various speakers, upon invitation. Students present literature reviews or summaries of their own research throughout the course. Grades will be determined by quizzes based on the research presented.

PHOL 498D. Physiology MSMP Seminar B (Spring Semester). 1 Unit.
Weekly one-hour research reviews offered by various speakers, upon invitation. Students will present literature reviews or summaries of their own research throughout the course. Grades will be determined by quizzes based on the research presented. Offered spring semester.

PHOL 505. Laboratory Research Rotation. 1 Unit.
Six week experience in a selected faculty research laboratory designed to introduce the student to all aspects of modern laboratory research including the design, execution and analysis of original experimental work. Recommended preparation: Consent of instructor and scheduled laboratory.

PHOL 513. Structural Journal Club. 1 Unit.
Current topics of interest in structural biology, and protein biophysics. Offered as PHOL 513 and PHRM 513.

PHOL 514. Cardiovascular Physiology. 3 Units.
The goal of this course is to provide the student with a solid foundation in cardiovascular physiology and pathophysiology. The course will begin by providing a solid foundation in the structure, phenotype and function of cardiac and vascular muscle. In addition, electrophysiology and metabolism will be addressed. Both basic physiology and more advanced topics, such as pathophysiology, will be covered using a journal club format. (Twice weekly; 1.5 hrs/class.) Student participation is required.

PHOL 519. Cardio-Respiratory Physiology. 3 Units.
This course is designed to integrate systemic, cellular and molecular aspects of cardio-respiratory systems in physiological and pathophysiological states. The course requires prior knowledge of basic physiology of the cardiovascular systems. Extensive student participation is required. Instructors provide a brief overview of the topic followed by presentation and critical appraisal of recent scientific literature by students.

PHOL 528. Contemporary Approaches to Drug Discovery. 3 Units.
This course is designed to teach the students how lead compounds are discovered, optimized, and processed through clinical trials for FDA approval. Topics will include: medicinal chemistry, parallel synthesis, drug delivery and devices, drug administration and pharmacokinetics, and clinical trials. A special emphasis will be placed on describing how structural biology is used for in silico screening and lead optimization. This component will include hands-on experience in using sophisticated drug discovery software to conduct in silico screening and the development of drug libraries. Each student will conduct a course project involving in silico screening and lead optimization against known drug targets, followed by the drafting of an inventory disclosure. Another important aspect of this course will be inclusion of guest lectures by industrial leaders who describe examples of success stories of drug development. Offered as BIOC 528, PHOL 528, PHRM 528, and SYBB 528.

PHOL 530. Technology in Physiological Sciences. 3 Units.
This lecture/discussion/journal course focuses on techniques in the physiological sciences. Topics include spectroscopy, microscopy, and electrophysiology. The theory and practice are covered with an emphasis on examples taken from the scientific literature.

PHOL 537. Microscopy-Principles and Applications. 3 Units.
This course provides an introduction to various types of light microscopy, digital and video imaging techniques, and their applications to biological and biomedical sciences via lectures and hands-on experience. Topics covered include geometrical and physical optics; brightfield, darkfield, phase contrast, DIC, fluorescence and confocal microscopes; and digital image processing. Offered as GENE 537, MBIOS 537, and PHOL 537.

PHOL 601. Research. 1 - 18 Units.
Cellular physiology laboratory research activities that are based on faculty and student interests.

PHOL 610. Oxygen and Physiological Function. 1 Unit.
Lecture/discussion course which explores the significance and consequences of oxygen and oxygen metabolism in living organisms. Topics to be covered include oxygen transport by blood tissues, oxygen toxicity, and mitochondrial metabolism. Emphasis will be placed on mammalian physiology with special reference to brain oxidative metabolism and blood flow as well as whole body energy expenditure and oxidative stress related to disease. The course will cover additional spans of physiology, nutrition and anatomy. Offered as ANAT 610, NTRN 610, and PHOL 610.
PHOL 614. Sleep Physiology - Neurobiology of Sleep/Wake. 3 Units.
Participants in this course will gain an understanding of the neural mechanisms contributing to the states of sleep and wakefulness. Contemporary theories regarding why humans need to sleep will be reviewed. We will also review how perturbations within specific neurotransmitter systems become manifest as sleep related disorders and the pharmacological interventions used to normalize activity within those neural pathways. Prereq: PHOL 481 and PHOL 482 or requisites not met permission.

PHOL 620A. Clinical Observer: Neurology Service. 2 Units.
This course is a 2 week intensive experience offered summer, fall, and spring semesters on a schedule set by the Department of Neurology at University Hospitals Case Medical Center. Students are expected to be present and observe at all of the times set forth by the house staff and attending, generally a 40 hour week minimum. The Objective of the course is to provide the students with the experience of observing patient care provided by 3rd year medical students on a clinical rotation under direct supervision by house staff and attending on an active acute Neurology Service. The PGY-2 Neurology Resident and PGY-3 Chief Resident will always be available for immediate supervision. Students round as Clinical Observers with the CWRU medical students according to their daily schedule. They will learn the basics of neurological history-taking, neurological examination, neurodiagnostic studies, and neurological therapeutics. Didactic sessions covering a wide range of neurologic and neurosurgical topics are covered by faculty members from both departments. The lectures cover the gamut of neurological and neurosurgical disease processes and treatments. Neurosurgery lectures include such topics as cerebrovascular disease, brain tumors, hydrocephalus, spinal disorders, and head trauma as well as doctor-patient communication. Unlike the medical students on the rotation, a Clinical Observer will only observe procedures and will not actively take part in any health care; he/she will act strictly as an observer, but will act as a physiological consultant to the team responsible for providing basic science input to the clinical cases. Prereq: PHOL 481, PHOL 482, PHOL 483, PHOL 484, PHOL 498A and PHOL 498B.

PHOL 620B. Clinical Observer: Stroke Service. 2 Units.
This course is a 2 week intensive experience offered summer, fall, and spring semesters on a schedule set by the Department of Neurology at University Hospitals Case Medical Center. Students are expected to be present and observe at all of the times set forth by the house staff and attending, generally a 40 hour week minimum. The Objective of the course is to provide the students with the experience of observing patient care provided by 3rd year medical students on a clinical rotation under direct supervision by house staff and attending on an active acute Neurology Service. The PGY-2 Neurology Resident and PGY-3 Chief Resident will always be available for immediate supervision. Students round as Clinical Observers with the CWRU medical students according to their daily schedule. They will learn the basics of neurological history-taking, neurological examination, neurodiagnostic studies, and neurological therapeutics. Didactic sessions covering a wide range of neurologic and neurosurgical topics are covered by faculty members from both departments. The lectures cover the gamut of neurological and neurosurgical disease processes and treatments. Neurosurgery lectures include such topics as cerebrovascular disease, brain tumors, hydrocephalus, spinal disorders, and head trauma as well as doctor-patient communication. Unlike the medical students on the rotation, a Clinical Observer will only observe procedures and will not actively take part in any health care; he/she will act strictly as an observer, but will act as a physiological consultant to the team responsible for providing basic science input to the clinical cases. Prereq: PHOL 481, PHOL 482, PHOL 483, PHOL 484, PHOL 498A and PHOL 498B.

PHOL 620C. Clinical Observer: Epilepsy Service. 2 Units.
This course is a 2 week intensive experience offered summer, fall, and spring semesters on a schedule set by the Department of Neurology at University Hospitals Case Medical Center. Students are expected to be present and observe at all of the times set forth by the house staff and attending, generally a 40 hour week minimum. The Objective of the course is to provide the students with the experience of observing patient care provided by 3rd year medical students on a clinical rotation under direct supervision by house staff and attending on an active acute Neurology Service. The PGY-2 Neurology Resident and PGY-3 Chief Resident will always be available for immediate supervision. Students round as Clinical Observers with the CWRU medical students according to their daily schedule. They will learn the basics of neurological history-taking, neurological examination, neurodiagnostic studies, and neurological therapeutics. Didactic sessions covering a wide range of neurologic and neurosurgical topics are covered by faculty members from both departments. The lectures cover the gamut of neurological and neurosurgical disease processes and treatments. Neurosurgery lectures include such topics as cerebrovascular disease, brain tumors, hydrocephalus, spinal disorders, and head trauma as well as doctor-patient communication. Unlike the medical students on the rotation, a Clinical Observer will only observe procedures and will not actively take part in any health care. He/she will act strictly as an observer, but will act as a physiological consultant to the team responsible for providing basic science input to the clinical cases. Prereq: PHOL 481, PHOL 482, PHOL 483, PHOL 484, PHOL 498A and PHOL 498B.

PHOL 620D. Clinical Observer: Neurology (Neuromuscular). 2 Units.
This course is a 2 week intensive experience offered summer, fall, and spring semesters on a schedule set by the Department of Neurology at University Hospitals Case Medical Center. Students are expected to be present and observe at all of the times set forth by the house staff and attending, generally a 40 hour week minimum. The Objective of the course is to provide the students with the experience of observing patient care provided by 3rd year medical students on a clinical rotation under direct supervision by house staff and attending on an active acute Neurology Service. The PGY-2 Neurology Resident and PGY-3 Chief Resident will always be available for immediate supervision. Students round as Clinical Observers with the CWRU medical students according to their daily schedule. They will learn the basics of neurological history-taking, neurological examination, neurodiagnostic studies, and neurological therapeutics. Didactic sessions covering a wide range of neurologic and neurosurgical topics are covered by faculty members from both departments. The lectures cover the gamut of neurological and neurosurgical disease processes and treatments. Neurosurgery lectures include such topics as cerebrovascular disease, brain tumors, hydrocephalus, spinal disorders, and head trauma as well as doctor-patient communication. Unlike the medical students on the rotation, a Clinical Observer will only observe procedures and will not actively take part in any health care; he/she will act strictly as an observer, but will act as a physiological consultant to the team responsible for providing basic science input to the clinical cases. Prereq: PHOL 481, PHOL 482, PHOL 483, PHOL 484, PHOL 498A and PHOL 498B.
PHOL 621. Clinical Nephrology Observer. 4 Units.
This course is a total of 4 week intensive experience offered on the School of Medicine elective schedule. Students will round with fellow and Medicine residents rotating during the elective on a daily basis starting with morning work rounds. Attending rounds generally begin in the afternoon. The student is restricted to a total of 15 hrs/week on clinical rounds. The student is expected to read appropriate or assigned text, journal and internet resources for necessary background reading; the time spent on these resources do not count toward the 15 hrs/week for rounds. The fellow or attending physician on the service will recommend to the course director (Dr. Liedtke) whether the student earned a Pass or Fail in the course based upon attendance, professional demeanor, active participation, and knowledge of the area. The course director is responsible for assigning the grades for this course. Prereq: PHOL 481, PHOL 482, PHOL 483, PHOL 484, PHOL 498A, PHOL 498B.

PHOL 622. Pediatric Pulmonology Observation. 2 Units.
Pediatric Pulmonology Observation (must be approved). 2 credit hours. Location: University Hospital, Rainbow Babies & Children Hospital. This course is an intensive experience with 2 weeks offered on the elective schedule detailed in Appendix A and 1 week with attending physician reading PFTs. For 2 weeks, students will round with attending staff and medical students according to their daily schedule at Rainbow Babies & Children Hospital, Pulmonary Division, starting with morning work rounds. Attending rounds generally begin in the afternoon. The student will not have direct patient contact. The student is expected to read appropriate or assigned text, journal and internet resources for necessary background reading. Students will journal their daily experience. Students will write a paper relating basic physiology to a case identified during rounds; the Director (Dr. Liedtke) will grade the paper. The attending physician on the service will recommend to the course director (Dr. Liedtke) based upon attendance, professional demeanor, active participation, and knowledge of the area. The course director is responsible for assigning the grades for this course. Dr. Ross Meyers will serve as the student's mentor and assign students to services. Prereq: PHOL 481, PHOL 482, PHOL 483, PHOL 484, PHOL 498A, and PHOL 498B.

PHOL 623. Adult Pulmonology Observation. 2 Units.
Adult Pulmonology AOC (must be approved). 2 credit hours. Location: University Hospital and VA Hospital. This course is an intensive experience with 2 weeks offered on the elective schedule detailed in Appendix A and 1 week with attending physician reading PFTs to evaluate 25 adult PFT, 6 exercise tests, and 6 methacholine challenges. For 2 weeks, students will round with attending staff and medical students according to their daily schedule at University Hospital starting with morning work rounds. Attending rounds generally begin in the afternoon. The student will not have direct patient contact. The student is expected to read appropriate or assigned text, journal and internet resources for necessary background reading. Students will journal their daily experience. Students will write a paper relating basic physiology to a case identified during rounds; the Director (Dr. Liedtke) will grade the paper. The attending physician on the service will recommend to the course director (Dr. Liedtke) based upon attendance, professional demeanor, active participation, and knowledge of the area. The course director is responsible for assigning the grades for this course. Dr. (TBN) will serve as the student's mentor and assign students to services. Prereq: PHOL 481, PHOL 482, PHOL 483, PHOL 484, PHOL 498A, and PHOL 498B.

PHOL 651. Thesis M.S.. 1 - 18 Units.
Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.

PHOL 701. Dissertation Ph.D.. 1 - 9 Units.
Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.

Population and Quantitative Health Sciences

Population and Quantitative Health Sciences offers the following degrees:

- Doctor of Philosophy (PhD)
- Master of Science (MS)
- Master of Public Health (MPH)

The Department of Population and Quantitative Health Sciences also offers a Minor in Public Health.

Faculty and Research
Department faculty are nationally recognized and have more than $9.5 million in grants that support projects including HIV/TB research in Uganda, the search for genes that cause disease, cancer prevention and control, studies of interventions to change human behaviors that promote good health, design of clinical trials, studies to change high-risk behaviors related to AIDS, studies of public policies concerning the health of the elderly, and cost/benefit studies of medical interventions. Many research projects are performed in collaboration with the four affiliated hospitals: the University Hospitals, Metro Health, the Cleveland Clinic and the Veteran Administration. The department has offices in two locations at the university, (Wood Building and Wolstein Research Building) and in the Prevention Research Center for Healthy Neighborhoods (PRHCN). The department maintains two scientific computer centers comprised of 14 lab computers and over a dozen servers. Several very large national health care and demographic databases are stored on the servers and are used for faculty and student research and educational projects.

Master of Science in Biostatistics

Questions and Information:
Nickalaus Kozlura, EdM
Master of Science - Biostatistics
Case Western Reserve University
10900 Euclid Avenue, W-G74
Cleveland, Ohio 44106-4945
216.368.5957 - phone
jonathan.haines@case.edu
The Department of Population and Quantitative Health Sciences offers a revolutionary new, Master of Science (MS) Program in Biostatistics (and a BS/MS paired with any BS major), a discipline in high and exploding demand. The program can be done intensively in 11 months, or at a slower pace to finish in 1.5 or 2 years. The program was designed after extensive interviews were conducted with a wide array of potential employers to make sure our graduates will have the edge in a marketplace that has been rapidly changing, while also prepared to continue in a PhD program. More and more, biostatisticians are expected to have familiarity with the area of application. The CWRU MS Biostatistics program reflects these new needs. Students may elect to take the program part-time and complete it at their own pace.

Picture yourself saving and improving lives:
- Analyzing data from health studies to determine the best treatment
- Working with data from millions of patients
- Identifying genes linked to specific diseases
- Using data to develop instruments to measure latent constructs like psychosocial well-being

There are four tracks our students can choose from: Biostatistics, Genomics & Bioinformatics, Health Care Analytics, and Social & Behavioral Science.

Students do internships at leading academic medical centers and research centers, at the National Institutes of Health and in industry. Graduates are going on to jobs at leading health institutions and getting funded PhD slots at top Universities.

Core Courses for this Program:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQHS 414</td>
<td>Data Management and Statistical Programming</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 431</td>
<td>Statistical Methods I</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 432</td>
<td>Statistical Methods II</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 453</td>
<td>Categorical Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 490</td>
<td>Epidemiology: Introduction to Theory and Methods</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 602</td>
<td>Practicum (Internship/Practicum)</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 602</td>
<td>Practicum (Introduction to Biostatistical Consulting)</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Units: 19

Biostatistics Track:

Required Courses (9 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQHS 435</td>
<td>Survival Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 480</td>
<td>Introduction to Mathematical Statistics</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 459</td>
<td>Longitudinal Data Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

Select 1 of the following Track Electives (3 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQHS 451</td>
<td>Machine Learning & Data Mining</td>
<td>3</td>
</tr>
<tr>
<td>STAT 426</td>
<td>Multivariate Analysis and Data Mining</td>
<td>3</td>
</tr>
</tbody>
</table>

Genomics and Bioinformatics Track:

Required Track Courses (12 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQHS 471</td>
<td>Machine Learning & Data Mining</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 451</td>
<td>A Data-Driven Introduction to Genomics and Human Health</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 452</td>
<td>Statistical Methods for Genetic Epidemiology</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 457</td>
<td>Current Issues in Genetic Epidemiology: Design and Analysis of Sequencing Studies</td>
<td>3</td>
</tr>
</tbody>
</table>

Health Care Analytics:

Required Track Courses (6 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQHS 435</td>
<td>Survival Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 515</td>
<td>Secondary Analysis of Large Health Care Data Bases</td>
<td>3</td>
</tr>
</tbody>
</table>

Select 2 of the following Track Electives (6 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQHS 459</td>
<td>Longitudinal Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 500</td>
<td>Design and Analysis of Observational Studies</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 450</td>
<td>Clinical Trials and Intervention Studies</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 471</td>
<td>Machine Learning & Data Mining</td>
<td>3</td>
</tr>
</tbody>
</table>

Social and Behavioral Sciences Track:

Required Track Courses (12 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQHS 459</td>
<td>Longitudinal Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MPHP 482</td>
<td>Qualitative and Mixed Methods in Public Health</td>
<td>3</td>
</tr>
<tr>
<td>NURS 632</td>
<td>Advanced Statistics: Structural Equation Modeling</td>
<td>3</td>
</tr>
<tr>
<td>PSCL 412</td>
<td>Measurement of Behavior</td>
<td>3</td>
</tr>
</tbody>
</table>

Graduates from accredited universities and colleges will be considered for admission to the department. All applicants must satisfy both CWRU and department requirements for graduate admission. The MS program in Biostatistics consists of a 16-credit core curriculum, plus a 12 credit major and a 3 credit internship or practicum.

General Requirements

Students must satisfy the requirements of the School of Graduate Studies as stated here, as well as those outlined by the Biostatistics program. The MS program in Biostatistics offers “Plan B”, as defined by the CWRU School of Graduate Studies. For Plan B, the student must successfully submit and pass their written internship/practicum project.

Minor in Public Health

Questions and Information:

Nickalaus Koziura, EdM
Undergraduate Minor in Public Health
Case Western Reserve University
10900 Euclid Avenue, W-G74
Cleveland, Ohio 44106-4945
216.368.5957 - phone
nickalaus.koziura@case.edu (drabousky@case.edu)
The impact of public health and the need for the general public to know more is periodically highlighted during crises such as epidemics and pandemics like Zika, Ebola, and Avian Flu. Education in public health is not only necessary for those entering the public health workforce, but is a critical complementary subject for all those considering a career in a health related field.

The Undergraduate Minor in Public Health is a 15 credit program that exposes students to the field of public health. This minor is designed to equip students with the core concepts of Public Health and is highly collaborative with many departments to provide a robust option for students who are pre-health or pursuing medical anthropology, medical sociology, mental health, global health, or nutrition and health promotion.

Required Courses (9 Credits):

Required Courses (6 Credits)

MPHP 101 Introduction to Public Health
MPHP 301 Introduction to Epidemiology

One of the following courses in Global Health (3 Credits)

INTH 301 Fundamentals of Global Health
ANTH 359 Introduction to Global Health

Electives (6 credits from one of the following areas):

Global Health

INTH 301 Fundamentals of Global Health
BETH 315B International Bioethics Policy and Practice: Public Health in the Netherlands
ANTH 359 Introduction to Global Health
ANTH 354 Health and Healing in East Asia
ANTH 323 AIDS: Epidemiology, Biology, and Culture
BIOL 352 Ecology and Evolution of Infectious Diseases

Medical Anthropology

ANTH 354 Health and Healing in East Asia
ANTH 326 Power, Illness, and Inequality: The Political Economy of Health
ANTH 328 Medical Anthropology and Public Health
ANTH 338 Maternal Health: Anthropological Perspectives on Reproductive Practices and Health Policy
ANTH 359 Introduction to Global Health
ANTH 215 Health, Culture, and Disease: An Introduction to Medical Anthropology
ANTH 323 AIDS: Epidemiology, Biology, and Culture

Medical Sociology

SOCI 264 Body, Culture and Disability
SOCI 311 Health, Illness, and Social Behavior
SOCI 344 Health Disparities
SOCI 345 Sociology of Mental Illness
SOCI 365 Health Care Delivery

Nutrition and Health Promotion

NTRN 341 Food as Medicine: How what we eat influences how we feel, think, and our health status
NTRN 343 Dietary Patterns
NTRN 328 Child Nutrition, Development and Health

MPHP 313 Health Education, Communication, and Advocacy 3

Master of Public Health (MPH)

Questions and Information:

Tara Hannum, MA

Master of Public Health Program
Case Western Reserve University
10900 Euclid Avenue, W-G74
Cleveland, Ohio 44106-4945
216.368.7567- phone
216.368.2286 - fax
tmh123@case.edu (drabousky@case.edu)

A Master of Public Health degree is designed to prepare students to address the broad mission of public health, defined as “enhancing health in human populations, through organized community effort,” utilizing education, research and community service. Public health practitioners are prepared to identify and assess the health needs of different populations, and then to plan, implement and evaluate programs to meet those needs. It is the task of the public health practitioner to protect and promote the wellness of humankind. The master of public health program prepares students to enhance health in human populations through organized community effort. Graduates are qualified to work in local and state health departments, universities and colleges, hospitals, ambulatory medical centers, non-profit organizations, and the insurance and pharmaceutical industries. The program seeks to attract a rich mix of students, including those pursuing degrees in medicine, nursing, dentistry, law, social work, anthropology, bioethics, management and other fields, as well as students holding undergraduate degrees.

The CWRU MPH Program has a two-year curriculum requiring 42 credit hours. Eighteen credits are accumulated in six core required courses, representing the fundamental domains of public health: biostatistics, epidemiology, environmental health sciences, health services administration, public health history and social and behavioral sciences. Students receive nine credits for three courses in the concentration of their choice, six credits for two elective courses, and nine credits for the “Culminating Experience,” a 3 credit public health field practicum and a 6 credit capstone project. Previous experience or education pertaining to public health may increase the student’s flexibility in course selection. Students may also enroll part-time and take courses over a three to five year period.
Requirements: Course List

Core required courses (18 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPHP 405</td>
<td>Statistical Methods in Public Health</td>
<td>3</td>
</tr>
<tr>
<td>MPHP 406</td>
<td>History and Philosophy of Public Health</td>
<td>3</td>
</tr>
<tr>
<td>MPHP 411</td>
<td>Introduction to Health Behavior</td>
<td>3</td>
</tr>
<tr>
<td>MPHP 429</td>
<td>Introduction to Environmental Health</td>
<td>3</td>
</tr>
<tr>
<td>MPHP 439</td>
<td>Public Health Management and Policy</td>
<td>3</td>
</tr>
<tr>
<td>MPHP 483</td>
<td>Introduction to Epidemiology for Public Health Practice</td>
<td>3</td>
</tr>
</tbody>
</table>

Culminating Experience

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPHP 652</td>
<td>Public Health Capstone Experience</td>
<td>6</td>
</tr>
<tr>
<td>MPHP 650</td>
<td>Public Health Practicum</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Complete 9 credits within chosen Concentration</td>
<td>9</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Total Units: 42

1. Students in the Population Health Research major should strongly consider taking MPHP 431 Statistical Methods I in place of MPHP 405.
2. Choices for concentration are Population Health Research, Global Health, Health Policy & Administration, Health Promotion and Disease Prevention, or Health Informatics.

MPH Sample Plan of Study (full-time):

First Year

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>History and Philosophy of Public Health (MPHP 406)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Introduction to Health Behavior (MPHP 411)</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Epidemiology for Public Health Practice (MPHP 483)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistical Methods in Public Health (MPHP 405)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Environmental Health (MPHP 429)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Health Management and Policy (MPHP 439)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Health Practicum (MPHP 650) (Public Health Capstone Experience)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration course 1</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Concentration course 2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective course</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Health Capstone Experience (MPHP 652) (Public Health Capstone Experience)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Health Capstone Experience (MPHP 652) (Public Health Capstone Experience)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective Course</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Concentration Course 3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>12</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

Concentrations

Currently, five different concentrations (a.k.a. tracks) are offered by the CWRU MPH Program: Population Health Research, Global Health, Health Policy & Management, Health Promotion & Disease Prevention, and Health Informatics. Each concentration has a required course or courses (in addition to the core required courses), plus selective offerings to be combined for a total of 9 credit hours in major coursework. Students develop a Capstone project relevant to the concentration area to expand and apply the knowledge of the subject. Individual emphasis will differ from student to student within each concentration.

MPH students can also choose to expand the emphasis and depth of their program of study by electing to do a double concentration plan of study. For the double concentration, the student chooses two areas (two concentrations) of equal emphasis and takes 3 courses in each area (this requires the student to take a minimum of 48 credit hours). The student's Capstone project must embrace and integrate both emphases, and no double-counting of credits can take place. Students choosing to do the double concentration plan of study should also work closely with an advisor to ensure optimal course selection and foster the evolution of a successful Capstone project.

Population Health Research Concentration

Coordinator: Mendel Singer, PhD, MPH

Learning Objectives:

- Working knowledge of epidemiologic principles, terminology, and tools
- Working knowledge of the primary analytic methods employed in both prospective and retrospective studies relating to population health
- Understand the most common study designs used in public health and/or clinical research
- Gain familiarity with some of the key advanced concepts in one of the subspecialties of population health (e.g. epidemiology, health services research, outcomes research).

1 of the Following Required Concentration Courses (3 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPHP 432</td>
<td>Statistical Methods II</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 515</td>
<td>Secondary Analysis of Large Health Care Data Bases</td>
<td>3</td>
</tr>
<tr>
<td>MPHP 482</td>
<td>Qualitative and Mixed Methods in Public Health</td>
<td>3</td>
</tr>
</tbody>
</table>

2 of the Following Concentration Electives (6 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPHP 421</td>
<td>Health Economics and Strategy</td>
<td>3</td>
</tr>
<tr>
<td>MPHP 450</td>
<td>Clinical Trials and Intervention Studies</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 465</td>
<td>Design and Measurement in Population Health Sciences</td>
<td>3</td>
</tr>
<tr>
<td>MPHP 467</td>
<td>Comparative and Cost Effectiveness Research (Section 100)</td>
<td>1</td>
</tr>
<tr>
<td>MPHP 467</td>
<td>Comparative and Cost Effectiveness Research (Section 101)</td>
<td>1</td>
</tr>
<tr>
<td>MPHP 467</td>
<td>Comparative and Cost Effectiveness Research (Section 102)</td>
<td>1</td>
</tr>
<tr>
<td>MPHP 484</td>
<td>Global Health Epidemiology</td>
<td>1 - 3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>PQHS 414</td>
<td>Data Management and Statistical Programming</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 451</td>
<td>A Data-Driven Introduction to Genomics and Human Health</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 452</td>
<td>Statistical Methods for Genetic Epidemiology</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 459</td>
<td>Longitudinal Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>NURS 631</td>
<td>Advanced Statistics: Multivariate Analysis</td>
<td>3</td>
</tr>
<tr>
<td>NURS 632</td>
<td>Advanced Statistics: Structural Equation Modeling</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>MPHP 432, MPHP 482, and MPHP 515 can also be taken as concentration electives as long as they were not taken as the "Required Concentration Course".</td>
<td></td>
</tr>
</tbody>
</table>

Global Health Concentration Coordinator - Peter Zimmerman, PhD

Learning Objectives:

- Develop a global perspective on health and diseases
- Learn to design, execute, analyze, and evaluate global health research or projects
- Acquire skills to understanding and communicate meaningfully with colleagues from distant fields of global health
- Learn to integrate multiple objectives in global health across academic and applied disciplines
- Understand ethical and regulatory issues for global health research

Required Concentration Courses (6 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTH 401</td>
<td>Fundamentals of Global Health</td>
<td>3</td>
</tr>
<tr>
<td>MPHP 484</td>
<td>Global Health Epidemiology</td>
<td>3</td>
</tr>
</tbody>
</table>

Concentration Electives (3 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPHP 510</td>
<td>Health Disparities</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 461</td>
<td>Urban Health</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 480</td>
<td>Medical Anthropology and Global Health I</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 511</td>
<td>Seminar in Anthropology and Global Health Topics</td>
<td>3</td>
</tr>
<tr>
<td>LAWS 4101</td>
<td>International Law</td>
<td>3</td>
</tr>
<tr>
<td>LAWS 5123</td>
<td>International Trade Law and Policy</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 460</td>
<td>Managing in a Global Economy</td>
<td>3</td>
</tr>
</tbody>
</table>

Health Care Policy & Administration Concentration Coordinator - TBA

Learning Objectives:

To improve population health through leadership by developing knowledge, ability and skills to lead care improvement, including:

- Knowledge of social science through theories and how they can be used to understand the organization of health care (health economics, sociology, organization theory, social psychology)
- To understand the role of the manager, organizational control and design, relationships with professional workers, adaptation to change and public accountability
- To understand and be able to use management techniques including quality improvement, small group leadership, budgeting, cost effectiveness, and decision supports
- Able to analyze a public health problem, recommend solutions, make a public presentation, and carry out improvements

Required Concentration Courses (3 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPHP 468</td>
<td>The Continual Improvement of Healthcare: An Interdisciplinary Course</td>
<td>3</td>
</tr>
</tbody>
</table>

Select 2 Concentration Courses from the list below (6 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPHP 421</td>
<td>Health Economics and Strategy</td>
<td>3</td>
</tr>
<tr>
<td>MPHP 456</td>
<td>Health Policy and Management Decisions</td>
<td>3</td>
</tr>
<tr>
<td>MPHP 467</td>
<td>Comparative and Cost Effectiveness Research</td>
<td>1</td>
</tr>
<tr>
<td>MPHP 475</td>
<td>Management of Disasters Due to Nature, War, or Terror</td>
<td>3</td>
</tr>
<tr>
<td>MPHP 510</td>
<td>Health Disparities</td>
<td>3</td>
</tr>
<tr>
<td>MPHP 532</td>
<td>Health Care Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>POSC 483</td>
<td>Health Policy and Politics in the United States</td>
<td>3</td>
</tr>
<tr>
<td>HSMC 420</td>
<td>Health Finance</td>
<td>3</td>
</tr>
<tr>
<td>LAWS 5205</td>
<td>Public Health Law</td>
<td>2</td>
</tr>
<tr>
<td>BETH 417</td>
<td>Introduction to Public Health Ethics</td>
<td>3</td>
</tr>
</tbody>
</table>

Health Informatics Concentration Coordinator - Siran Koroukian, PhD

Learning Objectives:

- Understand how clinical data are collected and coded
- Aggregate, normalize, and integrate clinical and/or claims data originating from disparate forms
- Understand standard health data exchange formats and vocabularies, including Health Level 7 (HL7, designed to transfer clinical and administrative data across different applications), the Logical Observation Identifiers Names and Codes (LOINC, for encoding laboratory test and result information), the Systematized Nomenclature of Medicine (SNOMED, clinical terminology designated as a US standard for electronic health information exchange).
- Understand the ethical, regulatory, and practical aspects of data security
- Know how to retrieve and use data from social media/mobile health

Required Concentration Courses (9 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQHS 416</td>
<td>Introduction to Computing in Biomedical Health Informatics</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 515</td>
<td>Secondary Analysis of Large Health Care Databases</td>
<td>3</td>
</tr>
<tr>
<td>IIME 473</td>
<td>Fundamentals of Clinical Information Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Health Promotion & Disease Prevention Concentration Coordinator - Erika Trapl, PhD

Learning Objectives:

- Describe models and theories of health behavior as they relate to health promotion and disease prevention
- Identify multi-factorial causes of health behavior and disease
• Demonstrate knowledge and skills necessary to support behavior change
• Apply principles and practice of effective health communication
• Describe development, implementation, and evaluation of programs that promote healthy lifestyle and behaviors

Required Concentration Courses (6 Credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPHP 433</td>
<td>Community Interventions and Program Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>MPHP 413</td>
<td>Health Education, Communication, and Advocacy</td>
<td>3</td>
</tr>
</tbody>
</table>

Select 1 Concentration Course from the list below (3 Credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPHP 464</td>
<td>Obesity and Cancer: Views from Molecules to Health Policy</td>
<td>3</td>
</tr>
<tr>
<td>MPHP 475</td>
<td>Management of Disasters Due to Nature, War, or Terror</td>
<td>3</td>
</tr>
<tr>
<td>MPHP 485</td>
<td>Adolescent Development</td>
<td>3</td>
</tr>
<tr>
<td>MPHP 510</td>
<td>Health Disparities</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 461</td>
<td>Urban Health</td>
<td>3</td>
</tr>
</tbody>
</table>

Intensive Research Pathway

The MPH is not a research degree, yet many use it as a springboard for a career in research. Some continue on for a PhD in a related field, such as Epidemiology. Others look for jobs as research assistants and compete for these jobs with people who have obtained a research master’s degree - often at a disadvantage due to their limited number (and level) of advanced research methods courses. The MPH degree offers a broad foundation in public health and experience in community settings and has great value both as a secondary degree (e.g. MD/MPH) and as a primary terminal degree. Yet even within the framework of an MPH degree, more can be done to accommodate those intending to pursue a career in research, either directly or by first pursuing a PhD. In addition to better preparing these students for research careers and PhD programs, students wishing to continue for a PhD (at CWRU or elsewhere) can, with by doing the IRP, get more credit towards their PhD degrees.

The goal is to create a unique hybrid that combined the benefits of a research level Master’s degree with the broader professional public health training of the MPH degree. This optional program of study can be completed with any of the MPH concentrations by completing the course list below (33 credits) plus any of the 9 credit concentration sequences.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPHP 406</td>
<td>History and Philosophy of Public Health</td>
<td>3</td>
</tr>
<tr>
<td>MPHP 411</td>
<td>Introduction to Health Behavior</td>
<td>3</td>
</tr>
<tr>
<td>MPHP 439</td>
<td>Public Health Management and Policy</td>
<td>3</td>
</tr>
<tr>
<td>MPHP 650</td>
<td>Public Health Practicum</td>
<td>3</td>
</tr>
<tr>
<td>MPHP 652</td>
<td>Public Health Capstone Experience</td>
<td>6</td>
</tr>
<tr>
<td>PQHS 414</td>
<td>Data Management and Statistical Programming</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 431</td>
<td>Statistical Methods I</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 432</td>
<td>Statistical Methods II</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 465</td>
<td>Design and Measurement in Population Health Sciences</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 490</td>
<td>Epidemiology: Introduction to Theory and Methods</td>
<td>3</td>
</tr>
</tbody>
</table>

Concentration Course Sequence

Total Units 42

Dual Degree Options

Because of the breadth of the field of public health, the MPH Program is an ideal degree to integrate with other professional schools and graduate programs at Case. University leadership has recognized collaboration as one of the priorities for the future of the university, and has approved 11 MPH dual degree programs. They are:

• JD/MPH (School of Law)
• MA or PhD/MPH (Department of Anthropology, School of Graduate Studies)
• MA/MPH (Department of Bioethics, School of Medicine)
• MBA/MPH (Weatherhead School of Management)
• MD/MPH (School of Medicine)
• MS/MPH (Department of Nutrition)
• MSN/MPH (School of Nursing)
• MSSA/MPH (Social Administration, Mandel School of Applied Social Sciences)
• DMD/MPH (School of Dentistry)
• BA/MPH (Integrated Graduate Studies (IGS) Program)
• MSM-HC (Weatherhead School of Management)

Generally, dual degree students complete both degrees by adding one year of study to the partner degree. For example, an MD student could add one year to the four-year MD Program to complete his/her MD/MPH dual degree in five years. In addition to the requirements for the partner degree program, all dual degree students will complete 27 credits of core MPH requirements (18 core credits plus 9 Culminating Experience credits) and participate in both semesters of the MPH seminar series. Of the remaining 15 credits, it is anticipated that 9 will be selected from courses taught by the Department of Epidemiology and Biostatistics. The remaining 6 credits can be selected from the list of approved courses in the partner program. Students wishing to take courses not previously approved in the dual degree plan may petition to do so in writing to both partner programs. In most cases, it will be assumed that dual degree students will adopt an area of concentration specific to their shared degree area.

Dual degree students should have academic advisors from both the MPH Program and the partner program faculty. Advisors of dual degree students are encouraged to develop dialogues with their partner advisors and collaborate on students’ programs of study. This dialogue should be accomplished by a minimum of one annual group meeting of both advisors with the student to be arranged by the student. During the initial meeting, before the end of the student’s first semester, a Planned Program of Study (PPOS) is developed. The PPOS can be revised later, also with the approval of both advisors. The PPOS should include (if relevant) a written description of how outside courses will benefit the student’s public health education. Academic performance issues, or any other issues, are presented by the advisors to the MPH Executive Committee for final disposition. The MPH Executive Committee will adjudicate any difference in opinion between advisors.

The Director of the MPH Program, assisted by the Program Administrative Director, is the coordinator of the dual degree programs and provides services for student support, including special events and publications dedicated to serving the needs of dual degree students and building their sense of scholarship and community as a group. The Office
of the MPH Program Director provides dual degree students a destination for help and building identity.

Dual Degree Contacts

MBA/MPH
Deborah Bibb
FT MBA Program Director
Weatherhead School of Management
216.368.6702
deborah.bibb@case.edu

JD/MPH
Ruqaiijah A. Yearby, JD, MPH
Professor
School of Law
216.368.6351
ray31@case.edu

MSN/MPH
Carol Savrin, DNP, CPNP, FNP, BC, FAANP
Associate Professor
School Of Nursing
216.368.5304
csl18@case.edu

Anthropology/MPH
Janet McGrath, PhD
Associate Professor
Department of Anthropology
Mather Memorial 238
216.368.2287
jwm6@case.edu

MD/MPH
Scott Frank, MD, MS
Director Master of Public Health Program
216.368.3897
scott.frank@case.edu

Bioethics/MPH
Aaron Goldenberg, PhD, MPH
Assistant professor
Bioethics - School of Medicine
216.368.8729
aaron.goldenberg@case.edu

Integrated Graduate Studies (BA/MPH)
Claudia C. Anderson
Assistant Dean
Office of Undergraduate Studies
216.368.2928
cca2@case.edu

MSSA/MPH
Sharon Milligan, PhD, MSW, MPH
Associate Dean for Academic Affairs
Mandel School of Applied Social Sciences
216.368.2335
sharon.milligan@case.edu (sharon.milligan.edu)

DMD/MPH
Sena Narendran, BDS, MPH
Associate Professor of Community Dentistry
School of Dentistry
216.368.1131
sena.narendran@case.edu

MS/MPH
Hope Barkoukis, PhD, RD, LD
Chair
Department of Nutrition
School of Medicine
216.368.2441
Hope.Barkoukis@case.edu

PhD Epidemiology and Biostatistics
Questions and Information:
Nickalaus Koziura, EdM
Master of Science - Biostatistics
Case Western Reserve University
10900 Euclid Avenue, W-G74
216.368.5957 - phone
nickalaus.koziura@case.edu (drabousky@case.edu)

The mission of the Doctoral Program in Epidemiology and Biostatistics in the Department of Population and Quantitative Health Sciences is to prepare students for an active, fulfilling, and lifelong research career, with the goal of improving human health.

The program draws on the core disciplines of epidemiology and biostatistics, broadly defined, but may also include a wide range of other academic areas, ranging from human genetics to health policy. As part of their training students will develop the knowledge, skills, and competencies necessary to be leading researchers in areas that provide improved understanding of how to advance public health. Through challenging coursework and research opportunities, both independent and collaborative, students will develop a thorough understanding of the multiple determinants of population health outcomes, the individual and structural factors that may lead to disparities in those outcomes, and the way in which specific policies and interventions can influence the nature and impacts of population health determinants. A key aspect of the program is to train students to define important, unanswered questions and design appropriate strategies to solve our pressing health problems, locally, nationally and globally. In addition, the program in Epidemiology and Biostatistics is committed to developing the skills necessary for lifelong learning as we recognize this as being key to continued success.

The program is designed to train students to address critical research questions to advance human and population health utilizing a wide variety of research tools and trans-disciplinary collaborations. This is distinct from historical training in a single discipline (e.g., statistics or genetics) or expertise in a small number of technical skills. The educational mission of the PhD Program in Epidemiology & Biostatistics is to train students using an integrated approach that draws broadly from the population and quantitative health sciences. These include global, population, public, and community health, biostatistics, epidemiology, health behavior and prevention, genomic epidemiology, bioinformatics, and computational biology. This training provides the foundation for trainees to play integral roles in successfully solving our most pressing health problems.

Through our rigorous coursework, exposure to discussion of important health related issues, and their research experiences during graduate training, students will develop into junior colleagues of the faculty who
will develop the capacity to work independently. To develop into the research leaders expected of our graduates, each student will take a common set of first and second year courses that provides extensive exposure to each of the areas noted above. By the end of their first year students will choose a mentor and laboratory in which to do their dissertation work. Research areas span all of the above and often combine these approaches with the expectation that cross-disciplinary studies will result in broader and more complete solutions to complex public health problems.

Exposure to cutting edge research will be facilitated by our department-wide seminar that includes talks by world-leading experts both from off- and on-campus. As part of their training all students will participate in these seminars, including as speakers. This will help develop the necessary communication skills that is expected of successful researchers.

Graduates from accredited universities and colleges will be considered for admission to the department. All applicants must satisfy both CWRU and department requirements for graduate admission. Upon acceptance into the PhD program, each student will be assigned an academic advisor, who will guide the student through department and graduate school regulations, assist him or her in designing the initial planned program of study, and track the student's progress toward degree completion.

Research and training will be guided by a committee of faculty including the student's research advisor. The research advisor will have the major responsibility for facilitating, guiding, and advising the student in his or her research, but this will be done in consultation with the faculty committees. A Mentoring committee, selected after first year of Ph.D. training, will help students select courses and educational goals most useful for their research interests. This committee will be replaced at the end of the second year by a Dissertation committee that will play an important role in guiding the student's research project.

On completion of all Core Curriculum course requirements, students take a qualifying examination that is necessary to remaining and advancing in the program. Exceptions to required courses based on prior course work will be decided on a case by case basis.

Curriculum

The Doctor of Philosophy degree in Epidemiology and Biostatistics in the Department of Population and Quantitative Health Sciences comprises 42 credits from the following components:

- Core Curriculum (22 credits)
- Electives (20 credits)
- Department Research Seminar (6 semesters)
- Passing the Qualifying Exam
- Dissertation Research (18 credits)

Core Curriculum

The Core Curriculum is designed to provide PhD students with a strong foundation in epidemiology and biostatistics and related areas - the fields that comprise population and quantitative health sciences - and the methodological and analytic training to conduct a rigorous, high quality research in the student's selected specialization or concentration.

Core required courses include:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQHS 431</td>
<td>Statistical Methods I</td>
<td>3</td>
</tr>
<tr>
<td>PQHS 432</td>
<td>Statistical Methods II</td>
<td>3</td>
</tr>
</tbody>
</table>

PQHS 490 Epidemiology: Introduction to Theory and Methods 3
PQHS 465 Design and Measurement in Population Health Sciences 3
PQHS 472 Integrated Thinking in Population and Quantitative Health Sciences 2
PQHS 444 Communicating in Population Health Science Research (**1 unit, taken twice) 2
PQHS 501 Research Seminar 0

Electives

Electives are chosen in consultation with the student's mentor and mentoring committee.

Seminars (0 credits)

Attending research seminars is integral to our graduate program and student's professional development. Students are required to attend weekly research seminars. These seminars provide a forum for students to develop skills in scientific presentation, thought and communication, and balance general and concentration-specific speakers and topics. Meeting locations may vary from week to week depending upon the speaker. Each student is required to attend in person six semesters of seminars. All students are required to present once a year during research seminars after their first year in the program.

Qualifying Exam

Following the completion of the core required courses at the end of their second year, students will take an oral exam based on required coursework that involves analyses of a novel data set. This will include a description of the results, their interpretation and a short proposal on alternative or future research directions based on these findings. Students will be given two attempts to pass this examination. A second failure will result in dismissal from the program.

Dissertation (18 credits)

After passing the qualifying examination and completing second year course work, students will select a dissertation committee and develop a thesis proposal, based on anticipated research for their dissertation. This will be presented to the student's Dissertation committee that will evaluate the written document and an oral defense of the document. This will be completed no later than the end of the fall semester of the third year. Successful completion of this exam will move the student to candidacy. Each student will be allowed two attempts to pass the oral defense of the proposal.

Students are required to complete 18 credits of dissertation (PQHS 701) prior to graduation.
MPHP Courses

MPHP 101. Introduction to Public Health. 3 Units.
The purpose of this course is to introduce students to the science and art of public health through understanding historical and current issues through public health case histories and controversies. Students will be introduced to social, behavioral, cultural, and environmental influences on population health. Emphasis is placed on social justice as a central component of public health, with an overview of health inequity and commitment to vulnerable populations. Core public health practices relating to health promotion program design, community assessment and improvement planning, health communication, health policy and enforcement, and health behavior change will be featured. The course will promote understanding of health care and public health systems domestically and globally, including preparedness for and response to public health emergencies.

MPHP 301. Introduction to Epidemiology. 3 Units.
This course begins with the exploration of the history, philosophy and uses of epidemiology. It then moves to the basic descriptive functions of epidemiology such as condition, frequency and severity. Data is used to describe qualitatively and quantitatively diseases and injuries in a population. Applications include identifying patterns of disease and injury over time and geography The course then moves to analytical epidemiology with focus on estimation, inference, bias, confounding and adjustment in the determination of what factors are associated with, or cause disease or injury. The different kinds of study designs are introduced including ecologic, cross-sectional, case-control, retrospective and prospective cohort, and experimental designs such as clinical trials. Students are introduced to evidence-based public health with analysis of harm, benefit and cost, and intervention effectiveness. The course concludes with applications to policy, covering outbreak investigation/testing/screening, public health policy and special epidemiologic applications including molecular and genetic epidemiology, environmental health and safety, unintentional injury and violence prevention and behavioral sciences. Recommended preparation: A course in statistics taken before or concurrently with MPHP 301.

MPHP 306. History and Philosophy of Public Health. 3 Units.
The purpose of this course is to introduce students to the science and art of public health through understanding historical and current issues that represent its foundation. Students will learn about the essentials of public health and applications of those precepts throughout history and in the present. The course will examine public health case histories and controversies from the past and present, in order to better understand solutions for the future. Offered as MPHP 306 and MPHP 406. Prereq: Enrollment limited to MPH students (Plan A or Plan B) and EPBI students only. All others require instructor consent.

MPHP 401. Introduction to Health Behavior. 3 Units.
Using a biopsychosocial perspective, an overview of the measurement and modeling of behavioral, social, psychological, and environmental factors related to disease prevention, disease management, and health promotion is provided. Offered as PQHS 411 and MPHP 411. Prereq: Enrollment limited to MPH students (Plan A or Plan B) and EPBI students or instructor consent.

MPHP 405. Statistical Methods in Public Health. 3 Units.
This one-semester survey course for public health students is intended to provide the fundamental concepts and methods of biostatistics as applied predominantly to public health problems. The emphasis is on interpretation and concepts rather than calculations. Topics include descriptive statistics; vital statistics; sampling; estimation and significance testing; sample size and power; correlation and regression; spatial and temporal trends; small area analysis; statistical issues in policy development. Examples of statistical methods will be drawn from public health practice. Use of computer statistical packages will be introduced. Prereq: Enrollment limited to MPH students (Plan A or Plan B) and EPBI students only. All others require instructor consent.

MPHP 406. History and Philosophy of Public Health. 3 Units.
The purpose of this course is to introduce students to the science and art of public health through an understanding of the history and philosophies that represent its foundation. Students will learn about the essentials of public health and applications of those precepts throughout history and in the present. The course will examine public health case histories and controversies from the past and present, in order to better understand solutions for the future. Offered as MPHP 306 and MPHP 406. Prereq: Enrollment limited to MPH students (Plan A or Plan B) and EPBI students or instructor consent.

MPHP 411. Introduction to Health Economics and Strategy. 3 Units.
The purpose of this course is to develop the analytical skills necessary for understanding how the U.S. health care sector operates, how it has evolved, the forces at work behind perceived deficiencies (in quality and cost control), and the impact of alternative policy proposals. Special attention is giving to recent developments in the healthcare marketplace, and the strategic considerations they create for providers and insurers. These issues are addressed through the lens of microeconomic theory. Under this framework, outcomes result from the interaction of decisions made by participants in the healthcare economy (e.g. patients, providers, insurers, government), with those decisions governed by the preferences, incentives and resource constraints facing each decision-maker. Principles of microeconomics will be reviewed as necessary to ensure consistent understanding of basic concepts. The course is designed to appeal to a broad audience, particularly students interested in healthcare management, public health, medical innovation, health law, and public policymaking. Offered as HSMC 421 and MPHP 421.
MPHP 429. Introduction to Environmental Health. 3 Units.
This survey course will introduce students to environmental and occupational health topics including individual, community, population, and global issues. Students will develop an understanding of the human health impacts of physical, biological, and chemical agents in the environment and workplace including basic principles of toxicology. Presentation of concepts including risk assessment, communication and management as well as discussion of environmental and occupational practices, policies and regulations that promote public and population health is included.

MPHP 431. Statistical Methods I. 3 Units.
Application of statistical techniques with particular emphasis on problems in the biomedical sciences. Basic probability theory, random variables, and distribution functions. Point and interval estimation, regression, and correlation. Problems whose solution involves using packaged statistical programs. First part of year-long sequence. Offered as ANAT 431, BIOL 431, CRSP 431, PQHS 431 and MPHP 431.

MPHP 432. Statistical Methods II. 3 Units.
Methods of analysis of variance, regression and analysis of quantitative data. Emphasis on computer solution of problems drawn from the biomedical sciences. Design of experiments, power of tests, and adequacy of models. Offered as BIOL 432, PQHS 432, CRSP 432 and MPHP 432. Prereq: PQHS/EPBI 431 or equivalent.

MPHP 433. Community Interventions and Program Evaluation. 3 Units.
This course prepares students to design, conduct, and assess community-based health interventions and program evaluation. Topics include assessment of need, evaluator/stakeholder relationship, process vs. outcome-based objectives, data collection, assessment of program objective achievement based on process and impact, cost-benefit analyses, and preparing the evaluation report to stakeholders. Recommended preparation: PQHS/EPBI 490, PQHS/EPBI 431, or MPHP 405. Offered as PQHS 433 and MPHP 433. Prereq: MPHP 411.

MPHP 439. Public Health Management and Policy. 3 Units.
This course is designed to introduce students to the basics of health policy-making and includes a background on the basic structure and components of the US Health Care System (such as organization, delivery and financing). It will also cover introductory concepts in public health management, including the role of the manager, organizational design and control, and accountability. We will address relevant legal, political and ethical issues using case examples. At the end of the course, students will understand how health policy is developed and implemented in various contexts, and the challenges facing system-wide efforts at reform. This is a required course for the MPH degree. Grades will be based on a series of assignments. Prereq: Enrollment limited to MPH students (Plan A or Plan B) and EPBI Students or instructor consent.

MPHP 450. Clinical Trials and Intervention Studies. 3 Units.
Issues in the design, organization, and operation of randomized, controlled clinical trials and intervention studies. Emphasis on long-term multicenter trials. Topics include legal and ethical issues in the design; application of concepts of controls, masking, and randomization; steps required for quality data collection; monitoring for evidence of adverse or beneficial treatment effects; elements of organizational structure; sample size calculations and data analysis procedures; and common mistakes. Recommended preparation: PQHS/EPBI 431 or consent of instructor. Offered as PQHS 450 and MPHP 450.

MPHP 451. A Data-Driven Introduction to Genomics and Human Health. 3 Units.
This course introduces the foundational concepts of genomics and genetic epidemiology through four key principles: 1) Teaching students how to query relational databases using Structure Query Language (SQL); 2) Exposing students to the most current data used in genomics and bioinformatics research, providing a quantitative understanding of biological concepts; 3) Integrating newly learned concepts with prior ones to discover new relationships among biological concepts; and 4) providing historical context to how and why data were generated and stored in the way they were, and how this gave rise to modern concepts in genomics. Offered as PQHS 451, GENE 451, and MPHP 451.

MPHP 456. Health Policy and Management Decisions. 3 Units.
This seminar course combines broad health care policy issue analysis with study of the implications for specific management decisions in organizations. This course is intended as an applied, practical course where the policy context is made relevant to the individual manager. Offered as HSMC 456 and MPHP 456.

MPHP 464. Obesity and Cancer: Views from Molecules to Health Policy. 3 Units.
This course will provide an overview of the components of energy balance (diet, physical activity, resting metabolic rate, dietary induced thermogenesis) and obesity, a consequence of long term positive energy balance, and various types of cancer. Following an overview of energy balance and epidemiological evidence for the obesity epidemic, the course will proceed with an introduction to the cellular and molecular biology of energy metabolism. Then, emerging research on biologically plausible connections and epidemiological associations between obesity and various types of cancer (e.g., colon, breast) will be presented. Finally, interventions targeted at decreasing obesity and improving quality of life in cancer patients will be discussed. The course will be cooperatively-taught by a transdisciplinary team of scientists engaged in research in energy balance and/or cancer. Didactic lectures will be combined with classroom discussion of readings. The paper assignment will involve application of course principles, lectures and readings. Offered as PQHS 464 and MPHP 464.

MPHP 466. Promoting Health Across Boundaries. 3 Units.
This course examines the concepts of health and boundary spanning and how the synergy of the two can produce new, effective approaches to promoting health. Students will explore and analyze examples of individuals and organizations boundary spanning for health to identify practice features affecting health, compare and contrast practices and approaches, and evaluate features and context that promote or inhibit boundary spanning and promoting health. Offered as MPHP 466, PQHS 466, SOCI 466, NURS 466 and BETH 466. Prereq: Graduate student status or instructor consent.
MPHP 467. Comparative and Cost Effectiveness Research. 1 Unit.
Comparative effectiveness research is a cornerstone of healthcare reform. It holds the promise of improved health outcomes and cost containment. This course is presented in a convenient 5-day intensive format in June. There are reading assignments due prior to the 1st session. Module A, Days 1-2: Overview of comparative effectiveness research (CER) from a wide array of perspectives: individual provider, institution, insurer, patient, government, and society. Legal, ethical and social issues, as well as implications for population and public health, including health disparities will also be a component. Module B, Day 3: Introduction to the various methods, and their strengths, weaknesses and limitations. How to read and understand CER papers. Module C, Days 4-5: Cost-Effectiveness Analysis. This will cover costing, cost analysis, clinical decision analysis, quality of life and cost-effectiveness analysis for comparing alternative health care strategies. Trial version of TreeAge software will be used to create and analyze a simple cost-effectiveness model. The full 3-credit course is for taking all 3 modules. Modules A or C can be taken alone for 1 credit. Modules A and B or Modules B and C can be taken together for a total of 2 credits. Module B cannot be taken alone. If taking for 2 or 3 credits, some combination of term paper, project and/or exam will be due 30 days later. Offered as PQHS 467 and MPHP 467.

MPHP 468. The Continual Improvement of Healthcare: An Interdisciplinary Course. 3 Units.
This course prepares students to be members of interprofessional teams to engage in the continual improvement in health care. The focus is on working together for the benefit of patients and communities to enhance quality and safety. Offered as PQHS 468, MPHP 468, and NURS 468.

MPHP 475. Management of Disasters Due to Nature, War, or Terror. 3 Units.
The purpose of this course is to make participants aware of the special needs of children and families in disaster situations and understand public health approaches to address these needs. The learning objectives for this course are: 1) Identify the most important problems and priorities for children in disaster situations, 2) Identify the organizations most frequently involved in providing assistance in disaster situations and define their roles and strengths, 3) Describe the reasons why children are among the most vulnerable in disaster events, 4) Conduct emergency nutritional assessments for children, 5) Develop health profiles on displaced children and plan interventions based on results, 6) Define common psychosocial issues of children and the means to address them, 7) List basic points of international law including the Geneva Convention that relate to all persons involved in disaster situations, 8) List important security issues, 9) Appreciate ethical issues involved in disaster situations and employ skills of cross cultural communication, 10) Recognize and respond to special issues for children involved in biological and chemical terrorist attacks.

MPHP 477. Internship at Health-Related Government Agencies. 3 Units.
This independent study course will incorporate a one-semester-long internship at health-related government agencies (Ohio Department of Health, Ohio Department of Job and Family Services, or Cleveland City Health Department). The choice of the agency will depend on the student's academic interests and research goals. The objective is to develop a level of familiarity with the organizational and operational aspects of such agencies, and to gain an understanding of agencies' and bureaus' interactions with the legislative body, as well as the processes of developing, implementing, managing, and monitoring health initiative. The intern and the liaison persons at the agencies will be responsible for planning structured encounters of interns with key administrators and policy makers, and to select a research project, based on the intern's research interests and the agencies' research priorities. Interns will be required to submit a draft of the report to the instructor at the end of the semester. The approved, final report will be submitted to the agency. The project will be evaluated for its methodological soundness and rigor. Students will be required to be at the agency one day a week. Recommended preparation: PQHS/EPBI 515.

MPHP 482. Qualitative and Mixed Methods in Public Health. 3 Units.
Understanding complex public health issues requires both qualitative and quantitative inquiry. The exploration of the perceptions and experiences of people is as essential as analyzing the relationships among variables. Often, the integration of the two methods is required in order to effectively address the significant health issues faced by today's society. It is the purpose of this course to facilitate a meaningful and substantive learning process around engaging in, and critically analyzing, qualitative and mixed methods research in public health. This includes gaining first-hand experience in research design and collecting, managing, analyzing, and interpreting data for the purposes of making data-driven program and policy recommendations. In addition, students will have the opportunity to engage with local professionals engaged in qualitative and mixed methods research.

MPHP 483. Introduction to Epidemiology for Public Health Practice. 3 Units.
This course is designed to introduce the basic principles and methods of epidemiology. Epidemiology has been referred to as the basic science for public health. Application of epidemiologic principles is critical to disease prevention, as well as in the development and evaluation of public policy. The course will emphasize basic methods (study design, measures of disease occurrence, measures of association, and causality) necessary for epidemiologic research. It is intended for students who have a basic understanding of the principals of human disease as well as statistics. Prereq: Must be an MPHP Plan A or MPHP Plan B, or EPBI student in order to enroll in the course.
MPHP 484. Global Health Epidemiology. 1 - 3 Units.
This course provides a rigorous problem-centered training in the epidemiology, prevention, treatment, and control of infectious diseases and, more generally, global health. This is an advanced epidemiology that embraces an active learning environment. Students are expected to invest time out of the classroom reading and working with classmates. Classes will be conducted with discussions, debates, group projects, and group presentations. By taking this course, students will develop a framework for interpreting, assessing, and performing epidemiologic research on issues of global importance. The course will be divided into three modules: 1) Global Health Epidemiology 2) Helminth Epidemiology, and 3) Epidemiology of Disease Elimination. Each module is worth 1 credit hour and may be taken separately. Each module will have a separate project and/or exam. The final exam time will be used for group presentations and panel discussion. Active class participation is required through discussions, case studies, and group projects. Offered as PQHS 484, INTH 484, and MPHP 484.

MPHP 485. Adolescent Development. 3 Units.
Adolescent Development can be viewed as the overriding framework for approaching disease prevention and health promotion for this age group. This course will review the developmental tasks of adolescence and identify the impact of adolescent development on youth risk behaviors. It will build a conceptual and theoretical framework through which to address and change adolescent behavior to promote health.

MPHP 490. Epidemiology: Introduction to Theory and Methods. 3 Units.
This course provides an introduction to the principles of epidemiology covering the basic methods necessary for population and clinic-based research. Students will be introduced to epidemiologic study designs, measures of disease occurrence, measures of risk estimation, and casual inference (bias, confounding, and interaction) with application of these principles to specific fields of epidemiology. Classes will be a combination of lectures, discussion, and in-class exercises. It is intended for students who have a basic understanding of the principals of human disease and statistics. Offered as PQHS 490 and MPHP 490. Prereq or Coreq: PQHS/EPBI 431 or Requisites Not Met permission.

MPHP 499. Independent Study. 1 - 18 Units.

MPHP 510. Health Disparities. 3 Units.
This course aims to provide theoretical and application tools for students from many disciplinary backgrounds to conduct research and develop interventions to reduce health disparities. The course will be situated contextually within the historical record of the United States, reviewing social, political, economic, cultural, legal, and ethical theories related to disparities in general, with a central focus on health disparities. Several frameworks regarding health disparities will be used for investigating and discussing the empirical evidence on disparities among other subgroups (e.g., the poor, women, uninsured, disabled, and non-English speaking populations) will also be included and discussed. Students will be expected to develop a research proposal (observational, clinical, and/or intervention) rooted in their disciplinary background that will incorporate materials from the various perspectives presented throughout the course, with the objective of developing and reinforcing a more comprehensive approach to current practices within their fields. Offered as CRSP 510, PQHS 510, MPHP 510, NURS 510, and SASS 510.

MPHP 532. Health Care Information Systems. 3 Units.
This course covers concepts, techniques and technologies for providing information systems to enhance the effectiveness and efficiency of health care organizations. Offered as HSMC 432 and MPHP 532.

MPHP 540. Operational Aspects of Global Health and Emergency Response. 3 Units.
Among professional in the medical field and the field of public health, there is a gap in knowledge, structure and research in best practices surrounding emergency response. This gap results from the limited number of training programs in the United States that focus on this very specialized field and the limited number of academic partnerships with international non-governmental organizations (NGOs). This course helps remedy this gap by introducing public health students and international emergency medicine fellows to the overall structure and operations of international humanitarian coordination systems, types of emergency response, morbidity and mortality associated with various emergencies, and the actors and institutions involved. The course highlights, through reading, workshops, and examples, the real world issues that must be faced and overcome in the field during emergency response operations.

MPHP 650. Public Health Practicum. 1 - 3 Units.
The Public Health Practicum is an integral component of the MPH curriculum, allowing students to apply, develop, and refine their conceptual knowledge and skills as part of a planned, supervised, and evaluated community-based experience. The Practicum is designed to move students beyond the walls of academia, to understand the political, economic, social, and organizational contexts within which public health activities are conducted. To complete the Practicum, students must complete three credits of MPHP 650, dedicating at least 120 hours to a substantial public health experience, and attend Community Health Research and Practice (CHRP) group meetings. Prereq: Complete at least 9 credit hours in the MPH program and be in good academic standing.

MPHP 652. Public Health Capstone Experience. 1 - 9 Units.
Public health field practicum, involving a placement at a community-based field site, and a Master’s essay. The field placement will provide students with the opportunity to apply the knowledge and skills acquired through their Master of Public Health academic program to a problem involving the health of the community. Students will learn to communicate with target groups in an effective manner; to identify ethical, social, and cultural issues relating to public health policies, research, and interventions; to identify the process by which decisions are made within the agency or organization; and to identify and coordinate use of resources at the placement site. The Master’s essay represents the culminating experience required for the degree program and may take the form of a research thesis, an evaluation study, or an intervention study. Each student is required to formally present the experience and research findings. In any semester in which a student is registered for MPHP 652 credit, it is required that the student attend the Community Health Research and Practice (CHRP) group at a minimum of two sessions per 3 credits. CHRP is held once a week for approximately an hour and a half for the duration of fall, spring, and summer semesters. MPHP 652 credit is available only to Master of Public Health students.
MPHP 655. Dual Degree Field Practicum II. 3 Units.
This course is designed to be taken by MSSA/MPH joint degree students as the second field period of their master's program. It consists of a field practicum and participation in professional development opportunities. The Field Practicum is an integral component of the MSASS and MPH curriculums, allowing students to apply, develop, and refine their conceptual knowledge and skills as part of a planned, mentored, and evaluated community-based experience. The Practicum is designed to move students beyond the walls of academia, to understand the political, economic, social, and organizational contexts within which social work and public health activities are conducted. These collective experiences provide students with a forum to develop skills, integrate and operationalize the values and ethics inherent in professional practice, and confront social injustice as self-reflective, competent developing practitioners. (EPAAS Program Objective M6 and EPAAS Content Area 4.7) The overall goal of this course is to provide graduate level MSSA/MPH joint degree students with field related opportunities to continue to develop foundation level competencies in the eight MSSAS abilities by helping students apply knowledge of social work and public health theory, skills, values and ethics acquired in the classroom in an agency setting. Offered as MPHP 655 and SASS 655.

MPHP 656. Dual Degree Field Capstone III. 3 Units.
The Public Health Capstone Project is an integral component of the MPH curriculum, allowing students to apply, develop, and refine their conceptual knowledge and skills as part of a planned, mentored, and evaluated public health scholarly project. This course is designed to be taken by advanced level students. It consists of a 288 hour field based Capstone experience and participation in 12 hours of professional development opportunities. The overall goal of this course is designed to move students beyond the walls and constraints of the classroom, to understand the political, economic, social, and organizational contexts within which public health and social work activities are conducted. It is also designed to provide graduate level dual degree students with field related opportunities to begin to develop advanced level competencies in the eight abilities by helping students apply knowledge of social work theory, skills, values and ethics acquired in the classroom in an agency setting. These collective experiences provide students with a forum to develop skills, integrate and operationalize the values and ethics inherent in professional practice, and confront social injustice as self-reflective, competent developing practitioners. (EPAAS Program Objective M6 and EPAAS Content Area 4.7) The overall goal of this course is to provide graduate level MSSA/MPH joint degree students with field related opportunities to continue to develop foundation level competencies in the eight MSSAS abilities by helping students apply knowledge of social work and public health theory, skills, values and ethics acquired in the classroom in an agency setting. Offered as MPHP 655 and SASS 655.

MPHP 657. Dual Degree Field Capstone IV. 3 Units.
The Public Health Capstone Project is an integral component of the MPH curriculum, allowing students to apply, develop, and refine their conceptual knowledge and skills as part of a planned, mentored, and evaluated public health scholarly project. This course is designed to be taken by advanced level students. It consists of a 288 hour field based Capstone experience and participation in 12 hours of professional development opportunities. The overall goal of this course is designed to move students beyond the walls and constraints of the classroom, to understand the political, economic, social, and organizational contexts within which public health and social work activities are conducted. It is also designed to provide graduate level dual degree students with field related opportunities to begin to develop advanced level competencies in the eight abilities by helping students apply knowledge of social work theory, skills, values and ethics acquired in the classroom in an agency setting. Offered as MPHP 657 and SASS 657.

PQHS Courses

PQHS 411. Introduction to Health Behavior. 3 Units.
Using a biopsychosocial perspective, an overview of the measurement and modeling of behavioral, social, psychological, and environmental factors related to disease prevention, disease management, and health promotion is provided. Offered as PQHS 411 and MPHP 411. Prereq: Enrollment limited to MPH students (Plan A or Plan B) and EPBI students or consent.

PQHS 414. Data Management and Statistical Programming. 3 Units.
This is an online course that offers no in-person meetings. This course serves as a general introduction to the use of computer systems in epidemiologic investigations and biostatistical applications. Students will develop a conceptual understanding of data types, basic data structures, relational database systems and data normalization, data warehousing, control statements, and programming logic. Further, students will develop basic scripting skills and will learn to read in, manipulate, and perform basic descriptive analyses on research data using the SAS programming language. Primary emphasis in this course is on developing the knowledge and familiarity required to work with data in a statistical programming context. Basic familiarity with statistics is beneficial, as this course does not teach inferential statistical analysis in detail, but it is not vital to learning the course material.

PQHS 415. Statistical Computing and Data Analytics. 3 Units.
Statistical computing is an essential part of modern statistical training. This course emphasizes on statistical and data analytic problem solving skills, covers elements of statistical computing, and special topics in modern data analytics. This includes numerical methods for statistics, stochastic simulation, symbolic and graphical computation, plus special topics in resampling methods, EM algorithms, Gibbs Sampling/MCMC, projection pursuit, Laplace approximation, parallel computing, and selected methods for big and high dimensional data. The course will use R/Splus predominantly. However, interface of R with another high level programming language such as C, C++, Fortran, JAVA or Python will be essential for Big Data and intensive computation. Some Matlab, Mathematica, and graphviz will be used for symbolic and graphical computation. Prerequisite: Knowledge in statistics, equivalent to that in either STAT 325/425, or STAT 345/445, or PQHS/EPBI 481, or PQHS/EPBI 431, or by permission. Experience with at least one programing language is required: R/Splus, Matlab, C/C++, Fortran, JAVA, or Python. Prereq: STAT 312, STAT 325, STAT 425, STAT 345, STAT 445, PQHS/EPBI 431 or PQHS/EPBI 481.

PQHS 416. Introduction to Computing in Biomedical Health Informatics. 3 Units.
The goals of this course are to provide students with a survey of the computational technique that underpin biomedical and health informatics. The course will cover methods in computational system development, including biomedical terminologies, ontologies, natural language processing (NLP), logic, Electronic Health Record (EHR) system architecture as well as applications, and topics related to health information systems. This course is intended for students interested in learning the computational foundations of biomedical and health informatics. Students should have at least a bachelor of science level educational background and an understanding of the fields of biomedical and clinical/translational.
PQHS 431. Statistical Methods I. 3 Units.
Application of statistical techniques with particular emphasis on problems in the biomedical sciences. Basic probability theory, random variables, and distribution functions. Point and interval estimation, regression, and correlation. Problems whose solution involves using packaged statistical programs. First part of year-long sequence. Offered as ANAT 431, BIOL 431, CRSP 431, PQHS 431 and MPHP 431.

PQHS 432. Statistical Methods II. 3 Units.
Methods of analysis of variance, regression and analysis of quantitative data. Emphasis on computer solution of problems drawn from the biomedical sciences. Design of experiments, power of tests, and adequacy of models. Offered as BIOL 432, PQHS 432, CRSP 432 and MPHP 432. Prereq: PQHS/EPBI 431 or equivalent.

PQHS 433. Community Interventions and Program Evaluation. 3 Units.
This course prepares students to design, conduct, and assess community-based health interventions and program evaluation. Topics include assessment of need, evaluator/stakeholder relationship, process vs. outcome-based objectives, data collection, assessment of program objective achievement based on process and impact, cost-benefit analyses, and preparing the evaluation report to stakeholders. Recommended preparation: PQHS/EPBI 490, PQHS/EPBI 431, or MPHP 405. Offered as PQHS 433 and MPHP 433.

PQHS 435. Survival Data Analysis. 3 Units.
Basic concepts of survival analysis including hazard function, survival function, types of censoring; non-parametric models; extended Cox models: time dependent variables, piece-wise Cox model, etc.; sample size requirements for survival studies. Prereq: PQHS/EPBI 432.

PQHS 440. Introduction to Population Health. 3 Units.
Introduces graduate students to the multiple determinants of health including the social, economic and physical environment, health services, individual behavior, genetics and their interactions. It aims to provide students with the broad understanding of the research development and design for studying population health, the prevention and intervention strategies for improving population health and the disparities that exist in morbidity, mortality, functional and quality of life. Format is primarily group discussion around current readings in the field; significant reading is required.

PQHS 444. Communicating in Population Health Science Research. 1 Unit.
Doctoral seminar on writing journal articles to report original research, and preparing and making oral and poster presentations for the required first-year research project in the PhD program in the Department of Epidemiology and Biostatistics. While this course provides a nucleus for this endeavor, students work intensively under the supervision of their research mentors, who guide all stages of the work including providing rigorous editorial support. Seminar sessions are devoted to rigorous peer critiques of every stage of the projects and to in-depth discussions of assigned readings. Recommended preparation: PhD students in the Department of Biostatistics and Epidemiology.
Non-PhD EPBI students permitted if space available. Fluency in English writing (e.g., in accord with the Harbrace College Handbook). Prereq: PQHS/EPBI 431 and PQHS/EPBI 490. Coreq: PQHS/EPBI 432.

PQHS 445. Research Ethics in Population Health Sciences. 0 Unit.
This zero credit course is a required add-on for PhD students in EPBI. Students will register and fulfill all requirements for IBMS 500 "Being a Professional Scientist". The purpose of PQHS 445 is to address specialized population health topics not covered by IBMS 500, including international research, human genomics, and/or big data/electronic medical records. There will be no meetings/lectures for this course. Students will complete a short written assignment due at the end of the semester.

PQHS 450. Clinical Trials and Intervention Studies. 3 Units.
Issues in the design, organization, and operation of randomized, controlled clinical trials and intervention studies. Emphasis on long-term multicenter trials. Topics include legal and ethical issues in the design; application of concepts of controls, masking, and randomization; steps required for quality data collection; monitoring for evidence of adverse or beneficial treatment effects; elements of organizational structure; sample size calculations and data analysis procedures; and common mistakes. Recommended preparation: PQHS/EPBI 431 or consent of instructor. Offered as PQHS 450 and MPHP 450.

PQHS 451. A Data-Driven Introduction to Genomics and Human Health. 3 Units.
This course introduces the foundational concepts of genomics and genetic epidemiology through four key principles: 1) Teaching students how to query relational databases using Structure Query Language (SQL); 2) Exposing students to the most current data used in genomics and bioinformatics research, providing a quantitative understanding of biological concepts; 3) Integrating newly learned concepts with prior ones to discover new relationships among biological concepts; and 4) providing historical context to how and why data were generated and stored in the way they were, and how this gave rise to modern concepts in genomics. Offered as PQHS 451, GENE 451, and MPHP 451. Prereq: PQHS/EPBI 431 and PQHS/EPBI 490 or Requisites Not Met permission.

PQHS 452. Statistical Methods for Genetic Epidemiology. 3 Units.
Analytic methods for evaluating the role of genetic factors in human disease, and their interactions with environmental factors. Statistical methods for the estimation of genetic parameters and testing of genetic hypotheses, emphasizing maximum likelihood methods. Models to be considered will include such components as genetic loci of major effect, polygenic inheritance, and environmental, cultural and developmental effects. Topics will include familial aggregation, segregation and linkage analysis, ascertainment, linkage disequilibrium, and disease marker association studies. Recommended preparation: PQHS/EPBI 431 and PQHS/EPBI 451.
PQHS 453. Categorical Data Analysis. 3 Units.
Categorical data are often encountered in many disciplines including in the fields of clinical and biological sciences. Analysis methods for analyzing categorical data are different from the analysis methods for continuous data. There is a rich a collection of methods for categorical data analysis. The elegant "odds ratio" interpretation associated with categorical data is a unique one. This online course will cover cross-sectional categorical data analysis theories and methods. From this course students will learn standard categorical data analysis methods and its applications to the biomedical and clinical studies. This particular course will focus mostly on statistical methods for categorical data analysis arising from various fields of studies including clinical studies; those who take it will come from a wide variety of disciplines. The course will include video lectures, group discussion and brainstorming, homework, simulations, and collaborative projects on real and realistic problems in human health tied directly to the student's own professional interests. Focus will be given to logistic regression methods. Topics include (but not limited to) binary response, multi-category response, count response, model selection and evaluation, exact inference, Bayesian methods for categorical data, and supervised statistical learning methods. This course stresses how the core statistical principles, computing tools, and visualization strategies are used to address complex scientific aims powerfully and efficiently, and to communicate those findings effectively to researchers who may have little or no experience in these methods. Recommended preparation: Advanced undergraduate students, and graduate students in Biostatistics or other quantitative sciences with a background in statistical methods (at least one statistics course, equivalent to the PQHS/EPBI 431 course experience).

PQHS 457. Current Issues in Genetic Epidemiology: Design and Analysis of Sequencing Studies. 3 Units.
Statistical methods to deal with the opportunities and challenges in Genetic Epidemiology brought about by modern sequencing technology. Some computational issues that arise in the analysis of large sequence data sets will be discussed. The course includes hands-on experience in the analysis of large sequence data sets, in a collaborative setting. Prereq: PQHS/EPBI 451 and PQHS/EPBI 452.

PQHS 459. Longitudinal Data Analysis. 3 Units.
This course will cover statistical methods for the analysis of longitudinal data with an emphasis on application in biological and health research. Topics include exploratory data analysis, response feature analysis, growth curve models, mixed-effects models, generalized estimating equations, and missing data. Prereq: PQHS/EPBI 432.

PQHS 464. Obesity and Cancer: Views from Molecules to Health Policy. 3 Units.
This course will provide an overview of the components of energy balance (diet, physical activity, resting metabolic rate, dietary induced thermogenesis) and obesity, a consequence of long term positive energy balance, and various types of cancer. Following an overview of energy balance and epidemiological evidence for the obesity epidemic, the course will proceed with an introduction to the cellular and molecular biology of energy metabolism. Then, emerging research on biologically plausible connections and epidemiological associations between obesity and various types of cancer (e.g., colon, breast) will be presented. Finally, interventions targeted at decreasing obesity and improving quality of life in cancer patients will be discussed. The course will be cooperatively-taught by a transdisciplinary team of scientists engaged in research in energy balance and/or cancer. Didactic lectures will be combined with classroom discussion of readings. The paper assignment will involve application of course principles, lectures and readings. Offered as PQHS 464 and MPHP 464.

PQHS 465. Design and Measurement in Population Health Sciences. 3 Units.
This course focuses on common design and measurement approaches used in population health sciences research. This course covers the preliminary considerations used in selecting qualitative, quantitative and mixed methods research approaches including an understanding of different philosophical worldviews, strategies of inquiry and methods and procedures for each approach. The course also includes an introduction to survey design and related concepts of latent variables, factor analysis and reliability and validity. Students will develop an in-depth knowledge of these design and measurement approaches through readings, lectures, group discussions and written and oral project presentations. Prereq: PQHS/EPBI 440, PQHS/EPBI 431, PQHS/EPBI 490, PQHS/EPBI 432, PQHS/EPBI 460, PQHS/EPBI 444 and PQHS/EPBI 445.

PQHS 466. Promoting Health Across Boundaries. 3 Units.
This course examines the concepts of health and boundary spanning and how the synergy of the two can produce new, effective approaches to promoting health. Students will explore and analyze examples of individuals and organizations boundary spanning for health to identify practice features affecting health, compare and contrast practices and approaches, and evaluate features and context that promote or inhibit boundary spanning and promoting health. Offered as MPHP 466, PQHS 466, SOCI 466, NURS 466 and BETH 466. Prereq: Graduate student status or instructor consent.
PQHS 467. Comparative and Cost Effectiveness Research. 1 Unit.
Comparative effectiveness research is a cornerstone of healthcare reform. It holds the promise of improved health outcomes and cost containment. This course is presented in a convenient 5-day intensive format in June. There are reading assignments due prior to the 1st session. Module A, Days 1-2: Overview of comparative effectiveness research (CER) from a wide array of perspectives: individual provider, institution, insurer, patient, government, and society. Legal, ethical and social issues, as well as implications for population and public health, including health disparities will also be a component. Module B, Day 3: Introduction to the various methods, and their strengths, weaknesses and limitations. How to read and understand CER papers. Module C, Days 4-5: Cost-Effectiveness Analysis. This will cover costing, cost analysis, clinical decision analysis, quality of life and cost-effectiveness analysis for comparing alternative health care strategies. Trial version of TreeAge software will be used to create and analyze a simple cost-effectiveness model. The full 3-credit course is for taking all 3 modules. Modules A or C can be taken alone for 1 credit. Modules A and B or Modules B and C can be taken together for a total of 2 credits. Module B cannot be taken alone. If taking for 2 or 3 credits, some combination of term paper, project and/or exam will be due 30 days later. Offered as PQHS 467 and MPHP 467.

PQHS 468. The Continual Improvement of Healthcare: An Interdisciplinary Course. 3 Units.
This course prepares students to be members of interprofessional teams to engage in the continual improvement in health care. The focus is on working together for the benefit of patients and communities to enhance quality and safety. Offered as PQHS 468, MPHP 468, and NURS 468.

PQHS 471. Machine Learning & Data Mining. 3 Units.
Vast amount of data are being collected in medical and social research and in many industries. Such big data generate a demand for efficient and practical tools to analyze the data and to identify unknown patterns. We will cover a variety of statistical machine learning techniques (supervised learning) and data mining techniques (unsupervised learning), with data examples from biomedical and social research. Specifically, we will cover prediction model building and model selection (shrinkage, Lasso), classification (logistic regression, discriminant analysis, k-nearest neighbors), tree-based methods (bagging, random forests, boosting), support vector machines, association rules, clustering and hierarchical clustering. Basic techniques that are applicable to many of the areas, such as cross-validation, the bootstrap, dimensionality reduction, and splines, will be explained and used repeatedly. The field is fast evolving and new topics and techniques may be included when necessary. Prereq: PQHS/EPBI 431.

PQHS 472. Integrated Thinking in Population and Quantitative Health Sciences. 2 Units.
The determinants of common disease are multifactorial and may involve complex interactions among factors, both known and unknown. These risk factors span domains as diverse as social determinants to biochemical lesions. However, most studies of disease risk usually involve a single class of determinants, defined within a single academic discipline. The goal of this course is to teach students to recognize and define explicit and implicit assumptions about studies of disease and to understand how one may integrate different domains of knowledge to improve our understanding of disease etiology and ultimately prevention and treatment efforts. They will learn to understand assumptions built into conceptual models used to describe and predict disease risk. Prereqs: PQHS 431 and PQHS 440 and PQHS 490.

PQHS 480. Introduction to Mathematical Statistics. 3 Units.
An introduction to statistical inference at an intermediate mathematical level. The concepts of random variables and distributions, discrete and continuous, are reviewed. Topics covered include: expectations, variance, moments, the moment generating function; Bernoulli, binomial, hypergeometric, Poisson, negative binomial, normal, gamma and beta distribution; the central limit theorem; Bayes estimation, maximum likelihood estimators, unbiased estimators, sufficient statistics; sampling distributions (chi-square, t) confidence intervals, Fisher information; hypothesis testing, uniformly most powerful tests and multi-decision problems. Prereq: MATH 122, MATH 124 or MATH 126.

PQHS 481. Theoretical Statistics I. 3 Units.
Topics provide the background for statistical inference. Random variables; distribution and density functions; transformations, expectation. Common univariate distributions. Multiple random variables; joint, marginal and conditional distributions; hierarchical models, covariance. Distributions of sample quantities, distributions of sums of random variables, distributions of order statistics. Methods of statistical inference. Offered as STAT 345, STAT 445, and PQHS 481. Prereq: MATH 122 or MATH 223 or Coreq: PQHS/EPBI 431.

PQHS 482. Theoretical Statistics II. 3 Units.
Point estimation: maximum likelihood, moment estimators. Methods of evaluating estimators including mean squared error, consistency, "best" unbiased and sufficiency. Hypothesis testing; likelihood ratio and union-intersection tests. Properties of tests including power function, bias. Interval estimation by inversion of test statistics, use of pivotal quantities. Application to regression. Graduate students are responsible for mathematical derivations, and full proofs of principal theorems. Offered as STAT 346, STAT 446 and PQHS 482. Prereq: STAT 345 or STAT 445 or PQHS/EPBI 481.

PQHS 484. Global Health Epidemiology. 1 - 3 Units.
This course provides a rigorous problem-centered training in the epidemiology, prevention, treatment, and control of infectious diseases and, more generally, global health. This is an advanced epidemiology course that embraces an active learning environment. Students are expected to invest time out of the classroom reading and working with classmates. Classes will be conducted with discussions, debates, group projects, and group presentations. By taking this course, students will develop a framework for interpreting, assessing, and performing epidemiologic research on issues of global importance. The course will be divided into three modules:1) Global Health Epidemiology 2) Helminth Epidemiology, and 3) Epidemiology of Disease Elimination. Each module is worth 1 credit hour and may be taken separately. Each module will have a separate project and/or exam. The final exam time will be used for group presentations and panel discussion. Active class participation is required through discussions, case studies, and group projects. Offered as PQHS 484, INTH 484, and MPHP 484.

PQHS 490. Epidemiology: Introduction to Theory and Methods. 3 Units.
This course provides an introduction to the principles of epidemiology covering the basic methods necessary for population and clinic-based research. Students will be introduced to epidemiologic study designs, measures of disease occurrence, measures of risk estimation, and causal inference (bias, confounding, and interaction) with application of these principles to specific fields of epidemiology. Classes will be a combination of lectures, discussion, and in-class exercises. It is intended for students who have a basic understanding of the principals of human disease and statistics. Offered as PQHS 490 and MPHP 490. Prereq or Coreq: PQHS/EPBI 431 or Requisites Not Met permission.
PQHS 499. Independent Study. 1 - 18 Units.

PQHS 500. Design and Analysis of Observational Studies. 3 Units.
An observational study investigates treatments, policies or exposures and the effects that they cause, but it differs from an experiment because the investigator cannot control assignment. We introduce appropriate design, data collection and analysis methods for such studies, to help students design and interpret their own studies, and those of others in their field. Technical formalities are minimized, and the presentations will focus on the practical application of the ideas. A course project involves the completion of an observational study, and substantial use of the R statistical software. Topics include randomized experiments and how they differ from observational studies, planning and design for observational studies, adjustments for overt bias, sensitivity analysis, methods for detecting hidden bias, and focus on propensity score methods for selection bias adjustment, including multivariate matching, stratification, weighting and regression adjustments. Recommended preparation: a working knowledge of multiple regression, some familiarity with logistic regression, with some exposure to fitting regression models in R. Offered as CRSP 500 and PQHS 500.

PQHS 501. Research Seminar. 0 Unit.
This seminar series includes faculty and guest-lecturer presentations designed to introduce students to on-going research at the University and elsewhere. Seminars will emphasize the application of methods learned in class, as well as the introduction of new methods and tools useful in research.

PQHS 505. Seminar in Global Health Epidemiology. 0 Unit.
This seminar series examines a broad range of topics related to infectious disease research in international settings. Areas of interest are certain to include epidemiology, bioethics, medical anthropology, pathogenesis, drug resistance, vector biology, cell and molecular biology, vaccine development, diagnosis, and socio-cultural factors contributing to or compromising effective health care delivery in endemic countries. Speakers will include a diverse group of regional faculty and post-doctoral trainees, as well as visiting colleagues from around the world. Students will be asked to read a journal article written by the speaker and then discuss this article with the speaker after their seminar.

PQHS 510. Health Disparities. 3 Units.
This course aims to provide theoretical and application tools for students from many disciplinary backgrounds to conduct research and develop interventions to reduce health disparities. The course will be situated contextually within the historical record of the United States, reviewing social, political, economic, cultural, legal, and ethical theories related to disparities in general, with a central focus on health disparities. Several frameworks regarding health disparities will be used for investigating and discussing the empirical evidence on disparities among other subgroups (e.g., the poor, women, uninsured, disabled, and non-English speaking populations) will also be included and discussed. Students will be expected to develop a research proposal (observational, clinical, and/or intervention) rooted in their disciplinary background that will incorporate materials from the various perspectives presented throughout the course, with the objective of developing and reinforcing a more comprehensive approach to current practices within their fields. Offered as CRSP 510, PQHS 510, MPHP 510, NURS 510, and SASS 510.

PQHS 515. Secondary Analysis of Large Health Care Data Bases. 3 Units.
Development of skills in working with the large-scale secondary data bases generated for research, health care administration/billing, or other purposes. Students will become familiar with the content, strength, and limitations of several data bases; with the logistics of obtaining access to data bases; the strengths and limitations of routinely collected variables; basic techniques for preparing and analyzing secondary data bases and how to apply the techniques to initiate and complete empirical analysis. Recommended preparation: PQHS/EPBI 414 or equivalent; PQHS/EPBI 431 or PQHS/EPBI 460 and PQHS/EPBI 461 (for HSR students).

PQHS 550. Meta-Analysis & Evidence Synthesis. 2 - 3 Units.
Systematic reviews use reproducible methods to systematically search the literature and synthesize the results of a specific topic area. Meta-analysis is a specific analytic technique used to pool results of individual studies. Systematic reviews are useful ways to establish one’s knowledge in a particular field of study, and can highlight gaps in research which can be pursued in future work. They can also inform the background of a grant. This course is designed to introduce students to the methods of conducting a high quality systematic review and meta-analysis of intervention studies. We will cover the design, methods, and analytic techniques involved in systematic reviews. These concepts will prepare students to conduct their own systematic review or evaluate the systematic reviews of others. Sessions will be lectures, labs, and presentations. Topics include developing a search strategy, abstracting key data, synthesizing the results qualitatively, meta-analytic techniques, grading the quality of studies, grading the strength of the evidence, and manuscript preparation specific to systematic reviews and meta-analysis of intervention studies. Caveat: If you would like to conduct a systematic review of your own that can be published after the course ends, you will need to have several other class members or colleagues willing to work with you on the project. The systematic review should be on a topic where you expect no more than 20-30 included studies in order to be able to complete the review soon after the course ends. Offered as CRSP 550 and PQHS 550. Prereq: CRSP 401, PQHS/EPBI 431, MPHP 405, NURS 532 or Requisites Not Met permission.

PQHS 601. Master’s Project Research. 1 - 18 Units.

PQHS 602. Practicum. 1 - 3 Units.
This course focuses on the skills needed to become an effective statistical consultant. The course objectives are: to learn the role of the consulting statistician and the accompanying responsibilities and ethical considerations, to develop the ability to interact with clients and elicit the information required to provide consulting expertise, to learn general strategies for approaching consulting problems that can be applied to a wide range of problems in medical areas, and to develop expertise in areas needed by the consulting biostatistician. These include database architecture, data quality control, record keeping for potential audits, statistical techniques, and report generation.

PQHS 651. Thesis M.S.. 1 - 18 Units.

PQHS 701. Dissertation Ph.D.. 1 - 9 Units.
Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.

School of Medicine Faculty
Case Western Reserve University
Full-Time Faculty
Anatomy
Thomas Brantley, MD; Assistant Professor
Darin Croft, PhD; Professor
Barbara Freeman, PhD; Assistant Professor
Michael Katz, MD PhD; Associate Professor
Hue-Lee Kaung, PhD; Associate Professor
Joseph Miller, PhD; Associate Professor
Scott Simpson, PhD; Professor
Bryan Singelyn, MS; Instructor
Susanne Wish-Baratz, PhD; Associate Professor
Biochemistry
Amiya Banerjee, PhD; Professor
Paul Carey, PhD; Professor
Thomas Gerken, PhD; Professor
Hung-Ying Kao, PhD; Professor
William Merrick, PhD; Professor
Nelson Phillips, PhD; Associate Professor
Marianne Pusztai-Carey, PhD; Associate Professor
David Samols, PhD; Professor
Menachem Shoham, PhD; Associate Professor
Martin Snider, PhD; Associate Professor
Focco Van den Akker, PhD; Associate Professor
Susan Wang, PhD; Associate Professor
Vivien Yee, PhD; Associate Professor
Bioethics
Eileen Anderson-Fye, EdD; Associate Professor
Mark Aulisio, PhD; Professor
Nicole Deming, JD; Assistant Professor
Monica Gerrek, PhD; Assistant Professor
Aaron Goldenberg, PhD; Associate Professor
Insoo Hyun, PhD; Professor
Sana Loue, PhD; Professor
Patricia Marshall, PhD; Professor
Marsha Michie, PhD; Assistant Professor
Suzanne Rivera, PhD; Associate Professor
Stuart Youngner, MD; Professor
Biomedical Engineering
A. Ajiboye, PhD; Assistant Professor
Eben Alsberg, PhD; Professor
James Anderson, MD PhD; Professor
James Basilion, PhD; Professor
Jeffrey Capadona, PhD; Associate Professor
Colin Drummond, PhD MBA; Professor
Dominique Durand, PhD; Professor
Steven Eppell, PhD; Associate Professor
Miklos Gratzi, MA/MS; Associate Professor
Kenneth Gustafson, PhD; Associate Professor
Efstathios Karathanasis, PhD; Associate Professor
Robert Kirsch, PhD; Professor
Zheng-Rong Lu, PhD; Professor
Anant Madabhushi, PhD; Professor
Cameron McIntyre, PhD; Professor
P. Peckham, PhD; Professor
Andrew Rollins, PhD; Professor
Gerald Saidel, PhD; Professor
Nicole Seiberlich, PhD; Associate Professor
Anirban Sen, PhD; Professor
Pallavi Tiwari, PhD; Assistant Professor
Ronald Triolo, PhD; Professor
Dustin Tyler, PhD; Professor
Satish Viswanath, PhD; Assistant Professor
Horst von Recum, PhD; Professor
David Wilson, PhD; Professor
Xin Yu, ScD; Professor
Division of General Medical Sciences
Donald Anthony, MD; Associate Professor
Jill Barnholtz-Sloan, PhD; Professor
Kimberly Bell, PhD; Assistant Professor
Jeffery Collier, PhD; Professor
David Danielpour, PhD; Professor
Susan Flocke, PhD; Professor
Jonatha Gott, PhD; Professor
Kishore Guda, PhD; Associate Professor
Heidi Gullett, MD; Assistant Professor
Karim Herrmann, MD PhD; Associate Professor
Eckhard Jankowsky, PhD; Professor
Li Li, MD, PhD; Professor
Donny Licatalosi, PhD; Assistant Professor
Cynthia Lord, MS; Associate Professor
Ellen Luebbers, MD; Assistant Professor
Craig Myers, MS; Assistant Professor
Klara Papp, PhD; Professor
Theodore Parran Jr., MD; Associate Professor
Clara Pelfrey, PhD; Associate Professor
Hilary Petersen, MS; Assistant Professor
John Pink, PhD; Assistant Professor
Johnnie Rose, MD PhD; Assistant Professor
Nicole Rudert, MS; Assistant Professor
William Schiemann, PhD; Professor
Casey Schroeder, PhD; Assistant Professor
Kurt Stange, MD PhD; Professor
Vinay Varadan, PhD; Assistant Professor
Martina Veigl, PhD; Associate Professor
Monica Webb Hooper, PhD; Professor
Jo Ann Wise, PhD; Professor
Genetics and Genome Sciences
Drew Adams, PhD; Assistant Professor
Kristian Baker, PhD; Associate Professor
David Buchner, PhD; Assistant Professor
Ronald Conlon, PhD; Associate Professor
Charis Eng, MD PhD; Professor
Carlos Gallego, MD; Assistant Professor
Ann Harris, PhD; Professor
Peter Harte, PhD; Professor
Maria Hatzoglou, PhD; Professor
Fulai Jin, PhD; Assistant Professor
Ahmad Khalil, PhD; Assistant Professor
Thomas La Framboise, PhD; Associate Professor
Shih-Hsing Leir, PhD; Assistant Professor
Yan Li, PhD; Assistant Professor
Hua Lou, PhD; Associate Professor
Guangbin Luo, PhD; Associate Professor
Anne Matthews, PhD; Professor
Helen Miranda, PhD; Assistant Professor
Alexander Miron, PhD; Associate Professor
Anna Mitchell, MD PhD; Associate Professor
Kurt Runge, PhD; Associate Professor
Helen Salz, PhD; Professor
Peter Scacheri, PhD; Professor
Ashleigh Schaffer, PhD; Assistant Professor
Paul Tesar, PhD; Associate Professor
Zhenghe Wang, PhD; Professor
Anthony Wynshaw-Boris, MD PhD; Professor
Arthur Zinn, MD PhD; Associate Professor
Molecular Biology & Microbiology
Susann Brady-Kalnay, PhD; Professor
Cathleen Carlin, PhD; Professor
Piet de Boer, PhD; Professor
Jonathan Karn, PhD; Professor
Alan Levine, PhD; Professor
Immaculate Nankya, MBBS PhD; Instructor
Tomoaki Ogino, PhD; Assistant Professor
Arne Rietsch, PhD; Associate Professor
Jacek Skowronski, MD PhD; Professor
Saba Valadkhan, MD PhD; Assistant Professor
Neurosciences
Heather Broihier, PhD; Associate Professor
Evan Deneris, PhD; Professor
David Friel, PhD; Associate Professor
David Katz, PhD; Professor
Lin Mei, PhD; Professor
Polyxeni Philippidou, PhD; Assistant Professor
Jerry Silver, PhD; Professor
Benjamin Strowbridge, PhD; Professor
Bruce Trapp, PhD; Professor
Timothy Kern, PhD; Professor
Philip Kiser, PhD; Assistant Professor
Paul MacDonald, PhD; Professor
Rachel Mann, PhD; Instructor
Jason Mears, PhD; Assistant Professor
Masaru Miyagi, PhD; Associate Professor
Monica Montano, PhD; Professor
Marvin Nieman, PhD; Associate Professor
Krzysztof Palczewski, PhD; Professor
Phoebe Stewart, PhD; Professor
Derek Taylor, PhD; Associate Professor
Johannes von Lintig, PhD; Associate Professor
Amy Wilson-Delfosse, PhD; Professor
You-Wei Zhang, PhD; Associate Professor

Physiology & Biophysics
Walter Boron, MD PhD; Professor
Matthias Buck, PhD; Professor
Sudha Chakrapani, PhD; Associate Professor
Michael Decker, PhD; Associate Professor
George Dubyak, PhD; Professor
Joan Fox, PhD; Professor
Jeffrey Garvin, PhD; Professor
Stephen Jones, PhD; Professor
Joseph LaManna, PhD; Professor
Fraser Moss, PhD; Instructor
Rossana Occhipinti, PhD; Instructor
Xin Qi, PhD; Associate Professor
Rajesh Ramachandran, PhD; Associate Professor
Andrea Romani, MD PhD; Associate Professor
William Schilling, PhD; Professor
Corey Smith, PhD; Professor
Julian Stelzer, PhD; Associate Professor
Witold Surewicz, PhD; Professor
Kui Xu, MD; Instructor

Population & Quantitative Health Sciences
Jeffrey Albert, PhD; Professor
Paul Bakaki, PhD MBBCH; Instructor
Elaine Borawski, PhD; Professor
Farren Briggs, PhD; Assistant Professor
William Bush, PhD; Associate Professor
Mark Cameron, PhD; Assistant Professor
Jessica Cooke Bailey, PhD; Assistant Professor
Dana Crawford, PhD; Associate Professor
Sara Debanne, PhD; Professor
Scott Frank, MD; Associate Professor
Darcy Freedman, MPH PhD; Associate Professor
Pingfu Fu, PhD; Associate Professor
Jonathan Haines, PhD; Professor
Robert Igo, PhD; Assistant Professor
Sudha Iyengar, PhD; Professor
Siran Koroukian, PhD; Associate Professor
Chun Li, PhD; Associate Professor
Ming Li, PhD; Associate Professor
Nora Nock, PhD; Associate Professor
Satya Sahoo, PhD; Associate Professor
Abdus Sattar, PhD; Associate Professor
Nicholas Schiltz, PhD; Instructor
Mark Schluchter, PhD; Professor
Frederick Schumacher, PhD MPH; Associate Professor
Ethan Singer, PhD; Associate Professor
Lynn Singer, PhD; Professor
James Spilsbury, PhD; Associate Professor
Catherine Stein, PhD; Associate Professor
Jiayang Sun, PhD; Professor
Daniel Tisch, PhD; Associate Professor
Erika Trapl, PhD; Associate Professor
Scott Williams, PhD; Professor
Rong Xu, PhD; Associate Professor
Xiaofeng Zhu, PhD; Professor

University Hospitals
Full-Time Faculty
Paul Stephens, MD; Assistant Professor
John Stork, MD; Associate Professor
Mihaela Tecuta, MD; Assistant Professor
Paul Tripi, MD; Professor
David Wallace, OD; Assistant Professor
Sherif Zaky, MBBS; Assistant Professor
Dermatology
Jennifer Bahner, MD; Assistant Professor
Elma Baron, MD; Professor
Jeremy Bordeaux, MD; Professor
Adrienne Callahan, MD; Assistant Professor
Kevin Cooper, MD; Professor
Danyelle Dawes, MD; Assistant Professor
Mahmoud Ghannoum, PhD; Professor
Jeremy Honaker, PhD; Assistant Professor
Kord Honda, MD; Associate Professor
Kefei Kang, MD; Associate Professor
Jay Klemme, MD; Assistant Professor
Kord Honda, MD; Associate Professor
Neil Korman, MD PhD; Professor
Kurt Lu, MD; Associate Professor
Margaret Mann, MD; Associate Professor
Thomas McCormick, PhD; Associate Professor
Susan Nedorost, MD; Professor
Daniel Popkin, MD PhD; Assistant Professor
Rachel Redenius, MD; Assistant Professor
Nicole Ward, PhD; Associate Professor
Emergency Medicine
Sean Abraham, DO; Assistant Professor
Stephanie Gaines, MD; Assistant Professor
Robert Hughes, DO; Assistant Professor
Aaron Lareau, MD; Assistant Professor
Jennifer Li, MD; Assistant Professor
Jeffrey Luk, MD; Assistant Professor
Edmundo Mandac, MD; Assistant Professor
Michael May, MD; Assistant Professor

Christopher Miller, MD; Clinical Professor
Richard Nelson, MD; Assistant Professor
Vicki Noble, MD; Professor
Amy Pound, MD; Assistant Professor
Jessica Resnick, MD; Assistant Professor
Susan Schardt, MD; Assistant Professor
Johnathan Sheele, MD; Assistant Professor
Matthew Stull, MD; Assistant Professor
Yael Taub, MD; Assistant Professor
Justin Yax, DO; Assistant Professor
Family Medicine & Community Health
Louise Acheson, MD; Professor
Angela Bennett, MD; Assistant Professor
Sandy Chang, MD; Assistant Professor
Jason Chao, MD; Professor
Nicholas Cohen, MD; Assistant Professor
Kathy Cole-Kelly, MA/MS; Professor
Peter DeGolia, MD; Professor
Darrell Hulisz, MD; Associate Professor
Gail Jones, MD; Senior Instructor
Julie Keller, MD; Assistant Professor
Vanessa Maier, MD; Assistant Professor
Sybil Marsh, MD; Associate Professor
Lynda Montgomery, MD; Associate Professor
Masahiro Morikawa, MD; Professor
Karen Mulloy, DO; Associate Professor
Olusegun Odukoya, MD; Assistant Professor
Goutham Rao, MD; Professor
Tamer Said, MD; Assistant Professor
C. Kent Smith, MD; Professor
Irina Todorov, MD; Assistant Professor
Robert Truax, DO; Assistant Professor
James Werner, PhD; Associate Professor
Medicine
Sahar Abdelmoneim, MBBCh; Assistant Professor
Meer Ali, MBBS; Assistant Professor
Donald Anthony, MD PhD; Professor
Baha Arafah, MD; Professor
Keith Armitage, MD; Professor
Mauricio Arruda, MD; Associate Professor
Ali Askari, MD; Professor
Guilherme Attizzani, MD; Assistant Professor
Joseph Baar, MD PhD; Associate Professor
David Bajor, MD; Assistant Professor
Courtney Batt, MD; Clinical Senior Instructor
Nathan Berger, MD; Professor
Hiram Bezerra, MD; Associate Professor
Andrew Blum, MD; Assistant Professor
David Blumenthal, MD; Assistant Professor
Joseph Bokar, MD PhD; Associate Professor
W. Henry Boom, MD; Professor
Kirsten Boughan, DO; Assistant Professor
Paolo Caimi, MD; Associate Professor
Ivan Cakulev, MD; Assistant Professor
David Canaday, MD; Associate Professor
Teresa Carman, MD; Assistant Professor
Amitabh Chak, MD; Professor
Rajesh Chandra, MBBS; Associate Professor
Stanley Cohen, MD; Professor
Fabio Cominelli, MD PhD; Professor
Matthew Cooney, MD; Associate Professor
Brenda Cooper, MD; Professor
Gregory Cooper, MD; Professor
Marco Costa, MD PhD; Professor
Linda Cummings, MD; Assistant Professor
Michael Cunningham, MD; Assistant Professor
Maneesh Dave, MBBS; Assistant Professor
Marcos de Lima, MD; Professor
Jeffrey Deiuliis, PhD; Assistant Professor
Thomas Dick, PhD; Professor
Clark Distelhorst, MD; Professor
Mirela Dobre, MD MPH; Assistant Professor
Afshin Dowlati, MD; Professor
Ismail Dreshaj, MD PhD; Assistant Professor
John Dumot, DO; Professor
Barry Effron, MD; Associate Professor
Chantal El Amm, MD; Assistant Professor
Nadine El Asmar, MD; Assistant Professor
George Farah, MD; Assistant Professor
Michel Farah, MD; Professor
Ashley Faulx, MD; Professor
Pingfu Feng, MD PhD; Associate Professor
Stephen Fink, PhD; Assistant Professor
Rodney Folz, MD PhD; Professor
Michael Freeman, PhD; Instructor
Scott Fulton, MD; Assistant Professor
Molly Gallogly, MD PhD; Assistant Professor
Saul Gennuth, MD; Professor
Stanton Gerson, MD; Professor
Pierre Gholam, MD; Associate Professor
Joseph Gibbons, MD; Associate Professor
Mahazarin Ginwalla, MBBS; Assistant Professor
Brooke Glessing, MD; Assistant Professor
Gowrishankar Gnanasekaran, MPH MBBS; Assistant Professor
Lloyd Greene, MD; Assistant Professor
Katarina Greer, MD; Associate Professor
Barbara Gripshover, MD; Associate Professor
Praveen Gundelly, MBBS; Assistant Professor
Mona Gupta, MBBS; Assistant Professor
Carla Harwell, MD; Associate Professor
Douglas Hess, PhD; Associate Professor
Christina Hirsch, MD; Associate Professor
Christopher Hoimes, DO; Assistant Professor
Brian Hoit, MD; Professor
Thomas Hostetter, MD; Professor
Anne Huml, MD; Instructor
Gerard Isenberg, MD; Associate Professor
Faramarz Ismail-Beigi, MD PhD; Professor
Mukesh K. Jain, MD; Professor
Trevor Jenkins, MD; Assistant Professor
John Johnson, MD; Professor
Richard Josephson, MD; Professor
Ankur Kalra, MBBS; Assistant Professor
Sheru Kansal, MD; Assistant Professor
Laure Kassem, MD; Assistant Professor
Jeffry Katz, MD; Professor
Parisa Khatibi, MD; Assistant Professor
Aaron Kistemaker, MD; Assistant Professor
Henry Koon, MD; Associate Professor
Minh Lam, PhD; Assistant Professor
Colleen Lance, MD; Assistant Professor
Michael Lederman, MD; Professor
Richard Lee, MD; Associate Professor
Taryn Lee, MD; Assistant Professor
Debra Leizman, MD; Associate Professor
Tracy Lemonovich, MD; Assistant Professor
Nathan Levitan, MD; Professor
Xudong Liao, PhD; Assistant Professor
Michelle Lisgaris, MD; Assistant Professor
Jane Little, MD; Professor
Christopher Longenecker, MD; Assistant Professor
Yuan Lu, MD; Assistant Professor
Judith Mackall, MD; Associate Professor
Ganapati Mahabaleshwar, PhD; Associate Professor
Andrei Maiseyeu, PhD; Assistant Professor
Ehsan Malek, MD; Assistant Professor
Charles Malemud, PhD; Professor
Chitra Manickam, MBBS; Assistant Professor
Sanford Markowitz, MD PhD; Professor
Bradley Martin, MD; Instructor
Shigemi Matsuyama, PhD; Associate Professor
Maya Mattar, MD; Assistant Professor
Leland Metheny, MD; Assistant Professor
Paul Miller, MD; Assistant Professor
Sri Krishna Mohan, MBBS; Assistant Professor
Helen Moinova, PhD; Instructor
Hugo Montenegro, MD; Professor
Lalitha Nayak, MD; Assistant Professor
Lavinia Negrea, MD; Associate Professor
Guilherme Oliveira, MD; Associate Professor
Folashade Otegbeye, MBCh; Assistant Professor
Cynthia Owusu, MBCh; Associate Professor
Aparna Padiyar, MD; Assistant Professor
Reshmi Parameswaran, PhD; Assistant Professor
Sravanthi Parasa, MBBS; Assistant Professor
Mariana Petrozzi, MD; Assistant Professor
Rafeal Ponce-Terashima, MD; Assistant Professor
Anthony Post, MD; Associate Professor
Aaron Proweller, MD PhD; Associate Professor
Mahboob Rahman, MBBS; Professor
Sanjay Rajagopalan, MBBS; Professor
Diana Ramirez-Bergeron, PhD; Associate Professor
Xiaoquan Rao, MD PhD; Assistant Professor
Amy Jo Ray, MD; Associate Professor
Laleh Razavi Nematollahi, MD; Assistant Professor
Jeffrey Renston, MD; Associate Professor
Monique Robinson, MBBS; Assistant Professor
Benigno Rodriguez, MD; Associate Professor
Alexander Rodriguez-Palacios, DMV PhD; Assistant Professor
Noah Rosenthal, MD; Assistant Professor
Rosetta Rowbottom, MD; Assistant Professor
Elie Saade, MD; Assistant Professor
Jayakumar Sahadevan, MBBS; Associate Professor
Robert Salata, MD; Professor
Joel Saltzman, MD; Assistant Professor
Nagaraju Sarabu, MBBS; Assistant Professor
Robert Schilz, OD; Associate Professor
Alvin Schmaier, MD; Professor
Seth Sclair, MD; Assistant Professor
Divya Seth, PhD; Instructor
Can Shi, PhD; Assistant Professor
Mehdi Shishehbor, DO; Professor
Scott Sieg, PhD; Associate Professor
Richard Silver, MD; Professor
Paula Silverman, MD; Associate Professor
Daniel Simon, MD; Professor
Michael Simonson, PhD; Associate Professor
Mriganka Singh, MBBS; Assistant Professor
Preetika Sinh, MBBS; Assistant Professor
Zachary Smith, DO; Assistant Professor
Dina Sparano, MD; Assistant Professor
Jonathan Stamler, MD; Professor
Nathan Stehouwer, MD; Assistant Professor
Kingman Strohl, MD; Professor
Carlos Subauste, MD; Professor
Claire Sullivan, MD; Assistant Professor
Catalina Teba, MD; Assistant Professor
Lois Teston, MD; Assistant Professor
Patricia Thomas, MD; Professor
Sapna Thomas, MD; Assistant Professor
Myreen Tomas, MD; Assistant Professor
Ben Tomlinson, MD; Assistant Professor
Erik Van Lunteren, MD; Professor
Padmaja Veeramreddy, MBBS; Assistant Professor
Shaveta Vinayak, MD; Assistant Professor
Albert Waldo, MD; Professor
Yunmei Wang, PhD; Assistant Professor
Gregory Warren, MD; Assistant Professor
Van Warren, MD; Assistant Professor
Elizabeth Weinstein, MD; Assistant Professor
Patrick Whelan, MBBS; Assistant Professor
William Wolf, MD; Assistant Professor
Richard Wong, MBBS; Professor
Jonathan Wynbrandt, MD; Assistant Professor
Varija Yalamanchali, MD; Instructor
Souheil Younes, PhD; Instructor
Benjamin Young, MD; Assistant Professor
Michael Zacharias, DO; Assistant Professor
Jixin Zhong, PhD; Assistant Professor
Hualin Zhou, PhD; Instructor
David Zidar, MD PhD; Assistant Professor
Neurological Surgery
Nicholas Bambakidis, MD; Professor
Eli Bar, PhD; Assistant Professor
Edwin Capulong, MD; Assistant Professor
Alia Hdeib, MD; Assistant Professor
Tiffany Hodges, MD; Assistant Professor
Seth Hoffer, MD; Associate Professor
Manish Kasliwal, MBBS; Assistant Professor
Jonathan Miller, MD; Professor
Abhishek Ray, MD; Assistant Professor
Warren Selman, MD; Professor
Andrew Sloan, MD; Professor
Gabrial Smith, ; Assistant Professor
Jennifer Sweet, MD; Assistant Professor
Krystal Tomei, MD; Assistant Professor
Neurology
Hesham Abboud, MBBch; Assistant Professor
Shahram Aminai, MD; Assistant Professor
Rahila Ansari, MD; Assistant Professor
Brian Appleby, MD; Associate Professor
Lianhua Bai, MD PhD; Instructor
Christopher Bailey, PhD; Associate Professor
Marek Buczek, MD PhD; Assistant Professor
Lauren Cameron, MD; Assistant Professor
Robert Daroff, MD; Professor
Michael DeGeorgia, MD; Professor
Michael Devereaux, MD; Professor
Stefan Dupont, MD PhD; Assistant Professor
Matthew Eccher, MD; Assistant Professor
Philip Fastenau, PhD; Professor
Guadalupe Fernandez-Baca Vaca, MBBS; Assistant Professor
School of Medicine Faculty

Anthony Furlan, MD; Professor
Christopher Geiger, DO; Instructor
Steven Gunzler, MD; Assistant Professor
Mustafa Kahriman, MD; Assistant Professor
Bashar Katirji, MD; Professor
Camilla Kilbane, MD; Assistant Professor
Nuria Lacuey-Lecumberri, MD; Assistant Professor
Alan Lerner, MD; Professor
Samden Lhatoo, MBBS; Professor
Naiara Losarcos, MD; Instructor
Hans Luders, MD PhD; Professor
Maureen McEnery, PhD; Associate Professor
Daniel Miller, MD; Assistant Professor
Lindsay Miller, PhD; Assistant Professor
Paula Ogrocki, PhD; Assistant Professor
David Preston, MD; Professor
Svetlana Pundik, MD; Associate Professor
Ciro Ramos-Estebanez, MD PhD; Assistant Professor
Jenice Robinson, MD; Assistant Professor
Lisa Rogers, DO; Professor
Komal Sawlani, MD; Assistant Professor
Alessandro Serra, MD PhD; Assistant Professor
Aasef Shaikh, MBBS; Assistant Professor
Barbara Shapiro, MD PhD; Associate Professor
Cathy Sila, MD; Professor
Sophia Sundararajan, MD PhD; Associate Professor
Tanvir Syed, MD; Assistant Professor
Curtis Tatsuoka, PhD; Associate Professor
Stephanie Towns, PsyD; Assistant Professor
Benjamin Walter, MD; Associate Professor
Peter Whitehouse, MD PhD; Professor
Wei Xiong, MD; Assistant Professor
Ophthalmology & Visual Sciences
David Bardenstein, MD; Professor
Julie Belkin, MD; Assistant Professor
Beth Ann Benetz, MA/MS; Professor

Adriana Grigorian, MD; Assistant Professor
Pankaj Gupta, MD; Assistant Professor
Manasvee Kapadia, MD; Assistant Professor
Jonathan Lass, MD; Professor
Michael Morgan, MD PhD; Assistant Professor
Linda Ohsie-Bajor, MD; Assistant Professor
Faruk Orge, MD; Professor
Paul Park, PhD; Associate Professor
Irina Pikuleva, PhD; Professor
Douglas Rhee, MD; Professor
Roxana Rivera-Michlig, MD; Assistant Professor
Stacy Schonberg, OD; Senior Instructor
Thomas Stokkermans, PhD; Assistant Professor
Loretta Szczotka-Flynn, OD; Professor
Patricia Taylor, PhD; Assistant Professor
Carol Toris, PhD; Professor
Georgios Trichonas, MD; Assistant Professor
Amy Zhang, MD; Assistant Professor
Orthopaedics
Nicholas Ahn, MD; Professor
James Anderson, MD; Assistant Professor
Christopher Bechtle, MD; Assistant Professor
Kath Bogie, PhD; Associate Professor
Sean Cupp, MD; Assistant Professor
Jason Eubanks, MD; Assistant Professor
Steven Fitzgerald, MD; Assistant Professor
Robert Flannery, MD; Assistant Professor
Christopher Furey, MD; Professor
Patrick Getty, MD; Associate Professor
Robert Gillespie, MD; Associate Professor
Allison Gilmore, MD; Associate Professor
Donald Goodfellow, MD; Associate Professor
Zachary Gordon, MD; Assistant Professor
Edward Greenfield, PhD; Professor
Christina Hardesty, MD; Assistant Professor
Michael Karns, MD; Assistant Professor
Matthew Kraay, MD; Professor
Stephen Lacey, MD; Associate Professor
Raymond Liu, MD; Associate Professor
Kevin Malone, MD; Associate Professor
Randall Marcus, MD; Professor
Shana Miskovsky, MD; Assistant Professor
George Ochenjele, MD; Assistant Professor
Michael Salata, MD; Associate Professor
John Shaffer, MD; Professor
Jochen Son-Hing, MD; Assistant Professor
John Sontich, MD; Associate Professor
George Thompson, MD; Professor
Brian Victoroff, MD; Associate Professor
James Voos, MD; Associate Professor
Robert Wetzel, MD; Assistant Professor
Guang Zhou, PhD; Assistant Professor
Otolaryngology
Kumar Alagramam, PhD; Associate Professor
James Arnold, MD; Professor
Martin Basch, PhD; Assistant Professor
Jonathan Baskin, MD; Associate Professor
Nipun Chhabra, MD; Assistant Professor
Brian D’Anza, MD; Assistant Professor
Nicole Fowler, MD; Assistant Professor
Pierre Lavertu, MD; Professor
Nicole Maronian, MD; Associate Professor
Brian McDermott, PhD; Associate Professor
Cliff Megerian, MD; Professor
Sarah Mowry, MD; Assistant Professor
Gail Murray, PhD; Associate Professor
Todd Otteson, MD; Associate Professor
Diana Ponsky, MD; Assistant Professor
Rod Rezaee, MD; Associate Professor
Kenneth Rodriguez, MD; Assistant Professor
Maroun Semaan, MD; Associate Professor
Jay Shah, MD; Assistant Professor
Ruben Stepanyan, PhD; Assistant Professor
Harvey Tucker, MD; Professor
Mark Weidenbecher, MD; Assistant Professor
Carissa Wentland, DO; Assistant Professor
Chad Zender, MD; Associate Professor
Qing Zheng, MD; Associate Professor
Pathology
James Anderson, MD PhD; Professor
Stefanie Avril, MD; Assistant Professor
Christina Bagby, DO; Assistant Professor
Philip Bomeisl, DO; Assistant Professor
Mark Cohen, MD; Professor
Marta Couce, MD PhD; Professor
Daniel Cowden, MD; Assistant Professor
Min Cui, MD PhD; Assistant Professor
Katharine Downes, MD; Associate Professor
Robin Elliott, MD; Assistant Professor
Kenneth Friedman, MD; Assistant Professor
Hannah Gilmore, MD; Associate Professor
Neil Greenspan, MD PhD; Professor
Aparna Harbhajanka, MD; Assistant Professor
Holly Harper, MD; Assistant Professor
Michael Jacobs, MBBS; Professor
Wendy Liu, MD PhD; Assistant Professor
Gregory MacLennan, MD; Professor
Robert Maitta, MD PhD; Assistant Professor
Howard Meyerson, MD; Associate Professor
Claire Michael, MBBCH; Professor
Erika Moore, MD; Assistant Professor
Jaime Noguez, PhD; Assistant Professor
Kwadwo Oduro, MD PhD; Assistant Professor
Sanjita Ravishankar, MD; Assistant Professor
Raymond Redline, MD; Professor
Hollie Reeves, DO; Assistant Professor
Qinghu Ren, MBBS PhD; Assistant Professor
Daniel Rhoads, MD; Assistant Professor
Christopher Ryder, MD PhD; Instructor
Shahrazad Saab, MD; Assistant Professor
Navid Sadri, MD PhD; Assistant Professor
Christine Schmotzer, MD; Assistant Professor
Shashirekha Shetty, PhD; Associate Professor
David Wald, MD PhD; Associate Professor
Jay Wasman, MD; Assistant Professor
Sarah White, MD; Assistant Professor
Joseph Willis, MBBS; Professor
Wei Xin, MD PhD; Associate Professor
Michael Yang, MD; Assistant Professor
Lan Zhou, MD PhD; Associate Professor
Pediatrics
Akinyi Adija, MD; Assistant Professor
Sanjay Ahuja, MBBS; Associate Professor
Atiye Aktay, MD; Assistant Professor
Elizabeth Allen, MD; Associate Professor
Ingrid Anderson, MD; Assistant Professor
Jennifer Anderson, PhD; Assistant Professor
Maria Arruda, MD; Associate Professor
Jill Azok, MD; Assistant Professor
Erin Babbitt, PsyD; Assistant Professor
Ann Mary Bacevice, MD; Associate Professor
Virginia Baez-Socorro, MD; Assistant Professor
Christine Barry, PhD; Associate Professor
Matthew Bartley, MD; Assistant Professor
Nancy Bass, MD; Associate Professor
Monika Bhola, MBBS; Associate Professor
Martin Bocks, MD; Associate Professor
Aparna Bole, MD; Associate Professor
Tracey Bonfield, PhD; Associate Professor
Denise Bothe, MD; Associate Professor
Mireille Boutry, MD; Associate Professor
Susan Bowen, PhD; Assistant Professor
Susannah Briskin, MD; Associate Professor
Elizabeth Brooks, MD PhD; Assistant Professor
Kimberly Burkhart, PhD; Assistant Professor
Karen Camasso, MD; Assistant Professor
Laura Caserta, MD; Assistant Professor
James Chmiel, MD; Professor
Marie Clark, MD; Assistant Professor
Jason Clayton, MD PhD; Assistant Professor
Alberto Costa, MD PhD; Professor
Calvin Cotton, PhD; Professor
Daniel Craven, MD; Associate Professor
Maricruz Crespo, MD; Assistant Professor
Moira Crowley, MD; Associate Professor
Robert Cunningham, MD; Professor
Deanna Dahl-Grove, MD; Associate Professor
Jignesh Dalal, MD; Professor
Mari Dallas, MD; Associate Professor
Pamela Davis, MD PhD; Professor
Michael Dell, MD; Professor
Arlene Dent, MD; Associate Professor
Ankita Desai, MD; Assistant Professor
Elizabeth Diekroger, MD; Assistant Professor
Amy DiMarino, DO; Assistant Professor
Leslie Dingeldein, MD; Assistant Professor
Saheb Dirajj-Fargo, DO; Assistant Professor
Katherine Dobbs, MD; Instructor
Andrew Dodgen, MD; Assistant Professor
Diana Drogalis-Kim, DO; Assistant Professor
Mitchell Drumm, PhD; Professor
Amy Edwards, MD; Assistant Professor
Rachel Egler, MD; Associate Professor
Jonathan Fanaroff, MD; Professor
Ryan Farrell, MD; Assistant Professor
Stephanie Ford, MD; Assistant Professor
Erin Frank, MD; Assistant Professor
Lydia Furman, MD; Professor
Benjamin Gaston, MD; Professor
Edward Gilmore, MD PhD; Assistant Professor
Deborah Gold, MD; Assistant Professor
Jessica Goldstein, MD; Assistant Professor
Katherine Griswold, MD; Assistant Professor
Richard Grossberg, MD; Associate Professor
Amy Grube, MD; Assistant Professor
Rose Gubitosi-Klug, MD PhD; Professor
Reut Gurion, DO; Assistant Professor
Haitham Haddad, MD; Assistant Professor
Howard Hall III, PhD; Professor
Meeghan Hart, MD; Assistant Professor
Rebecca Hazen, PhD; Associate Professor
Anna Maria Hibbs, MD; Associate Professor
Craig Hodges, PhD; Associate Professor
Jane Holan, MD; Assistant Professor
Claudia Hoyen, MD; Associate Professor
Alex Huang, MD PhD; Professor
Alissa Huth-Bocks, PhD; Professor
Carolyn levers-Landis, PhD; Professor
Michael Jenkins, PhD; Assistant Professor
Eva Johnson, MD; Assistant Professor
Nicole Johnson, MD; Assistant Professor
Beth Kaminski, MD; Assistant Professor
Thomas Kelley, PhD; Professor
Amanda Kelly, MD; Professor
Leigh Kerns, MD; Associate Professor
Ali Khalili, MD; Assistant Professor
Brendan Kilbane, MD; Associate Professor
Grace Kim, MD; Assistant Professor
Anya Kleinman, MD; Assistant Professor
Lawrence Kleinman, MPH MD; Professor
Michael Konstan, MD; Professor
Shanna Kralovic, DO; Associate Professor
Margaret Kuper-Sasse, MD; Assistant Professor
Amanda Lansell, MD; Assistant Professor
Rina Lazebnik, MD; Professor
Sara Lee, MD; Associate Professor
Ethan Leonard, MD; Associate Professor
John Letterio, MD; Professor
Stephen Lewis, PhD; Professor
Bridget LoParo, MD; Assistant Professor
Peter MacFarlane, PhD; Assistant Professor
Sarah MacLeish, MD; Associate Professor
Jessica Madden, MD; Assistant Professor
Eliane Malek, MD; Assistant Professor
Richard Martin, MBBS; Professor
Lolita Mc David, MD; Professor
Kimberly McBennett, MD PhD; Assistant Professor
Grace McComsey, MD; Professor
Scott McEwen, MD PhD; Assistant Professor
Kathryn Miller, MD; Assistant Professor
Jonathan Moses, MD; Assistant Professor
Katherine Myers, DO; Assistant Professor
Ross Myers, MD; Associate Professor
Mary Nock, MD; Professor
Robin Norris, MD MPH; Assistant Professor
Arielle Olicker, MD; Assistant Professor
Jun Tae Park, MD; Associate Professor
Irina Pateva, MD; Assistant Professor
Mary Patrinos, MD; Assistant Professor
Allison Payne, MD; Assistant Professor
Agne Petrosiute, MD; Assistant Professor
Connie Piccone, MD; Associate Professor
Sarah Plummer, MD; Assistant Professor
Keith Ponitz, MD; Assistant Professor
Thomas Raffay, MD; Assistant Professor
Ana Paula Ribeiro, MD; Assistant Professor
Angela Robinson, MD; Associate Professor
Erica Roesch, MD; Assistant Professor
Nancy Roizen, MD; Professor
Sarah Ronis, MD; Assistant Professor
Regina Rosace, MD; Assistant Professor
Jerri Rose, MD; Associate Professor
Carol Rosen, MD; Professor
Kristie Ross, MD; Associate Professor
Alexandre Rotta, MD; Professor
Kathryn Ruda Wessell, DO; Assistant Professor
Ramy Sabe, MBBS; Assistant Professor
Senthilkumar Sankararaman, MBBS; Assistant Professor
Mark Scher, MD; Professor
Tasa Seibert, MD; Assistant Professor
Thomas Sferra, MD; Professor
Asim Shahid, MD; Associate Professor
Steven Shein, MD; Associate Professor
Jill Shivapour, MD; Assistant Professor
Katherine Slain, DO; Assistant Professor
Christopher Snyder, MD; Associate Professor
Mary Solomon, DO; Associate Professor
David Speicher, MD; Associate Professor
Richard Speicher, MD; Associate Professor
Judy Splugoski, MD; Associate Professor
Duncan Stearns, MD; Associate Professor
Melanie Stempowski, MD; Assistant Professor
Alayne Stepans, MD; Assistant Professor
Noam Stern, MD; Assistant Professor
Eileen Stork, MD; Professor
Anne Stormorken, MD; Associate Professor
James Strainic, MD; Assistant Professor
Steven Strausbaugh, MD; Associate Professor
Robyn Strosaker, MD; Associate Professor
Rachel Tangen, PhD; Assistant Professor
Brittany Tass, DO; Assistant Professor
Philip Toltzis, MD; Professor
Naveen Uli, MBBS; Associate Professor
Anuradha Viswanathan, MBBS; Assistant Professor
Beth Vogt, MD; Associate Professor
Kristin Voos, MD; Associate Professor
Jennifer Waldron, DO; Assistant Professor
Michele Walsh, MD; Professor
Michiko Watanabe, PhD; Professor
Carolyn Wilhelm, MD; Assistant Professor
Deanne Wilson-Costello, MD; Professor
Max Wiznitzer, MD; Professor
Jamie Wood, MD; Associate Professor
Martha Wright, MD; Professor
Gulgun Yalcinkaya, MD; Assistant Professor
Qin Yao, MD; Associate Professor
Regina Yaskey, MD; Assistant Professor
Teresa Zimmerman, MD; Assistant Professor
Joan Zoltanski, MD; Assistant Professor
Plastic Surgery
Anand Kumar, MD; Professor
Hooman Soltanian, MD; Associate Professor
Psychiatry
Francoise Adan, MD; Assistant Professor
Abidemi Adegbola, MD; Senior Instructor
Jaina Amin, MD; Assistant Professor
Luis Amunategui, PhD; Assistant Professor
Joseph Bedosky, PhD; Assistant Professor
Mariya Borodyanskaia, DO; Senior Instructor
Jennifer Brandstetter, MD; Assistant Professor
Irina Bransteter, PhD; Senior Instructor
Ashley Braun-Gabelman, PhD; Assistant Professor
Joseph Calabrese, MD; Professor
Vincent Caringi, MD; Assistant Professor
Cathleen Cerny, MD; Associate Professor
Kathleen Clegg, MD; Associate Professor
Danette Conklin, PhD; Assistant Professor
Richard Corradi, MD; Professor
Maureen Curley, PhD; Clinical Assistant Professor
Christina Delos-Reyes, MD; Associate Professor
Philipp Dines, MD PhD; Associate Professor
Lois Friedman, PhD; Professor
Mary Gabriel, MD; Assistant Professor
Stephen Ganocy, PhD; Assistant Professor
Keming Gao, MD PhD; Professor
Sara Goldman, MD; Senior Instructor
David Hahn, MD; Assistant Professor
Marcie Hall, MD; Assistant Professor
Steven Hampl, PhD; Assistant Professor
Elizabeth Harris, PhD; Senior Instructor
Susan Hatters-Friedman, MD; Professor
John Heather, MD; Assistant Professor
John Hertzer, MD; Assistant Professor
Andrew Hunt, MD; Assistant Professor
Jeffrey Janata, PhD; Professor
Gunnur Karakurt, PhD; Associate Professor
Edward Kilbane, MD; Assistant Professor
Susan Kimmel, MD; Assistant Professor
Leslie Koblentz, MD; Assistant Professor
Margaret Kotz, DO; Professor
Jeanne Lackamp, MD; Associate Professor
Jennifer Levin, PhD; Associate Professor
David Liebenthal, PhD; Assistant Professor
Charles Luther, MD; Assistant Professor
Sarah Lytle, MD; Assistant Professor
Matig Mavissakalian, MD; Professor
Amanda McGovern, PhD; Assistant Professor
Nora McNamara, MD; Assistant Professor
Molly McVoy, MD; Assistant Professor
Paul Minnillo, PhD; Assistant Professor
Clare Mitchell, PhD; Assistant Professor
Farah Munir, DO; Assistant Professor
Sarah Nagle-Yang, MD; Assistant Professor
Matthew Newton, DO; Assistant Professor
Stephen Noffsinger, MD; Associate Professor
Susan Padrino, MD; Associate Professor
Stephanie Pope, MD; Assistant Professor
Luis Ramirez, MD; Professor
Phillip Resnick, MD; Professor
Michelle Romero, DO; Assistant Professor
Robert Ronis, MD; Professor
Stephen Ruedrich, MD; Professor
Patrick Runnels, MD; Associate Professor
Martha Sajatovic, MD; Professor
Adrienne Saxton, MD; Assistant Professor
Thomas Scheidemantel, MD; Senior Instructor
Martha Schinagle, MD; Assistant Professor
Rebecca Schlachet, DO; Assistant Professor
William Semple, PhD; Assistant Professor
Edwin Shirley, PhD; Assistant Professor
Priy Shrestha, MBBS; Senior Instructor
Rajeet Shrestha, MBBS; Assistant Professor
Susan Stagno, MD; Professor
Robert Stansbrey, MD; Assistant Professor
Thomas Swales, PhD; Assistant Professor
Megan Testa, MD; Assistant Professor
Karen Tien, PhD; Assistant Professor
Sara West, MD; Assistant Professor
Cheryl Wills, MD; Assistant Professor
Solomon Zaraa, MD; Assistant Professor
Sara Zryl, PhD; Senior Instructor
Radiation Oncology
Ande Bao, PhD; Assistant Professor
Valdir Colussi, PhD; Associate Professor
Jennifer Dorth, MD; Assistant Professor
Rodney Ellis, MD; Professor
Paul Geis, PhD; Assistant Professor
Janice Lyons, MD; Associate Professor
Mitchell Machtay, MD; Professor
David Mansur, MD; Associate Professor
Louis Novak, MD; Assistant Professor
Gisele Pereira, PhD; Assistant Professor
Tarun Podder, PhD; Associate Professor
Bryan Traughber, MD; Assistant Professor
Min Yao, MD PhD; Professor
Jiankui Jake Yuan, PhD; Assistant Professor
School of Medicine Faculty

Yuxia Zhang, MS; Instructor
Yiran Zheng, PhD; Assistant Professor
Radiology
Mohammed Al-Natour, MBBS; Assistant Professor
Norbert Avril, MD; Professor
Nami Azar, MD; Associate Professor
James Basilion, PhD; Professor
Sheila Berlin, MD; Associate Professor
Michael Coffey, MD; Assistant Professor
Niki Constantinou, MD; Assistant Professor
Jon Davidson, MD; Assistant Professor
Agata Exner, PhD; Professor
Peter Faulhaber, MD; Professor
Evan Finkelstein, MD; Assistant Professor
Chris Flask, PhD; Associate Professor
Kianoush Gilani, MD; Assistant Professor
Robert Gilkeson, MD; Professor
Jayakrishna Gollamudi, MD; Assistant Professor
Mark Griswold, PhD; Professor
Vikas Gulani, MD PhD; Professor
Amit Gupta, MBBS; Assistant Professor
John Haaga, MD; Professor
M. Hayeri, MD; Assistant Professor
Upma Hemal, MD; Assistant Professor
Robert Jones, MD; Assistant Professor
David Jordan, PhD; Associate Professor
Nina Klein, MD; Assistant Professor
Christos Kosmas, MD; Assistant Professor
Charles Lanzieri, MD; Professor
Zhenghong Lee, PhD; Professor
Holly Marshall, MD; Assistant Professor
Eric McLoney, MD; Assistant Professor
Lina Mehta, MD; Associate Professor
Raymond Muzic, PhD; Professor
Dean Nakamoto, MD; Professor
Ameya Nayate, MD; Assistant Professor
Anne Nicklas-Coffey, MD; Assistant Professor
James O'Donnell, MD; Professor
Raj Pasuplati, MBBS; Professor
Indravadan Patel, MD; Assistant Professor
Andrew Petraszko, MD; Assistant Professor
Ramya Pham, MD; Assistant Professor
Donna Plecha, MD; Professor
Pablo Ros, MD PhD; Professor
Leah Sieck, MD; Assistant Professor
Carlos Sivit, MD; Professor
Priya Sundaram, DO; Assistant Professor
Jeffrey Sunshine, MD PhD; Professor
Yanming Wang, PhD; Professor
Jenny Wang-Peterman, MD; Assistant Professor
Chunying Wu, PhD; Instructor
Peter Young, MD; Assistant Professor
Reproductive Biology
Amy Armstrong, MD; Assistant Professor
Karen Ashby, MD; Associate Professor
Corinne Bazella, MD; Assistant Professor
Erica Berggren, MD; Assistant Professor
Megan Billow, DO; Assistant Professor
Jane Corteville, MD; Associate Professor
Nancy Cossler, MD; Associate Professor
Sherif El-Nashar, MBBS; Associate Professor
Angelina Gangestad, MD; Associate Professor
Kimberly Gecsi, MD; Associate Professor
Marjorie Greenfield, MD; Professor
David Hackney, MD; Associate Professor
Tyler Katz, MD; Assistant Professor
Erika Kelley, PhD; Assistant Professor
Sheryl Kingsberg, PhD; Professor
Justin Lappen, MD; Assistant Professor
Margaret Larkins-Pettigrew, MD; Associate Professor
Susan Lasch, MD; Assistant Professor
Noam Lazebnik, MD; Professor
James Liu, MD; Professor
Sangeeta Mahajan, MD; Associate Professor
Melissa March, MD; Assistant Professor
Tia Melton, MD; Assistant Professor
Sam Mesiano, PhD; Professor
Clodagh Mullen, MD; Assistant Professor
Christa Nagel, MD; Assistant Professor
John Nakayama, MD; Assistant Professor
Ellie Ragsdale, MD; Assistant Professor
Maria Shaker, MD; Assistant Professor
Steven Waggoner, MD; Professor
Martin Wieczorek, MD; Assistant Professor
Honor Wolfe, MD; Professor
Kristine Zanotti, MD; Associate Professor
Lulu Zhao, MD; Assistant Professor

Surgery

Mujahid Abbas, MD; Assistant Professor
Mark Aeder, MD; Associate Professor
John Ammori, MD; Associate Professor
Henry Baele, MD; Assistant Professor
Edward Barksdale, MD; Professor
Bradley Champagne, MD; Associate Professor
Ronald Charles, MD; Assistant Professor
Kenneth Chavin, MD PhD; Professor
Keith Clancy, MD; Associate Professor
Salil Deo, MBBS; Associate Professor
David Dietz, MD; Professor
Jill Dietz, MD; Associate Professor
Michael Dingeldein, MD; Assistant Professor
Jeffrey Hardacre, MD; Professor
Karem Harth, MD; Assistant Professor
Vanessa Humphreville, MD; Assistant Professor

Vikram Kashyap, MD; Professor
Leena Khaitan, MD; Professor
Anne Kim, MD; Assistant Professor
Julian Kim, MD; Professor
Philip Linden, MD; Associate Professor
Jeffrey Marks, MD; Professor
Benjamin Medalion, MD; Professor
Megan Miller, MD; Assistant Professor
Eiichi Miyasaka, MD; Assistant Professor
Raymond Onders, MD; Professor
Arun Palanisamy, PhD; Assistant Professor
Soon Park, MD; Professor
Marjie Persons, MD; Associate Professor
Jeffrey Peters, MD; Professor
Alexis Powell, MD; Assistant Professor
Harry Reynolds, MD; Associate Professor
Jason Robke, MD; Assistant Professor
Tomasz Rogula, MD PhD; Associate Professor
Joseph Sabik, MD; Professor
Edmund Sanchez, MD; Associate Professor
Steve Schomisch, PhD; Assistant Professor
Robert Shenk, MD; Associate Professor
Sharon Stein, MD; Associate Professor
Emily Steinhagen, MD; Assistant Professor
Christopher Towe, MD; Assistant Professor
Joseph Trunzo, MD; Assistant Professor
Aisha Violette, MD; Assistant Professor
Scott Wilhelm, MD; Associate Professor
Virginia Wong, MD; Assistant Professor

Urology

Riccardo Autorino, MD PhD; Associate Professor
Donald Bodner, MD; Professor
Edward Cherullo, MD; Professor
Christopher Gonzalez, MD; Professor
Magdalena Grabowska, PhD; Assistant Professor
Sanjay Gupta, PhD; Professor
Adonis Hijaz, MD; Professor
Simon Kim, MD; Associate Professor
Humberto Laydner, MD; Assistant Professor
Lee Ponsky, MD; Professor
Jonathan Ross, MD; Professor
Lynn Woo, MD; Assistant Professor

MetroHealth Medical Center
Full-Time Faculty

Anesthesiology
Brendan Astley, MD; Assistant Professor
Michael Bassett, MD; Assistant Professor
Norman Bolden, MD; Associate Professor
Anthony Chang, MD; Assistant Professor
Samuel DeJoy, MD; Assistant Professor
Cynthia Dietrich, OD; Assistant Professor
Jennifer Eismon, MD; Senior Instructor
Amir Gholami, MD; Assistant Professor
Maureen Harders, MD; Assistant Professor
Michael Howkins, OD; Senior Instructor
Anil Jagetia, MD; Assistant Professor
Matthew Joy, MD; Assistant Professor
Kelly Lebak, MD; Senior Instructor
Charles Lind, MD; Assistant Professor
Jessica Lovich-Sapola, MD; Associate Professor
Maria Loy, MD; Assistant Professor
Arnold Morscher, MD; Assistant Professor
Alfred Pinchak, MD PhD; Assistant Professor
Cristian Prada, MD; Senior Instructor
Kanwaljit Sidhu, MD; Assistant Professor
Tejbir Sidhu, MBBS; Assistant Professor
Charles Smith, MD; Professor
Augusto Torres, MD; Assistant Professor
Karl Wagner, MD; Assistant Professor

Dermatology
Jonathan Bass, MD; Associate Professor

David Crowe, MD; Assistant Professor
Bryan Davis, MD; Professor
Pamela Davis, MD; Assistant Professor
Katherine DiSano, MD; Assistant Professor
Julie Dong-Kondas, MD; Assistant Professor
Lisa Gelles, MD; Assistant Professor
Christine Jaworsky, MD; Professor
Marjorie Montanez-Wiscovich, MD PhD; Assistant Professor
Arlene Rosenberg, MD; Assistant Professor
Stephen Somach, MD; Associate Professor
Harry Winfield, MD; Assistant Professor

Emergency Medicine
Thayne Alred, MD; Assistant Professor
Craig Bates, MD; Assistant Professor
Susan Brown, MD; Senior Instructor
Thomas Collins, MD; Associate Professor
Rita Cydulka, MD; Professor
Lynn Dezelon, MD; Assistant Professor
Emily Dodge, MD; Assistant Professor
David Effron, MD; Associate Professor
Charles Emerman, MD; Professor
George Eversman, MD; Assistant Professor
Jonathan Frommelt, MD; Assistant Professor
Boris Garber, OD; Assistant Professor
Jonathan Glauser, MD; Professor
Yitzchak Glick, MD; Assistant Professor
Bruce Graham, DO; Assistant Professor
Travis Gullett, MD; Assistant Professor
Robert Jones, DO; Professor
Rahi Kapur, MD; Assistant Professor
Andrea Kreiger, MD; Assistant Professor
Sara Laskey, MD; Assistant Professor
Aaron Lewandowski, MD; Assistant Professor
Thomas Lukens, MD PhD; Associate Professor
Katherine Manzon, MD; Assistant Professor
Alix Mitchell, MD; Assistant Professor
Maya Myslenski, MD; Assistant Professor
Sandra Najarian, MD; Assistant Professor
Thomas Noeller, MD; Associate Professor
Megha Panda, DO; Assistant Professor
Joan Papp, MD; Assistant Professor
Jeffrey Pennington, MD; Senior Instructor
Joseph Piktel, MD; Associate Professor
Matthew Roehrs, DO; Assistant Professor
Kristen Schmidt, MD; Assistant Professor
Jon Schrock, MD; Associate Professor
Jonathan Siff, MD; Associate Professor
Matthew Tabbut, MD; Assistant Professor
Joseph Tagliaferro, DO; Senior Instructor
Samuel Tate, MD; Assistant Professor
Melissa Tscheiner, MD; Assistant Professor
Nicole Wallis, MD; Assistant Professor
Sandra Werner, MD; Associate Professor
Lance Wilson, MD; Associate Professor
Aaron Wolfe, DO; Assistant Professor
Christopher Wyatt, MD; Assistant Professor
Family Medicine
Antoinette Abou-Haidar, MD; Assistant Professor
Christine Alexander, MD; Associate Professor
Christine Antenucci, MD; Assistant Professor
Nathan Beachy, MD; Senior Instructor
Eric Berko, PhD; Assistant Professor
James Campbell, MD; Professor
Meaghan Combs, MD; Assistant Professor
Britt Conroy, MD PhD JD; Assistant Professor
Mary Corrigan, MD; Assistant Professor
Colin Crowe, MD; Assistant Professor
Jaividhya Dasarathy, MBBS; Associate Professor
Jaspinder Dhillon, MD; Instructor
Michelle Dietz, MD; Instructor
Gaby El-Khoury, MD; Assistant Professor
Christine Fischer, MD; Assistant Professor
Wayne Forde, MD; Assistant Professor
Eric Friess, MD; Assistant Professor
Kenneth Frisof, MD; Assistant Professor
Fassil Gemechu, MD; Assistant Professor
Christopher Gillespie, MD; Instructor
Jessica Griggs, DO; Instructor
Natalie Hinchcliffe, DO; Assistant Professor
Joseph Labastille, MD; Assistant Professor
Melanie Leu, MD; Assistant Professor
Sheng Liu, MD; Assistant Professor
Mary Massie-Story, MD; Assistant Professor
James Misak, MD; Assistant Professor
Rainer Ng, DO; Assistant Professor
Michael Raddock, MD; Assistant Professor
FNU Rajesh, MBBS; Assistant Professor
Rebecca Schroeder, MD; Instructor
Michael Seidman, MD; Assistant Professor
Hemalatha Senthilkumar, MBBS; Instructor
Anita Singh, MBBS; Assistant Professor
Douglas Van Auken, MD; Assistant Professor
Amber Whited, DO; Assistant Professor
Amy Zack, MD; Assistant Professor
Sajat Agarwal, MBBS; Assistant Professor
Rakhshanda Akram, MBBS; Assistant Professor
Ashish Aneja, MBBS; Assistant Professor
Maria Antonelli, MD; Assistant Professor
Imad Asaad, MD; Assistant Professor
Dennis Auckley, MD; Professor
Ann Avery, MD; Associate Professor
Stanley Ballou, MD; Associate Professor
Charles Bark, MD; Assistant Professor
Jeffery Becker, MD; Assistant Professor
Mary Behmer, MD; Assistant Professor
Martine Binstock, MD; Assistant Professor
Shari Bolen, MD; Associate Professor
Sajat Agarwal, MBBS; Assistant Professor
Rakhshanda Akram, MBBS; Assistant Professor
Ashish Aneja, MBBS; Assistant Professor
Maria Antonelli, MD; Assistant Professor
Imad Asaad, MD; Assistant Professor
Dennis Auckley, MD; Professor
Ann Avery, MD; Associate Professor
Stanley Ballou, MD; Associate Professor
Charles Bark, MD; Assistant Professor
Jeffery Becker, MD; Assistant Professor
Mary Behmer, MD; Assistant Professor
Martine Binstock, MD; Assistant Professor
Shari Bolen, MD; Associate Professor
Maya Breitman, PhD; Instructor
Joanna Brell, MD; Associate Professor
Debora Bruno, MD; Assistant Professor
Jorge Calles-Escandon, MD; Professor
Patricia Campbell, MD; Assistant Professor
Aleece Caron, PhD; Associate Professor
John Carter, MD; Assistant Professor
Grace Cater, MD; Assistant Professor
Paul Cisarik, MD; Assistant Professor
Alfred Connors, MD; Professor
William Cook, DO; Assistant Professor
Ottorino Costantini, MD; Associate Professor
JohnBuck Creamer, MD; Assistant Professor
Catherine Curley, MD; Associate Professor
Joseph Daprano, MD; Assistant Professor
Hallie DeChant, MD; Assistant Professor
Juan del Rincon Jarero, MD; Assistant Professor
Isabelle Deschenes, PhD; Professor
Alberto Diaz, MD; Assistant Professor
Mark Dunlap, MD; Professor
Marina Duran-Castillo, MD; Assistant Professor
Carolyn Dziwis, MD; Assistant Professor
Douglas Einstadter, MD; Professor
Matthew Eisen, MD; Assistant Professor
Rasha El-Rifai, MBBS; Assistant Professor
Catherine Fallick, MD; Assistant Professor
Ronnie Fass, MD; Professor
Edward Feldman, MD; Assistant Professor
Roy Ferguson, MD; Associate Professor
Robert Finkelhor, MD; Associate Professor
James Finley, MD PhD; Associate Professor
Calen Frolkis, MD; Assistant Professor
Jidong Fu, MD PhD; Assistant Professor
Thomas Fuller, MD; Assistant Professor
Sanjay Gandhi, MD; Associate Professor
George Gelehrter, MD; Assistant Professor
Ellen Gelles, MD; Assistant Professor
Michele Geraci, MD; Assistant Professor
Susan Gifford, MD; Assistant Professor
Sandra Glagola, DO; Senior Instructor
Peter Greco, MD; Associate Professor
Douglas Gunzler, PhD; Assistant Professor
Maryanne Haddad, DO; Assistant Professor
Jennifer Hanrahan, DO; Associate Professor
Tariq Haqqi, MD; Professor
Michael Harrington, MD; Associate Professor
Michelle Hecker, MD; Assistant Professor
Paul Hergenroeder, MD; Assistant Professor
Corrilynn Hileman, MD; Assistant Professor
John Hodgson, MD; Professor
Edward Horwitz, MD; Assistant Professor
Michael Infeld, MD; Associate Professor
Alok Jain, MBBS; Assistant Professor
Melissa Jenkins, MD; Associate Professor
David Jones, MD; Senior Instructor
David Kaelber, MD PhD; Professor
Robert Kalayjian, MD; Associate Professor
Elizabeth Kaufman, MD; Professor
Karen Kea, MD; Instructor
Hicham Khallafi, MD; Assistant Professor
Tariq Khan, MBBS; Assistant Professor
Meera Kondapaneni, MBBS; Assistant Professor
Vidya Krishnan, MD; Associate Professor
David Kuentz, OD; Assistant Professor
Ravindra Kulasekere, PhD; Assistant Professor
Nilima Kumar, MBBS; Assistant Professor
Karen Kutoloski, OD; Assistant Professor
Annette Kyprianou, MD; Assistant Professor
Mildred Lam, MD; Professor
Kenneth Laurita, PhD; Associate Professor
Peter Laye, MD; Assistant Professor
Michael Lewis, MD; Assistant Professor
William Lewis, MD; Professor
Nora Lindheim, MD; Associate Professor
Thomas Love, PhD; Professor
Lindsey Magnelli, MA/MS; Instructor
Marina Magrey, MBBS; Associate Professor
Paul Manning, DO; Instructor
David Mansour, MD; Assistant Professor
David Margolius, MD; Assistant Professor
Laurie McCreery, MD PhD; Assistant Professor
Michael McFarlane, MD; Professor
Maya Merheb, MD; Senior Instructor
Hui Miao, PhD; Assistant Professor
Khalil Murad, MD; Assistant Professor
Thomas Murphy, MD; Associate Professor
Henry Ng, MD; Associate Professor
Gregory Norris, MD; Associate Professor
Jane Nwaonu, MBBS; Assistant Professor
Timothy O’Brien, MD; Associate Professor
Oluwatoyin Opelami, MBBCH; Assistant Professor
Elizabeth O’Toole, MD; Professor
Nikhil Patel, MD; Assistant Professor
Hugo Paz Y Mar, MD; Assistant Professor
Holly Perzy, MD; Associate Professor
Adam Perzynski, PhD; Associate Professor
Alice Petrulis, MD; Professor
James Pile, MD; Associate Professor
Suma Prakash, MD; Assistant Professor
Kathleen Quealy, MD; Assistant Professor
Rupesh Raina, MD; Senior Instructor
Thammi Ramanan, MD; Assistant Professor
Chingleput Ranganathan, MBBS; Assistant Professor
Anita Redahan, MBBS; Senior Instructor
Steven Ricanati, MD; Associate Professor
Jeffrey Rosenberg, MD; Assistant Professor
Aleksandr Rovner, MD; Associate Professor
Martin Ryan, MD; Instructor
Georges Saab, MD; Associate Professor
Sasan Sakiani, MD; Assistant Professor
Dalbir Sandhu, MBBS; Assistant Professor
Jeffrey Schelling, MD; Professor
David Schnell, MD; Assistant Professor
Larisa Schwartzman, MD; Assistant Professor
Eileen Seeholzer, MD; Associate Professor
Ashwini Sehgal, MD; Professor
Ziad Shoman, MD; Associate Professor
Marcia Silver, MD; Professor
Nora Singer, MD; Professor
Edward Sivak, MD; Professor
Brenda Smith, MD; Assistant Professor
Michael Snell, MD; Assistant Professor
Philip Spagnuolo, MD; Associate Professor
Joseph Sudano, PhD; Assistant Professor
Yasir Tarabichi, MD; Assistant Professor
Kathryn Teng, MD; Associate Professor
John Thornton, MD; Associate Professor
Michelle Treasure, MD; Assistant Professor
Nisheet Waghray, MD; Assistant Professor
E. Walker, MD; Assistant Professor
Bingcheng Wang, PhD; Professor
Edward Warren, MD; Associate Professor
Brook Watts, MD; Associate Professor
Peter Wiest, MD; Associate Professor
Sherrie Williams, MD; Associate Professor
M. Wolfe, MD; Professor
Atsuko Yamahiro, MD; Assistant Professor
Yisheng Yang, MD PhD; Assistant Professor
Cheung Yue, MD; Associate Professor
Ohad Ziv, MD; Assistant Professor
Neurological Surgery
Robert Geertman, MD PhD; Assistant Professor
Jonah Grossman, MD; Assistant Professor
Michael Kelly, MD; Assistant Professor
Matt Likavec, MD; Associate Professor
James Liu, MD; Assistant Professor
Ben Roitberg, MD; Professor

Neurology
Michael Bahntge, MD; Assistant Professor
Joseph Hanna, MD; Associate Professor
LingLing Rong, MD; Assistant Professor
Marc Winkelman, MD; Associate Professor

Orthopaedics
Blaine Bafus, MD; Assistant Professor
Laurel Beaverly, MD MPH; Assistant Professor
Stephen Cheng, MD; Assistant Professor
Adam Hirschfeld, MD; Assistant Professor
Harry Hoyen, MD; Associate Professor
Michael Keith, MD; Professor
Kevin Kilgore, PhD; Professor
Ari Levine, MD; Assistant Professor
Brendan Patterson, MD; Professor
Heather Vallier, MD; Professor
Glenn Wera, MD; Associate Professor
John Wilber, MD; Professor
Roger Wilber, MD; Assistant Professor

Otolaryngology
Catherine Henry, MD; Assistant Professor
Steven Houser, MD; Professor
Freedom Johnson, MD; Assistant Professor
David Ludlow, MD; Assistant Professor
Gia Marotta, MD; Assistant Professor
David Stepnick, MD; Professor

Pathology
Salman Ayub, MBBS; Assistant Professor
Timothy Beddow, MD; Assistant Professor
Dan Cai, MBBS; Assistant Professor
Michael Ip, PhD; Associate Professor
Lawrence Kass, MD; Professor
Amer Khiyami, MD; Assistant Professor

Allyson Kozak, PhD MBA; Assistant Professor
Vikram Palamalai, MBBS PhD; Assistant Professor
Rania Rayes, MD; Assistant Professor
Joram Sawady, MD; Assistant Professor
Pamella Abghari, MD; Assistant Professor
Nazha Abughali, MD; Professor
David Bar-Shain, MD; Associate Professor
David Birnkrant, MD; Professor
Hulya Bukulmez, MD; Associate Professor
Susan Carlin, MD; Assistant Professor
Kobkul Chotikanatis, MD; Assistant Professor
Marc Collin, MD; Associate Professor
Kathryn Corrigan, MD; Assistant Professor
Carol Crowe, MD; Associate Professor
Ines del Cuevas Rolon, MD; Assistant Professor
Ajuah Davis, MD; Instructor
Irene Dietz, MD; Associate Professor
Chantal Dothey, MD; Assistant Professor
Philip Fragassi, MD; Assistant Professor
Joshua Friedman, MD; Assistant Professor
Abdulla Ghor, MBBS; Associate Professor
Sharon Groh-Wargo, PhD; Professor
Reema Gulati, MBBS; Assistant Professor
Nada Haddad, MD; Assistant Professor
Maria Herran, MD; Assistant Professor
Irwin Jacobs, MD; Assistant Professor
Kristin Kaelber, MD PhD; Assistant Professor
Harry Kiefer, MD; Instructor
Deepak Kumar, MBBS; Professor
Catherine Lipman, MD; Senior Instructor
Maroun Mhanna, MD; Professor
John Moore, MD; Professor
Rocio Moran, MD; Assistant Professor
Robert Needlman, MD; Professor
Margarita Neyman, MD; Assistant Professor
<table>
<thead>
<tr>
<th>Faculty Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lisa Shah, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Robert Smith, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Rajesh Tampi, MBBS;</td>
<td>Professor</td>
</tr>
<tr>
<td>Vikram Vaka, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Robert Weiss, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Emily White, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Radiology</td>
<td></td>
</tr>
<tr>
<td>William Baughman, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Erol Beytas, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Adam Blum, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Ignacio Chiong, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Christina Clemow, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Rachna Dutta, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Christine Eckhauser, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Robert Ferguson, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Andrew Goldberg, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Vikas Jain, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Timothy Kasprzak, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Donn Kirschenbaum, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Alexander Kondow, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Anthony Minotti, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Dubravka Oravec, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Avram Pearlstein, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Mark Rzeszotarski, PhD;</td>
<td>Professor</td>
</tr>
<tr>
<td>Jill Schieda, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Rajiv Shah, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Stephen Tamarkin, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Lee Tseng, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Reproductive Biology</td>
<td></td>
</tr>
<tr>
<td>Kavita Arora, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Jennifer Bailit, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Marie Blossom, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Patrick Catalano, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Edward Chien, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Joel Escobedo, MD PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Thomas Frank, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Kelly Gibson, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Sara Gradisar, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Paula Hendryx, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Sarah Kane, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Gregory Kitagawa, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Sofia Lieser, MD</td>
<td>Instructor</td>
</tr>
<tr>
<td>Sally MacPhedran, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Jeffrey Mangel, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Brian Mercer, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Stephen Myers, DO</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Robert Pollard, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Ahmad Razi, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Kimberly Resnick, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Barbara Rhoads, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Dianne Schubeck, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Abdelwahab Shalodi, MBBCh;</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Linda-Dalal Shiber, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Phillip Shuffer, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Sareena Singh, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Bradley Stetzer, DO</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Maureen Suster, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>William Todia, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Steven Weight, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Surgery</td>
<td></td>
</tr>
<tr>
<td>John Alexander, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Bruce Averbook, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Elisa Bala, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Sergio Bardaro, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Bernard Boulanger, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Christopher Brandt, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Jeffrey Claridge, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>John Como, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Kristen Conrad-Schnetz, DO;</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Firouz Daneshgari, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Joseph Golob, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Kevin Grimes, MD</td>
<td>Assistant Professor</td>
</tr>
</tbody>
</table>
Ann Hanna-Mitchell, PhD; Assistant Professor
Vanessa Ho, MD MPH; Assistant Professor
Megan Holmes, OD; Senior Instructor
Roderick Jordan, MD; Assistant Professor
Natalie Joseph, MD; Associate Professor
Bram Kaufman, MD; Associate Professor
Anjay Khandelwal, MBBS; Assistant Professor
Laura Kreiner, MD; Assistant Professor
Benjamin Li, MD; Professor
Guiming Liu, MD PhD; Associate Professor
Mark Malangoni, MD; Professor
Edward Mansour, MD; Professor
Amy McDonald, MD; Assistant Professor
Christopher McHenry, MD; Professor
Daniel Medalie, MD; Assistant Professor
Mireilla Moise, MD; Assistant Professor
Carvell Nguyen, MD PhD; Assistant Professor
Nimitt Patel, MD; Assistant Professor
Paul Pribe, MD; Associate Professor
William Roscoe, DO; Assistant Professor
David Rowe, MD; Assistant Professor
Rupa Shah, MD; Assistant Professor
Susan Sharpe, MD; Assistant Professor
Christopher Smith, MD; Assistant Professor
John Spirmak, MD; Professor
Thomas Steinemann, MD; Professor
Jean Stevenson, MD; Associate Professor
Melissa Times, MD; Assistant Professor
Ali Totonchi, MD; Associate Professor
Esther Tseng, MD; Assistant Professor
Charles Yowler, MD; Professor
Hinda Abramoff, DO; Assistant Professor
Andrej Alfirevic, MD; Associate Professor
Maged Argalious, MBBS; Professor
Mohamed Attala, MB, Bch; Professor
Rafi Avitsian, MD; Professor
Sabry Ayad, MD; Professor
Sabri Barsoum, MBBCb; Assistant Professor
Charles Bashour, MD; Associate Professor
Sekar Bhavani, MBBS; Assistant Professor
Robert Bolash, MD; Assistant Professor
Michelle Capdeville, MD; Associate Professor
Jianguo Cheng, MD PhD; Professor
Miguel Cruz, MD; Assistant Professor
Kenneth Cummings, MD; Assistant Professor
Jacek Cywinski, MD; Associate Professor
D. Doyle, MD PhD; Professor
Andra Duncan, MD; Associate Professor
Hesham Abdelaziz Elsharkawy, MBBCb; Associate Professor
Wael Esa, MBBCb PhD; Assistant Professor
Ehab Farag, MBBS; Professor
Ursula Galway, MBBCb; Assistant Professor
John George, MD; Assistant Professor
Mariya Geube, MD; Assistant Professor
Girgis Girgis, MBBS DO; Assistant Professor
Alexandru Gottlieb, MD; Associate Professor
Jennifer Hargrave, DO; Assistant Professor
Samuel Irefin, MD; Associate Professor
Ashish Khanna, MBBS; Assistant Professor
Andrea Kurz, MD; Professor
Michael Licina, MD; Professor
Sandra Machado, MD; Assistant Professor
Mariel Manlapaz, ; Assistant Professor
Donn Marciniak, MD; Assistant Professor
Edward Mascha, PhD; Associate Professor
Marco Maurta, MD; Assistant Professor
Anand Mehta, MBBS; Assistant Professor

Cleveland Clinic Lerner College of Medicine

Full-Time Faculty
Anesthesiology
Basem Abdelmalak, MD; Professor
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nagy Mekhail, MBBS</td>
<td>Professor</td>
<td>Sandra Snyder, DO</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Howard Nearman, MD</td>
<td>Professor</td>
<td>Jessica Strasburg, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Michael O’Connor, DO</td>
<td>Assistant Professor</td>
<td>Amber Tully, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Jerome O’Hara, MD</td>
<td>Professor</td>
<td>Carl Tyler, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Silvia Perez-Proto, MD</td>
<td>Assistant Professor</td>
<td>Harneet Walia, MBBS</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Nadeem Rahman, MD</td>
<td>Assistant Professor</td>
<td>Brian Wells, MD PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Shobana Rajan, MBBS</td>
<td>Assistant Professor</td>
<td>Samina Yunus, MBBS</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Antonio Ramirez, MD</td>
<td>Assistant Professor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michael Roizen, MD</td>
<td>Professor</td>
<td>Mohamed Abazeed, MD PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Ellen Rosenquist, MD</td>
<td>Assistant Professor</td>
<td>Hasim Abbas, MBBS</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>James Rowbottom, MD</td>
<td>Professor</td>
<td>Mouin Abdallah, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Kurt Ruetzler, MD</td>
<td>Assistant Professor</td>
<td>Loutfi Aboussouan, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Shiva Sale, MBBS</td>
<td>Assistant Professor</td>
<td>Jame Abraham, MBBS</td>
<td>Professor</td>
</tr>
<tr>
<td>Peter Schoenwald, MD</td>
<td>Associate Professor</td>
<td>David Adelstein, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Daniel Sessler, MD</td>
<td>Professor</td>
<td>Anjali Advani, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Roshni Sreedharan, MBBS</td>
<td>Assistant Professor</td>
<td>Manmeet Ahluwalia, MBBS</td>
<td>Professor</td>
</tr>
<tr>
<td>Khaldoun Tarakji, MD MPH</td>
<td>Assistant Professor</td>
<td>Haitham Ahmed, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Christopher Troianos, MD</td>
<td>Professor</td>
<td>Francisco Almeida, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Carlos Trombetta, MD</td>
<td>Professor</td>
<td>Murat Altinay, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Alparslan Turan, MD</td>
<td>Professor</td>
<td>Sudha Amarnath, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Guangxiang (Joe) Yu, MD</td>
<td>Assistant Professor</td>
<td>Amit Anand, MBBS</td>
<td>Professor</td>
</tr>
<tr>
<td>Mark Zahniser, MD</td>
<td>Assistant Professor</td>
<td>Dana Angelini, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Family Medicine</td>
<td></td>
<td>Joshua Arbesman, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Robert Bales, MD</td>
<td>Assistant Professor</td>
<td>Joshua Augustine, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Alan Cadesky, MD</td>
<td>Associate Professor</td>
<td>Moises Auron, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Kendalle Cobb, MD</td>
<td>Associate Professor</td>
<td>Maja Babic, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Lisa DeSantis, MD</td>
<td>Assistant Professor</td>
<td>Salim Balik, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Laura Dorr-Lipold, MD</td>
<td>Assistant Professor</td>
<td>Sarah Banks, PhD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Cory Fisher, DO</td>
<td>Assistant Professor</td>
<td>John Bartholomew, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Donald Ford, MD</td>
<td>Assistant Professor</td>
<td>Bryan Baskin, DO</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Charles Garven, MD</td>
<td>Assistant Professor</td>
<td>Joseph Baskin, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Robert Kelly, MD</td>
<td>Associate Professor</td>
<td>Pelin Batur, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Aphrodite Papadakis, MD</td>
<td>Assistant Professor</td>
<td>Jocelyn Bautista, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Richard Pressler, MD</td>
<td>Assistant Professor</td>
<td>Scott Bea, PsyD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Michael Rabovsky, MD</td>
<td>Assistant Professor</td>
<td>Robert Bermel, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Kelly Raj, DO</td>
<td>Assistant Professor</td>
<td>Francios Bethoux, MD</td>
<td>Professor</td>
</tr>
</tbody>
</table>
Rakesh Bhalla, MBBS; Assistant Professor
Mandeep Bhargava, MBBS; Associate Professor
Saurin Bhatt, MD; Instructor
Saundra Bierer, PhD; Associate Professor
Lyla Blake-Gumbs, MD; Assistant Professor
Brian Bolwell, MD; Professor
Aaron Bonner-Jackson, PhD; Assistant Professor
Andrei Brateanu, MD; Assistant Professor
Kyle Brizendine, MD; Assistant Professor
Karen Broer, PhD; Assistant Professor
David Bronson, MD; Professor
Laura Buccini, PhD M PH; Assistant Professor
George Budd, MD; Professor
Marie Budev, DO; Professor
Bartolome Burguera, MD PhD; Professor
Robyn Busch, PhD; Assistant Professor
Leonard Calabrese, OD; Professor
Daniel Cantillon, MD; Associate Professor
William Carey, MD; Professor
Hetty Carraway, MD; Associate Professor
Caroline Casserly, MD; Assistant Professor
Neal Chaisson, MD; Assistant Professor
Samuel Chao, MD; Associate Professor
Soumya Chatterjee, MBBS; Associate Professor
Georgiana Cheng, MD; Senior Instructor
Sheen Cherian, MBBS; Assistant Professor
Cory Chevalier, MD; Assistant Professor
Humberto Choi, MD; Assistant Professor
Mina Chung, MD; Professor
Jay Ciezki; ; Professor
Eric Cober, MD; Assistant Professor
Jeffrey Cohen, MD; Professor
Colleen Colbert, PhD; Associate Professor
Patrick Collier, MBBC;h; Assistant Professor
Devon Conway, MD; Assistant Professor
Edward Copelan, MD; Professor
Miriam Cremer, MD; Associate Professor
Gail Cresci, PhD; Assistant Professor
Jeffrey Cummings, MD; Professor
Jarrod Dalton, PhD; Assistant Professor
Dhimant Dani; ; Assistant Professor
Srinivasan Dasarathy, MBBS; Professor
Elliott Dassenbrook, MD; Assistant Professor
Mellar Davis, MD; Professor
Hamed Daw, MD; Assistant Professor
Chad Deal, MD; Associate Professor
Robert Dean, MD; Assistant Professor
Sevag Demirjian, MD; Assistant Professor
Milind Desai, MD; Professor
Abhishek Deshpande, MBBS PhD; Assistant Professor
Matthew Dettmer, MD; Assistant Professor
Toufik Djemil, PhD; Assistant Professor
Jessica Donato, MD; Assistant Professor
Steve Dorsey, MD; Assistant Professor
Abhijit Duggal, MBBS; Assistant Professor
Hien Duong, MD; Assistant Professor
Raed Dweik, MBBS; Professor
Ignacio Echenique, MD; Assistant Professor
Stephen Ellis, MD; Professor
Rakesh Engineer, MD; Assistant Professor
Serpil Erzurum, MD; Professor
Bassam Estfan, MD; Assistant Professor
Ronan Factora, MD; Assistant Professor
Tatiana Falcone, MD; Assistant Professor
Maan Fares, MD; Assistant Professor
Samar Farha, MD; Assistant Professor
Michael Faulx, MD; Assistant Professor
Hubert Fernandez, MD; Professor
Baruch Fertel, MD; Assistant Professor
Carolyn Fisher, PhD; Assistant Professor
Catherine Fleisher, MD; Assistant Professor
Darlene Floden, PhD; Assistant Professor
Nancy Foldvary-Schafer, DO; Professor
Paul Ford, PhD; Associate Professor
Cecile Foshee, PhD; Assistant Professor
Robert Fox, MD; Professor
Kathleen Franco-Bronson, MD; Professor
Thomas Fraser, MD; Associate Professor
Frederick Frost, MD; Professor
Scott Gabbard, MD; Assistant Professor
John Gale, PhD; Assistant Professor
Rachel Galio, PhD; Assistant Professor
Nestor Galvez-Jimenez, MD; Professor
Jorge Garcia, MD; Assistant Professor
Surafel Gebreselassie, MD; Assistant Professor
Jessica Geiger, MD; Assistant Professor
Aaron Gerds, MD; Assistant Professor
Timothy Gilligan, MD; Associate Professor
Andrew Godley, PhD; Assistant Professor
Joao Gomes, MD; Assistant Professor
Steven Gordon, MD; Professor
Heather Gornik, MD; Associate Professor
Eiran Gorodeski, MD MPH; Associate Professor
Carmen Gotta, MD; Assistant Professor
Kush Goyal, MD; Assistant Professor
Aric Greenfield, MD; Assistant Professor
John Greskovich, MD; Assistant Professor
Bingqi Guo, PhD; Assistant Professor
Ajay Gupta, MD; Professor
Abdo Haddad, MD; Assistant Professor
Rula Hajj-Ali, MD; Associate Professor
Betty Hamilton, MD; Assistant Professor
Amir Hamrahan, MD; Professor
Brian Harte, MD; Associate Professor
Umur Hatipoglu, MD; Associate Professor
Leslie Heinberg, PhD; Professor
Gustavo Heresi, MD; Assistant Professor
Carrie Hersh, DO; Assistant Professor
Robert Heyka, MD; Assistant Professor
James Hicks, PhD; Assistant Professor
Brian Hill, MD PhD; Assistant Professor
Roberts Hobbs, MD; Associate Professor
Joel Holland, MD; Assistant Professor
Eileen Hsich, MD; Assistant Professor
Ming Hu, PhD; Assistant Professor
Le Hua, MD; Assistant Professor
Alan Hull, PhD; Professor
M. Husni, MD; Assistant Professor
Muhammad Hussain, MD; Associate Professor
Fredric Hustey, MD; Associate Professor
Lamia Ibrahim, MD; Assistant Professor
Sally Ibrahim, MD; Assistant Professor
Peter Imrey, PhD; Professor
J. Isaacson, MD; Associate Professor
Rafi Israeli, MD; Assistant Professor
Wael Jaber, MD; Professor
Karen James, MD; Associate Professor
Lara Jeth, MD; Associate Professor
Christine Jellis, MBBS PhD; Assistant Professor
Xavier Jimenez, MD; Assistant Professor
Xian Jin, MD PhD; Associate Professor
Stacey Jolly, MD; Associate Professor
Nikhil Joshi, MBBS; Assistant Professor
Vidyasagar Kalahasti, MBBS; Assistant Professor
Matt Kalaycio, MD; Professor
Venkatesh Kambhampati, MD; Assistant Professor
Samir Kapadia, MD; Professor
Matthew Karafa, PhD; Assistant Professor
Sangeeta Kashyap, MD; Professor
Takhar Kasumov, PhD; Assistant Professor
Michael Kattan, PhD; Professor
Roop Kaw, MBBS; Associate Professor
Lanea Keller, MD; Assistant Professor
Hermann Kessler, MD PhD; Professor
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anne Neff, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Kathleen Neuendorf, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Gennady Neyman, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Kathrin Nicolacakis, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Mark Niebauer, MD PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Craig Nielsen, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Steven Nissen, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Amy Nowacki, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Nancy Obuchowski, PhD</td>
<td>Professor</td>
</tr>
<tr>
<td>Daniel Ontaneda, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Robert O'Shea, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Matthew Pappas, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Malav Parikh, MBBS</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Karen Parker, MD PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Mansour Parsi, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Preethi Patel, MBBS</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Shnehal Patel, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Holly Pederson, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>David Peereboom, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Nathan Pennell, MD PhD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Elizabeth Pfoh, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Dermot Phelan, MBBch PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Michael Phelan, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Lilly Pien, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Jagan Pillai, MBBS PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Ela Plow, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Seth Podolsky, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Emilio Poggio, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Zoran Popovic, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Lori Posk, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Peng Qi, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>John Queen, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Tomas Radivoyevitch, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Alexander Rae-Grant, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Jeevanantham Rajeswaran, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Jennifer Ramsey, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Stephen Rao, PhD</td>
<td>Professor</td>
</tr>
<tr>
<td>Anita Reddy, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Susan Rehm, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Mary Rensel, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Florian Rieder, MD PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Curtis Rimmerman, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Hernan Rincon-Choles, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Brian Rini, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Julie Rish, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Maged Rizk, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Michael Rocco, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Susannah Rose, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Michael Rothberg, MD MPH</td>
<td>Professor</td>
</tr>
<tr>
<td>Kasia Rothenberg, MD PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Richard Rudick, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Renato Samala, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Yogen Saunthararajah, MBBCH</td>
<td>Professor</td>
</tr>
<tr>
<td>Michael Schaefer, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Rachel Scheraga, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Steven Schmitt, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Jesse Schold, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Steven Schwartz, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Raul Seballos, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Jennifer Sekeres, D PH</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Mikkael Sekeres, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Chirag Shah, MDr</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Marc Shapiro, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Abdullah Shatnawi, MBBS</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Bo Shen, MBBS</td>
<td>Professor</td>
</tr>
<tr>
<td>Dale Shepard, MD PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Laura Shoemaker, DO</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Nabin Shrestha, MBBS</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Andrea Sikon, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>James Simon, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Courtney Smalley, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Ronald Sobecks, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Alexandru Almasan, PhD</td>
<td>Professor</td>
</tr>
<tr>
<td>Sanjay Anand, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Suneel Apte, MBBS</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Abul Arif, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Mark Aronica, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Kewal Asosingh, PhD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Kulwant Aulak, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>William Baldwin, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Selva Baltan, MD</td>
<td>PhD; Associate Professor</td>
</tr>
<tr>
<td>Smarajit Bandyopadhyay, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Lynn Bekris, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Cornelia Bergmann, PhD</td>
<td>Professor</td>
</tr>
<tr>
<td>Kathleen Berkner, PhD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Pallavi Bhattaram, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Jonathan Brown, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Leslie Bruggeman, PhD</td>
<td>Professor</td>
</tr>
<tr>
<td>Sylvain Brunet, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Tatiana Byzova, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Ritu Chakravarti, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Unnikrishnan Chandrasekharan, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Saurabh Chattopadhyay, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Jacqueline Chen, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>HyeonJoo Cheon, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Jan Claesen, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Suzy Comhair, PhD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>James Crish, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Margot Damaser, PhD</td>
<td>Professor</td>
</tr>
<tr>
<td>Hod Dana, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Dimitrios Davalos, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Carol de la Motte, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Kathleen Derwin, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Tara Desilva, PhD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Joseph DiDonato, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Donna Driscoll, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Ranjan Dutta, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Thomas Egelhoff, PhD</td>
<td>Professor</td>
</tr>
<tr>
<td>Ahmet Erdemir, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Robert Fairchild, PhD</td>
<td>Professor</td>
</tr>
<tr>
<td>James Finke, PhD</td>
<td>Professor</td>
</tr>
<tr>
<td>Claudio Fiocchi, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Arun Fleischman, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Paul Fox, PhD</td>
<td>Professor</td>
</tr>
<tr>
<td>Kiyotaka Fukamachi, MD PhD</td>
<td>Professor</td>
</tr>
<tr>
<td>Arتاب Ghosh, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Chaitali Ghosh, PhD</td>
<td>Professor</td>
</tr>
<tr>
<td>Candece Gladson, MD</td>
<td>Professor</td>
</tr>
<tr>
<td>Zihua Gong, MD PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Neetu Gupta, PhD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Thomas Hamilton, PhD</td>
<td>Professor</td>
</tr>
<tr>
<td>Vincent Hascall, PhD</td>
<td>Professor</td>
</tr>
<tr>
<td>Stanley Hazen, MD PhD</td>
<td>Professor</td>
</tr>
<tr>
<td>Christopher Hine, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Masahiro Hitomi, MD PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Chi-Fan Hockings, PharmD PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>George Hoppe, PhD</td>
<td>Professor</td>
</tr>
<tr>
<td>Dirk Hubmacher, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Ritika Jaini, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Jan Jensen, PhD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Trine Jorgensen, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Bong Jae Jun, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Satish Kalhan, MBBS</td>
<td>Professor</td>
</tr>
<tr>
<td>Asha Kallianpur, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>James Kaltenbach, PhD</td>
<td>Professor</td>
</tr>
<tr>
<td>Zi Zhen Kang, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Sadasiva Karnik, PhD</td>
<td>Professor</td>
</tr>
<tr>
<td>Sean Kessler, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>John Kirwan, PhD</td>
<td>Professor</td>
</tr>
<tr>
<td>Vijay Krishna, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Vinod Labhasetwar, PhD</td>
<td>Professor</td>
</tr>
<tr>
<td>Justin Lathia, PhD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Mark Lauer, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Jeongwu Lee, PhD</td>
<td>Assistant Professor</td>
</tr>
</tbody>
</table>
Jennifer Yu, MD PhD; Associate Professor
Maciej Zborowski, PhD; Associate Professor
Bin Zhang, PhD; Associate Professor
Jianjun Zhao, MD; Assistant Professor
Weifei Zhu, PhD; Assistant Professor
Neurological Surgery
Lilyana Angelov, MD; Professor
Gene Barnett, MD; Professor
Edward Benzel, MD; Professor
William Bingaman, MD; Professor
Jorge Gonzales-Martines, MD PhD; Professor
Varun Kshettry, MD; Assistant Professor
Darlene Lobel, MD; Associate Professor
Andre Machado, MD PhD; Professor
Mohammad Mohammad, MD; Assistant Professor
Sean Nagel, MD; Assistant Professor
Kaine Onwuzulike, MD PhD; Assistant Professor
Peter Rasmussen, MD; Professor
Pablo Recinos, MD; Assistant Professor
Violette Recinos, MD; Assistant Professor
Michael Steinmetz, MD; Professor
Michael Vogelbaum, MD PhD; Professor
Ophthalmology
Bela Anand-Apte, PhD; Professor
Amy Babiuch, MD; Assistant Professor
Vera Bonilha, PhD; Assistant Professor
John Crabb, PhD; Professor
William Dupps, MD PhD; Professor
Justis Ehlers, MD; Assistant Professor
Christopher Erwin, OD; Clinical Assistant Professor
Richard Gans, MD; Assistant Professor
Fatema Ghasia, MD; Assistant Professor
Stephanie Hagstrom, PhD; Associate Professor
Peter Kaiser, MD; Professor
Arif Khan, MD; Professor
Ronald Krueger, MD; Professor
Pathology
Fadi Abdul-Karim, MD; Professor
Daniela Allende, MD; Associate Professor
Andrea Arrossi, MD; Assistant Professor
Suzanne Bakdash, MD; Assistant Professor
Steven Billings, MD; Professor
Christine Booth, MD; Associate Professor
David Bosler, MD; Assistant Professor
Benjamin Calhoun, MD PhD MBA; Assistant Professor
Andres Chiesa-Vottero, MD; Assistant Professor
Deborah Chute, MD; Associate Professor
James Cook, MD PhD; Associate Professor
Claudiu Cotta, MD PhD; Assistant Professor
Kathryn Dyhdalo, MD; Assistant Professor
Tarik Elsheikh, MBBCH; Professor
Carol Farver, MD; Professor
John Goldblum, MD; Professor
Ilyssa Gordon, MD; Assistant Professor
Daniel Martin, MD; Professor
Shari Martyn, MD; Assistant Professor
Neal Peachey, PhD; Professor
Brian Perkins, PhD; Associate Professor
Aleksandra Rachitskaya, MD; Assistant Professor
Edward Rockwood, MD; Associate Professor
Rony Sayegh, MD; Assistant Professor
Andrew Schachat, MD; Professor
Jonathan Sears, MD; Associate Professor
Annapurna Singh, MBBS; Associate Professor
Arun Singh, MD; Professor
Rishi Singh, MD; Associate Professor
Scott Smith, MD MPH; Professor
K.P. Tam, PhD; Assistant Professor
Elias Traboulsi, MD; Professor
Steven Wilson, MD; Professor
Minzhong Yu, PhD; Assistant Professor
Alex Yuan, MD PhD; Assistant Professor
Susan Harrington, PhD; Assistant Professor
Eric Hsi, MD; Professor
Kandice Kottke-Marchant, MD PhD; Professor
Cristina Magi-Galluzzi, MD PhD; Professor
Adam McShane, PhD; Assistant Professor
Megan Nakashima, MD; Assistant Professor
Marvin Natowicz, MD PhD; Professor
Sarah Ondrejka, DO; Assistant Professor
Deepa Patil, MD; Associate Professor
Thomas Plesec, MD; Assistant Professor
Richard Prayson, MD; Professor
Gary Procop, MD; Professor
Christopher Przybycin, MD; Assistant Professor
Jordan Reynolds, MD; Associate Professor
Sandra Richter, MD; Associate Professor
E. Rodriguez, MD; Professor
Heesun Rogers, MD PhD; Assistant Professor
J. Rowe, MD; Assistant Professor
Brian Rubin, MD PhD; Professor
Suneeti Sapatnekar, MD PhD; Assistant Professor
Akeesha Shah, MD; Assistant Professor
Charles Sturgis, MD; Associate Professor
Carmela Tan, MD; Associate Professor
Bin Yang, MD PhD; Professor
Gabrielle Yeaney, MD; Associate Professor
Lisa Yerian, MD; Assistant Professor
Pediatrics
Jalal Abu-Shaweesh, MBBS; Associate Professor
Hany Aly, MD; Professor
Peter Anderson, MD; Professor
Peter Aziz, MD; Associate Professor
Nella Blyumin, MD; Assistant Professor
Gerard Boyle, MD; Associate Professor
Silvia Cardenas Zegarra, MD; Assistant Professor
John Carl, MD; Associate Professor
Anirudha Das, MBBS; Assistant Professor
Katherine Dell, MD; Professor
Francine Erenberg, MD; Assistant Professor
Angelika Erwin, MD PhD; Assistant Professor
Frank Esper, MD; Assistant Professor
Chidiebere Ezetodu, MBBS; Assistant Professor
Charles Foster, MD; Associate Professor
Thomas Frazier, PhD; Assistant Professor
Kimberly Giuliano, MD; Assistant Professor
Blanca Gonzalez, MD; Associate Professor
Keshava Gowda, MBBS; Associate Professor
Rabi Hanna, MD; Assistant Professor
Sabine Iben, MD; Assistant Professor
Halima Janjua, MBBS; Assistant Professor
Skyler Kalady, MD; Assistant Professor
Eric Kodish, MD; Professor
Rukmini Komarlu, MBBS; Assistant Professor
Nathan Kraynack, MD; Associate Professor
Sangeeta Krishna, MD; Assistant Professor
Suet Lam, MD; Assistant Professor
Katherine Lamparyk, PsyD; Assistant Professor
Yoav Littner, MD; Assistant Professor
M. Lonzer, MD; Assistant Professor
Michael Macknin, MD; Professor
Michael Manos, PhD; Assistant Professor
Raed Bou Matar, MD; Assistant Professor
Ajith Matthew, MD; Assistant Professor
Laura Milgram, MD; Associate Professor
Sumana Narasimhan, MBBS; Associate Professor
Hanan Nashed, MD; Assistant Professor
Sumit Parikh, MD; Associate Professor
Giovanni Piedimonte, MD; Professor
Lourdes Prieto, MD; Associate Professor
Nurjian Quaraishy, MD; Assistant Professor
Fariba Rezaee, MD; Assistant Professor
Ricardo Rodriguez, MD; Associate Professor
Ellen Rome, MD; Professor
Seth Rotz, MD; Assistant Professor
Elizabeth Saarel, MD; Professor
Camille Sabella, MD; Associate Professor
Ibrahim Sammour, MBBS; Assistant Professor
Brian Schroer, MD; Assistant Professor
Elaine Schulte, MD; Professor
David Shafran, MD; Assistant Professor
Roopa Thakur, MD; Assistant Professor
Christine Traul, MD; Assistant Professor
Kathryn Weise, MD; Associate Professor
Gary Williams, MD; Assistant Professor
Elaine Wyllie, MD; Professor
Robert Wyllie, MD; Professor
Kenneth Zahka, MD; Professor
Radiology
Mark Baker, MD; Professor
Maria Bayona Molano, MD; Assistant Professor
Erik Beall, PhD; Assistant Professor
Pallab Bhattacharyya, PhD; Assistant Professor
Richard Brunken, MD; Professor
Manuel Cerqueira, MD; Professor
Christopher Coppa, MD; Assistant Professor
Patricia Delzell, MD; Assistant Professor
Frank DiFilippo, PhD; Associate Professor
Frank Dong, PhD; Associate Professor
Mohamed Elgabaly, MBBC; Assistant Professor
Myra Kay Feldman, MD; Assistant Professor
Scott Flamm, MD; Professor
Michael Forney, MD; Assistant Professor
Namita Gandhi, MBBS; Assistant Professor
Ruffin Graham, MD; Assistant Professor
Brian Herts, MD; Professor
Hakan Ilaslan, MD; Professor
Stephen Jones, MD PhD; Assistant Professor
Baljendra Kapoor, MBBS; Associate Professor
Karunakaravel Karuppasamy, MBBS; Assistant Professor
Katherine Koenig, PhD; Assistant Professor
Jason Lempel, MD; Assistant Professor
Daniel Lockwood, MD; Assistant Professor
Ihsan Mamoun, MBBS; Assistant Professor
Charles Martin, MD; Assistant Professor
Thomas Masaryk, MD; Professor
Gordon McLennan, MD; Professor
Michael Modic, MD; Professor
Melissa Myers, MD; Assistant Professor
Arthur Parsee, MD; Assistant Professor
Joshua Polster, MD; Associate Professor
Erick Remer, MD; Professor
Paul Ruggieri, MD; Professor
Ken Sakaie, PhD; Assistant Professor
Jean Schils, MD; Assistant Professor
Paul Schoenhagen, MD; Professor
Shetal Shah, MD; Assistant Professor
Wan Yong Shin, PhD; Assistant Professor
Sankaran Shrikanthan, MD; Assistant Professor
Claus Simpfendorfer, MD; Assistant Professor
Naveen Subhas, MD; Associate Professor
Murali Sundaram, MBBC; Professor
Joseph Veniero, MD; Assistant Professor
Surgery
Robert Abouassaly, MD; Associate Professor
Kareem Abu-Elmagd, MBBC; Professor
Ashok Agarwal, PhD; Professor
Usman Ahmad, MBBS; Assistant Professor
Diya Alaeddien, MD; Assistant Professor
Mariam AlHilli, MBBC; Assistant Professor
Ali Aminian, MD; Associate Professor
Kenneth Angermeier, MD; Professor
Samantha Anne, MD; Associate Professor
Sofya Asfaw, MD; Assistant Professor
Kathleen Ashton, PhD; Associate Professor
Federico Aucejo, MD; Associate Professor
Cynthia Austin, MD; Associate Professor
Faisal Bakaeen, MD; Professor
Robert Ballock, MD; Professor
Wael Barsoum, MD; Professor
Bahar Bassiri Gharb, MD PhD; Assistant Professor
Kalman Bencsath, MD; Assistant Professor
Michael Benninger, MD; Professor
Eren Berber, MD; Professor
Ryan Berglund, MD; Assistant Professor
Steven Bernard, MD; Associate Professor
Damien Billow, MD; Assistant Professor
Eugene Blackstone, MD; Professor
Michael Bloomfield, MD; Assistant Professor
Linda Bradley, MD; Professor
Stacy Brethauer, MD; Associate Professor
Paul Bryson, MD; Assistant Professor
Steven Campbell, MD PhD; Professor
Tony Capizzani, MD; Assistant Professor
Sricharan Chalikonda, MBBS; Associate Professor
Daniel Clair, MD; Professor
Joseph Crowe, MD; Professor
Robert DeBernardo, MD; Associate Professor
Conor Delaney, MBBS; Professor
Anthony DeRoss, MD; Assistant Professor
Nina Desai, PhD; Associate Professor
Teresa Diago Uso, MD; Assistant Professor
Brian Donley, MD; Professor
Richard Drake, PhD; Professor
Jennifer Eaton, DO; Assistant Professor
Kenneth Edelman, MD; Assistant Professor
Kevin El-Hayek, MD; Assistant Professor
Jonathan Emery, MD; Assistant Professor
Peter Evans, MD PhD; Professor
Tommaso Falcone, MD; Professor
Khaled Fareed, MBBC; Assistant Professor
Ruth Farrell, MD; Associate Professor
Lutul Farrow, MD; Associate Professor
Stuart Flechner, MD; Professor
Rebecca Flyckt, MD; Assistant Professor
Judith French, PhD; Assistant Professor
Michael Fritz, MD; Associate Professor
Masato Fujiki, MD PhD; Assistant Professor
Brian Gastman, MD; Professor
Amir Ghaznavi, MD; Assistant Professor
Inderjit Gill, MD; Associate Professor
A. Gillinov, MD; Professor
Tosin Goje, MBBS; Assistant Professor
Jeffrey Goldberg, MD; Professor
David Goldfarb, MD; Professor
Howard Goldman, MD; Professor
Ryan Goodwin, MD; Assistant Professor
Linda Graham, MD; Professor
Stephen Grobmyer, MD; Professor
Sharon Grundfest-Broniatowski, MD; Associate Professor
Sajal Gupta, MBBS; Assistant Professor
Raffi Gurunluoglu, MD; Professor
Georges-Pascal Haber, MD, PhD; Professor
Koji Hashimoto, MD; Associate Professor
John Henderson, MBBS; Professor
Richard Herman, MD; Assistant Professor
Carlos Higuera, MD; Assistant Professor
Brandon Hopkins, MD; Assistant Professor
Michael Horan, MD PhD DDS; Assistant Professor
Emina Huang, MD; Professor
Tracy Hull, MD; Professor
Syed Hussain, MBBS; Assistant Professor
Joseph Iannotti, MD PhD; Professor
Judy Jin, MD; Assistant Professor
J. Jones, MD; Professor
Matthew Kalady, MD; Professor
Jihad Kaouk, MD; Professor
Cathleen Khandelwal, MD; Assistant Professor
Eric Klein, MD; Professor
Alan Kominsky, MD; Assistant Professor
Venkatesh Krishnamurthi, MD; Associate Professor
Matthew Kroh, MD; Associate Professor
Byron Lee, MD PhD; Assistant Professor
Jeremy Lipman, MD; Associate Professor
David Liska, MD; Assistant Professor
Robert Lorenz, MD; Associate Professor
Sean Lyden, MD; Professor
David Magnuson, MD; Assistant Professor
Haider Mahdi, MBBC; Assistant Professor
Christian Massier, MD; Assistant Professor
Jennifer McBride, PhD; Associate Professor
Margaret McKenzie, MD; Associate Professor
Amy Merlino, MD; Assistant Professor
Nathan Mesko, MD; Assistant Professor
Rosemarie Metzger, MD; Assistant Professor
Chad Michener, MD; Associate Professor
Tomislav Mihaljevic, MD; Professor
Kresimira Milas, MD; Professor
Charles Miller, MD; Professor
Claudio Milstein, PhD; Associate Professor
Anthony Miniaci, MD; Professor
Charles Modlin, MD; Associate Professor
Robert Molloy, MD; Assistant Professor
Y-Manoj Monga, MD; Professor
Drogo Montague, MD; Professor
Courtenay Moore, MD; Associate Professor
Trevor Murray, MD; Assistant Professor
Sudish Murthy, MD PhD; Professor
George Muschler, MD; Professor
Jose Navia, MD; Professor
Craig Newman, PhD; Professor
Mark Noble, MD; Professor
Trina Pagano, MD; Assistant Professor
Francis Papay, MD; Professor

Marie Paraiso, MD; Professor
Richard Parker, MD; Professor
Uma Perni, MD; Assistant Professor
Bengt Pettersson, MD PhD; Professor
Jeffrey Ponsky, MD; Professor
Ajita Prabhu, MD; Assistant Professor
Cristiano Quintini, MD; Associate Professor
Raymond Rackley, MD; Professor
Diane Radford, MD; Associate Professor
Rajan Ramanathan, MD; Assistant Professor
Antonio Rampazzo, MD PhD; Assistant Professor
Mitchell Reider, MD; Assistant Professor
Audrey Rhee, MD; Assistant Professor
Eric Ricchetti, MD; Associate Professor
Thomas Rice, MD; Professor
Beri Ridgeway, MD; Assistant Professor
Peter Rose, MD; Professor
Michael Rosen, MD; Professor
Steven Rosenblatt, MD; Assistant Professor
James Rosneck, MD; Assistant Professor
Edmund Sabanegh, MD; Professor
Sambit Sahoo, MBBS PhD; Assistant Professor
Paul Saluan, MD; Assistant Professor
Jason Savage, MD; Associate Professor
Joseph Scharpf, MD; Associate Professor
Philip Schauer, MD; Professor
Mark Schickendanz, MD; Professor
Graham Schwarz, MD; Assistant Professor
William Seitz Jr., MD; Professor
Rakesh Sharma, PhD; Associate Professor
Daniel Shoskes, MD; Professor
Christopher Siegel, MD PhD; Associate Professor
Katherine Singh, MD; Assistant Professor
Allan Siperstein, MD; Professor
Sri Sivalingam, MD; Assistant Professor
Nicholas Smedira, MD; Professor
Christopher Smolock, MD; Assistant Professor
Kurt Spindler, MD; Professor
Kim Stearns, MD; Assistant Professor
Scott Steele, MD; Professor
Robert Stein, MD; Associate Professor
Andrew Stephenson, MD; Associate Professor
Robyn Stewart, MD; Assistant Professor
Luca Stocchi, MD; Professor
Mark Stovsky, MD; Associate Professor
Rakesh Suri, MD DPhil; Professor
Lars Svensson, MBBCh; Professor
Roy Temes, MD; Associate Professor
Michael Tong, MD; Assistant Professor
James Ulchaker, MD; Professor
Mary Uy-Kroh, MD; Assistant Professor
Michael Valente, MD; Assistant Professor
Stephanie Valente, DO; Assistant Professor
Sandip Vasavada, MD; Professor
R. Walsh, MD; Professor
Mark Walters, MD; Professor
Jane Wey, MD; Assistant Professor
Hadley Wood, MD; Associate Professor
Diane Young, MD; Assistant Professor
Hui Zhu, MD; Assistant Professor
James Zins, MD; Professor
Massarat Zutshi, MBBS; Associate Professor

Murray Altose, MD; Professor
Lisa Arfons, MD; Assistant Professor
David Aron, MD; Professor
Stephanie Ashraf, MD; Assistant Professor
Sarah Augustine, MD; Associate Professor
Atallah Baydoun, MD; Senior Instructor
Ekundayo Bolaji, MBBS; Assistant Professor
Robert Bonomo, MD; Professor
Susan Budnick, MD; Instructor
Dalal Chenouda, MD; Assistant Professor
Amanda Clark, MD; Assistant Professor
Niraj Desai, MD; Assistant Professor
Teresa Dolinar, MD; Assistant Professor
Curtis Donskey, MD; Professor
Rawad El Ghoul, MD; Assistant Professor
Corinna Falck-Ytter, MD; Associate Professor
Yngve Falck-Ytter, MD; Professor
Jihane Faress, MD; Assistant Professor
Douglas Flagg, MD; Assistant Professor
Jonathan Goldberg, MD; Assistant Professor
Edith Ho, MD; Assistant Professor
Thomas Hornick, MD; Associate Professor
Karen Horowitz, MD; Professor
Jill Huded, MD; Assistant Professor
Anselma Intini, MD; Assistant Professor
Frank Jacono, MD; Associate Professor
Robin Jump, MD PhD; Associate Professor
Ankush Kalra, MD; Instructor
Margaret Kinnard, MD; Associate Professor
Susan Kirsh, MD; Professor
Melissa Klein, MD; Assistant Professor
Thomas Knauss, MD; Associate Professor
Charles LoPresti, MD; Assistant Professor
Carole Macaron, MD; Assistant Professor
Gerald Maloney, DO; Associate Professor
Rami Manochakian, MD; Assistant Professor

Louis Stokes Cleveland VA Medical Center

Full-Time Faculty
Anesthesiology & Perioperative Medicine
Preeti Gandhi, MBBS; Assistant Professor
Matthew Kellems, MD; Assistant Professor
Ali Mchaourab, MD; Associate Professor
Susan Raphaely, MD; Assistant Professor
Medicine
Ogechi Agwu, MD; Instructor
Megan McNamara, MD; Associate Professor
Meisam Moghbelli, MD; Assistant Professor
Stephen Morris, MD; Instructor
Ronda Mourad, MD; Assistant Professor
Suzanne Muyskens, MD; Senior Instructor
Sally Namboodiri, MD; Assistant Professor
Arabi Naso, MD; Assistant Professor
Attila Nemeth, MD; Assistant Professor
Charles Nock, MD; Assistant Professor
Phyllis Nsiah-Kumi, MD; Assistant Professor
Scott Ober, MD; Associate Professor
Jose Ortiz, MD; Associate Professor
Clifford Packer, MD; Professor
Muralidhar Pallaki, MD; Assistant Professor
Krisztina Papp-Wallace, PhD; Assistant Professor
Helen Pelecanos, MD; Assistant Professor
Amanda Pensiero, MD; Instructor
Federico Perez, MD; Associate Professor
Mathilde Pioro, MD; Associate Professor
Sridevi Ramamurthi, MBBS; Assistant Professor
Mary Ann Richmond, MD; Assistant Professor
Lyudmila Ryaboy, MD; Senior Instructor
Stephanie Sadlon, MD; Assistant Professor
Mohammad Shatat, MBBS; Assistant Professor
Marina Silveira, MD; Assistant Professor
Deepjot Singh, MBBS; Assistant Professor
Mamta Singh, MD; Associate Professor
Simran Singh, MD; Assistant Professor
Marion Skalweit, MD PhD; Associate Professor
Todd Smith, MD; Assistant Professor
Evi Stavrou, MD; Assistant Professor
Usha Stiefel, MD; Associate Professor
Puja Van Epps, MD; Assistant Professor
Roberto Viau Colindres, MBBS; Assistant Professor
Brigid Wilson, PhD; Assistant Professor
Laura Zajdel, MD; Senior Instructor
Jinhua Zhao, MD; Assistant Professor
Ning Zhou, MD; Instructor
Neurology
Fareeha Ashraf, MD; Assistant Professor
Karim Mente, MD; Assistant Professor
Amani Ramahi, MBBS; Assistant Professor
Ronald Riechers, MD; Associate Professor
Stephen Selkirk, MD PhD; Assistant Professor
John Stahl, MD PhD; Professor
Orthopaedics
Mark Walker, MD; Associate Professor
Ophthalmology & Visual Sciences
Edward Burney, MD; Professor
Natalie Cheung, MD; Senior Instructor
Pathology
Mohammad Ansari, MBBS; Professor
Natalia Cheung, MD; Associate Professor
Prema Gogate, MBBS; Assistant Professor
Medhat Hassan, MD PhD; Assistant Professor
Amy Hise, MPH MD; Associate Professor
Erica Steele, DO; Instructor
Psychiatry
Julie Aronoff, PhD; Senior Instructor
David Blank, MD; Assistant Professor
Linda Bond, MD; Assistant Professor
Archana Brojohun, MD; Senior Instructor
Alan Castro, MD; Senior Instructor
Narayanan CV, MD; Associate Professor
Peijun Chen, MD PhD; Associate Professor
Angel Hatchett, MD; Senior Instructor
Michael Ignatowski, MD; Assistant Professor
George Jaskiw, MD; Professor
Psychiatry
George Jurjus, MD; Associate Professor
P. Konicki, MD; Associate Professor
Youssef Mahfoud, MD; Assistant Professor
Ana Martinez, MD; Assistant Professor
Richard Mason, MD; Senior Instructor
Elizabeth Pehek, PhD; Associate Professor
Deepika Sastry, MD; Assistant Professor
Fawad Taj, MBBS; Assistant Professor
Punit Vaidya, MD; Assistant Professor
Xiaoyan Zhang, MD; Senior Instructor
Radiology
Nannette Alvarado, MD; Assistant Professor
Ronnie Derrwaldt, DO; Assistant Professor
Craig George, MD; Assistant Professor
Preet Kang, MD; Assistant Professor
Vishala Reddy, MBBS; Assistant Professor
Surgery
Jaime Bedford, MD; Assistant Professor
Brian Cmolik, MD; Associate Professor
Yakov Elgudin, MD PhD; Assistant Professor
Suzanne Gozdanovic, MD; Assistant Professor
Jessie Jean-Claude, MD; Associate Professor
Eric Marderstein, MD; Assistant Professor
Joel Peerless, MD; Associate Professor
Gilles Pinault, MD; Assistant Professor
Michael Rosenbaum, MD; Assistant Professor
Diana Whittlesey, MD; Assistant Professor
Ray Wong, MD; Assistant Professor
Urology
Milton Lakin, MD; Associate Professor

School of Medicine Part-Time Faculty (All Institutions)

Anatomy
Amanda Almon, MS; Adjunct Instructor; SOM
Robin Dhillon, MD; Clinical Senior Instructor; SOM
Betty Gatiff, BA; Adjunct Instructor; SOM
Christopher Hernandez, PhD; Adjunct Assistant Professor; SOM
Kathleen Jung, MS; Adjunct Assistant Professor; SOM
Bruce Latimer, PhD; Adjunct Associate Professor; SOM

Anesthesiology
Mohamed Abdalla, MD; Clinical Assistant Professor; CCLCM

Joseph Abdelmalak, MBBch; Clinical Assistant Professor; CCLCM
Ira Abels, MD; Clinical Assistant Professor; CCLCM
Ahmad Adi, MD; Clinical Assistant Professor; CCLCM
Avneep Aggarwal, MBBS; Clinical Assistant Professor; CCLCM
Benigno Aldana, MD; Clinical Assistant Professor; CCLCM
Adil Alhaddad, MD; Clinical Assistant Professor; CCLCM
Balaram Anandanurthy, MBBS; Clinical Assistant Professor; CCLCM
David Anthony, MD; Clinical Assistant Professor; CCLCM
John Apostolakis, MD; Clinical Assistant Professor; CCLCM
Rajappan Nair Arun Kumar, MBBS; Clinical Associate Professor; CCLCM
Charanjit Bahniwal, MBBS; Clinical Assistant Professor; CCLCM
Crawford Barnett, MD; Clinical Assistant Professor; CCLCM
Hersimren Basi, MD; Clinical Assistant Professor; CCLCM
Andrew Bauer, MD; Clinical Assistant Professor; CCLCM
Philippe Berenger, MD; Clinical Assistant Professor; CCLCM
Nikhil Bhatnagar, ; Clinical Assistant Professor; CCLCM
Alina Bodas, MD; Clinical Assistant Professor; CCLCM
Raymond Borkowski, MD; Clinical Assistant Professor; CCLCM
Vera Borzova, MD; Clinical Assistant Professor; CCLCM
Juan Botero, MD; Clinical Assistant Professor; CCLCM
Demetrios Bourdakos, MD; Clinical Assistant Professor; CCLCM
M. Bourdakos, MD; Clinical Assistant Professor; CCLCM
Thomas Bralliar, MD; Clinical Assistant Professor; CCLCM
Brian Burnbaum, MD; Clinical Assistant Professor; CCLCM
Sergio Bustamante, MD; Clinical Assistant Professor; CCLCM
Rafael Cabrales, MD; Clinical Assistant Professor; CCLCM
Liwanag Calibag, MD; Clinical Assistant Professor; CCLCM
Pilar Castro, MD; Clinical Assistant Professor; CCLCM
Praveen Chahar, MBBS; Clinical Assistant Professor; CCLCM
Luke Cheriyan, MBBS; Clinical Assistant Professor; CCLCM
Surendrasingh Chhabada, MBBS; Clinical Assistant Professor; CCLCM
Eric Chiang, MD; Clinical Assistant Professor; CCLCM
Daniel Clark, DO; Clinical Assistant Professor; CCLCM
Anthony Cooper, MD; Clinical Assistant Professor; CCLCM
Todd Csom, DO; Clinical Assistant Professor; CCLCM
Yael Dahan, MD; Clinical Assistant Professor; CCLCM
Emad Daoud, MBBch PhD; Clinical Assistant Professor; CCLCM
Gohar Dar, MB; Clinical Assistant Professor; SOM
Amir Dawoud, MBBS; Clinical Assistant Professor; CCLCM
Pierre de Villiers, MD; Clinical Assistant Professor; CCLCM
Jagan Devarajan, MBBS; Clinical Assistant Professor; CCLCM
Teresa Dews, MD; Clinical Associate Professor; CCLCM
Michael Dubinsky, DO; Clinical Assistant Professor; CCLCM
Zeyd Ebrahim, MBBS; Clinical Assistant Professor; CCLCM
Brett Elo, DO; Clinical Assistant Professor; CCLCM
yuriy Estrin, MD; Clinical Assistant Professor; CCLCM
Faith Factora, MD; Clinical Assistant Professor; CCLCM
Marc Feldman, MD; Clinical Assistant Professor; CCLCM
Lilibeth Fermin, MD; Clinical Assistant Professor; CCLCM
Massimo Ferrigno, MD; Clinical Professor; CCLCM
Cherie Fisher, MD; Clinical Assistant Professor; CCLCM
Joseph Foss, MD; Clinical Associate Professor; CCLCM
Lawrence Frank, MD; Clinical Assistant Professor; CCLCM
Haissam Gamaleldin, MBBCh; Clinical Assistant Professor; CCLCM
Syeda Gardezi, MD; Clinical Assistant Professor; CCLCM
Joseph George, DO; Clinical Assistant Professor; CCLCM
Tamer Ghaly, MD; Clinical Assistant Professor; CCLCM
Juan Giraldo, MBBS; Clinical Assistant Professor; CCLCM
Wagih Gobrial, MBBCh; Clinical Assistant Professor; CCLCM
Daniel Goldstein, MD; Clinical Assistant Professor; CCLCM
Justo Gonzalez, MD; Clinical Assistant Professor; CCLCM
Marius Gota, MD; Clinical Assistant Professor; CCLCM
Martin Grady, MD; Clinical Assistant Professor; CCLCM
Paul Gray, DO; Clinical Assistant Professor; CCLCM
Brenda Greene, MD; Clinical Assistant Professor; CCLCM
Brock Gretter, MD; Clinical Assistant Professor; CCLCM
Kenneth Grimm, DO; Clinical Assistant Professor; CCLCM
Marquerite Group, MD; Clinical Assistant Professor; CCLCM
Deepak Gupta, MD; Clinical Assistant Professor; CCLCM
Judith Haas, MD; Clinical Assistant Professor; CCLCM
Manal Hassan, MD, PhD; Clinical Assistant Professor; CCLCM
J. Steven Hata, MD; Clinical Assistant Professor; CCLCM
Tara Hata, MD; Clinical Assistant Professor; CCLCM
Michael Hauser, MD; Clinical Assistant Professor; CCLCM
Robert Helfand, MD; Clinical Professor; CCLCM
Richard Hofstra, MD; Clinical Assistant Professor; CCLCM
McCallum Hoyt, ; Clinical Professor; CCLCM
Enrique Huertas, MD; Clinical Assistant Professor; CCLCM
Cristian Iditoiu, MD; Clinical Assistant Professor; CCLCM
Steven Insler, DO; Clinical Assistant Professor; CCLCM
Tatiana Jamroz, MD; Clinical Assistant Professor; CCLCM
David Jury, MD; Clinical Assistant Professor; CCLCM
Eric Kaiser, MD; Clinical Assistant Professor; CCLCM
John Kanaan, MD; Clinical Assistant Professor; CCLCM
Maureen Keshock, MD; Clinical Assistant Professor; CCLCM
Sandeep Khanna, MBBS; Clinical Assistant Professor; CCLCM
Reem Khatib, MD; Clinical Assistant Professor; CCLCM
Mimi Khin, MBBS; Clinical Assistant Professor; CCLCM
John Kim, MBBS; Clinical Assistant Professor; CCLCM
Sree Kolli, MBBS; Clinical Assistant Professor; CCLCM
Tatyana Kopyeva, MD; Clinical Assistant Professor; CCLCM
Erik Kraenzler, MD; Clinical Assistant Professor; CCLCM
Mark Krantz, MD; Clinical Assistant Professor; CCLCM
Alan Kuhel, MD; Clinical Assistant Professor; CCLCM
Riad Laham, MD; Clinical Assistant Professor; CCLCM
Massimo Lamperti, MD MBA; Clinical Professor; CCLCM
Martin Laskey, DO; Clinical Assistant Professor; CCLCM
Saebom Lee, MD; Clinical Senior Instructor; MHMC
Ke Lee, MD; Clinical Assistant Professor; CCLCM
Jia Lin, MD, PhD; Clinical Assistant Professor; CCLCM
Jia Liu , Clinical Assistant Professor; CCLCM
Sara Lozano, MD; Clinical Assistant Professor; CCLCM
Andrew Lucic, ; Clinical Assistant Professor; CCLCM
Santiago luis, MD; Clinical Assistant Professor; CCLCM
Kamal Maheshwari, MBBS; Clinical Assistant Professor; CCLCM
Yulia Maly, MD; Clinical Assistant Professor; CCLCM
Morris Mandel, MD; Clinical Assistant Professor; CCLCM
Nicholas Marcanthony, MD; Clinical Assistant Professor; CCLCM
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthur Arciaga, PhD</td>
<td>Adjunct Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Patrick Ashiru, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Victor Avella, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>James Baker, MS AA-C</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Zachary Barsman, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Daniel Bates, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>George Bause, MD</td>
<td>Clinical Associate Professor; UH</td>
<td></td>
</tr>
<tr>
<td>Brenda Beck, DO</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Assia Benhacene, MD</td>
<td>Clinical Assistant Professor; UH</td>
<td></td>
</tr>
<tr>
<td>David Biel, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Kayla Bober, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Craig Brodsky, JD</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Lisa Brown, MD</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Thomas Bruno, BS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Caitlin Burley, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Kevin Busdiecker, BS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Amy Cagle, MD</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Christopher Caldwell, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Angela Capp, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Christian Carrozzo, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Elizabeth Carvill, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Davide Cattano, MD PhD</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Amrita Chadha, MBBS</td>
<td>Clinical Assistant Professor; UH</td>
<td></td>
</tr>
<tr>
<td>Alyson Chepla, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Matthew Ciotti, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Lisa Clark, MS AA-C</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>James Coleman, MD</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Charles Cowles, MD</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Sherry Cucci, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Charles deJarnette, MD</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Chris DeJelo, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Evan DeRenzo, PhD</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Ross DeVoe, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>John Dombrowski, MD</td>
<td>Adjunct Assistant Professor; UH</td>
<td></td>
</tr>
<tr>
<td>Janice Douglas, M PH</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Charles Duvall, MS</td>
<td>Clinical Assistant Professor; UH</td>
<td></td>
</tr>
<tr>
<td>Rafael Espejo, MD</td>
<td>Clinical Assistant Professor; UH</td>
<td></td>
</tr>
<tr>
<td>Quentin Fisher, MD</td>
<td>Adjunct Assistant Professor; UH</td>
<td></td>
</tr>
<tr>
<td>J. Flaherty, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Stephanie Geletka, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Vincent Gillen, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Roger Goomber, MD</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>John Gower, MD</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Yelena Goyzman, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Maggie Green, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Laura Guidry-Grimes, MA</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Sam Gumbert, MD</td>
<td>Adjunct Assistant Professor; UH</td>
<td></td>
</tr>
<tr>
<td>Rudy Hamad, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Sue Han, MD PhD</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Amanda Hardy, AA-C</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Joseph Harp, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Robert Harris, MD</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Scott Harvey, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Stephen Hunt, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Grace Hwang, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Kayla Imbrogno, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Camille Jansen, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Julie Johnson, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Paul Jones, DO</td>
<td>Clinical Assistant Professor; UH</td>
<td></td>
</tr>
<tr>
<td>Christine Jordan, MD</td>
<td>Clinical Assistant Professor; UH</td>
<td></td>
</tr>
<tr>
<td>Gareth Kantor, MBBS</td>
<td>Clinical Assistant Professor; UH</td>
<td></td>
</tr>
<tr>
<td>Kellye Kaufman, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Shannon Kelly, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Mijn Kim, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Mark Kopel, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Anthony Kouy, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Oksana Kozlovskaya, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Kevin Kunzelman, MS C-AA</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Samuel Lee, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Jesse Lester, MD</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Greg Lillvis, MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Michael Lilly, M PH</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
</tbody>
</table>
Ronald Lisan, MD; Clinical Assistant Professor; UH
Jennifer Loomis, MS; Clinical Instructor; UH
Joseph Mader, MS; Clinical Instructor; UH
Ankit Maheshwari, MD; Clinical Assistant Professor; UH
William Marbury, AA-C; Clinical Instructor; UH
Elenora Mazover, MS; Clinical Instructor; UH
Scott McAndrew, MS; Clinical Instructor; UH
Michael McDermott, MS; Clinical Instructor; UH
Matthew McKinney, MS; Clinical Instructor; UH
Gholam Meah, MBA; Clinical Instructor; UH
Jaideep Mehta, MD; Clinical Instructor; UH
Noopur Mehta, MS; Clinical Instructor; UH
Gregory Menendez, M Ph; Clinical Instructor; UH
Paul Menzel, AA-C; Clinical Instructor; UH
Deana Metri, AA-C; Clinical Instructor; UH
Amanda Mohney, MS; Clinical Instructor; UH
Natalie Morello, MS; Clinical Instructor; UH
Kenneth Moss, MD; Clinical Assistant Professor; VA
Hassan Nagem, MD; Clinical Instructor; UH
Priya Neti, MS; Clinical Instructor; UH
Carol Ojuok, MS; Clinical Instructor; UH
Colleen O'Malia, MS; Clinical Instructor; UH
Omar Omar, MBBS; Clinical Assistant Professor; VA
Ashish Patel, MS; Clinical Instructor; UH
Saral Patel, MS; Clinical Instructor; UH
Vishal Patel, MS; Clinical Instructor; UH
Michael Patrick, MS; Clinical Assistant Professor; UH
Layne Paviol, MS; Clinical Instructor; UH
Joseph Peachman, MS; Clinical Instructor; UH
Nicholas Pesa, MD; Clinical Instructor; UH
Daniel Pistone, MS; Clinical Instructor; UH
Scott Plunkett, MS; Clinical Instructor; UH
Mariya Poretskiy, AA-C; Clinical Instructor; UH
Dan Rankin, BS; Clinical Instructor; UH
David Rapkin, MD; Clinical Assistant Professor; UH
Fares Raslan, MD; Clinical Assistant Professor; VA
Jeffrey Ratino, MS; Clinical Instructor; UH
Leslie Ray, MS; Clinical Instructor; UH
Chaity Roy, MS; Clinical Instructor; UH
Sarah Russell, M Ph; Clinical Instructor; UH
Nicholas Russo, MD; Clinical Assistant Professor; UH
Tiffany Sanchez, MS; Clinical Instructor; UH
Bianca Shah, MS; Clinical Instructor; UH
Pankaj Shah, MBBS; Clinical Instructor; UH
Aaron Sikowitz, MS; Clinical Instructor; UH
Marina Sincerney, MS; Clinical Instructor; UH
Gurbinder Singh, DO; Clinical Instructor; UH
Maninder Singh, MD; Clinical Assistant Professor; UH
Regina Skinner, MS; Clinical Instructor; UH
Daniel Smaltz, MS; Clinical Instructor; UH
Alex Steed, MS; Clinical Instructor; UH
Michael Steiner, MS; Clinical Instructor; UH
Brian Sunderville, MS; Clinical Instructor; UH
Kory Sutter, AA-C; Clinical Instructor; UH
Robert Thall, MS; Clinical Instructor; UH
Daphne Tolentino, MS; Clinical Instructor; UH
Daniel Tolpin, MD; Clinical Instructor; UH
Chad Toujague, MS; Clinical Instructor; UH
Frank Trzaska, AA-C; Clinical Instructor; UH
Erika Tully, MS; Clinical Instructor; UH
Carie Twichell, MS; Clinical Instructor; UH
Tosan Ugbeye, MS; Clinical Instructor; UH
Megan Varellas, MS C-AA; Clinical Instructor; UH
Elais Veizi, MD PhD; Clinical Assistant Professor; UH
Donald Voltz, MD; Adjunct Assistant Professor; UH
Bich Vuong, MS; Clinical Instructor; UH
Mark Wheeler, BA; Clinical Instructor; UH
Bradley Williams, MS; Clinical Instructor; UH
Cheryl Wolkoff, BS; Clinical Instructor; UH
Victoria Wompierski, MS; Clinical Instructor; UH
Laura Wyatt, MS; Clinical Instructor; UH
George Yung, MD; Clinical Instructor; UH
David Zagorski, MA; Clinical Assistant Professor; UH

Biochemistry

 Barbara Bedogni, PhD; Adjunct Associate Professor; SOM

 Michael Greenberg, PhD; Adjunct Instructor; SOM

 Michael Harris, PhD; Adjunct Professor; SOM

 Anton Komar, PhD; Adjunct Assistant Professor; SOM

 Md Sharooar, PhD; Adjunct Instructor; SOM

 Jonathan Whittaker, MBBS; Adjunct Associate Professor; SOM

 Don Wickramasinghe, PhD; Adjunct Instructor; SOM

Bioethics

 Sherri Broder, PhD; Adjunct Instructor; SOM

 Nicole Burt, PhD; Adjunct Assistant Professor; SOM

 Laura Clementz, MS; Adjunct Instructor; SOM

 Dena Davis, PhD; Adjunct Professor; SOM

 Olubukunola Dwyer, JD; Clinical Assistant Professor; SOM

 Nancy Erdey, PhD; Adjunct Instructor; SOM

 Bryn Esplin, JD; Adjunct Instructor; SOM

 Jennifer Fishman, PhD; Adjunct Assistant Professor; SOM

 Michael Flatt, MS; Adjunct Instructor; SOM

 John Frye, PhD; Adjunct Instructor; SOM

 Jason Gatliiff, PhD; Adjunct Instructor; SOM

 Carey Gordon, JD; Adjunct Instructor; SOM

 Robert Guerin, PhD; Clinical Assistant Professor; SOM

 John Huss, PhD; Adjunct Assistant Professor; SOM

 Leah Jeunnette, PhD; Adjunct Instructor; SOM

 Eric Juengst, PhD; Adjunct Professor; SOM

 Julia Knopes, MA; Adjunct Instructor; SOM

 Maria Lopez de la Vieja, PhD; Adjunct Professor; SOM

 Hilary Mabel, JD; Adjunct Instructor; SOM

 Patricia Mayer, MD; Adjunct Instructor; SOM

 Laura Morello, MS; Adjunct Instructor; SOM

 Jordan Potter, PhD; Adjunct Instructor; SOM

 Leah Wilson, MA; Adjunct Instructor; SOM

 Tracy Wilson-Holden, MA; Adjunct Instructor; SOM

Biomedical Engineering

 Luis Gonzalez, MD PhD; Adjunct Instructor; SOM

Elizabeth Hardin, PhD; Adjunct Assistant Professor; SOM

Thomas Hering, PhD; Adjunct Associate Professor; SOM

Vincent Hetherington, MD; Adjunct Assistant Professor; SOM

Jill Kawalec, PhD; Adjunct Assistant Professor; SOM

William Landis, PhD; Adjunct Professor; SOM

Aaron Nelson, MD; Adjunct Assistant Professor; SOM

Arden Nelson, PhD; Adjunct Assistant Professor; SOM

Mark Pagel, PhD; Adjunct Assistant Professor; SOM

Ravi Patel, MD PhD; Adjunct Instructor; SOM

Marc Penn, MD PhD; Adjunct Assistant Professor; SOM

Michael Southworth, BA/BS; Adjunct Instructor; SOM

Frans Van der Helm, PhD; Adjunct Professor; SOM

Gabriela Voskerician, PhD; Adjunct Assistant Professor; SOM

Dermatology

 Jaye Benjamin, MD; Clinical Assistant Professor; UH

 Mara Beveridge, MD; Clinical Assistant Professor; UH

 David Bickers, MD; Adjunct Professor; UH

 Harold Blumenthal, MD; Clinical Assistant Professor; UH

 Robert Brody, MD; Clinical Assistant Professor; UH

 Carol Burg, MD; Clinical Assistant Professor; UH

 Anthony Castrovinci, MD; Clinical Associate Professor; UH

 Timothy Chang, MD; Clinical Assistant Professor; MHMC

 MaryMargaret Chren, MD; Adjunct Associate Professor; UH

 Renuka Diwan, MD; Clinical Assistant Professor; UH

 Faith Durden, MD; Clinical Assistant Professor; UH

 Craig Elmets, MD; Adjunct Professor; UH

 Conley Engstrom, MD; Clinical Assistant Professor; UH

 Robert Eppes, MD; Clinical Associate Professor; UH

 Monte Fox, OD; Clinical Instructor; UH

 Stanley Fox, MD; Clinical Assistant Professor; UH

 Meg Gerstenblith, MD; Clinical Assistant Professor; UH

 Esti Gumpertz, MD; Clinical Assistant Professor; UH

 Robert Haber, MD; Clinical Associate Professor; UH

 Cecelia Hamilton, MD; Clinical Assistant Professor; UH

 Curtis Hawkins, MD; Clinical Assistant Professor; UH

 Paul Hazen, MD; Clinical Professor; MHMC
Stephen Helms, MD; Clinical Assistant Professor; UH
Fred Hirsh, MD; Clinical Associate Professor; UH
Alice Jeromin, MD; Adjunct Instructor; MHMC
Amy Kassouf, MD; Clinical Assistant Professor; UH
Leonard Katz, MD; Clinical Associate Professor; UH
Malcolm Ke, MD; Adjunct Assistant Professor; UH
Mushtaq Khan, MD; Clinical Assistant Professor; VA
Louis Kish, MD; Clinical Senior Instructor; MHMC
Chi-Sown Ko, MD; Clinical Assistant Professor; UH
William Krug, MD; Clinical Assistant Professor; UH
Jean Krutmann, MD; Adjunct Professor; UH
George Kuffner, MD; Clinical Assistant Professor; UH
Beno Michel, MD; Clinical Professor; UH
William Miranda, MD; Clinical Assistant Professor; UH
Paradi Mirmirani, MD; Adjunct Assistant Professor; UH
Eliot Mostow, MD; Clinical Associate Professor; UH
Hasan Mukhtar, PhD; Adjunct Professor; UH
Lydia Parker, MD; Clinical Instructor; UH
Nina Petroff, MD; Clinical Senior Instructor; UH
Marnita Sandifer, PhD; Adjunct Assistant Professor; UH
Donald Schermer, MD; Clinical Associate Professor; UH
Jeffrey Scott, MD; Clinical Assistant Professor; UH
Christopher Stamey, MD; Clinical Assistant Professor; UH
Seth Stevens, MD; Adjunct Assistant Professor; UH
Hideaki Sugiyama, MD PhD; Adjunct Assistant Professor; UH
Constance Sutter, MD; Clinical Instructor; MHMC
Arthapal Tanphaichitr, MD; Clinical Assistant Professor; UH
Steven Taub, MD; Clinical Assistant Professor; UH
Karen Turgeon, MD; Clinical Assistant Professor; MHMC
Marie Tuttle, MD; Clinical Assistant Professor; UH
Janet Wieselthier, MD; Clinical Assistant Professor; UH
Lynn Ryan Williams, MD; Clinical Instructor; UH
Gary Wood, MD; Adjunct Professor; VA
Division of General Medical Sciences
Nathan Astaneh, MS; Clinical Assistant Professor; SOM
Barbara Baetz-Greenwalt, MD; Clinical Assistant Professor; SOM
Pedro Ballester, MD; Clinical Instructor; SOM
Susan Batke-Hastings, MSN; Clinical Assistant Professor; SOM
Hugh Black, DVM PhD; Adjunct Professor; SOM
Karen Bond, MS; Clinical Senior Instructor; SOM
Julie Brasfield, MS; Clinical Assistant Professor; SOM
Judith Briggs, MS; Clinical Assistant Professor; SOM
Michael Broder, MD; Adjunct Professor; SOM
Sarah Busch, PhD; Adjunct Assistant Professor; SOM
Carmen Cantemir-Stone, PhD; Adjunct Assistant Professor; SOM
Andrew Chacko, MD; Clinical Assistant Professor; SOM
Sandra Chlad, MSN; Clinical Assistant Professor; SOM
Ruma-Cullen Christine, MS; Clinical Assistant Professor; SOM
Philip Cola, MA; Adjunct Assistant Professor; SOM
Pamela Conover, MD; Clinical Assistant Professor; SOM
Enrique Conterno, MBA; Adjunct Professor; SOM
Roberta Cwynar, MS; Clinical Assistant Professor; SOM
Hiranmoy Das, PhD; Adjunct Assistant Professor; SOM
Robert Deans, PhD; Adjunct Assistant Professor; SOM
Colby DeCapua, MS; Clinical Senior Instructor; SOM
Analisa DiFeo, PhD; Adjunct Assistant Professor; SOM
Robert DiLaura, MBA; Adjunct Assistant Professor; SOM
Barbara Driscoll, RN; Clinical Assistant Professor; SOM
Geoffrey Duyk, MD PhD; Adjunct Professor; SOM
Laureen Ellis, MSN; Clinical Assistant Professor; SOM
Lloyd Ellis, MD; Clinical Assistant Professor; SOM
Robert Etridge, MS PA-C; Clinical Assistant Professor; SOM
Todd Fennimore, MPA; Adjunct Assistant Professor; SOM
Giovanni Ferrara, MBA; Adjunct Professor; SOM
Jane Finley, RN; Clinical Assistant Professor; SOM
Edward Fischer, MD; Clinical Assistant Professor; SOM
Mary Fisher-Bornstein, MS; Clinical Assistant Professor; SOM
Gilbert Fleming, MD; Adjunct Professor; SOM
David Fox, PA-C; Clinical Assistant Professor; SOM
Gail Fraizer, PhD; Adjunct Assistant Professor; SOM
Charles (Chad) Garven, MD; Clinical Instructor; SOM
W. Geho, MD PhD; Adjunct Professor; SOM
Ehsan Ghods, DO; Clinical Instructor; SOM
Charles Goldberg, MD; Clinical Assistant Professor; SOM
David Goldstein, DO; Adjunct Assistant Professor; SOM
Melanie Golembiewski, MD; Clinical Instructor; SOM
Peter Gottesfeld, MD; Clinical Assistant Professor; SOM
Nicholas Greco, PhD; Adjunct Assistant Professor; SOM
Allan Green, MD PhD JD; Adjunct Professor; SOM
Julie Hambleton, MD; Adjunct Professor; SOM
Pamela Hamilton, MS; Clinical Senior Instructor; SOM
John Harrington, PhD; Adjunct Assistant Professor; SOM
Andrew Harris, MD; Clinical Assistant Professor; SOM
William Harte, PhD; Clinical Professor; SOM
Penny Holding, PhD; Adjunct Assistant Professor; SOM
Sharjeel Hooda, MD; Clinical Assistant Professor; SOM
Evan Howe, MD PhD; Clinical Instructor; SOM
Barbara Hrach, MD; Clinical Assistant Professor; SOM
Nancy Ivansek, MA PA-C; Clinical Assistant Professor; SOM
Neil Jacobson, MD; Clinical Assistant Professor; SOM
Charles Joiner, MD PhD; Clinical Associate Professor; SOM
Judith Karberg, RN; Clinical Assistant Professor; SOM
Brian Kaspar, PhD; Adjunct Assistant Professor; SOM
Charles Kegley, PhD; Adjunct Assistant Professor; SOM
Llew Keltner, MD PhD; Adjunct Professor; SOM
Karen Kerepesi, MS; Clinical Senior Instructor; SOM
Sanjaya Khanal, MD; Clinical Instructor; SOM
Michael Knight, DO; Clinical Assistant Professor; SOM
Chandrasekhar Kothapalli, PhD; Adjunct Assistant Professor; SOM
Kenneth Kretchmer, MD; Clinical Assistant Professor; SOM
Richard Kuntz, MD; Adjunct Professor; SOM
Angelle LaBeaud, MD; Adjunct Assistant Professor; SOM
Steven Landau, MD; Adjunct Professor; SOM
Larry Lasky, MD; Adjunct Assistant Professor; SOM
Patrick Leahy, PhD; Adjunct Assistant Professor; SOM
Muriel Lederman, PhD; Adjunct Associate Professor; SOM
Moo-Yeal Lee, PhD; Adjunct Assistant Professor; SOM
Nic Leipzig, PhD; Adjunct Assistant Professor; SOM
Reid Leonard, PhD; Adjunct Professor; SOM
James Leverenz, MD; Clinical Assistant Professor; SOM
James Levine, MD PhD; Adjunct Professor; SOM
James Lieberman, MD; Clinical Associate Professor; SOM
John Lisy, MS; Clinical Instructor; SOM
Melanie Malec, MD; Clinical Assistant Professor; SOM
Indu Malhotra, PhD; Adjunct Instructor; SOM
James Malone, JD; Adjunct Assistant Professor; SOM
Bridget Mansell, MA; Clinical Senior Instructor; SOM
Kathleen Martinelli, MS; Clinical Assistant Professor; SOM
Robert Mays, PhD; Adjunct Assistant Professor; SOM
Neal Meropol, MD; Adjunct Professor; SOM
Evan Minior, MSN; Clinical Assistant Professor; SOM
Nicanor Moldovan, PhD; Adjunct Assistant Professor; SOM
Brandon Mooney, MS; Clinical Assistant Professor; SOM
Matthew Moorman, MD; Clinical Assistant Professor; SOM
Briana Motley, PT; Adjunct Instructor; SOM
Lois Myeroff, PhD; Adjunct Instructor; SOM
Goutham Narla, MD PhD; Adjunct Associate Professor; SOM
Michelle Nemer, MD; Clinical Assistant Professor; SOM
Jose Otero, MD PhD; Adjunct Assistant Professor; SOM
Josanne Pagel, MS; Clinical Associate Professor; SOM
Elizabeth Painter, PsyD; Clinical Instructor; SOM
Theodore Parran, MD; Clinical Assistant Professor; SOM
Robert Perry, BS; Adjunct Assistant Professor; SOM
Cheryl Piros, RN; Clinical Assistant Professor; SOM
Lawrence Posner, MD; Adjunct Professor; SOM
Maria Pujana, MD; Adjunct Instructor; SOM
James Rambasek, MD; Clinical Assistant Professor; SOM
Benjamin Reichstein, MD; Clinical Assistant Professor; SOM
Robert Reis, MD; Clinical Assistant Professor; SOM
Yosef Robbins, MS; Clinical Assistant Professor; SOM
Jennifer Roos-Greene, PhD; Adjunct Instructor; SOM
Gina Rosenfeld, MD; Clinical Assistant Professor; SOM
Amy Rosenfeld, MD; Clinical Assistant Professor; SOM
Christine Ruma-Cullen, MSSA; Clinical Instructor; SOM
Amrou Salahieh, Adjunct Professor; SOM
Stuart Schnider, MD PhD; Adjunct Assistant Professor; SOM
James Schoff, JD; Adjunct Professor; SOM
Nina Schwartz, MD; Clinical Assistant Professor; SOM
Robert Schwartz, MD; Clinical Assistant Professor; SOM
Elaine Scott, MD; Clinical Assistant Professor; SOM
Beth Sersig, MD; Clinical Assistant Professor; SOM
Howard Simon, MD; Clinical Assistant Professor; SOM
Julie Smith, PhD; Adjunct Assistant Professor; SOM
Julie Smith, PhD; Adjunct Assistant Professor; SOM
Kavitha Srighanthan, MD; Clinical Assistant Professor; SOM
Aundrea Stevenson, MD; Clinical Assistant Professor; SOM
Samantha Stubblefield, PhD; Adjunct Assistant Professor; SOM
Sakthiraj Subramanian, MD; Clinical Assistant Professor; SOM
Mousab Tabbaa, MD; Clinical Assistant Professor; SOM
Ranjit Tamaskar, MBBS; Clinical Instructor; SOM
Sharon Tang, MD; Clinical Assistant Professor; SOM
Hossein Tavana, PhD; Adjunct Assistant Professor; SOM
Ashdin Tavaria, MD; Clinical Instructor; SOM
Lori Taylor, PhD; Adjunct Professor; SOM
Anthony Ting, PhD; Adjunct Assistant Professor; SOM
Peter Tippett, MD PhD; Adjunct Professor; SOM
George Topalsky, MD; Clinical Instructor; SOM
Gil Van Bokkelen, PhD; Adjunct Assistant Professor; SOM
M. Vanderhoof, MD; Clinical Instructor; SOM
C. van’t Hof, PhD; Adjunct Assistant Professor; SOM
Julie Way, PT; Adjunct Instructor; SOM
Mary Weems, PhD; Adjunct Assistant Professor; SOM
Paul Wille, PhD; Adjunct Instructor; SOM
Joseph Williams, MPH; Adjunct Assistant Professor; SOM
Rebecca Willits, PhD; Adjunct Assistant Professor; SOM
Theodore Wilson, MSW; Clinical Assistant Professor; SOM
Yan Xu, PhD; Adjunct Associate Professor; SOM
Michael Yaffe, MD PhD; Adjunct Professor; SOM
Yun Yen, PhD; Adjunct Professor; SOM
David Yin, MD; Clinical Assistant Professor; SOM
Holly Zeller, MS; Clinical Assistant Professor; SOM
Ge Christie Zhang, MD PhD; Adjunct Assistant Professor; SOM
Emergency Medicine
Eric Beck, DO; Clinical Assistant Professor; UH
Howard Dickey-White, MD; Clinical Assistant Professor; UH
Karen Douglass, MD; Clinical Instructor; UH
Riley Grosso, MD; Clinical Assistant Professor; UH
Louis Horwitz, MD; Clinical Instructor; UH
Andrew Luxenberg, MD; Clinical Instructor; UH
Jessica Rockwood, MD; Clinical Instructor; UH
Marina Shpilko, MD; Clinical Assistant Professor; UH
Imran Tahir, MBBS; Clinical Assistant Professor; UH
Sarah Tehranisa, MD; Clinical Assistant Professor; UH
Sorapat Vijitakula, MD MPH; Clinical Instructor; UH
Environmental Health Sciences
Dale Cowan, MD PhD; Clinical Professor; SOM
Kathleen Fagan, MD; Adjunct Assistant Professor; SOM
Marty Gelfand, JD; Adjunct Assistant Professor; SOM
Paul Howard, PhD; Adjunct Associate Professor; SOM
Arthur Varnes, PhD; Adjunct Assistant Professor; SOM
Iwona Yike, PhD; Adjunct Assistant Professor; SOM
Family Medicine
Iyabode Adebambo, MD; Clinical Associate Professor; MHMC
Daniel Allan, MD; Clinical Assistant Professor; CCLCM
Dale Angerman, MD; Clinical Assistant Professor; CCLCM
Christopher Babiuch, MD; Clinical Assistant Professor; CCLCM
Dale Balkovec, DO; Clinical Assistant Professor; CCLCM
Matthew Baltes, DO; Clinical Senior Instructor; MHMC
Emile Barreau, MD; Clinical Assistant Professor; CCLCM
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rochele Beachy, MD</td>
<td>Clinical Instructor; MHMC</td>
<td></td>
</tr>
<tr>
<td>Philip Bernard, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Eric Boose, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Cary Borland, DO</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>David Brill, DO</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Jeffrey Brown, DO</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Jeffrey Burkey, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Christopher Bursley, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Robert Cain, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Frank Cebul, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Jessica Chisholm, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Colleen Clayton, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Lisa Cloud, DO</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Karen Cooper, DO</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Mary Corbett, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Sandra Darling, DO</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Katherine Davis, MD</td>
<td>Clinical Instructor; MHMC</td>
<td></td>
</tr>
<tr>
<td>Malini Desai, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Richard Devans, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Kimberly Dobler, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Curtis Dornan, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Sean Downes, MD</td>
<td>Clinical Instructor; MHMC</td>
<td></td>
</tr>
<tr>
<td>Himanshu Dubey, MBBS</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>David Eberlein, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Mark Elderbrock, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Kelly Fababe, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Andrew Franko, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Lauren Fuller, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Kimberly Garren-Hudson, DO</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Jordan Garrison, DO</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Richard Garwood, DO</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Ava George, DO</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Matthew Goldman, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Kenneth Goodman, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Michael Grusenmeyer, MD</td>
<td>Clinical Senior Instructor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Michael Hackett, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Ada Hall, DO</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>John Hanicak, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Evelyn Hemmingsen, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Kevin Hopkins, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Dana Jacobs, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Katherine Jones, DO</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Fred Jorgensen, MD</td>
<td>Clinical Associate Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Anne Kaesgen, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Kamaljit Kaur, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Alla Kirsch, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Katherine Koczan, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Jason Komitau, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Jeffrey Kontak, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Thomas Krupitzer, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>William Lago, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Kevin Leisinger, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Anne Lombardo, DO</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Rebecca Lowenthal, MD</td>
<td>Clinical Instructor; MHMC</td>
<td></td>
</tr>
<tr>
<td>Lili Lustig, DO</td>
<td>Clinical Assistant Professor; UH</td>
<td></td>
</tr>
<tr>
<td>Lisa Marsh, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Dalia McCoy, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Kevin McDaniel, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Mirko Meier Davila, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Dan Neides, MD</td>
<td>Clinical Associate Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Baran Onder, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Scott Owen, DO</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Sarah Pickering Beers, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Jennifer Poptic, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Brenda Powell, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Nygi Raju, MBBS</td>
<td>Clinical Instructor; MHMC</td>
<td></td>
</tr>
<tr>
<td>Nicholas Riley, MD PhD</td>
<td>Clinical Instructor; MHMC</td>
<td></td>
</tr>
<tr>
<td>Angelica Rodriguez, DO</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Mark Rood, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Katrina Sabur, DO</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Marie Schaefer, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Thomas Schalcosky, DO</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
</tbody>
</table>
Nadim Karam, MD; Clinical Assistant Professor; UH
William Keck, MD; Adjunct Professor; UH
Patricia Kellner, MD; Clinical Assistant Professor; UH
George Kikano, MD; Clinical Professor; UH
Mark Komar, MD; Clinical Associate Professor; UH
Pamela Lancaster, OD; Clinical Instructor; UH
Isabelle Lane, DO MPH; Clinical Instructor; UH
David Lash, MD; Clinical Instructor; UH
Amy Lee, MD; Adjunct Associate Professor; UH
Elizabeth LeMaster, MD; Clinical Instructor; UH
Lori Leonard, OD; Clinical Senior Instructor; UH
Louis Leone, OD; Clinical Senior Instructor; UH
Conrad Lindes, MD; Clinical Assistant Professor; UH
Teresa Long, MD MPH; Adjunct Associate Professor; UH
Charles MacCallum, MD; Clinical Assistant Professor; UH
Mathew Mark, MD; Clinical Instructor; UH
Richard McBurney, MD; Clinical Assistant Professor; UH
Beth McLaughlin, MD; Clinical Assistant Professor; UH
Sean McNeely, MD; Clinical Instructor; UH
Beena Minai, MBBS; Clinical Instructor; UH
Paul Miotto, MD; Clinical Assistant Professor; UH
Sami Moufawad, MD; Clinical Senior Instructor; UH
Lisa Navracruz, MD; Clinical Assistant Professor; UH
Timothy Neely, DO; Clinical Instructor; UH
Carol Noall, MD; Clinical Senior Instructor; UH
Emily Ostrowski, MD; Clinical Instructor; UH
Matthew Pawlicki, MD; Clinical Instructor; UH
Michelle Platz, MD; Clinical Instructor; UH
Michael Purdum, PhD; Clinical Instructor; UH
Elizabeth Ranasinghe, MBBS; Clinical Assistant Professor; UH
Susan Ratay, DO; Clinical Instructor; UH
Ann Reichsman, MD; Clinical Associate Professor; UH
Sophia Reljanovic, MD; Clinical Senior Instructor; VA
Lee Resnick, MD; Clinical Assistant Professor; UH
Mona Rizkallah, PhD; Adjunct Assistant Professor; UH
Carl Robson, MD; Clinical Assistant Professor; UH
Kim Robusto, OD; Clinical Instructor; UH
Michael Rowane, OD; Clinical Associate Professor; UH
Eileen Saffran, M SW; Clinical Senior Instructor; UH
Juan Sanabria, MD; Adjunct Assistant Professor; UH
William Schultz, MD; Clinical Assistant Professor; UH
Othman Shemisa, MD PhD; Clinical Assistant Professor; UH
Amy Sheon, PhD MPH; Adjunct Associate Professor; UH
Palak Shroff, MD; Clinical Instructor; UH
Kornelia Solymos, MD; Clinical Assistant Professor; UH
Grace Song, MD; Clinical Instructor; UH
Nish Sooriyapalan, MD; Clinical Senior Instructor; UH
Stephen Sroka, PhD; Adjunct Assistant Professor; UH
Orest Stecyk, MD; Clinical Instructor; UH
Sarah Sweeney, MD; Clinical Instructor; UH
Hava Tabenkin, MD; Clinical Assistant Professor; UH
Jay Taylor, MD; Clinical Senior Instructor; UH
George Thomas, OD; Clinical Assistant Professor; UH
John Thomas, MD; Clinical Associate Professor; UH
John Tumbush, OD; Clinical Senior Instructor; UH
Robert Tupa, OD; Clinical Assistant Professor; UH
Elizabeth Turbett, MD; Clinical Senior Instructor; UH
James Turbett, MD; Clinical Senior Instructor; UH
Sujaya Vijayakumar, MD; Clinical Senior Instructor; UH
Barbara Vizy, MD; Clinical Instructor; UH
Chinmay Vyas, MD; Clinical Instructor; UH
Todd Wagner, MD; Clinical Senior Instructor; UH
Heather Ways, MD; Clinical Senior Instructor; UH
Richard Weinberger, MD; Clinical Assistant Professor; UH
Edward White, MD; Clinical Associate Professor; UH
Robert Whitehouse, MD; Clinical Assistant Professor; UH
Colette Willins, MD; Clinical Instructor; UH
Lawrence Wilson, MD; Clinical Senior Instructor; UH
Karen Winter, MD; Clinical Instructor; UH
John Wirtz, MD; Clinical Instructor; UH
Larry Witmer, OD; Clinical Assistant Professor; UH
Ann Marie Witt, MD; Clinical Instructor; UH
John Wolf, DO; Clinical Assistant Professor; UH
Jennifer Wurst, MD; Clinical Assistant Professor; UH
Cynthia Zelis, MD; Clinical Assistant Professor; UH
Genetics and Genome Sciences
Jirair Bedoyan, MD PhD; Clinical Associate Professor; UH
Leslie Cohen, MS; Clinical Instructor; UH
Suzanne DeBrosse, MD; Clinical Assistant Professor; UH
Kimberly DeSoffy, MS; Clinical Instructor; UH
Sarah Grimes, MA; Clinical Instructor; UH
Elizabeth Hogan, MS; Clinical Instructor; SOM
Joanna Horn, MS; Clinical Instructor; UH
Laura Konczal, MD; Clinical Assistant Professor; UH
Michelle Merrill, MS; Clinical Instructor; UH
Monica Nardini, MS; Clinical Instructor; SOM
Aditi Parikh, MD; Clinical Assistant Professor; UH
Amy Pizzino, MS; Clinical Instructor; SOM
Larisa Rippel, MS; Clinical Instructor; UH
Lori-Anne Shillaci, MD; Clinical Assistant Professor; UH
Jacqueline Scott, MS; Clinical Instructor; SOM
Elaine Thallner, MD; Clinical Assistant Professor; CCLCM
Georgia Wiesner, MD; Adjunct Associate Professor; SOM
Nancy Wolf, MD; Adjunct Instructor; SOM
Lilei Zhang, MD PhD; Clinical Instructor; UH
Medicine
Mustafa Abas, MD; Clinical Assistant Professor; UH
Rami Abbass, MD; Clinical Instructor; UH
Justin Abbatemarco, MD; Clinical Instructor; CCLCM
Saaid Abdel-Ghani, MD; Clinical Assistant Professor; CCLCM
Adham Abdulkader, MD; Clinical Instructor; UH
Ademola Abiose, MBBS; Clinical Instructor; UH
Samir Abraksia, MD; Clinical Assistant Professor; CCLCM
Drew Abramovich, MD; Clinical Assistant Professor; CCLCM
Yaser Abu El Saeed, MBBS; Clinical Associate Professor; CCLCM
Samer Abubakr, MBBS; Clinical Assistant Professor; CCLCM
Nour Abuhalad, MD; Clinical Instructor; CCLCM
Basel Abusneineh, MD; Clinical Instructor; VA
Mohamed Abuzakakouk, MBBch; Clinical Professor; CCLCM
Jean-Oual Achkar, MD; Clinical Assistant Professor; CCLCM
Richard Adamick, MD; Clinical Assistant Professor; CCLCM
Timothy Adamowicz, DO; Clinical Assistant Professor; CCLCM
George Adams, DO; Clinical Assistant Professor; CCLCM
Antoine Addounieh, DMD; Clinical Instructor; CCLCM
Richard Ader, MD; Clinical Assistant Professor; UH
Talal Adhami, MD; Clinical Assistant Professor; CCLCM
Santhi Adigopula, MBBS; Clinical Assistant Professor; CCLCM
Sheremaria Agaiby, MD; Clinical Assistant Professor; CCLCM
Neerja Agrawal, MD; Clinical Assistant Professor; CCLCM
Frank Aguayo, ASSOC; Clinical Instructor; VA
Richard Aguilera, MD; Clinical Assistant Professor; CCLCM
Robier Aguillon Prada, MD; Clinical Assistant Professor; CCLCM
Ebenechi Agwa, MD; Clinical Assistant Professor; CCLCM
Riaz Ahmad, MBBS; Clinical Instructor; UH
Subban Ahmad, MD; Clinical Senior Instructor; MHMC
Munir Ahmad, MBBS; Clinical Assistant Professor; CCLCM
Waqas Ahmad, MD; Clinical Assistant Professor; CCLCM
Ismail Ahmed, MBBS; Clinical Assistant Professor; UH
Tosaddq Ahmed, MBBS; Clinical Instructor; UH
Nausheen Ahmed, MD; Clinical Assistant Professor; CCLCM
Vaseem Ahmed, MD; Clinical Assistant Professor; CCLCM
Veena Ahuja, MD; Clinical Assistant Professor; CCLCM
Asfa Akhtar, DO; Clinical Assistant Professor; CCLCM
Oladele Akinsiku, MD; Clinical Senior Instructor; MHMC
May Al-Abousi, MD; Clinical Assistant Professor; CCLCM
Jay Alagarsamy, MBBS; Clinical Senior Instructor; UH
Jalaa Alahmad, MD; Clinical Assistant Professor; CCLCM
Mohamad Amer Alaiti, MD; Clinical Instructor; UH
Mohamed Alalwani, MD; Clinical Assistant Professor; CCLCM
Narendrakumar Alappan, MBBS; Clinical Assistant Professor; CCLCM
Mazen Alasadi, MD; Clinical Assistant Professor; CCLCM
Hassan Albataineh, MD; Clinical Instructor; UH
Dhin Aldoori, MD; Clinical Assistant Professor; CCLCM
Mohammed Aldosari, MBBS; Clinical Assistant Professor; CCLCM
Ben Alencherry, MD; Clinical Senior Instructor; UH
Andreas Alexopoulos, MD; Clinical Assistant Professor; CCLCM
Sajive Aleyas, MD; Clinical Assistant Professor; CCLCM
John Alfes, MD; Clinical Assistant Professor; CCLCM
Safaai Al-Haddad, MBCH; Clinical Assistant Professor; CCLCM
Mahmoud Al-Hawamdeh, MBBS; Clinical Assistant Professor; CCLCM
Mir Ali, MBBS; Clinical Assistant Professor; CCLCM
Mohammed Al-Jagheer, MBBS; Clinical Assistant Professor; CCLCM
Sura Al-Jassani, MBBCH; Clinical Assistant Professor; CCLCM
Yasser Al-Khadra, MD; Clinical Assistant Professor; CCLCM
Ahmad Alkhali, MD; Clinical Instructor; UH
Amer Alkhatif, MD; Clinical Associate Professor; CCLCM
Raghavendra Allareddy, MBBS; Clinical Assistant Professor; CCLCM
Bennie Allison, MD; Clinical Instructor; UH
Yaser Al-Marrawi, MD; Clinical Instructor; UH
Nadim Al-Mubarak, MD; Clinical Assistant Professor; UH
Khalid Almuti, MD; Clinical Assistant Professor; CCLCM
Jonathan Altschuler, MD; Adjunct Instructor; UH
Ula Alwahab, MD; Clinical Assistant Professor; CCLCM
Zarmeneh Aly, MBBS; Clinical Instructor; CCLCM
Antoine Amado De Olazaval, MD; Clinical Assistant Professor; CCLCM
Michael Amalfitano, DO; Clinical Associate Professor; CCLCM
Perry Anarado, MD; Clinical Instructor; UH
Constantinos Anastassiades, MBBS; Adjunct Assistant Professor; UH
Peter Anders, MD; Clinical Instructor; UH
Eric Anderson, MD; Clinical Assistant Professor; CCLCM
Philip Anderson, MD; Clinical Associate Professor; VA
Steven Andresen, DO; Clinical Assistant Professor; CCLCM
Georgia Anetzberger, PhD; Adjunct Assistant Professor; UH
Mark Angel, MBBS; Clinical Assistant Professor; CCLCM
Pascale Anglade, MD; Clinical Assistant Professor; CCLCM
John Anthony, MD; Clinical Assistant Professor; CCLCM
Anil Anumandla, MBBS; Clinical Assistant Professor; CCLCM
Evamaria Anvari, MD; Clinical Assistant Professor; CCLCM
Fru Aparna, MBBS; Clinical Instructor; UH
Karla Arce, MD; Clinical Assistant Professor; CCLCM
Sheila Armogida, MD; Clinical Assistant Professor; CCLCM
Amy Arnold, DO; Clinical Assistant Professor; CCLCM
Salome Arobelidze, MD; Clinical Assistant Professor; CCLCM
Zubin Arora, MBBS; Clinical Instructor; CCLCM
Kristen Arseneau, MS; Adjunct Instructor; UH
Bruce Arthur, MD; Clinical Instructor; UH
Eric Arts, PhD; Adjunct Professor; UH
Mohammad Asfari, MD; Clinical Assistant Professor; CCLCM
Mehrdad Asgeri, MD; Clinical Instructor; UH
Nuzhat Ashai, MD; Clinical Assistant Professor; CCLCM
Craig Asher, MD; Clinical Assistant Professor; CCLCM
Mahi Ashwath, MBBS; Clinical Instructor; UH
Thandar Aung, MBBS; Clinical Instructor; CCLCM
Stephen Avallone, MD; Clinical Assistant Professor; CCLCM
Ann Awadalla, MD; Clinical Assistant Professor; CCLCM
Omobyonle Ayanleke, MB BS; Clinical Instructor; UH
Nabil Azar, MD; Clinical Instructor; UH
Haitham Azem, MD; Clinical Instructor; UH
Carolina Aziz, DO; Clinical Assistant Professor; CCLCM
Saqib Aziz, MD; Clinical Assistant Professor; CCLCM
Shaza Azmat, MBBS; Clinical Assistant Professor; CCLCM
Samia Baaklini, MD; Clinical Instructor; UH
Elizabeth Babcox, MD; Clinical Assistant Professor; CCLCM
Benson Babu, MD; Clinical Instructor; UH
Mustanser Badar, MD; Clinical Assistant Professor; CCLCM
Feras Bader, MBBS; Clinical Associate Professor; CCLCM
Jose Baez-Escudero, MD; Clinical Assistant Professor; CCLCM
Mohan Bafna, MD; Clinical Instructor; UH
Brian Baggott, MD; Clinical Assistant Professor; CCLCM
Imad Bagh, MD; Clinical Assistant Professor; CCLCM
Florian Bahr, MD; Clinical Assistant Professor; CCLCM
Firas Baidoun, MD; Clinical Assistant Professor; CCLCM
Mirza Baig, MBBS; Clinical Assistant Professor; UH
Christopher Bajzer, MD; Clinical Assistant Professor; CCLCM
Ewa Bak, MD; Clinical Instructor; UH
Vicki Baker, MD; Clinical Assistant Professor; CCLCM
Ehsan Balagamwala, MD; Clinical Instructor; CCLCM
Harigopal Balaji, MD; Clinical Instructor; UH
Rachel Baldi, MD; Clinical Assistant Professor; CCLCM
Cynthia Balina, MD; Clinical Instructor; UH
Christian Ball, MD; Clinical Assistant Professor; CCLCM
Cynthia Bamford, MD; Clinical Assistant Professor; CCLCM
Andrew Bang, DC; Clinical Assistant Professor; CCLCM
John Baniewicz, MD; Clinical Senior Instructor; UH
Richard Banozic, MD; Clinical Instructor; UH
Jona Banzon, MD; Clinical Assistant Professor; CCLCM
Shideng Bao, PhD; Adjunct Assistant Professor; CCLCM
Bryan Baranowski, MD; Clinical Assistant Professor; CCLCM
Hassan Barazi, MD; Clinical Assistant Professor; CCLCM
John Barb, DO; Clinical Assistant Professor; CCLCM
Juan Barbastefano, MD; Clinical Assistant Professor; CCLCM
Angelo Barile, MD; Clinical Assistant Professor; CCLCM
David Barnes, MD; Clinical Assistant Professor; CCLCM
John Baron, MD; Clinical Instructor; UH
Eric Baron, DO; Clinical Assistant Professor; CCLCM
Terry Barrett, MD; Clinical Senior Instructor; UH
Jill Barry, MD; Clinical Senior Instructor; UH
Thomas Bartel, MD; Clinical Professor; CCLCM
Benico Barzilai, MD; Clinical Assistant Professor; CCLCM
Steven Bass, MD; Clinical Associate Professor; UH
Bruno Bastos, MD; Clinical Assistant Professor; CCLCM
Sree Battu, MD; Clinical Assistant Professor; CCLCM
Jan Bautista, MD; Clinical Assistant Professor; CCLCM
Achilles Bebos, MD; Clinical Assistant Professor; CCLCM
Agustus Beck, MD; Clinical Assistant Professor; UH
Gerald Beck, PhD; Adjunct Associate Professor; CCLCM
Janeen Beck Leon, MS; Adjunct Instructor; MHMC
Leah Beegan, DO; Clinical Instructor; UH
Michelle Beidelschies, PhD; Adjunct Assistant Professor; CCLCM
Tamar Bejanishvili, MD; Clinical Instructor; UH
Robert Bellamy, MD; Clinical Senior Instructor; UH
Nancy Beller, MD; Clinical Senior Instructor; UH
Rodolfo Benatti, MD; Clinical Assistant Professor; UH
William Benish, MD; Adjunct Assistant Professor; UH
Dennis Bentley, MD; Clinical Assistant Professor; CCLCM
Nathaniel Bergman, DO; Clinical Assistant Professor; CCLCM
Barbara Berman, MA; Clinical Instructor; UH
Charles Bernick, Md, MPH; Clinical Assistant Professor; CCLCM
George Bernstein, MD; Clinical Assistant Professor; UH
Jacob Berriochoa, MD; Clinical Assistant Professor; CCLCM
George Bertalan, MD; Clinical Senior Instructor; UH
David Berzon, MD; Clinical Assistant Professor; CCLCM
Michelle Beskid, DO; Clinical Assistant Professor; CCLCM
Hershel Bhadsavle, MD; Clinical Assistant Professor; CCLCM
Bhavana Bhagya Rao, MBBS; Clinical Instructor; CCLCM
Ajay Bhargava, MBBS; Clinical Assistant Professor; CCLCM
Mudita Bhatia, MBBS; Clinical Assistant Professor; CCLCM
Jyoti Bhatt, MBBS; Clinical Senior Instructor; UH
Mukesh Bhatt, MBBS; Clinical Assistant Professor; UH
Amit Bhatt, MBBS; Clinical Assistant Professor; CCLCM
Abhik Bhattacharya, MBBS; Clinical Assistant Professor; CCLCM
Anirban Bhattacharyya, MBBS, MPH; Clinical Assistant Professor; CCLCM
Amrinder Bhatti, MBBS; Clinical Assistant Professor; CCLCM
Adarsh Bhimraj, MBBS; Clinical Assistant Professor; CCLCM
Gauri Bhuchar, DO; Clinical Assistant Professor; CCLCM
Abby Bifano, PhD; Clinical Assistant Professor; CCLCM
Akhil Bindra, MD; Clinical Instructor; UH
Iqbal Binoj, MBBS; Clinical Assistant Professor; CCLCM
Sigurbjorn Birgisson, MD; Clinical Professor; CCLCM
Eileen Bishop, DO; Clinical Assistant Professor; CCLCM
Paul Bishop, MSEE; Clinical Assistant Professor; CCLCM
Gordon Blackburn, PhD; Adjunct Assistant Professor; CCLCM
James Blackburn, MD; Clinical Assistant Professor; CCLCM
Edmond Blades, MD; Clinical Associate Professor; UH
Steven Blaha, MD; Clinical Assistant Professor; CCLCM
Henry Blair, MD; Clinical Assistant Professor; CCLCM
Brent Bluett, DO; Clinical Assistant Professor; CCLCM
Emmanuel Boakye, MD; Clinical Instructor; MHMC
David Bobak, MD; Adjunct Associate Professor; UH
Amy Bodnarchuk, MD; Clinical Assistant Professor; CCLCM
Timothy Bohn, MD; Clinical Assistant Professor; CCLCM
Cristiana Boieru, MD; Clinical Instructor; UH
Ravisankar Bolla, MD; Clinical Assistant Professor; CCLCM
Bradford Borden, MD; Clinical Assistant Professor; CCLCM
Adam Borland, PsyD; Clinical Assistant Professor; CCLCM
William Boros, MD; Clinical Assistant Professor; CCLCM
Kevin Borst, DO; Clinical Assistant Professor; CCLCM
Elena Borukh, MD; Clinical Assistant Professor; CCLCM
Reena Bose, MD; Clinical Assistant Professor; CCLCM
Susan Boston, MD; Clinical Assistant Professor; CCLCM
Robert Botti, MD; Clinical Professor; UH
Corinne Bott-Silverman, MD; Clinical Assistant Professor; CCLCM
Carine Bou-Abboud, MD; Clinical Senior Instructor; UH
Akram Boutros, MD; Clinical Professor; MHMC
Dina Boutros, MD; Clinical Assistant Professor; CCLCM
Rebecca Boxer, MD; Adjunct Assistant Professor; UH
James Boyle, MD; Clinical Associate Professor; UH
Eric Brader, MD; Clinical Assistant Professor; CCLCM
Dorothy Bradford, MD; Clinical Assistant Professor; UH
Prabhjot Brar, MBBS; Clinical Assistant Professor; CCLCM
Mauro Braun, MD; Clinical Assistant Professor; CCLCM
Tricia Bravo, MD; Clinical Assistant Professor; CCLCM
Thomas Breen, MD, PhD; Clinical Assistant Professor; CCLCM
Dana Brendza, PsyD; Clinical Assistant Professor; CCLCM
Robert Brenner, MD; Clinical Assistant Professor; CCLCM
Victoria Brobbey, MD; Clinical Assistant Professor; CCLCM
Erin Broderick, MD; Clinical Assistant Professor; CCLCM
Barry Brooks, MD; Clinical Senior Instructor; UH
Aaron Brown, DO; Clinical Instructor; UH
Delorise Brown, MD; Clinical Instructor; UH
Eric Brown, MD; Clinical Assistant Professor; CCLCM
Aaron Brzezinski-Sourasky, MD; Clinical Assistant Professor; CCLCM
Kathryn Brzozowski, DO; Clinical Assistant Professor; CCLCM
Janet Buccola, MD; Clinical Assistant Professor; CCLCM
Roy Buchinsky, MBBS; Clinical Assistant Professor; UH
Julia Bucklan, DO; Clinical Instructor; CCLCM
Juan Bulacio, MD; Clinical Assistant Professor; CCLCM
Sherrie Bullard, MD; Clinical Assistant Professor; CCLCM
Matt Bunyard, MD; Clinical Assistant Professor; CCLCM
Scott Burg, OD; Clinical Assistant Professor; CCLCM
Richard Burgess, MD PhD; Adjunct Professor; CCLCM
Stephen Burgun, MD; Clinical Assistant Professor; UH
Carol Burke, MD; Clinical Assistant Professor; CCLCM
Amy Burkett, MD; Clinical Assistant Professor; CCLCM
Brent Burkey, MD; Clinical Assistant Professor; CCLCM
Gerald Burma, MD PhD; Clinical Assistant Professor; UH
Charles Burns, MD; Clinical Senior Instructor; UH
Ronald Burwinkel, MD; Clinical Assistant Professor; CCLCM
Howard Bush, MD; Clinical Assistant Professor; CCLCM
Jason Buss, MD; Clinical Assistant Professor; CCLCM
Marzena Buzanowska, MD; Clinical Assistant Professor; CCLCM
Josaphat Byamugisha, Adjunct Instructor; UH
Kevin Byram, MD; Clinical Instructor; CCLCM
Cassandra Calabrese, DO; Clinical Instructor; CCLCM
Thomas Callahan, MD; Clinical Assistant Professor; CCLCM
Juan Calle-Cano, MD; Clinical Assistant Professor; CCLCM
Robert Cameron, MD; Clinical Professor; UH
Joycelin Canavan, MBBCh; Clinical Assistant Professor; CCLCM
Luzma Cardona, MD; Clinical Assistant Professor; CCLCM
Jennifer Carew, PhD; Adjunct Assistant Professor; CCLCM
Emily Carey, DO; Clinical Assistant Professor; CCLCM
Mark Carlson, MD; Adjunct Professor; UH
Desi Carozza, MD; Clinical Assistant Professor; CCLCM
Richard Cartabuke, MD; Clinical Assistant Professor; CCLCM
Christopher Cartellone, MD; Clinical Senior Instructor; CCLCM
Denise Carter-O’Gorman, M SW; Clinical Instructor; UH
Shelby Cash, MD; Clinical Senior Instructor; UH
Robert Castele, MD; Clinical Assistant Professor; CCLCM
Lon Castle, MD; Clinical Assistant Professor; CCLCM
Jonathan Castro, MD; Clinical Assistant Professor; CCLCM
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fernando Castro-Pavia, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Thadeo Catcutan, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Antonia Ceccarelli, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Carmel Celestin, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Jackie Celestin, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Derrick Cetin, DO</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Charles Chacko, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Prabheenal Chahal, MBBS</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Journana Chaiban, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Saneka Chakravarty, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Kenneth Challener, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Megan Chan, MD</td>
<td>Clinical Senior Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Albert Chan, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Rajdeep Chana, DO</td>
<td>Clinical Instructor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Aparna Chandra Prakash, MBBS</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Sudhakar Chandurkar, MBBS</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Ann Chandy, MBBS</td>
<td>Clinical Instructor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Richard Chang, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Roger Chales, MBBS</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Robert Chatburn, MS</td>
<td>Adjunct Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Abubaker Chaudhry, MD</td>
<td>Clinical Senior Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Chakrach Chaulagain, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Shih-Ann Chen, MD</td>
<td>Adjunct Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Yong Chen, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Aurelia Cheng, MD</td>
<td>Clinical Instructor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>David Cheng, MD</td>
<td>Clinical Associate Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Neil Cherian, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Rejo Cherian, MD</td>
<td>Clinical Instructor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Anita Cheriyan, MBBS</td>
<td>Clinical Assistant Professor</td>
<td>MHMC</td>
</tr>
<tr>
<td>Richard Chmielewski, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Donald Cho, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Michael Cho, PhD</td>
<td>Adjunct Associate Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Chirag Choudhary, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Elie Choufani, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Aneel Chowdhary, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Saleem Chowdhry, MBBS</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Lynn Chrismer, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Richard Christie, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Vivian Chukwuani, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Roy Chung, MBBS</td>
<td>Clinical Assistant Professor</td>
<td>SOM</td>
</tr>
<tr>
<td>Brianne Cicchiani, DO</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Joseph Cicenia, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>James Cireddu, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Robert Cirino, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Hadley Claren, MD</td>
<td>Clinical Associate Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Amelia Cleveland-Traylor, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Michael Cline, DO</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Stephanie Clough, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Byron Coffman, MD</td>
<td>Clinical Senior Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Kathy Coffman, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>David Cogan, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Truvy Cohen, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Robert Colacarro, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Cristie Cole, JD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>John Colletta, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Paul Coletta, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Grant Connorick, DO</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Jason Confino, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Lloyd Cook, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Brian Cooley, DO</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Mark Cooper, MD</td>
<td>Clinical Associate Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Cathy Cooper, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Joseph Cooper, DO</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Dietmar Cordes, PhD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Victoria Cornette, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Diane Cornicelli, MD</td>
<td>Clinical Assistant Professor</td>
<td>VA</td>
</tr>
<tr>
<td>Natalie Correia, DO</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>James Coviello, MD</td>
<td>Clinical Senior Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Edward Covington, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Kenneth Covinsky, MD</td>
<td>Adjunct Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Ronald Cowan, PhD</td>
<td>Clinical Senior Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Todd Coy, DMD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Department</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Atanase Craciun, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Horia Craciun, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Richard Creger, PhD</td>
<td>Clinical Associate Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Frederick Creighton, MA</td>
<td>Adjunct Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Joshua Crites, PhD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Timothy Crone, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Carl Culley, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Daniel Culver, DO</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Mazen Dahbar, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Noma Dakhil, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Roman Dale, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Vincent Dalessandro, DO</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>William Damm, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Patricia Dandache, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Hari Dandapantula, MBBS</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Syma Dar, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Manisha Das, MBBS</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Saurabh Das, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Joel David, DO</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Eleanor Davidson, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Kelly Davidson, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Sara Davin, PsyD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Dennis Davis, DO</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Xuan-Trang Day, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Jason de Roulet, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Dan Deac, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Diana Deitser, DO</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Irene Dejak, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Debra DeJoseph, MD</td>
<td>Clinical Senior Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Sandra Dellaportas, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Cristina Demian, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Sameh Demian, MBBS</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Ketan Deoras, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Bachar Dergham, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Lena Dergham, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Neelesh Desai, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Rajul Desai, MD,MPh</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Shailey Desai, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Himanshu Deswal, MBBS</td>
<td>Clinical Instructor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Paula Deuley, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Donald Dewald, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Cynthia Deyling, MD</td>
<td>Clinical Associate Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Megha Dhamne, MBBS</td>
<td>Clinical Instructor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Sukhmandeep Dhillon, MBBS</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Jatin Dhimar, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Jagmeet Dhwinga, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Rodica Di Lorenzo, MD</td>
<td>Clinical Instructor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Elliot Dickman, MD PhD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Buthayna Dinary, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Jane D’Isa-Smith, DO</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Beth Dixon, PsyD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Daignon Djigbenou, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Jacqueline Doamekpor, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Krista Dobbie, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Judy Dodds, PhD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Robert Dohar, OD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Stephen Dombrowski, PhD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Michelle Dompenciel, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Jeremy Donagheue, MS</td>
<td>Adjunct Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Eoin Donnellan, MBBS</td>
<td>Clinical Instructor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Megan Donnelly, DO</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>John Donohue, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Anupama Doraismany, MBBS</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Michelle Drerup, PsyD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Thomas Dresing, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Laurent Dreyfuss, DO</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Raimantas Drublionis, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Irene Druzina, MD</td>
<td>Clinical Senior Instructor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Kristi Dubinsky, DO</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Siddharth Dugar, MBBS</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Sunet Dullet, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Jean Louis Dupiton, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
</tbody>
</table>
Jan Flesche, MD, MPH; Clinical Assistant Professor; CCLCM
Kimberlee Fong, DO; Clinical Assistant Professor; CCLCM
Farshad Forouzandeh, MD PhD; Clinical Assistant Professor; UH
Richard Fortinsky, PhD; Adjunct Associate Professor; UH
Fetnat Fouad-Tarazi, MBBCch; Clinical Assistant Professor; CCLCM
John Foulds, PhD; Adjunct Associate Professor; UH
Adele Fowler, MD; Clinical Assistant Professor; CCLCM
Wilma Fowler-Bergfeld, MD; Clinical Associate Professor; CCLCM
Irving Franco, MD; Clinical Assistant Professor; CCLCM
Scott Francy, MD; Clinical Assistant Professor; CCLCM
Lucy Franjic, MD; Clinical Assistant Professor; CCLCM
Erika Fraundorf, MD; Clinical Assistant Professor; CCLCM
Jason Frazier, DO; Clinical Assistant Professor; CCLCM
Samuel Friedlander, MD; Clinical Assistant Professor; UH
Darci Friedman, MD; Clinical Instructor; UH
Judah Friedman, MD; Clinical Assistant Professor; UH
Lee Friedman, PhD; Adjunct Assistant Professor; UH
Neil Friedman, MBBCch; Clinical Assistant Professor; CCLCM
Kenneth Fromkin, MD; Clinical Assistant Professor; CCLCM
Chieh-Lin Fu, MD; Clinical Assistant Professor; CCLCM
Freddie Fuentes, MBBS; Clinical Assistant Professor; CCLCM
Keith Fuller, MD; Clinical Instructor; CCLCM
Pauline Funchain, MD; Clinical Assistant Professor; CCLCM
Jennifer Furin, MD PhD; Adjunct Assistant Professor; UH
Abhishek Gadre, MBBS; Clinical Assistant Professor; CCLCM
Shruti Gadre, MBBS; Clinical Instructor; CCLCM
Rama Gajulapalli, MBBS; Clinical Assistant Professor; CCLCM
Diana Galindo, MD; Clinical Assistant Professor; CCLCM
Timothy Gallagher, MD; Clinical Assistant Professor; MHMC
Jeffrey Galvin, MD; Clinical Assistant Professor; MHMC
Larisa Gemerz, MD; Clinical Assistant Professor; CCLCM
Michael Gangel, MD; Clinical Assistant Professor; CCLCM
Patricia Gannon, MD; Clinical Assistant Professor; CCLCM
Chitra Ganta, MBBS; Clinical Assistant Professor; CCLCM
Ari Garber, MD; Clinical Instructor; CCLCM
Camilo Garcia Garcia, MD; Clinical Instructor; CCLCM
Kittu Garg, MD; Clinical Assistant Professor; CCLCM
Will Garner, MD; Clinical Senior Instructor; UH
Brian Garrity, DO; Clinical Instructor; UH
Andrew Garrow, MD; Clinical Assistant Professor; CCLCM
Christopher Gaskins, MD; Clinical Assistant Professor; CCLCM
Gabriel Gavriles, MD; Clinical Assistant Professor; CCLCM
Jenie George, MD; Clinical Instructor; CCLCM
Pravin George, DO; Clinical Assistant Professor; CCLCM
Kevin Geraci, MD; Clinical Professor; UH
Patria Gerardo, MD; Clinical Senior Instructor; VA
Julie Gerberding, MD MPH; Adjunct Professor; UH
Meana Gerges, MD; Clinical Assistant Professor; CCLCM
Riane Ghamrawi, Pharm D; Clinical Senior Instructor; UH
Tarek Gharibeh, MBBS; Clinical Assistant Professor; UH
Anindita Ghosh, MBBS; Clinical Assistant Professor; CCLCM
Bartolomeo Giannattasio, MD; Clinical Assistant Professor; UH
Philip Gigliotti, MD; Clinical Instructor; UH
Leslie Gilbert, MD; Clinical Assistant Professor; CCLCM
Thomas Ginley, OD; Clinical Senior Instructor; MHMC
Kim Gladden, MD; Clinical Assistant Professor; CCLCM
Michael Glasenapp, MD; Clinical Assistant Professor; CCLCM
Benjamin Glasener, MD; Clinical Instructor; CCLCM
Joel Godard, MD; Clinical Assistant Professor; CCLCM
Teresa Goebel, DO; Clinical Instructor; UH
Harold Goforth, MD; Clinical Assistant Professor; CCLCM
Laura Goldberg, MD; Clinical Assistant Professor; CCLCM
Nicholas Golden, MD; Clinical Assistant Professor; CCLCM
Robert Goldstein, MD; Adjunct Assistant Professor; UH
Mladen Golubic, MD, PhD; Clinical Assistant Professor; CCLCM
Marcelo Gomes, MD; Clinical Assistant Professor; CCLCM
Lilian Gonsalves, MD; Clinical Professor; CCLCM
Kasey Goodpaster, PhD; Adjunct Assistant Professor; CCLCM
Alan Goodrich, DO; Clinical Assistant Professor; CCLCM
K.V. Gopalakrishna, MD; Clinical Professor; CCLCM
Amarendra Gopireddy, MD; Clinical Assistant Professor; CCLCM
Joshua Gordon, MD; Clinical Assistant Professor; CCLCM
Betul Hatipoglu, MD; Clinical Associate Professor; CCLCM
Greg Haun, DO; Clinical Assistant Professor; CCLCM
Katarzyna Hause-Wardega, MD; Clinical Senior Instructor; UH
Justin Haveman, MD; Clinical Assistant Professor; CCLCM
Nazem Havez, MD; Clinical Assistant Professor; CCLCM
Edward Hawkins, MD; Clinical Assistant Professor; CCLCM
George Hawwa, MD; Clinical Senior Instructor; UH
Stephen Hayden, MBBS; Clinical Assistant Professor; CCLCM
Emil Hayek, MD; Clinical Assistant Professor; UH
Rami Hazzi, MD; Clinical Assistant Professor; CCLCM
David Headen, MD; Clinical Assistant Professor; UH
Jonathan Heavey, MD; Clinical Assistant Professor; CCLCM
David Hedrick, MD, PhD; Clinical Assistant Professor; CCLCM
Rana Hejal, MD; Clinical Associate Professor; UH
James Hekman, MD; Clinical Assistant Professor; CCLCM
Marcelo Helguera, MD; Clinical Assistant Professor; CCLCM
Andrew Henn, DO; Clinical Instructor; CCLCM
Eileen Herbert, MD; Clinical Assistant Professor; CCLCM
Aunna Herbst, DO; Clinical Assistant Professor; CCLCM
Jeffrey Hershey, MD; Clinical Assistant Professor; UH
Todd Hershner, OD; Clinical Assistant Professor; CCLCM
Frederick Heupler, Jr., MD; Clinical Assistant Professor; CCLCM
Fadi Hijazi, MD; Clinical Assistant Professor; CCLCM
Rabih Hijazi, MD; Clinical Assistant Professor; CCLCM
Marwan Hilal, MD; Clinical Senior Instructor; UH
Amy Hirsch, MD; Clinical Senior Instructor; VA
Alan Hirsh, MD; Clinical Assistant Professor; UH
Eric Hixson, PhD; Adjunct Senior Instructor; CCLCM
Sally Hodder, MD; Adjunct Associate Professor; UH
Laura Hoeksema, MD; Clinical Assistant Professor; CCLCM
Katherine Holman, MD; Clinical Assistant Professor; CCLCM
Julie Honaker, PhD; Adjunct Assistant Professor; CCLCM
Raymond Hong, MD; Clinical Instructor; UH
Sandra Hong, MD; Clinical Assistant Professor; CCLCM
Deborah Hornacke, ; Clinical Assistant Professor; CCLCM
John Hornick, MD; Clinical Senior Instructor; UH
Matthew Hoscheit, MD; Clinical Instructor; CCLCM
Juliet Hou, MD; Clinical Assistant Professor; CCLCM
Augusto Hsia, MD; Clinical Assistant Professor; CCLCM
Gary Hsich, MD; Clinical Assistant Professor; CCLCM
Fred Hsieh, MD; Clinical Assistant Professor; CCLCM
Xuan Huang, MD PhD; Clinical Assistant Professor; UH
Julie Huang, MD; Clinical Assistant Professor; CCLCM
Carlos Hubbard, MD, PhD; Clinical Assistant Professor; CCLCM
Kimberly Huck, BSN; Clinical Assistant Professor; VA
Diane Huey, MD; Clinical Assistant Professor; CCLCM
Joel Hughes, PhD; Adjunct Assistant Professor; UH
Lawrence Hughes, MD; Clinical Assistant Professor; CCLCM
Atul Hulyalkar, MD; Clinical Assistant Professor; UH
Karen Hummel, MD; Clinical Senior Instructor; UH
Karen Hurley, PhD; Adjunct Assistant Professor; CCLCM
Ibrahim Husein, MD; Clinical Assistant Professor; CCLCM
Ayman Hussein, MD; Clinical Assistant Professor; CCLCM
David Hutt, MD; Clinical Senior Instructor; UH
Erika Hutt Centeno, MD; Clinical Instructor; CCLCM
Osama Ibrahim, MBBCh; Clinical Assistant Professor; UH
Said Ibrahim, MD; Adjunct Assistant Professor; UH
Ahmed Ibrahim, MBBCh; Clinical Assistant Professor; CCLCM
Mobolaji Ige, MBBS; Clinical Assistant Professor; CCLCM
Uche Iheme, MD; Clinical Assistant Professor; CCLCM
Antoaneta Ilieva, MD; Clinical Instructor; UH
Michelle Inkster, MD, PhD; Clinical Assistant Professor; CCLCM
Mahwish Irfan, MD; Clinical Assistant Professor; CCLCM
Wahib Isac, MBBCh; Clinical Assistant Professor; CCLCM
Carlos Isada, MD; Clinical Assistant Professor; CCLCM
Khaled Issa, MD; Clinical Assistant Professor; CCLCM
Ilia Itin, MD; Clinical Assistant Professor; CCLCM
Indiresha Iyer, MD; Clinical Assistant Professor; UH
John Jabbour, MD; Clinical Assistant Professor; CCLCM
Edgar Jackson Jr., MD; Clinical Professor; UH
Miriam Jacob, MD; Clinical Assistant Professor; CCLCM
Avrum Jacobs, MD; Clinical Assistant Professor; CCLCM
Lawrence Jacobs, MD; Clinical Assistant Professor; CCLCM
Deepa Jagadeesh, MBBS; Clinical Assistant Professor; CCLCM
Likhitesh Jaikumar, MDm; Clinical Assistant Professor; CCLCM
Prantesh Jain, MBBS; Clinical Assistant Professor; CCLCM
Rashmi Jain, MD; Clinical Assistant Professor; CCLCM
Harriet Jakob, MD; Clinical Instructor; UH
Alexander Jakubowycz, ; Clinical Assistant Professor; CCLCM
Varalakshmi Janamanchi, MBBS; Clinical Assistant Professor; CCLCM
Joseph Janesz, PhD; Clinical Assistant Professor; CCLCM
Amir Jassani, PhD; Clinical Assistant Professor; CCLCM
Lynn Jedlicka, MD; Clinical Assistant Professor; CCLCM
John Jewell, MD; Clinical Assistant Professor; CCLCM
Nilamba Jhala, MBBS; Clinical Assistant Professor; CCLCM
Heather Jimenez, MD; Clinical Assistant Professor; CCLCM
Brenda Jimenez Cantisano, MD; Clinical Assistant Professor; CCLCM
Alejandro Jimenez Restrepo, MD; Clinical Assistant Professor; CCLCM
Andrew Jimerson, MD; Clinical Assistant Professor; UH
Adrienna Jirik, MD; Clinical Assistant Professor; CCLCM
Kuruvilla John, MBBS; Clinical Assistant Professor; CCLCM
Moses Joloba, MBBS; Adjunct Assistant Professor; UH
Catherine Jones, MD; Clinical Assistant Professor; UH
Daniel Jones, PhD; Clinical Assistant Professor; CCLCM
Danita Jones, DO; Clinical Assistant Professor; CCLCM
Robert Jones, MD; Clinical Assistant Professor; CCLCM
Tessey Jose, MD; Clinical Assistant Professor; CCLCM
Regina Josell, PsyD; Clinical Assistant Professor; CCLCM
Dawn Joseph, MD; Clinical Assistant Professor; CCLCM
Hariom Joshi, MBBS; Clinical Instructor; CCLCM
Emer Joyce, PhD; Clinical Assistant Professor; CCLCM
Robert Juhasz, OD; Clinical Assistant Professor; CCLCM
Philip Junglas, MD; Clinical Senior Instructor; CCLCM
Amer Kadri, MBBC; Clinical Assistant Professor; CCLCM
Daniel Kahn, DO; Clinical Assistant Professor; CCLCM
Karyn Kahn, DDS; Clinical Assistant Professor; CCLCM
Harish Kakarala, MD; Clinical Instructor; UH
Amanda Kalan, MD; Clinical Assistant Professor; CCLCM
Saminder Kalra, MBBS; Clinical Assistant Professor; CCLCM
Afrin Kamal, MD; Clinical Instructor; CCLCM
Matthew Kaminski, MD; Clinical Assistant Professor; CCLCM
Moses Kamya, MBBS; Adjunct Senior Instructor; UH
Saul Kane, MD; Clinical Assistant Professor; CCLCM
Belagodu Kantharaj, MD; Clinical Assistant Professor; UH
Aanchal Kapoor, MBBS; Clinical Assistant Professor; CCLCM
Sanjay Karunagaran, DDS; Clinical Assistant Professor; CCLCM
Abdulkader Kasabji, MD; Clinical Assistant Professor; CCLCM
Georgianna Kates, MD; Clinical Senior Instructor; UH
Edward Katongole-Mbidde, MBBS; Adjunct Assistant Professor; UH
Irene Katzen, MD; Clinical Assistant Professor; CCLCM
Harjot Kaur, MBBS; Clinical Assistant Professor; CCLCM
Sunjeet Kaur, MBBS; Clinical Assistant Professor; CCLCM
Hanspreet Kaur, MD; Clinical Associate Professor; VA
Jonathan Keary, MD; Clinical Assistant Professor; CCLCM
Catherine Keating, MD; Clinical Assistant Professor; UH
Alex Keister, DO; Clinical Instructor; CCLCM
Ann Kelleher, DO; Clinical Assistant Professor; CCLCM
Lesley Kellie, MD; Clinical Instructor; VA
Allan Kennedy, MD; Clinical Assistant Professor; CCLCM
Lawrence Kent, MD; Clinical Professor; UH
Theodora Kerenidi, MD PhD; Clinical Assistant Professor; CCLCM
Jeffrey Kern, MD; Adjunct Professor; UH
Kevin Kerwin, MD; Clinical Assistant Professor; CCLCM
Rosemary Keskinen, MD; Clinical Assistant Professor; CCLCM
Ayla Kessler, MBBC; Clinical Instructor; UH
Philip Keyser, MD; Clinical Assistant Professor; UH
Joseph Khabbaza, MD; Clinical Assistant Professor; CCLCM
Tagreed Khalaf, MD; Clinical Assistant Professor; CCLCM
Kamal Khalafi, MD; Clinical Instructor; UH
Mohammed Khalil, MD; Clinical Assistant Professor; CCLCM
Qasim Khalil, MD; Clinical Assistant Professor; CCLCM
Jamshed Khan, MD; Clinical Assistant Professor; CCLCM
Leila Khan, MD; Clinical Assistant Professor; CCLCM
Mufeedulla Khan, MD; Clinical Assistant Professor; CCLCM
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nauman Khan, MBBS</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Safdar Khan, MBBS</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Shahzad Khan, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Tarannum Khan, MBBS</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Paris Kharbat, DO</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Mohamad Khasawneh, MBBS</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Abdulmanan Khaskheli, MBBS</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Jude Khatib, MD</td>
<td>Clinical Senior Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Jaikirshan Khatri, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Lakshmi Khatri, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Zehaun Khawaja, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Elias Khawam, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Shilipi Khetarpal, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Umesh Khot, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>George Khoudari, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Wael Khoury, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Peter Kibe, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Jennifer Kidd, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Erich Kiehl, MD</td>
<td>Clinical Instructor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Ahmad Kilani, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Thomas Killeen, DO</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Alice Kim, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Richard King, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Thomas King, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Dominic King, DO</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Duane Kirksey, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Sona Kirpekar, MD</td>
<td>Clinical Senior Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Michael Kirsch, MD</td>
<td>Clinical Senior Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Brian Kirsh, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>David Kittoe, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Julie Kizlik, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Patricia Klaas, PhD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Jonathan Klarfeld, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Jonathan Klein, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Allen Kline, DO</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Glenn Kluge, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Joseph Knapp, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>George Knappenberger, MD</td>
<td>Clinical Assistant Professor</td>
<td>VA</td>
</tr>
<tr>
<td>Kent Knauer, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Nana Kobaivanova, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Omer Koc, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Michael Koehler, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Douglas Kohler, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Matthew Kolar, MS</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Swapna Kollikonda, MBBS</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Apostolos Kontzias, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Marian Korosec, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Robert Kosmides, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Matthew Kostura, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Saket Kottewar, MBBS</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Zaher Koutoubi, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Martine Kowal, MA</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Krzysztof Kowalski, PhD</td>
<td>Clinical Associate Professor</td>
<td>MHMC</td>
</tr>
<tr>
<td>Joseph Krall, MD</td>
<td>Clinical Professor</td>
<td>VA</td>
</tr>
<tr>
<td>Margaret Kranyak, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Steven Krause, PhD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Alan Kravitz, MD</td>
<td>Clinical Senior Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Balu Krishnan, PhD</td>
<td>Adjunct Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Collin Kroen, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Keith Kruihoff, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Megan Kruse, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Marie Kuchynski, MD</td>
<td>Clinical Senior Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Praveer Kumar, MBBS</td>
<td>Clinical Senior Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Dheeraj Kumar, MBBS</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Neha Kumar, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Rahul Kumar, MBBS</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Shiva Kumar, MBBS</td>
<td>Clinical Associate Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Sunir Kumar, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Peter Kunze, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>C. Kent Kwoh, MD</td>
<td>Adjunct Associate Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Angela Kyei, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Mark Kyei, MBBCh</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
</tbody>
</table>
Taras Mahlay, MD; Clinical Instructor; UH
Manal Mahmoud, MD; Clinical Assistant Professor; CCLCM
Michael Maier, DPM; Clinical Assistant Professor; CCLCM
Baidehi Maiti, MD MPH; Clinical Assistant Professor; CCLCM
David Majdalany, MD; Clinical Assistant Professor; CCLCM
Vinit Makkar, MD; Clinical Assistant Professor; CCLCM
Jahangir Maleki, MD PhD; Clinical Assistant Professor; CCLCM
Ali Mallat, MD; Clinical Assistant Professor; CCLCM
M.B. Mamlouk, MD; Clinical Instructor; CCLCM
Preethi Mani, MD; Clinical Instructor; CCLCM
Sundara Manickam, MBBS; Clinical Assistant Professor; CCLCM
Gautam Mankaney, MD; Clinical Instructor; CCLCM
Sunpreet Mann, MBBS; Clinical Assistant Professor; CCLCM
Manesh Manne, MD; Clinical Assistant Professor; CCLCM
Jane Manno, PsyD; Clinical Assistant Professor; CCLCM
Chenguttai Manohar, MBBS; Clinical Instructor; UH
John Mansour, MD; Clinical Assistant Professor; CCLCM
Judith Manzon, MD; Clinical Assistant Professor; CCLCM
Joel Marcus, PsyD; Clinical Assistant Professor; CCLCM
Mary Ellen Margocs, DO; Clinical Assistant Professor; CCLCM
Shmuel Margolin, MD; Clinical Assistant Professor; CCLCM
Valsa Mariappuram, MBBS; Clinical Instructor; UH
James Mark, MD; Clinical Assistant Professor; CCLCM
Steven Markowitz, MD; Clinical Assistant Professor; CCLCM
DuPre Marks, MSSA; Clinical Assistant Professor; CCLCM
Avi Marocco, MD; Clinical Assistant Professor; CCLCM
Zane Maroney, MD; Clinical Instructor; CCLCM
Robert Marquardt, DO; Clinical Instructor; CCLCM
Frederick Marquinez, MD; Clinical Assistant Professor; UH
Lonnie Marsh, MD; Clinical Senior Instructor; UH
John Marshall, MD; Clinical Associate Professor; UH
Danielle Martin, DO; Clinical Assistant Professor; CCLCM
Nydia Martinez Galvis, MD; Clinical Assistant Professor; CCLCM
Angelie Mascarinas, MD; Clinical Assistant Professor; CCLCM
Paul Masci, DO; Clinical Assistant Professor; CCLCM
Mohamad Masri, MD; Clinical Assistant Professor; CCLCM
Ramy Masroujeh, MD; Clinical Instructor; VA
Scott Massien, MD; Clinical Instructor; UH
Anamaria Massier, MD; Clinical Assistant Professor; CCLCM
Anthony Mastroianni, MD; Clinical Assistant Professor; CCLCM
Maroun Matta, MD; Clinical Assistant Professor; UH
Rafael Mattera, PhD; Adjunct Associate Professor; UH
Anna May, MD; Clinical Instructor; UH
Harriet Mayanja-Kizza, MBBS; Adjunct Assistant Professor; UH
Eric Mayer, MD; Clinical Assistant Professor; CCLCM
Robert Mayock, MD; Clinical Assistant Professor; CCLCM
Myttle Mayuga, MD; Clinical Instructor; UH
Mary Mazanec, MD; Adjunct Associate Professor; UH
Peter Mazzone, MD; Clinical Assistant Professor; CCLCM
Charles Mbanefo, MD; Clinical Assistant Professor; UH
Nancy McBride, MD; Clinical Senior Instructor; UH
Jennifer McCarthy, MD; Clinical Assistant Professor; UH
J. McEachern, MD; Clinical Senior Instructor; MHMC
Susan McInnes, MD; Clinical Assistant Professor; CCLCM
Keith McKee, MD; Clinical Assistant Professor; CCLCM
Joanne McKell, MD; Clinical Assistant Professor; UH
Andrew McLaughlin, DO; Clinical Assistant Professor; CCLCM
Ann McMullin, MD; Clinical Assistant Professor; CCLCM
Michael McNamara, MD; Clinical Assistant Professor; CCLCM
Carla McWilliams, MD; Clinical Assistant Professor; CCLCM
Laurie McWilliams, MD; Clinical Assistant Professor; CCLCM
Elizabeth Mease, MD; Clinical Instructor; UH
Glenn Meden, MD; Clinical Assistant Professor; CCLCM
Rajendra Mehta, MBBS; Clinical Assistant Professor; UH
Adi Mehta, MD; Clinical Assistant Professor; CCLCM
Jinesh Mehta, MBBS; Clinical Assistant Professor; CCLCM
Priti Mehta, MD; Clinical Assistant Professor; CCLCM
Mark Melamud, MD; Clinical Instructor; UH
Stephen Meldon, MD; Clinical Assistant Professor; CCLCM
Prateek Mendiratta, MD; Clinical Instructor; UH
Suresh Mendpara, MBBS; Clinical Assistant Professor; UH
Michael Menolasino, OD; Clinical Instructor; UH
Vivek Menon, MD; Clinical Assistant Professor; CCLCM
Zahi Merjaneh, MD; Clinical Instructor; UH
Lindsay Meurer, MD; Clinical Senior Instructor; UH
Swarnalatha Meyyazhagan, MBBS; Clinical Assistant Professor; CCLCM
Omar Mian, MD, PhD; Clinical Assistant Professor; CCLCM
Stephanie Michal, MD; Clinical Instructor; UH
Romeo Miclat, MD; Clinical Assistant Professor; UH
Josephine Mikhail, MBBS; Clinical Instructor; UH
Yasser Mikhail, MBBS; Clinical Instructor; UH
Maria Miklowski, MD; Clinical Assistant Professor; CCLCM
Jason Milk, DO; Clinical Assistant Professor; CCLCM
Jill Miller, MD; Clinical Senior Instructor; UH
Joshua Miller, DO; Clinical Assistant Professor; CCLCM
Laura Miller, DO; Clinical Assistant Professor; CCLCM
Michael Miller, MD; Clinical Assistant Professor; CCLCM
Timothy Miller, MD; Clinical Assistant Professor; CCLCM
Cyndee Miranda, MD; Clinical Assistant Professor; CCLCM
Radu Mirodon, MD; Clinical Instructor; UH
Seema Misbah, MD; Clinical Assistant Professor; CCLCM
Neha Mitra, MD; Clinical Assistant Professor; CCLCM
Rhonda Miyasaka, MD; Clinical Assistant Professor; CCLCM
Mohammad Moayeri, MD; Clinical Senior Instructor; UH
Ige Mobolaji, MBBS; Clinical Assistant Professor; CCLCM
Raju Modi, MBBS; Clinical Assistant Professor; UH
Ajit Moghekar, MBBS; Clinical Assistant Professor; CCLCM
Haneen Mohammad, MD; Clinical Assistant Professor; CCLCM
Vineeth Mohan, MD; Clinical Assistant Professor; CCLCM
Divyanshu Mohananey, MD; Clinical Assistant Professor; CCLCM
Mohammad Mohmand, MBBS; Clinical Assistant Professor; CCLCM
Babak Moini, MD; Clinical Instructor; UH
Shaffer Mok, MD; Clinical Assistant Professor; UH
Marina Molinari-Zuzek, MD; Clinical Assistant Professor; CCLCM
Marc Monachese, MD; Clinical Instructor; CCLCM
Manikut Moodley, MBBC; Clinical Assistant Professor; CCLCM
Amanda Morgan, MD; Clinical Instructor; UH
Janet Morgan, MD; Clinical Assistant Professor; CCLCM
Nariman Morra, MD; Clinical Assistant Professor; CCLCM
John Morren, MBBS; Clinical Assistant Professor; CCLCM
Paige Morris, MD; Clinical Assistant Professor; CCLCM
Sharon Morris, MD; Clinical Assistant Professor; CCLCM
William Morris, MD; Clinical Assistant Professor; CCLCM
Jay Morrow, MD; Clinical Assistant Professor; CCLCM
Katrina Morscher, MD; Clinical Assistant Professor; CCLCM
John Mosher, PhD; Clinical Assistant Professor; CCLCM
Dalia Mossad, MBBS; Clinical Assistant Professor; CCLCM
Lama Muhiieddine Mossolly, MS; Clinical Assistant Professor; CCLCM
Nelson Mostow, MD; Clinical Associate Professor; MHMC
Yoram Moyal, MD; Clinical Instructor; UH
Ismail Mualin, MBBS; Clinical Assistant Professor; CCLCM
Bashar Mubashir, MD; Clinical Assistant Professor; UH
Simon Mucha, MD; Clinical Instructor; CCLCM
Roy Mugerwa, MBBS; Adjunct Professor; UH
Peter Muyenyi, MBBS; Adjunct Assistant Professor; UH
Saurabh Mukewar, MBBS; Clinical Instructor; CCLCM
Sudipto Mukherjee, MBBS, PhD; Clinical Assistant Professor; CCLCM
Ajit Mullasari, MBBS; Adjunct Assistant Professor; UH
Guy Mulligan, MD; Clinical Assistant Professor; CCLCM
Katherine Mullin, MD; Clinical Assistant Professor; CCLCM
Jose Muniz, MD; Clinical Assistant Professor; CCLCM
Valji Munjapara, MBBS; Clinical Instructor; UH
Ogechi Muoh, DO; Clinical Instructor; UH
Madeleine Murphy, MSN; Clinical Instructor; UH
Angela Murphy, DO; Clinical Assistant Professor; CCLCM
Brian Murphy, MD; Clinical Assistant Professor; CCLCM
Christopher Murphy, DO; Clinical Assistant Professor; CCLCM
Cissy Mutuluuza, MBBS; Adjunct Assistant Professor; UH
Grace Muzanye, MBBC; Adjunct Instructor; UH
Christopher Myers, ; Clinical Assistant Professor; CCLCM
Arun Nagarajan, MBBS; Clinical Assistant Professor; CCLCM
Erin Cathlene Nagrant, MD; Clinical Assistant Professor; CCLCM
Priti Nair, MD; Clinical Instructor; UH
Dileep Nair, MD; Clinical Assistant Professor; CCLCM
Raj Nair, MBBS; Clinical Assistant Professor; CCLCM
Shady Nakhla, MD; Clinical Instructor; CCLCM
Joseph Nally, MD; Clinical Professor; CCLCM
Taran Napora, MD; Clinical Assistant Professor; CCLCM
Tinatin Narsia, MD; Clinical Instructor; UH
Christian Nasar, MD; Clinical Assistant Professor; CCLCM
Thomas Nasheri, DO; Clinical Instructor; UH
Marwan Nasif, MD; Clinical Instructor; UH
Andrea Natale, MD; Adjunct Professor; MHMC
Viswanath Natesan, MD; Clinical Instructor; UH
Howard Nathan, MD; Clinical Assistant Professor; CCLCM
Elsy Navas, MD; Clinical Assistant Professor; CCLCM
Ashwini Nayak, MD; Clinical Instructor; UH
Kenneth Nekl, MD; Clinical Assistant Professor; UH
John Nemunaitis, MD; Clinical Assistant Professor; UH
Michael Nemunaitis, MD; Clinical Assistant Professor; CCLCM
Maria Neri-Nixon, MD; Clinical Assistant Professor; CCLCM
Pamela Ng, MD; Clinical Assistant Professor; CCLCM
Timmy Nguyen, MBBS; Clinical Assistant Professor; CCLCM
Ying Ni, PhD; Adjunct Assistant Professor; CCLCM
Michael Nocochovitz, MD; Clinical Assistant Professor; UH
Edward Noquera, MD; Clinical Assistant Professor; CCLCM
Penali Noticewala, MD; Clinical Assistant Professor; CCLCM
David Novak, MD; Clinical Instructor; UH
Ika Noviawaty, MD; Clinical Instructor; CCLCM
Mary Nserek, MBBS; Adjunct Instructor; UH
Emad Dean Nukta, MD; Clinical Assistant Professor; CCLCM
Saul Nurko, MD; Clinical Assistant Professor; CCLCM
Lara Oberle, MD; Clinical Assistant Professor; CCLCM
Lindsay O’Brien, DO; Clinical Instructor; CCLCM
Lauren O’Byrne Gopal, DO; Clinical Senior Instructor; MHMC
Mary O’Connor, MD; Clinical Assistant Professor; CCLCM
Oludamiola Ogunlesi, MBBS; Clinical Instructor; UH
Janet O’Hara, MD; Clinical Assistant Professor; UH
Toshihiro Okamoto, MD, PhD; Clinical Assistant Professor; CCLCM
Isidore Okere, MBBS; Clinical Instructor; UH
Leann Olansky, MD; Clinical Assistant Professor; CCLCM
May Olayan, MD; Clinical Assistant Professor; CCLCM
G. Olds, MD; Adjunct Professor; MHMC
Amy O’Linn, DO; Clinical Assistant Professor; CCLCM
Kelly O’Malia, MD; Clinical Assistant Professor; CCLCM
Mohamed Mostafa Omara, MBBCH; Clinical Assistant Professor; CCLCM
Beverly O’Neill, MD; Clinical Assistant Professor; CCLCM
Jackson Orem, MBBCH; Adjunct Assistant Professor; UH
Daniel Ornt, MD; Adjunct Professor; UH
Carl Oringer, MD; Adjunct Associate Professor; UH
Mohammed Osman, MBBS; Clinical Assistant Professor; UH
Leonor Osorio, DO; Clinical Assistant Professor; CCLCM
Gregory Oswald, MD; Clinical Assistant Professor; CCLCM
Bryan Pace, DO; Clinical Assistant Professor; CCLCM
Mark Pace, DO; Clinical Assistant Professor; CCLCM
Rute Paixao, MD; Clinical Assistant Professor; CCLCM
Walter Paladino, MD; Clinical Instructor; UH
Nicole Palekar, MD; Clinical Assistant Professor; CCLCM
Kristopher Palmer, DO; Clinical Instructor; UH
Aman Pande, MD; Clinical Assistant Professor; CCLCM
Mukul Pande, MBBS; Clinical Senior Instructor; UH
Kevin Pantalone, DO; Clinical Assistant Professor; CCLCM
Irina Papirova, MD; Clinical Instructor; UH
Joseph Parambil, MD; Clinical Assistant Professor; CCLCM
Keyur Parikh, MD; Clinical Assistant Professor; UH
Parth Parikh, MD; Clinical Instructor; CCLCM
Prachi Parikh, MBBS; Clinical Instructor; CCLCM
Hoon Park, MD; Clinical Instructor; UH
Rajvinder Parmar, MD; Clinical Instructor; UH
David Parris, MD; Clinical Senior Instructor; UH
Michael Passero, MD; Clinical Instructor; UH
Monaliben Patel, MD; Clinical Instructor; UH
Alpeshkumar Patel, MBBS; Clinical Assistant Professor; CCLCM
Chirag Patel, MD; Clinical Assistant Professor; CCLCM
Seema Patel, MD; Clinical Assistant Professor; CCLCM
Shetal Patel, MD; Clinical Assistant Professor; CCLCM
Charles Pavluk, MD; Clinical Instructor; UH
Mahmood Pazirandeh, MD; Clinical Associate Professor; UH
Craig Peacock, PhD; Clinical Assistant Professor; CCLCM
Evan Peck, MD; Clinical Assistant Professor; CCLCM
Seenia Peechakara, MBBS; Clinical Assistant Professor; CCLCM
Maajid Peerzada, MBBS; Clinical Assistant Professor; CCLCM
Gil Peleg, MD; Clinical Assistant Professor; UH
Robert Pelley, MD; Clinical Assistant Professor; CCLCM
Norman Perala, MD; Clinical Assistant Professor; CCLCM
Apostolos Perelas, MD; Clinical Instructor; CCLCM
Neil Perera, MD; Clinical Assistant Professor; CCLCM
Rolando Perez, MD; Clinical Assistant Professor; CCLCM
Pranav Periyalwar, MD; Clinical Assistant Professor; UH
Dwayne Perkins, MD; Clinical Assistant Professor; CCLCM
Kevin Perry, MD; Clinical Assistant Professor; CCLCM
Brenda Perryman, MD; Clinical Senior Instructor; UH
Stephen Pesanti, MD; Clinical Instructor; CCLCM
Ninoska Peterson, PhD; Adjunct Assistant Professor; CCLCM
Roman Petroff, MD; Clinical Instructor; UH
James Phillips, PhD; Adjunct Assistant Professor; CCLCM
Jessica Philpott, MD, PhD; Clinical Assistant Professor; CCLCM
Bohdan Pichurko, MD; Clinical Assistant Professor; CCLCM
Bartlomiej Piechowski-Jozwiak, MD; Clinical Associate Professor; CCLCM
Dale Pignolet, MD; Clinical Assistant Professor; CCLCM
Melissa Piliang, MD; Clinical Assistant Professor; CCLCM
Dilip Pillai, MBBS; Clinical Assistant Professor; MHMC
Robert Piloto, MD; Clinical Assistant Professor; CCLCM
Ronnie Pimental, MD; Clinical Assistant Professor; CCLCM
Ileana Pina, MD; Adjunct Professor; UH
Sergio Pinski, MD; Clinical Assistant Professor; CCLCM
Massimo Pinzani, MD PhD; Adjunct Professor; UH
Erik Pioro, MD, PhD; Clinical Assistant Professor; CCLCM
Jared Piotrkowski, MD; Clinical Assistant Professor; CCLCM
Vitaliy Pishchik, MD; Clinical Assistant Professor; CCLCM
Sarah Planchon Pope, PhD; Adjunct Assistant Professor; CCLCM
Jeffrey Plas, MD; Clinical Assistant Professor; CCLCM
Brad Pohlman, MD; Clinical Assistant Professor; CCLCM
Michael Pollack, MD; Clinical Assistant Professor; CCLCM
Amy Polster, MD; Clinical Assistant Professor; CCLCM
David Polston, MD; Clinical Assistant Professor; CCLCM
Vincent Pompili, MD; Adjunct Associate Professor; UH
Jacqueline Ponsky, MA; Clinical Instructor; UH
Paul Poommipanit, MD; Clinical Associate Professor; UH
Andrei Porescu, MD PhD; Clinical Instructor; UH
Victoria Porter, MD; Clinical Assistant Professor; CCLCM
Steven Pottscheidt, MD; Clinical Assistant Professor; CCLCM
Gregory Powell, MD; Clinical Assistant Professor; CCLCM
Leopoldo Pozuelo, MD; Clinical Assistant Professor; CCLCM
Maria Pozuelo, MD; Clinical Assistant Professor; CCLCM
Anbazhagan Prabhakaran, MBBS; Clinical Assistant Professor; CCLCM
Radhai Prabhakaran, MBBS; Clinical Assistant Professor; CCLCM
Cristina Pravia, MD; Clinical Assistant Professor; CCLCM
Gina Predescu, MD; Clinical Assistant Professor; CCLCM
Franklin Price, MD; Clinical Instructor; UH
Kristin Prock, DO; Clinical Assistant Professor; CCLCM
Ryan Prudoff, DO; Clinical Assistant Professor; CCLCM
Vineet Punia, MBBS; Clinical Instructor; CCLCM
Eshwar Punjabi, MBBS; Clinical Instructor; UH
Rishi Puri, MBBS PhD; Clinical Assistant Professor; CCLCM
Grace Purisima, MD; Clinical Assistant Professor; CCLCM
Kim Puterbaugh, MD; Clinical Assistant Professor; CCLCM
Kara Quan, MD; Adjunct Associate Professor; MHMC
Noe Quesada-Vazquez, MD; Clinical Assistant Professor; CCLCM
Kathleen Quinn, MD; Clinical Assistant Professor; CCLCM
Dany Raad, MD; Clinical Assistant Professor; UH
Jennifer Rabbat, MD; Clinical Assistant Professor; CCLCM
Ted Raddell, PhD; Clinical Assistant Professor; CCLCM
Pejman Raeisi-Giglou, DO; Clinical Assistant Professor; CCLCM
Franck Rahaghi, MD; Clinical Assistant Professor; CCLCM
Hardeep Rai, MD; Clinical Assistant Professor; CCLCM
Saju Rajan, MD; Clinical Assistant Professor; CCLCM
Prabalini Rajendram, MD; Clinical Assistant Professor; CCLCM
Jayati Rakhit, MD; Clinical Senior Instructor; UH
James Ramicone, DO; Clinical Assistant Professor; UH
Pratibna Rao, MBBS; Clinical Assistant Professor; CCLCM
M. Rashid, MBBS; Clinical Assistant Professor; UH
Arash Rashidi, MD; Clinical Assistant Professor; UH
Paola Raska, PhD; Adjunct Assistant Professor; CCLCM
Deborah Rathz, MD, PhD; Clinical Assistant Professor; CCLCM
Monica Ray, MD; Clinical Assistant Professor; CCLCM
Chad Raymond, DO; Clinical Assistant Professor; CCLCM
Russell Raymond, DO; Clinical Assistant Professor; CCLCM
Muhammad Raza, MBBS; Clinical Assistant Professor; CCLCM
Manuel Rebeiro Neto, MD; Clinical Assistant Professor; CCLCM
Anantha Reddy, MBBS; Clinical Assistant Professor; CCLCM
Sathya Reddy, MBBS; Clinical Assistant Professor; CCLCM
Satti Reddy, MD; Clinical Assistant Professor; CCLCM
Susan Redline, MD; Adjunct Professor; UH
Curtis Reece, MD; Clinical Assistant Professor; CCLCM
Mona Reed, MD; Clinical Assistant Professor; UH
Grant Reed, MD; Clinical Instructor; CCLCM
Amy Reese, MD; Clinical Assistant Professor; UH
Saif Rehman, MD; Clinical Assistant Professor; UH
Michal Reid, MD; Clinical Instructor; CCLCM
Jon Reisman, MD; Clinical Instructor; UH
Scot Remick, MD; Adjunct Professor; UH
Anne Rex, DO; Clinical Assistant Professor; CCLCM
Stephanie Reznick, MD; Clinical Instructor; UH
Salwa Rhazouani, MD; Clinical Assistant Professor; CCLCM
Kamal Riad, MBBS; Clinical Assistant Professor; CCLCM
Cory Rice, MD; Clinical Instructor; CCLCM
Louis Rice, MD; Adjunct Professor; VA
Kathryn Richards, MD; Clinical Assistant Professor; CCLCM
Robert Richardson, MD; Clinical Assistant Professor; UH
Mary Richmond, DO; Clinical Assistant Professor; CCLCM
Kelly Richter, MD; Clinical Assistant Professor; CCLCM
William Riebel, MD; Clinical Senior Instructor; MHMC
Hadie Rifai, DDS; Clinical Assistant Professor; CCLCM
Alexander Rim, MD; Clinical Assistant Professor; CCLCM
Sarah Rispinto, PhD; Clinical Assistant Professor; CCLCM
Pamela Ritzer, MD; Clinical Assistant Professor; CCLCM
Aaron Ritter, MD; Clinical Assistant Professor; CCLCM
Huma Rizvi, MBBS; Clinical Assistant Professor; CCLCM
Joseph Rock, PsyD; Clinical Assistant Professor; CCLCM
Adriana Rodriguez, MD; Clinical Assistant Professor; CCLCM
Carlos Rodriguez, MD; Clinical Assistant Professor; CCLCM
Lyndsey Roesch, DO; Clinical Assistant Professor; CCLCM
Bruce Rogen, MD; Clinical Assistant Professor; CCLCM
Michael Rollins, MD; Clinical Assistant Professor; CCLCM
Carlos Romero-Marrero, MD; Clinical Assistant Professor; CCLCM
Adriana Rosario, MD; Clinical Assistant Professor; CCLCM
Michael Rosas, MD; Clinical Assistant Professor; CCLCM
David Rosenberg, MD; Clinical Assistant Professor; UH
Kenneth Rosenfeld, MD; Clinical Senior Instructor; UH
Allan Rosenfeld, MD; Clinical Assistant Professor; UH
Edward Rosenthal, MD; Clinical Assistant Professor; CCLCM
Gary Rosenthal, MD; Adjunct Associate Professor; VA
Arnold Rosenzweig, MD; Clinical Senior Instructor; UH
Steven Roshon, MD; Clinical Assistant Professor; CCLCM
Rochelle Rosian, MD; Clinical Assistant Professor; CCLCM
Kenneth Rosplock, MD; Clinical Instructor; UH
Frederick Ross, MD; Clinical Assistant Professor; CCLCM
Jennifer Rossi, MD; Clinical Assistant Professor; CCLCM
Elizabeth Roter, MD; Clinical Assistant Professor; UH
Sean Roth, DO; Clinical Assistant Professor; CCLCM
A. Rothner, MD; Clinical Assistant Professor; CCLCM
Joy Rowland, DPM; Clinical Assistant Professor; CCLCM
Raymond Rozman Jr., MD; Clinical Senior Instructor; UH
David Rubin, MD; Clinical Assistant Professor; UH
Sheila Rubin, MD; Clinical Assistant Professor; CCLCM
Stephen Rudolph, MD PhD; Clinical Assistant Professor; UH
Joseph Rudolph, MD; Clinical Assistant Professor; CCLCM
Vasco Ru i Da Gama Ribeiro, MD; Adjunct Assistant Professor; UH
Taylor Rush, PhD; Adjunct Assistant Professor; CCLCM
Jocelyn Russ, MD; Clinical Assistant Professor; CCLCM
Gregory Rutecki, MD; Clinical Assistant Professor; CCLCM
Jeffrey Ruwe, MD; Clinical Assistant Professor; CCLCM
Maria Rybak, MS; Clinical Assistant Professor; CCLCM
Jack Rzepka, MD; Clinical Instructor; UH
Ellen Sabik, MD; Clinical Assistant Professor; UH
Matthew Sacco, PhD; Clinical Assistant Professor; CCLCM
Jacob Sadiq, MD; Clinical Senior Instructor; UH
Diego Sadler, MD; Clinical Assistant Professor; CCLCM
Azeem Saeed, MBBS; Clinical Assistant Professor; CCLCM
Debasis Sahoo, MBBS; Clinical Assistant Professor; CCLCM
Frank Sailors, DO; Clinical Assistant Professor; CCLCM
Virgilio Salanga, MD; Clinical Assistant Professor; CCLCM
Elizabeth Salay, MD; Clinical Assistant Professor; CCLCM
Karen Salerno, MSSA; Clinical Assistant Professor; CCLCM
Raymond Salomone, MD; Clinical Assistant Professor; CCLCM
Christy Samaras, DO; Clinical Assistant Professor; CCLCM
Bilal Samhouri, MD; Clinical Instructor; CCLCM
Stephen Samples, MD; Clinical Assistant Professor; CCLCM
Manpreet Samra, MBBS; Clinical Instructor; UH
Thomas Samuel, MD; Clinical Assistant Professor; CCLCM
Mohamed Sanad, MBBch; Clinical Assistant Professor; CCLCM
Madhusudhan Sanaka, MD; Clinical Assistant Professor; CCLCM
Obono Sande, PhD; Adjunct Instructor; UH
Satnam Sandhu, MBBS; Clinical Assistant Professor; UH
Jaswinder Sandhu, MD; Clinical Assistant Professor; CCLCM
Sharon Sandridge, PhD; Adjunct Assistant Professor; CCLCM
Dianne Sandy, MD; Clinical Assistant Professor; CCLCM
Bindu Sangani, MD; Clinical Assistant Professor; CCLCM
Vedha Sanghi, MBBS; Clinical Instructor; CCLCM
Susan Sangiorgi, BS; Clinical Instructor; VA
Roopa Sankar, MD; Clinical Assistant Professor; CCLCM
Bilal Saqi, MBBS; Clinical Instructor; CCLCM
Madhu Sasidhar, MBBS; Clinical Assistant Professor; CCLCM
James Sauto, Jr., MD; Clinical Assistant Professor; CCLCM
Jennifer Savoca, MD; Clinical Instructor; UH
Saket Saxena, MBBS; Clinical Assistant Professor; CCLCM
Stephen Sayles, III, MD; Clinical Assistant Professor; CCLCM
Alexis Scaparotti, MD; Clinical Assistant Professor; CCLCM
Suzanne Schaffer, MD; Clinical Assistant Professor; UH
Jonathan Scharfstein, MD; Clinical Assistant Professor; UH
Amy Schechter, MD; Clinical Assistant Professor; VA
Elizabeth Scheiber, DPM; Clinical Assistant Professor; CCLCM
Judith Scheman, PhD; Clinical Instructor; CCLCM
William Schiavone, DO; Clinical Assistant Professor; CCLCM
Carl Schikowski, MD; Clinical Assistant Professor; CCLCM
Patrick Schmitt, DO; Clinical Assistant Professor; CCLCM
Adrian Schnall, MD; Clinical Professor; UH
Alison Schneider, MD; Clinical Assistant Professor; CCLCM
Isabel Schuermeyer, MD; Clinical Professor; CCLCM
William Schwab, MD PhD; Clinical Associate Professor; UH
Steven Schwartz, MD; Clinical Senior Instructor; CCLCM
Raul Schwartzman, MD; Clinical Assistant Professor; CCLCM
James Sechler, MD; Clinical Assistant Professor; UH
Allen Segal, DO; Clinical Assistant Professor; UH
Roy Seitz, MD; Clinical Assistant Professor; CCLCM
Klaus Sellhayer, MD; Clinical Professor; CCLCM
James Senft, MD PhD; Clinical Assistant Professor; UH
Cynthia Seng, MD; Clinical Assistant Professor; CCLCM
Monica Seo, MD; Clinical Assistant Professor; CCLCM
Thomas Sequeira, MBBS; Clinical Assistant Professor; CCLCM
Anna Serels, MD; Clinical Instructor; UH
Dina Serhal, MD; Clinical Assistant Professor; CCLCM
Maya Serhal, MD; Clinical Assistant Professor; CCLCM
Norman Sese, MD; Clinical Assistant Professor; CCLCM
Rahul Seth, MD; Clinical Instructor; CCLCM
Sonali Sethi, MD; Clinical Assistant Professor; CCLCM
Eunji Seward, MD; Clinical Assistant Professor; CCLCM
Donna Sexton, MD; Clinical Instructor; UH
Fariha Shad, MBBS; Clinical Instructor; UH
Kenneth Shafer, MD; Clinical Assistant Professor; CCLCM
Irfan Shafiq, MBBS; Clinical Assistant Professor; CCLCM
Soham Shah, MD; Clinical Assistant Professor; CCLCM
Khaldoon Shaheen, MBBS; Clinical Assistant Professor; CCLCM
Dan Shamir, MD; Clinical Assistant Professor; CCLCM
Eric Shapiro, MD; Clinical Assistant Professor; UH
Anna Shapiro, MD; Clinical Instructor; CCLCM
Trilok Sharma, MBBS; Clinical Assistant Professor; UH
Sadhana Sharma, MBBS; Clinical Assistant Professor; CCLCM
Patrick Shaughnessy, MD; Clinical Assistant Professor; CCLCM
John Sheehan, MD; Clinical Associate Professor; UH
Hanan Sheikh Ibrahim, MD; Clinical Assistant Professor; CCLCM
Rahul Shekhar, MBBS; Clinical Instructor; UH
Gong-Qing Shen, MD, PhD; Clinical Assistant Professor; CCLCM
Bruce Sherman, MD; Clinical Assistant Professor; UH
Richard Shewbridge, MD; Clinical Assistant Professor; CCLCM
David Shewmon, MD; Clinical Assistant Professor; CCLCM
David Shlaes, MD PhD; Adjunct Professor; VA
Steven Shook, MD; Clinical Assistant Professor; CCLCM
Anu Shrestha, MBBS; Clinical Assistant Professor; CCLCM
Kevin Shrestha, MD; Clinical Assistant Professor; CCLCM
Bianca Shubert, MD; Clinical Instructor; CCLCM
Korina Shulemovich, MD; Clinical Assistant Professor; UH
Yana Shumyatcher, MD; Clinical Assistant Professor; CCLCM
Iram Siddiqi, MBBS; Clinical Senior Instructor; UH
Khalid Siddiqi, MBBS; Clinical Assistant Professor; CCLCM
Darby Sider, MD; Clinical Assistant Professor; CCLCM
Jay Sidloski, MD; Clinical Assistant Professor; UH
Louise Sieben, MD; Clinical Senior Instructor; MHMC
Daniel Silbiger, DO; Clinical Assistant Professor; UH
Roxana Siles, MD; Clinical Assistant Professor; CCLCM
Bernard Silver, MD; Clinical Professor; CCLCM
Raphael Silver, MD; Clinical Assistant Professor; CCLCM
Jean Simmons, PhD; Clinical Assistant Professor; CCLCM
Barry Simon, DO; Clinical Assistant Professor; CCLCM
Harry Sims, MBA; Clinical Assistant Professor; CCLCM
Jasjot Singh, MBBS; Clinical Assistant Professor; CCLCM
Nicole Sirotin, MD; Adjunct Assistant Professor; CCLCM
Mirela Siscu, MD; Clinical Assistant Professor; CCLCM
Indu Sivaraman, MD; Clinical Assistant Professor; CCLCM
David Skirball, MD; Clinical Assistant Professor; CCLCM
Gregory Skowronski, DO; Clinical Assistant Professor; CCLCM
Blazenza Skugor, MD; Clinical Assistant Professor; CCLCM
Mario Skugor, MD; Clinical Assistant Professor; CCLCM
Carol Slover, MD; Clinical Assistant Professor; CCLCM
Andre Smith, MD; Clinical Instructor; UH
David Smith, MD; Clinical Assistant Professor; UH
Michael Smith, MD; Clinical Professor; UH
Ethel Smith, MD; Clinical Assistant Professor; CCLCM
Howard Smith, MD; Clinical Assistant Professor; CCLCM
Martin Smith, STD; Clinical Assistant Professor; CCLCM
Neil Smith, DO; Clinical Assistant Professor; CCLCM
Laurence Smolley, MD; Clinical Assistant Professor; CCLCM
Lavinia Smultea, DO; Clinical Assistant Professor; CCLCM
Nancy Soecks, MD; Clinical Assistant Professor; CCLCM
Christopher Sola, DO; Clinical Assistant Professor; CCLCM
Luz Solis Lopez, DO; Clinical Instructor; UH
Payam Soltanzadeh, MD; Clinical Assistant Professor; CCLCM
Amber Somerville, MD; Clinical Assistant Professor; CCLCM
Abhinav Sood, MBBS; Clinical Assistant Professor; CCLCM
Pratima Sood, MD; Clinical Assistant Professor; VA
Joseph Sopko, MD; Clinical Associate Professor; UH
Antonio Sorgente, MD PhD; Clinical Assistant Professor; CCLCM
Alexandra Soriano Caminero, MD; Clinical Assistant Professor; CCLCM
Anas Souqiyyeh, MD; Clinical Instructor; CCLCM
Elizabeth Southworth, MD; Clinical Assistant Professor; CCLCM
Caroline Soyka, DO; Clinical Assistant Professor; UH
Steven Spalding, MD; Clinical Assistant Professor; CCLCM
Leah Spinner, MD; Clinical Assistant Professor; CCLCM
Arun Raghav Sridhar, MBBS; Clinical Instructor; CCLCM
Francis Ssali, MBBC; Adjunct Instructor; UH
Gabriel Stanescu, MD; Clinical Instructor; UH
Roxana Stanescu, MD; Clinical Senior Instructor; UH
Ursula Stanton-Hicks, MD; Clinical Assistant Professor; CCLCM
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael Star, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td>UH</td>
</tr>
<tr>
<td>Gregory Stefano, MD</td>
<td>Clinical Assistant Professor; UH</td>
<td></td>
</tr>
<tr>
<td>Richard Stein, MD</td>
<td>Clinical Assistant Professor; UH</td>
<td></td>
</tr>
<tr>
<td>Richard Stein, MD</td>
<td>Clinical Senior Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>William Steiner II, MD PhD</td>
<td>Clinical Assistant Professor; UH</td>
<td></td>
</tr>
<tr>
<td>Catherine Stenroos, PhD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Janice Stephenson, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Claude Steriade, MDCM</td>
<td>Clinical Instructor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Denise Stern, MD</td>
<td>Clinical Senior Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Jason Stern, DO</td>
<td>Clinical Assistant Professor; UH</td>
<td></td>
</tr>
<tr>
<td>David Stevens, MD</td>
<td>Adjunct Professor; UH</td>
<td></td>
</tr>
<tr>
<td>Elaine Stevens, MA/MS</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Mariam Stevens, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Mirica Stevens, DO</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>James Stevenson, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>William Stewart, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Mark Stillman, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Andrey Stojic, MD PhD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Jodie Strauss, DO</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Gerald Strauss, PhD</td>
<td>Clinical Assistant Professor; VA</td>
<td></td>
</tr>
<tr>
<td>Elizabeth Streby, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>David Streem, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Jameelah Strickland, MD</td>
<td>Clinical Senior Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Michael Strongosky, MS</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Joseph Sturdevant, MD</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Eva Suarez, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Ahila Subramanian, MD, MPH</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Jose Such, MD PhD</td>
<td>Clinical Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Roxanne Sukol, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Daniel Sullivan, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Jana Suman, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Marianne Sumego, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Varun Sundaram, MBBS</td>
<td>Clinical Assistant Professor; UH</td>
<td></td>
</tr>
<tr>
<td>Krishnan Sundararajan, MD</td>
<td>Clinical Assistant Professor; UH</td>
<td></td>
</tr>
<tr>
<td>Christopher Suntala, MD</td>
<td>Clinical Assistant Professor; MHMC</td>
<td></td>
</tr>
<tr>
<td>Ann Suri, MBBS</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Kari Sutter, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Patrick Sweeney, MD</td>
<td>Clinical Associate Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Sarah Sydlowski, PhD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Qarab Syed, MBBS</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Lisa Sylvester, DO</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Nabil Tadross, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>John Tafuri, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Mohammad Taher, MD</td>
<td>Clinical Assistant Professor; UH</td>
<td></td>
</tr>
<tr>
<td>Adnan Tahir, MD</td>
<td>Clinical Assistant Professor; UH</td>
<td></td>
</tr>
<tr>
<td>Liza Talampas, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Thomas Tallman, DO</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Balaji Tamarappoo, MD PhD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Ila Tamaskar, MBBS</td>
<td>Clinical Assistant Professor; UH</td>
<td></td>
</tr>
<tr>
<td>Annie Tan, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Christine Tanaka-Esposito, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Amir Taraben, MD</td>
<td>Clinical Assistant Professor; UH</td>
<td></td>
</tr>
<tr>
<td>Giorgio Tarchini, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Nour Tashtish, MD</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Harris Taylor, MD</td>
<td>Clinical Professor; UH</td>
<td></td>
</tr>
<tr>
<td>Clarence Taylor, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>James Taylor, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Daniela Tcaciuc, MD</td>
<td>Clinical Senior Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Tea Tchelidze, MD</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Haig Tcheurekdjian, MD</td>
<td>Clinical Associate Professor; UH</td>
<td></td>
</tr>
<tr>
<td>Patrick Tchou, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Leben Tefera, MD</td>
<td>Clinical Senior Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Lucileia Teixeira Johnson, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Farah Tejpar, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Paul Terpeluk, DO</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Sanjiv Tewari, MBBS</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Prashanth Thakker, MD</td>
<td>Clinical Senior Instructor; UH</td>
<td></td>
</tr>
<tr>
<td>Swati Thakur, MBBS</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Sergio Thal, MD</td>
<td>Clinical Associate Professor; UH</td>
<td></td>
</tr>
<tr>
<td>Maran Thamilarasan, MD</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Chandra Thippanna, MBBS</td>
<td>Clinical Assistant Professor; CCLCM</td>
<td></td>
</tr>
<tr>
<td>Robin Thomas, DO</td>
<td>Clinical Instructor; UH</td>
<td></td>
</tr>
</tbody>
</table>
Shirley Thomas, MBBS; Clinical Assistant Professor; UH
Santhosh Thomas, DO; Clinical Senior Instructor; CCLCM
Suma Thomas, MD; Clinical Assistant Professor; CCLCM
Farrah Thomas, PsyD; Clinical Assistant Professor; VA
Serena Thompson, MD, PhD; Clinical Instructor; CCLCM
Kimberly Thomsen, MD; Clinical Assistant Professor; UH
Julia Thornton, MD; Clinical Instructor; UH
Prashanthi Thota, MD; Clinical Assistant Professor; CCLCM
Ola Thuestad, MD; Clinical Assistant Professor; CCLCM
Becky Tilahun, PhD; Clinical Assistant Professor; CCLCM
Eric Tischler, MS; Clinical Assistant Professor; CCLCM
Mark Todd, PhD; Clinical Assistant Professor; CCLCM
Kenneth Tomecki, MD; Clinical Assistant Professor; CCLCM
Richard Tomm, MD; Clinical Senior Instructor; UH
Hakon Torjesen, MD; Clinical Assistant Professor; UH
Pedro Torrico, MD; Clinical Assistant Professor; CCLCM
Thomas Torzok, DC; Clinical Assistant Professor; CCLCM
Albree Tower-Rader, MD; Clinical Instructor; CCLCM
David Tracy, MD; Clinical Assistant Professor; CCLCM
Kevin Trangle, MD; Clinical Senior Instructor; UH
Erika Tress, DO; Clinical Assistant Professor; CCLCM
Nicholas Tripoulas, PhD; Clinical Assistant Professor; CCLCM
Chirayu Trivedi, MD; Clinical Assistant Professor; CCLCM
Albert Tsai, MD; Clinical Assistant Professor; UH
Margaret Tsai, MD; Clinical Assistant Professor; CCLCM
Po-Heng Tsai, MD; Clinical Assistant Professor; CCLCM
Rayji Tsutsui, MBChB; Clinical Instructor; CCLCM
Emmanuel Tuffuor, MD; Clinical Assistant Professor; UH
Kincade Turner, MD; Clinical Assistant Professor; CCLCM
Steven Turoczy, MD; Clinical Senior Instructor; CCLCM
Rohit Tyagi, MD; Clinical Assistant Professor; UH
Melanie Tyler, MD; Clinical Assistant Professor; UH
Jennifer Ui, MD; Clinical Assistant Professor; CCLCM
Andrew Ukleja, MD; Clinical Assistant Professor; CCLCM
Arthur Ulatowski, DO; Clinical Assistant Professor; UH
Kandasamy Umapathy, MBBS; Clinical Instructor; UH
Priyadharshini Umapathy, MD; Clinical Instructor; UH
Nadia Umar, MD; Clinical Instructor; UH
Jonathan Umbel, DO; Clinical Assistant Professor; UH
Naoki Umeda, MD; Clinical Assistant Professor; CCLCM
Melissa Underwood, MD; Clinical Assistant Professor; CCLCM
Madhu Unnikrishnan, MBBS; Clinical Instructor; UH
Jaya Unnithan, MBBS; Clinical Assistant Professor; CCLCM
Saurav Uppal, MD; Clinical Senior Instructor; UH
Monica Urban, MD; Clinical Instructor; UH
Mateen Uzbeck, MBBS; Clinical Assistant Professor; CCLCM
Maidana Vacca, MD; Clinical Assistant Professor; CCLCM
Nirav Vakharia, MD; Clinical Assistant Professor; CCLCM
Roya Vakili, MD; Clinical Assistant Professor; CCLCM
Maryann Valapour, MD; Clinical Assistant Professor; CCLCM
Jason Valent, MD; Clinical Assistant Professor; CCLCM
Arthur Van Dyke, MD; Clinical Assistant Professor; UH
Willem van Heeckeren, MD PhD; Clinical Assistant Professor; UH
Alfred Vargas, MD; Clinical Assistant Professor; MHMC
Mohammed Varghai, MD; Clinical Assistant Professor; UH
Mohammad Varghai, MD; Clinical Assistant Professor; CCLCM
Mackenzie Varkula, DO; Clinical Assistant Professor; CCLCM
Niraj Varma, MD PhD; Clinical Assistant Professor; CCLCM
Rishik Vashisht, MD; Clinical Assistant Professor; CCLCM
Andrew Vassil, MD; Clinical Assistant Professor; CCLCM
Virginia Vatev, MD; Clinical Instructor; UH
Sergei Vatolin, PhD; Adjunct Assistant Professor; CCLCM
Vladimir Vekstein, MD; Clinical Assistant Professor; CCLCM
Maria Giselle Velez, MD; Clinical Assistant Professor; CCLCM
Hazel Veloso, MD; Clinical Assistant Professor; UH
Pamela Venegas, MD; Clinical Instructor; UH
Francoise Veneroni, MD; Clinical Assistant Professor; CCLCM
Deborah Venesy, MD; Clinical Assistant Professor; CCLCM
Paul Venizelos, MD; Clinical Assistant Professor; UH
S Venkatasubramanian, MD; Clinical Instructor; UH
Lokesh Venkateshaiah, MBBS; Clinical Instructor; UH
Jessica Vensel Rundo, MD; Clinical Assistant Professor; CCLCM
Daniel Wolpaw, MD; Adjunct Professor; UH
Terry Wolpaw, MD; Adjunct Professor; UH
Andrew Wright, MD; Clinical Assistant Professor; CCLCM
Charles Wu, MD; Clinical Assistant Professor; CCLCM
Nancy Wu, MD; Clinical Assistant Professor; CCLCM
Kate Xue, MD; Clinical Assistant Professor; CCLCM
Dhiraj Yadav, MBBS; Clinical Instructor; UH
Chen Yan, MD; Clinical Instructor; CCLCM
Jun Yang, MD; Clinical Assistant Professor; CCLCM
Peter Yang, MD; Clinical Assistant Professor; CCLCM
Eric Yasinow, MD; Clinical Assistant Professor; UH
George Yendewa, MD; Clinical Instructor; UH
Divya Yogi-Morren, MD; Clinical Assistant Professor; CCLCM
Melissa Young, MD; Clinical Assistant Professor; CCLCM
Jorge Yu Chung, MD; Clinical Assistant Professor; CCLCM
Adrian Zachary, MD MPH; Clinical Assistant Professor; CCLCM
William Zafrau, MD; Clinical Assistant Professor; CCLCM
Manaf Zaizafoun, MD; Clinical Instructor; UH
Keivan Zandinejad, MD; Clinical Instructor; UH
Ifrah Zawar, MBBS; Clinical Instructor; CCLCM
Joseph Zayat, MD; Clinical Assistant Professor; CCLCM
Christine Zayouna, MD; Clinical Instructor; CCLCM
Ahmad Zeeshan, MBBS; Clinical Assistant Professor; CCLCM
Joe Zein, MD; Clinical Assistant Professor; CCLCM
Xaralambos Zervos, DO; Clinical Assistant Professor; CCLCM
Carlos Zevallos, MD; Clinical Instructor; UH
Howard Zhang, MD; Clinical Assistant Professor; UH
Li Zhang, MD, PhD; Clinical Assistant Professor; CCLCM
Bo Zhao, MD; Clinical Assistant Professor; UH
Kate Zhong, MD; Clinical Assistant Professor; CCLCM
Wenhui Zhu, MD PhD; Clinical Assistant Professor; UH
Julie Zhu, MD; Clinical Instructor; CCLCM
Robert Zimmerman, MD; Clinical Assistant Professor; CCLCM
Thomas Zipp, MD; Adjunct Assistant Professor; VA
Christine Zirafi, MD; Clinical Assistant Professor; UH
Josie Znidarsic, DO; Clinical Assistant Professor; CCLCM
Zaid Zoumot, MBBS; Clinical Assistant Professor; CCLCM
Jeanne Zuber, MD; Clinical Assistant Professor; CCLCM
Gregory Zuccaro, MD; Clinical Assistant Professor; CCLCM
Molecular Medicine
 Ata Abbas, PhD; Adjunct Assistant Professor; CCLCM
 Kenneth Baker, PhD; Adjunct Assistant Professor; CCLCM
 John Barnard, PhD; Adjunct Assistant Professor; CCLCM
 Shannon Barnes, MS; Adjunct Assistant Professor; CCLCM
 Stela Berisha, PhD; Adjunct Assistant Professor; CCLCM
 Katarzyna Bialkowska, PhD; Adjunct Assistant Professor; CCLCM
 Sudipta Biswas, PhD; Adjunct Assistant Professor; CCLCM
 Kamila Bledzka, PhD; Adjunct Assistant Professor; CCLCM
 Robb Colbrunn, PhD; Adjunct Assistant Professor; CCLCM
 Dola Das, PhD; Adjunct Assistant Professor; CCLCM
 Mitali Das, PhD; Adjunct Assistant Professor; CCLCM
 Shyamasree Datta, PhD; Adjunct Assistant Professor; CCLCM
 Gangarao Davuluri, PhD; Adjunct Assistant Professor; CCLCM
 Sarmishtha De, PhD; Adjunct Assistant Professor; CCLCM
 Tanujit Dey, PhD; Adjunct Assistant Professor; CCLCM
 Claudia Diaz-Montero, PhD; Adjunct Assistant Professor; CCLCM
 Sanja Dimitrijevic, DVM; Adjunct Assistant Professor; CCLCM
 Liang Ding, MD, PhD; Adjunct Assistant Professor; CCLCM
 Beihua Dong, MD; Adjunct Assistant Professor; CCLCM
 Judith Drazba, PhD; Adjunct Assistant Professor; CCLCM
 Russell Fedewa, PhD; Adjunct Assistant Professor; CCLCM
 Volker Fensterl, PhD; Adjunct Assistant Professor; CCLCM
 Dechen Fu, PhD; Adjunct Assistant Professor; CCLCM
 Koichi Fukuda, ; Adjunct Assistant Professor; CCLCM
 Jennifer Gassman, PhD; Adjunct Associate Professor; CCLCM
 Prabar Ghosh, PhD; Adjunct Assistant Professor; CCLCM
 Shamone Gore Panter, PhD; Adjunct Assistant Professor; CCLCM
 Maryam Goudarzi, PhD; Adjunct Assistant Professor; CCLCM
 Xiaodong Gu, ; Adjunct Assistant Professor; CCLCM
 Kailash Gulshan, PhD; Adjunct Assistant Professor; CCLCM
 Manveen Gupta, PhD; Adjunct Assistant Professor; CCLCM
 Abdul Haseeb, PhD; Adjunct Assistant Professor; CCLCM
Hannelore Heemers, PhD; Adjunct Assistant Professor; CCLCM
Warren Heston, PhD; Adjunct Professor; CCLCM
Xiangyou Hu, PhD; Adjunct Assistant Professor; CCLCM
Ying Huang, PhD; Adjunct Assistant Professor; CCLCM
Tae Hwang, PhD; Adjunct Assistant Professor; CCLCM
Sujay Ithychanda, PhD; Adjunct Assistant Professor; CCLCM
Lahoucine Izem, PhD; Adjunct Assistant Professor; CCLCM
Babal Jha, PhD; Adjunct Assistant Professor; CCLCM
Jie Jia, PhD; Adjunct Assistant Professor; CCLCM
Jamshid Karimov, MD PhD; Adjunct Assistant Professor; CCLCM
Ranjan KC, PhD; Adjunct Assistant Professor; CCLCM
Grahame Kidd, PhD; Adjunct Assistant Professor; CCLCM
Anna Kondratova, PhD; Adjunct Assistant Professor; CCLCM
Bibo Li, PhD; Adjunct Assistant Professor; CCLCM
Ling Li, PhD; Adjunct Assistant Professor; CCLCM
Xinmin Li, PhD; Adjunct Assistant Professor; CCLCM
Yan Li, MD; Adjunct Assistant Professor; CCLCM
Susan Linder, MHS; Adjunct Assistant Professor; CCLCM
Caini Liu, PhD; Adjunct Assistant Professor; CCLCM
Shuang Ma, PhD; Adjunct Assistant Professor; CCLCM
Paul Marasco, PhD; Adjunct Assistant Professor; CCLCM
Nicola Marchi, PhD; Adjunct Assistant Professor; CCLCM
Aaron Miller, PhD; Adjunct Assistant Professor; CCLCM
Timothy Myshrall, DVM; Adjunct Assistant Professor; CCLCM
Ina Nemet, PhD; Adjunct Assistant Professor; CCLCM
Kwok-Peng Ng, PhD; Adjunct Assistant Professor; CCLCM
Suidong Ouyang, PhD; Adjunct Assistant Professor; CCLCM
Tammy Owings, DEng; Adjunct Assistant Professor; CCLCM
John Peterson, PhD; Adjunct Assistant Professor; CCLCM
Aaron Petrey, PhD; Clinical Assistant Professor; CCLCM
Elzbieta Pluskota, PhD; Adjunct Assistant Professor; CCLCM
Jianfei Qian, DVM, PhD; Adjunct Assistant Professor; CCLCM
Wen Qian, PhD; Adjunct Assistant Professor; CCLCM
Richard Ransohoff, MD; Adjunct Professor; CCLCM
Peggy Robinet, PhD; Adjunct Assistant Professor; CCLCM
Paramananda Saikia, PhD; Adjunct Assistant Professor; CCLCM
Yibayiri Sanogo, PhD; Adjunct Assistant Professor; CCLCM
Manju Saraswathy, PhD; Adjunct Assistant Professor; CCLCM
Carine Savarin, PhD; Adjunct Assistant Professor; CCLCM
Jacob Scott, MD; Clinical Assistant Professor; CCLCM
Zhili Shao, MD, PhD; Adjunct Assistant Professor; CCLCM
Steven Signs, PhD; Adjunct Assistant Professor; CCLCM
Dmitri Soloviev, PhD; Adjunct Assistant Professor; CCLCM
Dennis Stacey, PhD; Adjunct Professor; CCLCM
Susan Staugaitis, MD PhD; Adjunct Assistant Professor; CCLCM
Kimberly Such, DVM; Clinical Assistant Professor; CCLCM
Cassandra Talercio, PhD; Adjunct Assistant Professor; CCLCM
Fulvia Tenerzi, PhD; Adjunct Assistant Professor; CCLCM
Sivakumar Vijayaraghavalu, PhD; Adjunct Assistant Professor; CCLCM
Eldon Walker, PhD; Adjunct Assistant Professor; CCLCM
Fan Wang, PhD; Adjunct Assistant Professor; CCLCM
Yuxin Wang, PhD; Adjunct Assistant Professor; CCLCM
Karl West, MS; Adjunct Assistant Professor; CCLCM
Belinda Willard, PhD; Adjunct Assistant Professor; CCLCM
Jun Yang, PhD; Adjunct Assistant Professor; CCLCM
Maryam Zamanian-Daryoush, PhD; Clinical Assistant Professor; CCLCM
Renliang Zhang, MD, PhD; Clinical Assistant Professor; CCLCM
Wei Zhang, PhD; Adjunct Assistant Professor; CCLCM
Chenyang Zhao, PhD; Adjunct Assistant Professor; CCLCM
Molecular Biology and Microbiology
David McDonald, PhD; Adjunct Associate Professor; SOM
Roxana Rojas, MD; Adjunct Assistant Professor; SOM
Neurological Surgery
Jeremy Amps, MD; Clinical Assistant Professor; CCLCM
Toomas Anton, MD; Clinical Assistant Professor; CCLCM
Mark Bain, MD; Clinical Assistant Professor; CCLCM
Benedict Colombi, MD; Clinical Professor; UH
J. Dakters, MD; Clinical Assistant Professor; UH
David Dean, PhD; Adjunct Associate Professor; UH
Artemisia Dimostheni, MD; Clinical Assistant Professor; CCLCM
Barry Hoffer, MD PhD; Adjunct Professor; UH
Iain Kalfas, MD; Clinical Assistant Professor; CCLCM
Roseanna Lechner, MD; Clinical Instructor; MHMC
Dario Muzevic, MD PhD; Clinical Assistant Professor; CCLCM
Pete Poolos, MD; Clinical Assistant Professor; UH
Richard Rhiew, MD PhD; Clinical Assistant Professor; UH
Luigi Rigante, MD; Clinical Assistant Professor; CCLCM
Teresa Ruch, MD; Clinical Assistant Professor; CCLCM
Richard Schlenk, MD; Clinical Assistant Professor; CCLCM
Sarel Vorster, MD; Clinical Assistant Professor; CCLCM
Bo Yoo, MD; Clinical Senior Instructor; UH

Neurology
Ziad Ahmed, MD; Adjunct Assistant Professor; UH
John Andresky, MD; Clinical Assistant Professor; UH
Peter Bambakidis, MD; Clinical Assistant Professor; UH
Kathryn Bryan, PhD; Adjunct Instructor; UH
Thomas Chelimsky, MD; Adjunct Professor; UH
John Conomy, MD; Clinical Professor; UH
Janis Daly, PhD; Adjunct Professor; VA
Vikram Dhawan, MBBS; Adjunct Assistant Professor; UH
Deborah Ewing-Wilson, DO; Clinical Assistant Professor; UH
Thomas Fritsch, MD; Adjunct Instructor; UH
Betsy Garratt, DO; Clinical Instructor; UH
Cynthia Griggins, PhD; Clinical Assistant Professor; UH
Rami Hachwi, MD; Clinical Instructor; UH
Aamir Hussain, MBBS; Clinical Assistant Professor; UH
Jonathan Jacobs, PhD; Adjunct Assistant Professor; UH
Ashwani Joshi, MD; Clinical Assistant Professor; UH
Mohamad Koubiessi, MD; Adjunct Assistant Professor; UH
Frances Lissemore, PhD; Adjunct Instructor; UH
Karla Madalin, MD; Clinical Instructor; UH
Jason Makii, Pharm D; Clinical Assistant Professor; UH
Donald Mann, MD; Clinical Associate Professor; UH
McKee McClendon, PhD; Adjunct Instructor; UH
Jeffrey Miles, MD PhD; Clinical Instructor; UH

Nutrition
Rima Al-Nimr, MS; Adjunct Instructor; SOM
Arianna Aoun, MS RD CSR LD; Adjunct Instructor; SOM
Ilya Bederman, PhD; Adjunct Instructor; SOM
Jennifer Bier, MS; Adjunct Instructor; SOM
Mark Bindus, BS; Adjunct Instructor; SOM
Rachel Colchamiro, BS; Adjunct Instructor; SOM
Helen Dumski, MA; Adjunct Instructor; SOM
Karen Filipic, RD; Adjunct Instructor; SOM
Cynthia Finohr, BS; Adjunct Instructor; SOM
Lorna Fuller, MS; Adjunct Instructor; SOM
Sayan Gupta, PhD; Adjunct Assistant Professor; SOM
Samia Hamdan, M PH; Adjunct Instructor; SOM
Marti Jacobson, MS RD LD; Adjunct Instructor; SOM
Mary Kavanaugh, MA/MS; Adjunct Senior Instructor; SOM
Natalia Kliszczuk-Smolilo, BS; Adjunct Instructor; SOM

Neurosciences
Karl Herrup, PhD; Adjunct Professor; SOM
Diana Kunze, PhD; Adjunct Professor; SOM
Gary Landreth, PhD; Adjunct Professor; SOM
Wendy Macklin, PhD; Adjunct Professor; SOM
Crystal Miller, PhD; Adjunct Instructor; SOM
Robert Miller, PhD; Adjunct Professor; SOM
Guillermo Pilar, ; Adjunct Professor; SOM
Daniel Wesson, PhD; Adjunct Assistant Professor; SOM
Richard Koletsky, MD; Clinical Assistant Professor; SOM
Jane Korsberg, MS; Adjunct Senior Instructor; SOM
Lois Lenard, BS; Adjunct Instructor; SOM
Lindsay Malone, MS; Adjunct Instructor; SOM
Lauren Melnick, RD LD; Adjunct Instructor; SOM
Stephanie Merlino, MS; Adjunct Instructor; SOM
M. Tristyn Patrick, MS MBA; Adjunct Instructor; SOM
Sandy Pichette, MS; Adjunct Instructor; SOM
Maureen Pisanick, B PH; Adjunct Instructor; SOM
Stephen Previs, PhD; Adjunct Associate Professor; SOM
Allison Prince, MS; Adjunct Instructor; SOM
Michelle Puchowicz, PhD; Adjunct Associate Professor; SOM
Maryanne Salsbury, BS; Adjunct Instructor; SOM
Joanne Samuels, BS; Adjunct Instructor; SOM
Bonnie Schmidt-Hayes, RD; Adjunct Instructor; SOM
Najeebah Shine, MS; Adjunct Instructor; SOM
Sandra Slater, RD LD; Adjunct Instructor; SOM
Judy Steffes, RD LD; Adjunct Instructor; SOM
Alison Steiber, PhD; Adjunct Associate Professor; SOM
Camille Switzer, RD LD; Adjunct Instructor; SOM
Denise Tabar, MS; Adjunct Instructor; SOM
Brigid Titgemeier, MS RDN LD; Adjunct Instructor; SOM
Anita Chitluri, OD; Clinical Assistant Professor; CCLCM
Jon Cooperrider, DO; Clinical Assistant Professor; CCLCM
Teresa Cooperrider, DO; Clinical Assistant Professor; CCLCM
Andrea Crabb, DO; Clinical Assistant Professor; CCLCM
Ryan Deasy, MD; Clinical Assistant Professor; CCLCM
Omar Durrani, MBBS; Clinical Professor; CCLCM
Jonathan Eisengart, MD; Clinical Assistant Professor; CCLCM
Robert Engel, OD; Clinical Assistant Professor; CCLCM
Stephanie Erwin, OD; Clinical Assistant Professor; CCLCM
Abby Fisher, OD; Clinical Assistant Professor; CCLCM
Philip Goldberg, MD; Clinical Assistant Professor; CCLCM
Jeffrey Goshe, MD; Clinical Assistant Professor; CCLCM
Mohinder Gupta, MD; Clinical Assistant Professor; CCLCM
Wes Immler, OD; Clinical Assistant Professor; CCLCM
Geeng-Fu Jang, PhD; Clinical Assistant Professor; CCLCM
Lilian Julian, MD; Clinical Assistant Professor; CCLCM
Reecha Kampani, DO; Clinical Assistant Professor; CCLCM
Gregory Kosmorsky, DO; Clinical Assistant Professor; CCLCM
Gregory Kosunick, OD; Clinical Assistant Professor; CCLCM
Rajesh Kumar, MBBS; Clinical Professor; CCLCM
Randall Loudenslager, OD; Clinical Assistant Professor; CCLCM
Andreas Marcotty, MD; Clinical Assistant Professor; CCLCM
George Markakis, MD PhD; Clinical Assistant Professor; CCLCM
Jennifer McNamara, OD; Clinical Assistant Professor; CCLCM
Ryan Meffley, OD; Clinical Assistant Professor; CCLCM
David Meisler, MD; Clinical Professor; CCLCM
Michael Millstein, MD; Clinical Assistant Professor; CCLCM
Samuel Navon, MD PhD; Clinical Associate Professor; CCLCM
Stella Paparizos, MD; Clinical Assistant Professor; CCLCM
Michael Parker, OD; Clinical Assistant Professor; CCLCM
Rosemary Perl, OD; Clinical Assistant Professor; CCLCM
Julian Perry, MD; Clinical Assistant Professor; CCLCM
Francesco Pichi, MD; Clinical Assistant Professor; CCLCM
Mary Rayborn, MS; Clinical Assistant Professor; CCLCM
William Sax, OD; Clinical Assistant Professor; CCLCM

Ophthalmology
James Bacon, MBBCH; Clinical Assistant Professor; CCLCM
Barbara Bingham, DO; Clinical Assistant Professor; CCLCM
David Burket, MD; Clinical Assistant Professor; CCLCM
Jonathan Chan, PhD; Clinical Assistant Professor; CCLCM
Aimee Chappelow, MD; Clinical Assistant Professor; CCLCM
David Sholiton, MD; Clinical Assistant Professor; CCLCM
Shalini Sood-Mendiratta, MD; Clinical Assistant Professor; CCLCM
Sunil Srivastava, MD; Clinical Assistant Professor; CCLCM
Diane Sutton, OD; Clinical Assistant Professor; CCLCM
Diane Tucker, OD; Clinical Assistant Professor; CCLCM
Geetha Vedula, MD; Clinical Assistant Professor; CCLCM
Scott Wagenberg, MD; Clinical Assistant Professor; CCLCM
Corrie Weitzel, OD; Clinical Assistant Professor; CCLCM
William Yeakley, MD; Clinical Assistant Professor; CCLCM
Ophthalmology & Visual Sciences
Marc Abrams, MD PhD; Clinical Associate Professor; UH
David Adams, MD; Clinical Assistant Professor; UH
William Annable, MD; Clinical Associate Professor; UH
Scott Anthony, DO; Clinical Assistant Professor; VA
Carl Asseff, MD; Clinical Assistant Professor; UH
William Bruner, MD; Clinical Professor; VA
Rachael Canania, OD; Clinical Instructor; VA
Thomas Chi, MD; Clinical Assistant Professor; UH
Joseph Coney, MD; Clinical Senior Instructor; UH
Terry Daniel, OD; Clinical Assistant Professor; VA
Lorri Effron, MD; Clinical Assistant Professor; UH
Mary Gerhart, OD; Clinical Instructor; UH
Warren Hill, MD; Adjunct Professor; UH
Katherine Jacobs, MD; Clinical Assistant Professor; VA
Gene Johnson, MD; Clinical Instructor; UH
Stephen Kaufman, MD; Clinical Assistant Professor; UH
Augustine Kellis, MD; Clinical Assistant Professor; UH
Rohit Khanna, MBBS; Clinical Instructor; UH
Ronald Krasney, MD; Clinical Associate Professor; UH
Sapna Kumar, OD; Clinical Senior Instructor; UH
Kathleen Lamping, MD; Clinical Associate Professor; UH
Mikhail Linetsky, PhD; Adjunct Assistant Professor; UH
Akiko Maeda, MD PhD; Clinical Assistant Professor; UH
Annie Mathai, MBBS; Clinical Instructor; UH
David Mitchell, MD; Clinical Assistant Professor; UH
R. MURALEEDHARA, MBBS; Clinical Instructor; UH
Somasheila Murthy, MS; Clinical Instructor; UH
Milind Naik, MBBS; Clinical Instructor; UH
Raja Narayanan, MBBS; Clinical Assistant Professor; UH
Erik Ostler, MD; Clinical Instructor; UH
Rajeev Kumar Pappuru, MBBS; Clinical Assistant Professor; UH
Mark Pophal, MD; Clinical Assistant Professor; UH
David Pugh, MD; Clinical Senior Instructor; UH
Kekunnaya Ramesh, MD; Clinical Assistant Professor; UH
Harsha Birur Rao, MBBS; Clinical Instructor; UH
Llewelyn Rao, MD; Clinical Assistant Professor; UH
Varsha Rathi, DO; Clinical Assistant Professor; UH
Douglas Ripkin, MD; Clinical Assistant Professor; UH
David Roncone, OD; Clinical Senior Instructor; VA
Sirisha Senthil, MBBS; Clinical Instructor; UH
Tamar Shafran, MD; Clinical Instructor; UH
Philip Shands, MD; Clinical Associate Professor; VA
Michael Shaughnessy, MD; Clinical Assistant Professor; VA
Holly Simpson, MD; Clinical Instructor; UH
Lawrence Singerman, MD; Clinical Professor; UH
Eric Stocker, DO; Clinical Assistant Professor; VA
Mukesh Taneja, MBBS; Clinical Assistant Professor; UH
Edmond Thall, MD; Clinical Assistant Professor; UH
Daniel Weidenthal, MD; Clinical Professor; UH
William Wiley, MD; Clinical Assistant Professor; UH
Nicholas Zakov, MD; Clinical Professor; UH
Kathleen Zielinski, MD; Clinical Instructor; UH
Orthopaedics
James Brodell, MD; Clinical Assistant Professor; UH
Dennis Brooks, MD; Clinical Assistant Professor; UH
Michael Eppig, MD; Clinical Instructor; UH
John Feighan, MD; Clinical Assistant Professor; MHMC
A. Greenwald, PhD; Adjunct Professor; UH
Jared Levin, MD; Clinical Instructor; UH
Audley M. Mackel, MD; Clinical Instructor; UH
R. Mistovitch, MD; Clinical Assistant Professor; UH
Shunichi Murakami, MD PhD; Adjunct Assistant Professor; UH
William Petersilge, MD; Clinical Assistant Professor; UH
Benjamin Silver, MD; Clinical Assistant Professor; UH
Susan Stephens, MD; Clinical Instructor; UH
Christopher Tisdell, MD; Clinical Assistant Professor; UH
J. Vento, MD; Clinical Assistant Professor; UH
David Weimer, MD; Clinical Senior Instructor; UH
Otolaryngology
Abdul Abbass, MD; Clinical Assistant Professor; UH
Fadi Abbass, MD; Clinical Assistant Professor; UH
Hassan Abbass, MD; Clinical Assistant Professor; UH
Stephani Ackerman, MA; Clinical Instructor; MHMC
Christine Boyer, MS; Clinical Instructor; UH
Michael Broniatowski, MD; Clinical Associate Professor; UH
Bert Brown, MD; Clinical Instructor; UH
Deborah Cherrell, MA; Clinical Instructor; MHMC
Ellen Cobler, MS; Clinical Instructor; UH
Toribio Flores, MD; Clinical Assistant Professor; UH
Jonathan Frankel, MD; Clinical Instructor; UH
Steven Goldman, MD; Clinical Assistant Professor; UH
Marc Guay, MD; Clinical Instructor; UH
Mohamed Hamid, MD PhD; Clinical Associate Professor; MHMC
Brian Harmych, MD; Clinical Instructor; UH
Sam Kinney, MD; Clinical Associate Professor; UH
Madeleine Lenox, MD; Clinical Instructor; MHMC
Jane Mackall, MA; Clinical Instructor; MHMC
Adnan Mourany, ; Clinical Instructor; UH
Tracey Newman, MA; Clinical Instructor; UH
Joseph Onyia, MD; Clinical Instructor; UH
Christy Pappas, MA; Clinical Senior Instructor; UH
Sue Philippbar, MA; Clinical Instructor; MHMC
Robin Piper, MA/MS; Clinical Senior Instructor; UH
Jonathan Plessner, MA; Clinical Instructor; UH
Michael Starkey, MS; Clinical Instructor; MHMC
Robert Stegmoyer, MD; Clinical Instructor; UH
Andrew Stein, MD; Clinical Instructor; UH
Andrea Sterkel, MS; Clinical Senior Instructor; UH
Theodoros Teknos, ; Clinical Professor; UH
Sanford Timen, MD; Clinical Instructor; UH
Rebecca Warnock, MA; Clinical Instructor; MHMC
Turker Yilmaz, MD; Clinical Instructor; UH
Lindsey Zombek, MS; Clinical Instructor; UH
Pathology
Ahmad Alduaij, MBBCH; Clinical Assistant Professor; CCLCM
Kathleen Allen, MD; Clinical Assistant Professor; SOM
Erica Armstrong, MD; Clinical Assistant Professor; UH
Mark Barcelo, MD; Adjunct Assistant Professor; SOM
Thomas Bauer, MD, PhD; Clinical Assistant Professor; CCLCM
Laurie Bauer, DO; Clinical Assistant Professor; VA
Adam Beattie, MD; Clinical Instructor; UH
Rose Beck, MD PhD; Clinical Assistant Professor; UH
Pablo Bejarano, MD; Clinical Assistant Professor; CCLCM
Ana Bennett, MD; Clinical Assistant Professor; CCLCM
Mariana Berho, MD; Clinical Assistant Professor; CCLCM
Charles Biscotti, MD; Clinical Assistant Professor; CCLCM
Juraj Bodo, PhD; Adjunct Assistant Professor; CCLCM
Marilee Boos, DO; Clinical Instructor; UH
Jennifer Brainard, MD; Clinical Assistant Professor; CCLCM
Jay Brock, PhD; Adjunct Assistant Professor; CCLCM
Tatiana Buhtoiarova, MD; Clinical Instructor; UH
Nasir Butt, PhD; Clinical Instructor; UH
Diane Carlson, MD; Clinical Assistant Professor; CCLCM
Yu-Wei Cheng, PhD; Clinical Assistant Professor; CCLCM
Yap-Yee Chong, MBBS; Clinical Assistant Professor; CCLCM
Amy Cocco, MD; Clinical Assistant Professor; CCLCM
Michael Cruise, MD PhD; Clinical Assistant Professor; CCLCM
Christine Curtis, PhD; Clinical Assistant Professor; MHMC
Thomas Daly, MD; Clinical Assistant Professor; CCLCM
Dawn Dawson, MD; Clinical Assistant Professor; UH
Andrea Dawson, MD; Clinical Assistant Professor; CCLCM
Anaibeth Del Rio Perez, MD; Clinical Instructor; VA
Maria Diacovo, MD; Clinical Assistant Professor; CCLCM
David Dolinak, MD; Clinical Associate Professor; UH
Erinn Downs-Kelly, DO; Clinical Assistant Professor; CCLCM
Brian Enloe, MD PhD; Clinical Instructor; UH
Rosemary Farag, MBBS; Clinical Instructor; UH
Daniel Farkas, MD; Adjunct Assistant Professor; CCLCM
Joseph Felo, MD; Clinical Assistant Professor; UH
Priscilla Figueroa, MD; Clinical Assistant Professor; CCLCM
Maryann Fitzmaurice, MD PhD; Adjunct Associate Professor; UH
Nancy Fong, MD; Clinical Assistant Professor; CCLCM
Dan Galita, MD; Clinical Instructor; UH
Santhi Ganesan, MBBS; Clinical Assistant Professor; MHMC
Thomas Gilson, MD; Clinical Assistant Professor; UH
Manjula Gupta, PhD; Adjunct Professor; CCLCM
Gabriel Habermehl, MD; Clinical Instructor; CCLCM
Walter Henricks, MD; Clinical Assistant Professor; CCLCM
Leal Herlitz, MD; Clinical Assistant Professor; CCLCM
Aaron Hoschar, MD; Clinical Assistant Professor; CCLCM
Ihab Hosny, MBBch; Clinical Instructor; UH
Jennifer Jeung, MD; Clinical Assistant Professor; CCLCM
Yasmin Johnston, MD; Clinical Assistant Professor; CCLCM
Curtiss Jones, MS; Clinical Instructor; UH
Priti Joshi, MBBS; Clinical Associate Professor; CCLCM
Nadia Kaisi, MBBS; Clinical Associate Professor; UH
William Katzin, MD PhD; Clinical Associate Professor; UH
Harmeet Kaur, PhD; Clinical Instructor; UH
Ruba Khattab, MD; Clinical Instructor; UH
Scott Kilpatrick, MD; Clinical Assistant Professor; CCLCM
Jennifer Ko, MD; Clinical Assistant Professor; CCLCM
Keith Lai, MD; Clinical Assistant Professor; CCLCM
James Lapinski, MD; Clinical Assistant Professor; CCLCM
Margaret Lawless, MD; Clinical Instructor; UH
Roy Lee, MD; Clinical Assistant Professor; CCLCM
Hyoun-gon Lee, PhD; Adjunct Assistant Professor; SOM
Paul Lehmann, MD PhD; Adjunct Professor; SOM
Xin Li, MD PhD; Clinical Instructor; UH
Huiping Liu, MD PhD; Adjunct Assistant Professor; SOM
John Lowe, MD; Adjunct Professor; UH
Wen Lu, MD; Clinical Assistant Professor; CCLCM
Gayatri Madan-Mohan, MBBS; Clinical Instructor; UH
Andrea McColloM, MD; Clinical Instructor; UH
Jesse McKenney, MD; Clinical Assistant Professor; CCLCM
Shalini Mohindra, MBBS; Clinical Instructor; UH
Sanjay Mukhopadhyay, MD; Clinical Assistant Professor; CCLCM
Ayoub Nahal, MD; Clinical Professor; CCLCM
Maria Navas, MD; Clinical Assistant Professor; VA
Richard Nelson, MD; Clinical Professor; UH
Carlos Nunez-Alonso, MD; Clinical Assistant Professor; CCLCM
Olaronke Oshilaja, MD; Clinical Assistant Professor; CCLCM
George Perry, PhD; Adjunct Professor; SOM
Robert Petersen, PhD; Adjunct Professor; SOM
Sanjay Pimplikar, PhD; Adjunct Assistant Professor; SOM
Maria Luisa Policarpio-Nicolas, MD; Clinical Assistant Professor; CCLCM
Susan Porter, MD; Clinical Assistant Professor; CCLCM
Thomas Prior, PhD; Clinical Professor; UH
Tricia Pua, MD; Clinical Assistant Professor; CCLCM
Miguel Quinones-Mateu, PhD; Adjunct Associate Professor; UH
Rajeeva Raju, MBBS; Clinical Assistant Professor; VA
Scott Robertson, MD PhD; Clinical Assistant Professor; CCLCM
Mark Rodgers, MD; Clinical Instructor; UH
Raj Rolston, MBBS; Clinical Assistant Professor; SOM
Erica Savage, MD; Clinical Assistant Professor; CCLCM
Carey Shive, PhD; Adjunct Instructor; SOM
Michael Snape, PhD; Adjunct Assistant Professor; SOM
Michelle Stehura, MD; Clinical Instructor; VA
Caroline Steinetz, MD; Clinical Instructor; UH
Magdalena Tary-Lehmann, MD; Adjunct Associate Professor; SOM
Dennis Templeton, MD PhD; Adjunct Professor; SOM
Karl Theil, MD; Clinical Assistant Professor; CCLCM
Ayse Timur, PhD; Adjunct Assistant Professor; CCLCM
Sihe Wang, PhD; Adjunct Assistant Professor; CCLCM
Michael Weaver, MD; Clinical Assistant Professor; UH
Miriam Weiss, MD; Adjunct Professor; SOM
Physical Medicine & Rehabilitation

James Westra, MD; Clinical Instructor; UH
M. Zaim, MD; Clinical Instructor; UH
Shulin Zhang, MD PhD; Adjunct Associate Professor; UH
Gloria Zhang, MD MPH; Clinical Assistant Professor; CCLCM
Xiaochun Zhang, MD PhD; Clinical Assistant Professor; CCLCM
Xiaoxian Zhao, PhD; Adjunct Assistant Professor; CCLCM
Yu Zhou, PhD; Adjunct Assistant Professor; CCLCM

Andre Cassell, MD; Clinical Assistant Professor; MHMC
Maarten Ijzerman, PhD; Clinical Assistant Professor; MHMC
R. Krupkin, MD; Clinical Assistant Professor; MHMC
George Macrinici, MD; Clinical Instructor; MHMC
Fadeel Mahmoud, MD; Clinical Instructor; MHMC
Nina Tamayo, DO; Clinical Instructor; SOM
A. Tritle, MD; Clinical Instructor; MHMC
Victoria Whitehair, MD; Clinical Instructor; MHMC
James Wilson, DO; Clinical Instructor; MHMC

Pathology

Ahmad Alduaij, MBBCH; Clinical Assistant Professor; CCLCM
Kathleen Allen, MD; Clinical Assistant Professor; SOM
Erica Armstrong, MD; Clinical Assistant Professor; UH
Mark Barcelo, MD; Adjunct Assistant Professor; SOM
Thomas Bauer, MD, PhD; Clinical Assistant Professor; CCLCM
Laurie Bauer, DO; Clinical Assistant Professor; VA
Adam Beattie, MD; Clinical Instructor; UH
Rose Beck, MD PhD; Clinical Assistant Professor; UH
Pablo Bejarano, MD; Clinical Assistant Professor; CCLCM
Ana Bennett, MD; Clinical Assistant Professor; CCLCM
Mariana Berho, MD; Clinical Assistant Professor; CCLCM
Charles Biscotti, MD; Clinical Assistant Professor; CCLCM
Juraj Bodo, PhD; Adjunct Assistant Professor; CCLCM
Maridee Boos, DO; Clinical Instructor; UH
Jennifer Brainard, MD; Clinical Assistant Professor; CCLCM
Jay Brock, PhD; Adjunct Assistant Professor; CCLCM
Tatiana Buhtoiarova, MD; Clinical Instructor; UH
Nasir Butt, PhD; Clinical Instructor; UH
Diane Carlson, MD; Clinical Assistant Professor; CCLCM
Yu-Wei Cheng, PhD; Clinical Assistant Professor; CCLCM
Yap-Yee Chong, MBBS; Clinical Assistant Professor; CCLCM
Amy Cocco, MD; Clinical Assistant Professor; CCLCM
Michael Cruise, MD PhD; Clinical Assistant Professor; CCLCM
Christine Curtis, PhD; Clinical Assistant Professor; MHMC
Thomas Daly, MD; Clinical Assistant Professor; CCLCM
Dawn Dawson, MD; Clinical Assistant Professor; UH
Andrea Dawson, MD; Clinical Assistant Professor; CCLCM
Anaibelth Del Rio Perez, MD; Clinical Instructor; VA
Maria Diacovo, MD; Clinical Assistant Professor; CCLCM
David Dolink, MD; Clinical Associate Professor; UH
Erinn Downs-Kelly, DO; Clinical Assistant Professor; CCLCM
Brian Enloe, MD PhD; Clinical Instructor; UH
Rosemary Farag, MBBS; Clinical Instructor; UH
Daniel Farkas, Adjunct Assistant Professor; CCLCM
Joseph Felo, MD; Clinical Assistant Professor; UH
Priscilla Figueroa, MD; Clinical Assistant Professor; CCLCM
Maryann Fitzmaurice, MD PhD; Adjunct Associate Professor; UH
Nancy Fong, MD; Clinical Assistant Professor; CCLCM
Dan Galita, MD; Clinical Instructor; UH
Santhi Ganesan, MBBS; Clinical Assistant Professor; MHMC
Thomas Gilson, MD; Clinical Assistant Professor; UH
Manjula Gupta, PhD; Adjunct Professor; CCLCM
Gabriel Habermehl, MD; Clinical Instructor; CCLCM
Walter Henricks, MD; Clinical Assistant Professor; CCLCM
Leal Herlitz, Clinical Assistant Professor; CCLCM
Aaron Hoschar, MD; Clinical Assistant Professor; CCLCM
Ihab Hosny, MBbch; Clinical Instructor; UH
Jennifer Jeung, MD; Clinical Assistant Professor; CCLCM
Yasmin Johnston, MD; Clinical Assistant Professor; CCLCM
Curtiss Jones, MS; Clinical Instructor; UH
Priti Joshi, MBBS; Clinical Associate Professor; CCLCM
Nadia Kaisi, MBBS; Clinical Associate Professor; UH
William Katzlin, MD PhD; Clinical Associate Professor; UH
School of Medicine Faculty

Harmeet Kaur, PhD; Clinical Instructor; UH
Ruba Khattab, MD; Clinical Instructor; UH
Scott Kilpatrick, MD; Clinical Assistant Professor; CCLCM
Jennifer Ko, MD; Clinical Assistant Professor; CCLCM
Keith Lai, ; Clinical Assistant Professor; CCLCM
James Lapinski, MD; Clinical Assistant Professor; CCLCM
Margaret Lawless, MD; Clinical Instructor; UH
Roy Lee, MD; Clinical Assistant Professor; CCLCM
Hyung-gon Lee, PhD; Adjunct Assistant Professor; SOM
Paul Lehmann, MD PhD; Adjunct Professor; SOM
Xin Li, MD PhD; Clinical Instructor; UH
Huiping Liu, MD PhD; Adjunct Assistant Professor; SOM
John Lowe, MD; Adjunct Professor; UH
Wen Lu, MD; Clinical Assistant Professor; CCLCM
Gayatri Madan-Mohan, MBBS; Clinical Instructor; UH
Andrea McCollom, MD; Clinical Instructor; UH
Jesse McKenney, MD; Clinical Assistant Professor; CCLCM
Shalini Mohindra, MBBS; Clinical Instructor; UH
Sanjay Mukhopadhyay, MD; Clinical Assistant Professor; CCLCM
Ayoub Nahal, MD; Clinical Professor; CCLCM
Maria Navas, MD; Clinical Assistant Professor; VA
Richard Nelson, MD; Clinical Instructor; UH
Carlos Nunez-Alonso, MD; Clinical Assistant Professor; CCLCM
Olaronke Oshilaja, MD; Clinical Assistant Professor; CCLCM
George Perry, PhD; Adjunct Professor; SOM
Robert Petersen, PhD; Adjunct Professor; SOM
Sanjay Pimplikar, PhD; Adjunct Assistant Professor; SOM
Maria Luisa Policarpio-Nicolas, MD; Clinical Assistant Professor; CCLCM
Susan Porter, MD; Clinical Assistant Professor; CCLCM
Thomas Prior, PhD; Clinical Professor; UH
Tricia Pua, MD; Clinical Assistant Professor; CCLCM
Miguel Quinones-Mateu, PhD; Adjunct Associate Professor; UH
Rajeeva Raju, MBBS; Clinical Assistant Professor; VA
Scott Robertson, MD PhD; Clinical Assistant Professor; CCLCM
Mark Rodgers, MD; Clinical Instructor; UH
Raj Rolston, MBBS; Clinical Assistant Professor; SOM
Erica Savage, MD; Clinical Assistant Professor; CCLCM
Carey Shive, PhD; Adjunct Instructor; SOM
Michael Snape, PhD; Adjunct Assistant Professor; SOM
Michelle Stehura, MD; Clinical Instructor; VA
Caroline Steinetz, MD; Clinical Instructor; UH
Magdalena Tary-Lehmann, MD; Adjunct Associate Professor; SOM
Dennis Templeton, MD PhD; Adjunct Professor; SOM
Karl Theil, MD; Clinical Assistant Professor; CCLCM
Ayse Timur, PhD; Adjunct Assistant Professor; CCLCM
Sihe Wang, PhD; Adjunct Assistant Professor; CCLCM
Michael Weaver, MD; Clinical Assistant Professor; UH
Miriam Weiss, MD; Adjunct Professor; SOM
James Westra, MD; Clinical Instructor; UH
M. Zaim, MD; Clinical Instructor; UH
Shulin Zhang, MD PhD; Adjunct Associate Professor; UH
Gloria Zhang, MD, MPH; Clinical Assistant Professor; CCLCM
Xiaohun Zhang, MD PhD; Clinical Assistant Professor; CCLCM
Xiaoxian Zhao, MD; Adjunct Assistant Professor; CCLCM
Yu Zhou, PhD; Adjunct Assistant Professor; CCLCM
Pediatrics

Mahmoud Abouel Soud, MD; Clinical Instructor; UH
Jon Abrahamson, MD; Clinical Assistant Professor; CCLCM
Babu Achanti, MD; Clinical Associate Professor; UH
Vijaya Achanti, MD; Clinical Assistant Professor; CCLCM
Richard Adams, MD; Clinical Assistant Professor; CCLCM
Adebowale Adedipe, MD; Clinical Associate Professor; UH
Raidour Ahmed, MD; Clinical Assistant Professor; CCLCM
Khalid Ahmed, MD; Clinical Assistant Professor; CCLCM
Diane Ali, DO; Clinical Assistant Professor; CCLCM
Douangdao Aloun, MD; Adjunct Assistant Professor; UH
Michael Anderson, MD; Clinical Professor; UH
Lucy Andrews-Mann, MSN; Clinical Instructor; CCLCM
Heather Arnett, MD; Clinical Instructor; UH
Catherine Arora, MD; Clinical Instructor; UH
Jeffery Auletta, MD; Adjunct Associate Professor; UH
Hany Aziz, MBBch; Clinical Assistant Professor; CCLCM
Orkun Baloglu, MD; Clinical Assistant Professor; CCLCM
Gerard Banez, PhD; Clinical Assistant Professor; CCLCM
Marcus Baratian, MD; Clinical Instructor; UH
Emily Barker, PhD; Adjunct Instructor; UH
Deanna Barry, DO; Clinical Instructor; UH
Samar Bashour, MD; Clinical Assistant Professor; CCLCM
Govindasamy Baskar, MBBS; Clinical Instructor; UH
Courtney Batt, MD; Clinical Instructor; UH
Cynthia Bearer, MD PhD; Adjunct Professor; UH
Sarah Bement, MD; Clinical Instructor; MHMC
Janet Benish, MD; Clinical Instructor; UH
John Bennet, MD; Clinical Assistant Professor; UH
Ethan Benore, PhD; Clinical Assistant Professor; CCLCM
Melvin Berger, MD PhD; Adjunct Professor; UH
Viera Bernat, MD; Clinical Assistant Professor; UH
Eva Bhadra, MBBS; Adjunct Instructor; UH
Anita Bhardwaj, MD; Clinical Instructor; UH
Smita Bhaskaran, MBBS; Clinical Instructor; UH
Jane Black, MD; Clinical Assistant Professor; UH
Brian Boe, MD; Clinical Instructor; UH
Sara Bohac, MD; Clinical Assistant Professor; CCLCM
Deborah Bonem, MS; Adjunct Instructor; UH
Joseph Borus, MD; Clinical Instructor; UH
David Bowe, MD; Clinical Instructor; UH
Elise Bream, MD; Clinical Instructor; UH
Joann Brewer, MD; Clinical Instructor; UH
Deborah Brindza, MD; Clinical Instructor; UH
Katherine Brown, MD; Clinical Assistant Professor; CCLCM
Elizabeth Bucchiere, MD; Clinical Assistant Professor; UH
Ilia Buhtoiarov, MD; Clinical Assistant Professor; CCLCM
Vladimir Burdjalov, MD; Clinical Assistant Professor; CCLCM
Melissa Burgett, MD; Clinical Assistant Professor; CCLCM
Diane Burgin, MD; Clinical Assistant Professor; UH
Peter Cantanzano, MD; Clinical Instructor; UH
Jennifer Carandang, MD; Clinical Instructor; UH
Elizabeth Carpenter, MD; Clinical Instructor; UH
Michele Carrouzzo, MD; Clinical Assistant Professor; UH
Amy Carruthers, MD; Clinical Instructor; UH
Julia Cartaya, MD; Clinical Assistant Professor; CCLCM
Constancia Castro, MD; Clinical Instructor; UH
Julie Cernanec, MD; Clinical Assistant Professor; CCLCM
Michael Chaka, MD; Clinical Instructor; UH
Geetha Challapali, MBBS; Clinical Assistant Professor; CCLCM
Gisela Chelimsky, MD; Adjunct Associate Professor; UH
Lisa Cherullo, MD; Clinical Instructor; UH
Laura Cifra-Bean, MD; Clinical Instructor; UH
Thelma Cifra-Pietrolungo, OD; Clinical Assistant Professor; UH
Mary Clough, MD; Clinical Instructor; UH
Valerie Coats, MD; Clinical Instructor; UH
Jennifer Cochran, MD; Clinical Instructor; UH
Jessica Cohn, MD; Clinical Instructor; UH
Jennifer Coliatis, MD; Clinical Instructor; UH
Marcia Columbro, MD; Clinical Instructor; UH
Suzanne Connolly, MD; Clinical Assistant Professor; CCLCM
Kenneth Cooke, MD; Adjunct Associate Professor; UH
Maria Coutinho, MBBS; Clinical Assistant Professor; UH
Cathleen Coyne, MD; Clinical Instructor; UH
Cara Cuddy, PhD; Clinical Assistant Professor; CCLCM
Wendy Cunningham, PsyD; Clinical Assistant Professor; CCLCM
Steven Czinn, MD; Adjunct Professor; UH
Chantal Dalencour, MD; Clinical Instructor; UH
Naser Danan, MD; Clinical Instructor; UH
Callisto Daniel, DO; Clinical Instructor; UH
Kshama Daphtary, MBBS; Clinical Assistant Professor; CCLCM
Amy Dasso, MD; Clinical Instructor; UH
Lori D’Avello, MD; Clinical Instructor; UH
Barbara Davis, MD; Clinical Assistant Professor; CCLCM
Ira Davis, MD; Clinical Associate Professor; CCLCM
Charles Davis, MD; Clinical Associate Professor; CCLCM
Joan Delahay, MD; Clinical Instructor; UH
Carol Delahunty, MD; Clinical Assistant Professor; CCLCM
Riddhi Desai, MD; Clinical Instructor; UH
School of Medicine Faculty

Delia Di Gregorio, MD; Clinical Senior Instructor; UH
Lisa Diard, MD; Clinical Assistant Professor; CCLCM
Lyn Dickert-Leonard, MD; Clinical Assistant Professor; UH
Hilda Ding, MD; Clinical Instructor; UH
Marita D’Netto, MBBS; Clinical Assistant Professor; CCLCM
Jeong-su Do, PhD; Adjunct Assistant Professor; UH
Nancy Dobolet, MD; Clinical Instructor; UH
Denise Dougherty, PhD; Adjunct Professor; UH
Nicholas Dreher, MD; Clinical Instructor; UH
Mohan Durve, MBBS; Clinical Assistant Professor; UH
Stephen Dutko, MD; Clinical Instructor; UH
Susan Dykeman, MD; Clinical Assistant Professor; UH
Sara Eapen, OD; Clinical Instructor; UH
Kristen Eastman, PsyD; Clinical Assistant Professor; CCLCM
Allison Effron, MD; Clinical Instructor; UH
Laurie Ekstein, MD; Clinical Instructor; MHMC
Malek El Yaman, MD; Clinical Assistant Professor; CCLCM
Michelle Elias Ruiz, MD; Clinical Assistant Professor; CCLCM
Phyllis Elinson, MD; Clinical Assistant Professor; CCLCM
Ibrahim Elsheikh, MD; Clinical Instructor; UH
Chadi Eltaha, MD; Clinical Assistant Professor; CCLCM
Joy Ertel, MD; Clinical Instructor; UH
Kate Eshleman, PsyD; Clinical Assistant Professor; CCLCM
Doris Evans, MD; Clinical Professor; UH
Lynne Eversman, MD; Clinical Instructor; UH
Ann Failinger, MD; Clinical Instructor; UH
Genevive Falconi, MD; Clinical Assistant Professor; CCLCM
Douglas Fall, MD; Clinical Assistant Professor; UH
Michael Fedak, MD; Clinical Assistant Professor; CCLCM
Elizabeth Feighan, MD; Clinical Instructor; UH
Lisa Feinberg, MD; Clinical Assistant Professor; CCLCM
Marc Feldman, MD; Clinical Senior Instructor; UH
Lori Finley, MD; Clinical Assistant Professor; CCLCM
Elaine Fitzgerald, MD; Clinical Instructor; MHMC
Aron Flagg, MD; Clinical Assistant Professor; CCLCM
Vaishali Flask, MD; Clinical Assistant Professor; CCLCM
Douglas Fleck, MD; Clinical Assistant Professor; UH
Conrad Foley, MD; Clinical Assistant Professor; CCLCM
Lindsey Forur, MD; Clinical Instructor; UH
Julia Frantsuzov, MD; Clinical Assistant Professor; CCLCM
Deborah Friedman, MD; Clinical Assistant Professor; UH
Joji Gacad, MD; Clinical Instructor; UH
Claire Gahm, MD; Clinical Instructor; UH
Marilee Gallagher, MD; Clinical Professor; UH
Rachel Garber, MD; Clinical Assistant Professor; UH
Andrew Garner, MD PhD; Clinical Professor; UH
G. Gascoigne, MD; Clinical Instructor; UH
Susan Gaston, MD; Clinical Instructor; UH
Catherine Gaw, PsyD; Clinical Assistant Professor; CCLCM
Edward Gaydos, OD; Clinical Instructor; CCLCM
Ernesto Gerardo, MD; Clinical Assistant Professor; UH
Deborah Ghazoul, MD; Clinical Assistant Professor; CCLCM
Amrit Gill, MD; Clinical Assistant Professor; CCLCM
Mark Gipson, MD; Clinical Instructor; UH
Gwen Glazer, MD; Clinical Instructor; MHMC
Abigail Glick, MD; Clinical Instructor; UH
Deborah Goldman, MD; Clinical Assistant Professor; CCLCM
Gregory Golonka, MD; Clinical Assistant Professor; UH
Eleanor Gottesman, MD; Clinical Instructor; MHMC
Ellen Graber, MD; Clinical Instructor; UH
Kathleen Grady, MD; Clinical Instructor; UH
Mary Greenberg, MD; Clinical Instructor; UH
Charles Griffin Jr., MD; Clinical Assistant Professor; UH
Anna Grinberg, MD; Clinical Instructor; UH
Isabelita Guadiz, MD; Clinical Assistant Professor; CCLCM
Anandhi Gunder, MD; Clinical Instructor; UH
Julie Gunzler, MD PhD; Clinical Instructor; UH
D. Hackenberg, MD; Clinical Instructor; UH
Lisa Hackney, MD; Clinical Assistant Professor; UH
Ibrahim Haddad, MD; Adjunct Assistant Professor; UH
Elizabeth Hagen, MD; Clinical Assistant Professor; UH
Amy Lee, PhD; Clinical Assistant Professor; CCLCM
James Leslie, MD; Clinical Associate Professor; UH
Diane Lester, MD; Clinical Instructor; UH
Morris Levinsohn, MD; Clinical Associate Professor; UH
Michelle Levy Mandalla, MD; Clinical Instructor; UH
Julia Libecco, MD; Clinical Instructor; UH
Tracy Lim, MD; Clinical Instructor; CCLCM
Adriane Lioudis, MD; Clinical Assistant Professor; CCLCM
Meghan Lynch, DO; Clinical Instructor; UH
Anne Lyren, MD; Adjunct Associate Professor; UH
Niyati Mahajan, MBBS; Clinical Instructor; UH
Lori Mahajan, MD; Clinical Assistant Professor; CCLCM
Mark Malinowski, MD; Clinical Instructor; UH
Anna Mandalakas, MD; Adjunct Associate Professor; UH
James Mandelik, MD; Clinical Assistant Professor; CCLCM
Soudaline Maniphon, MD; Adjunct Assistant Professor; UH
Andrea Mann, DO; Clinical Senior Instructor; UH
Syeda Maarsood, MBBS; Clinical Instructor; MHMC
Stephan Maricich, MD PhD; Adjunct Associate Professor; UH
Rebecca Marsick, MS; Clinical Instructor; UH
Beth Ann Martin, PhD; Clinical Assistant Professor; CCLCM
Matthew Mascioli, MD; Clinical Instructor; UH
Delbert Mason, MD; Clinical Assistant Professor; UH
Laura Mason, MD; Clinical Instructor; UH
Raichal Mathew, MBBS; Clinical Instructor; UH
Yousif Matloub, MD; Adjunct Professor; UH
Marisa Matthys, MD; Clinical Assistant Professor; CCLCM
Angelica Mazzarini, MD; Clinical Instructor; UH
George McPherson, MD; Clinical Instructor; UH
Charlotte McCumber, MD; Clinical Assistant Professor; CCLCM
Brenda McGhee, MD; Clinical Instructor; UH
Susan McGrath, PhD; Adjunct Instructor; UH
Michael McHugh, MD; Clinical Assistant Professor; CCLCM
Alice McIntyre, MD; Clinical Assistant Professor; CCLCM
Jeff McRaven, MD; Clinical Instructor; UH
M.A. Michelle Medina, MD; Clinical Assistant Professor; CCLCM

Sudhir Mehta, MBBS; Clinical Associate Professor; CCLCM
Alton Melton, MD; Clinical Assistant Professor; CCLCM
Stacey Memberg, MD PhD; Clinical Instructor; UH
Sharon Meropol, MD; Clinical Assistant Professor; UH
William Michener, MD; Clinical Associate Professor; CCLCM
Sherry Milner, MD; Clinical Instructor; UH
Keili Mistovich, MD; Clinical Instructor; UH
Cheryl Morrow-White, MD; Clinical Assistant Professor; UH
Alison Moses, PhD; Clinical Assistant Professor; CCLCM
Michael Mount, MD; Clinical Instructor; UH
Philippa Mudido, MD; Adjunct Instructor; UH
Erin Murdock, MD; Clinical Assistant Professor; CCLCM
Martha Myers, MD; Clinical Instructor; UH
Timothy Myers, BS; Adjunct Assistant Professor; UH
Holly Nadorlik, DO; Clinical Assistant Professor; CCLCM
Kassandra Najm, MD; Clinical Instructor; UH
Alexander Namrow, MD; Clinical Assistant Professor; UH
Ann Nevar, MS; Clinical Instructor; UH
Courtney Nolan, DO; Clinical Assistant Professor; CCLCM
Sigmund Nor, MD PhD; Clinical Assistant Professor; CCLCM
Scot Occhionero, MD; Clinical Assistant Professor; UH
Grace Onimoe, MBBS; Clinical Assistant Professor; CCLCM
Mary Ann O’Riordan, MS; Adjunct Assistant Professor; UH
Linda Orosz, MD; Clinical Instructor; UH
Sophia Orraca-Tetteh, MD; Clinical Senior Instructor; MHMC
Srivineng Pairojkul, MD; Adjunct Associate Professor; UH
Rita Pappas, MD; Clinical Assistant Professor; CCLCM
Divya Parikh, MD; Clinical Instructor; UH
Mona Patel, MD; Clinical Instructor; UH
Swati Patel, MD; Clinical Instructor; MHMC
Sophia Patel, MD; Clinical Assistant Professor; CCLCM
Katherine Patrick, MD; Clinical Instructor; UH
Fred Pearlman, OD; Clinical Instructor; UH
Marina Perez-Fournier, MD; Clinical Assistant Professor; CCLCM
Katie Pestak, DO; Clinical Assistant Professor; CCLCM
Thomas Phelps, MD; Clinical Assistant Professor; UH
Khamseng Philavong, MD; Adjunct Assistant Professor; UH
Phonetep Pholsena, MD; Adjunct Associate Professor; UH
Khampe Phongsavath, MD; Adjunct Assistant Professor; UH
Candis Platt-Houston, MD; Clinical Instructor; MHMC
Timothy Playl, MD; Clinical Assistant Professor; CCLCM
Svetlana Pomeranets, MD; Clinical Assistant Professor; CCLCM
Stephen Poslusny, MD; Clinical Instructor; UH
Brian Postma, MD; Clinical Instructor; UH
Andrea Preston, MD; Clinical Assistant Professor; CCLCM
Anthony Pucell, MD; Clinical Instructor; UH
Subhash Puthuraya, MBBS; Clinical Assistant Professor; CCLCM
James Quilty, MD; Clinical Professor; MHMC
Kadakkal Radhakrishnan, MBBS; Clinical Assistant Professor; CCLCM
Umarani Ramachandran, MBBS; Clinical Instructor; UH
Rajyalakshmi Rambhatla, MBBS; Clinical Assistant Professor; CCLCM
Bharati Rao, MBBS; Clinical Senior Instructor; UH
Shakuntala Rao, MD; Clinical Assistant Professor; CCLCM
Robert Rennebohm, MD; Clinical Assistant Professor; CCLCM
Justin Rich, MD; Clinical Instructor; UH
Dawn Riebe, MD; Clinical Instructor; UH
Mona Rifka, MD; Clinical Assistant Professor; CCLCM
Laurel Roach-Armao, MD; Clinical Instructor; UH
Rosemary Robbins, MD; Clinical Instructor; UH
David Roberts, MD; Clinical Associate Professor; MHMC
Gina Robinson, MD; Clinical Instructor; UH
Douglas Rogers, MD; Clinical Assistant Professor; CCLCM
Lyne Romero, MD; Clinical Instructor; UH
Lila Rosenstein, MD; Clinical Instructor; UH
Alan Rosenthal, MD; Clinical Assistant Professor; CCLCM
Barbara Rowane, MD; Clinical Instructor; UH
Wasim Saadeh, MD; Clinical Instructor; MHMC
Michael Saalouke, MD; Clinical Associate Professor; UH
Zane Saalouke, MD; Clinical Assistant Professor; UH
Paula Sabella, MD; Clinical Assistant Professor; CCLCM
Firas Saker, MD; Clinical Associate Professor; CCLCM
Ayman Saleh, MD; Adjunct Assistant Professor; UH
Tarek Salman, MBBCH; Clinical Instructor; UH
Victor Sandoval, MD; Clinical Instructor; UH
Troy Sands, MD; Clinical Assistant Professor; UH
Jill Sangree, MD; Clinical Assistant Professor; UH
Bounnack Saysanasong Kham, MD; Adjunct Assistant Professor; UH
Colleen Schelzig, MD; Clinical Assistant Professor; CCLCM
Dana Schmidt, MD; Clinical Assistant Professor; CCLCM
Marcy Schwartz, MD; Clinical Assistant Professor; CCLCM
Jeffrey Schwersenski, MBBS; Adjunct Assistant Professor; CCLCM
Melissa Seifried, MD; Clinical Assistant Professor; CCLCM
Shelly Senders, MD; Clinical Professor; UH
Pamela Senders, PhD; Clinical Assistant Professor; CCLCM
K. Sengmanivong, MD; Adjunct Assistant Professor; UH
Heidi Senokozlieff, DO; Clinical Assistant Professor; CCLCM
Wadie Shabab, MD; Clinical Assistant Professor; CCLCM
Jaya Shah, MBBS; Clinical Instructor; UH
Rohit Shah, MD; Clinical Instructor; MHMC
Paul Shaniuk, MD; Clinical Assistant Professor; UH
Theodore Sher, MD; Clinical Assistant Professor; UH
Alla Sherman, MD; Clinical Instructor; UH
Neha Sheth, MD; Clinical Instructor; UH
Nina Shojayi, MD; Clinical Assistant Professor; CCLCM
Lee Ann Shollenberger, MD; Clinical Assistant Professor; CCLCM
Eli Silver, MD; Clinical Assistant Professor; UH
Madhumita Sinha, MBBS; Adjunct Assistant Professor; UH
A.J. Skrinska, MD; Clinical Instructor; UH
Ernest Smoot, MD; Clinical Instructor; UH
Trisha Snair, DO; Clinical Instructor; UH
Amy Sniderman, MD; Clinical Assistant Professor; CCLCM
Richard So, MD; Clinical Assistant Professor; CCLCM
Sarah Spannagel, PhD; Clinical Instructor; UH
Leslie Speer, PhD; Clinical Assistant Professor; CCLCM
Andrea Sperduto, MD; Clinical Assistant Professor; CCLCM
Alan Spiegel, MD; Clinical Instructor; UH
Sue Sreedhar, MBBS; Clinical Assistant Professor; CCLCM
Maya Srivastava, MD; Clinical Instructor; UH
M. Srour, MD; Adjunct Instructor; UH
Alyssa Stachowiak, MD; Clinical Instructor; UH
Robert Stephens, MD; Clinical Assistant Professor; UH
Wayne Stillick, MD; Clinical Instructor; UH
Katarina Stopko, MD; Clinical Instructor; UH
Ronald Strauss, MD; Adjunct Assistant Professor; UH
Cynthia Strieter, MD; Clinical Instructor; UH
John Strong, MD; Clinical Assistant Professor; CCLCM
Ryan Suder, PhD; Clinical Senior Instructor; CCLCM
Dieter Sumerauer, MD; Clinical Assistant Professor; UH
Patcharapong Suntharos, MD; Clinical Assistant Professor; CCLCM
William Sweeney, MS; Adjunct Assistant Professor; UH
Heidi Szugye, DO; Clinical Assistant Professor; CCLCM
Thomas Taxman, MD; Clinical Assistant Professor; UH
H. Taylor, PhD; Adjunct Professor; UH
Kathryn Tegeder, MD; Clinical Instructor; UH
Tanya Tekautz, MD; Clinical Assistant Professor; CCLCM
Akari Tichavakunda, MD; Clinical Instructor; UH
Kristine Torjesen, M PH; Adjunct Assistant Professor; UH
Theodore Torphy, PhD; Adjunct Professor; UH
Michael Traylor, MD; Clinical Assistant Professor; CCLCM
Marni Turell, MD; Adjunct Instructor; UH
Kevin Turner, MD; Clinical Instructor; UH
Ingrid Tuxhorn, MD; Adjunct Professor; UH
James Underwood, DO; Clinical Instructor; UH
Eriks Usis, MD; Clinical Instructor; UH
Kathleen Utech, MD; Clinical Instructor; UH
Kimberly Vacca, MD; Clinical Instructor; UH
Ximena Valdes, MD; Adjunct Associate Professor; UH
Nancy Van Keuls, MD; Clinical Assistant Professor; CCLCM
Donald VanDevanter, PhD; Adjunct Professor; UH
Peter VanHeyst, DO; Clinical Assistant Professor; CCLCM
Susan Vargo, MD; Clinical Instructor; UH
Karen Vargo, MD; Clinical Assistant Professor; CCLCM
Nilla Vibhakar, MD; Clinical Instructor; UH
Rosita Villaneuva, MD; Clinical Instructor; UH
Ryan Vogelgesang, MD; Clinical Instructor; UH
Katherine Wagner, MD; Clinical Instructor; UH
Catherine Walker, MD; Clinical Instructor; UH
David Walker, MD; Clinical Assistant Professor; UH
Heng Wang, MD PhD; Clinical Assistant Professor; UH
Nancy Wasserbauer Kingston, DO; Clinical Instructor; UH
Diana Wasserman, MD; Clinical Assistant Professor; UH
Anita Watson, MD; Clinical Instructor; UH
Marin Waynar, MD; Clinical Assistant Professor; CCLCM
Gregory Weaver, MD; Clinical Instructor; UH
Charles Weber, MD; Clinical Instructor; UH
Bradley Weinberger, MD; Clinical Assistant Professor; CCLCM
Robert Weiss, MD; Clinical Assistant Professor; CCLCM
J. Wertman, MD; Clinical Instructor; UH
Steven Wexberg, MD; Clinical Assistant Professor; CCLCM
Isaiah Wexler, MD PhD; Adjunct Associate Professor; UH
Jon-Ano White, MD; Adjunct Assistant Professor; UH
William Wieder, MD; Clinical Instructor; UH
Carly Wilbur, MD; Clinical Instructor; UH
Jason Williams, MD; Adjunct Assistant Professor; UH
Tara Williams, MD; Clinical Assistant Professor; CCLCM
Eddie Wills, MD; Adjunct Instructor; UH
Bradley Winberger, MD; Clinical Assistant Professor; CCLCM
Anna Winfield, MPH MD; Clinical Assistant Professor; MHMC
Terry Wiseman, MD; Clinical Instructor; UH
Kholoud Wishah, MBBS; Clinical Instructor; UH
Mary Wong, MD; Clinical Assistant Professor; CCLCM
Natalie Woods, MD; Clinical Instructor; UH
Daniel Worthington, MD; Clinical Assistant Professor; UH
Maohe Yan, MD; Clinical Assistant Professor; CCLCM
Natalie Yeaney, MD; Clinical Assistant Professor; CCLCM
Lloyd Yeh, MD; Clinical Instructor; UH
Sarah Youssef, MD; Clinical Instructor; UH
Brian Zack, MD; Clinical Instructor; UH
Stacey Zahler, DO; Clinical Assistant Professor; CCLCM
William Zaia, MBBS; Adjunct Assistant Professor; CCLCM
Stacey Zahler, DO; Clinical Assistant Professor; CCLCM
Rachael Zanotti-Morocco, MD; Clinical Instructor; UH
Arnaldo Zayas-Santiago, MD; Clinical Assistant Professor; CCLCM
Andrew Zeft, MD; Clinical Assistant Professor; CCLCM
Andrea Zets, MD; Clinical Instructor; UH
Lisa Zipp-Partovi, MD; Clinical Instructor; UH
Amitai Ziv, MD; Adjunct Associate Professor; UH
Pharmacology
 Zhaoyang John Feng, PhD; Adjunct Assistant Professor; SOM
 Sharon Sherry LaForest, PharmD; Adjunct Instructor; SOM
 Vera Moiseenkova-Bell, PhD; Adjunct Associate Professor; SOM
 Bin Su, PhD; Adjunct Assistant Professor; SOM
Physiology and Biophysics
 Jessica Berthiaume, PhD; Adjunct Instructor; SOM
 Arthur Brown, MD PhD; Adjunct Professor; MHMC
 Liming Chen, PhD; Adjunct Instructor; SOM
 Richard Eckert, PhD; Adjunct Professor; SOM
 George Farr, PhD; Adjunct Assistant Professor; SOM
 Christopher Ford, PhD; Adjunct Associate Professor; SOM
 Masao Ikeda-Saito, PhD; Adjunct Professor; SOM
 Damir Janigro, PhD; Adjunct Professor; SOM
 Jian-Ping Jin, PhD; Adjunct Professor; SOM
 Susanne Mohr, PhD; Adjunct Associate Professor; SOM
 Marc Pelletier, PhD; Adjunct Assistant Professor; SOM
 Nanduri Prabhakar, PhD; Adjunct Professor; SOM
 Andrew Resnick, PhD; Adjunct Assistant Professor; SOM
 Frank Sonnichsen, PhD; Adjunct Associate Professor; SOM
 Assem Ziady, PhD; Adjunct Associate Professor; SOM
Plastic Surgery
 Devra Becker, MD; Clinical Associate Professor; UH
 Roland Reyes, MD; Clinical Assistant Professor; UH
 William Schleicher, MD; Clinical Instructor; UH
 Akira Yamada, MD; Clinical Assistant Professor; UH
Population and Quantitative Health Sciences
 Francis Afram-Gyening, MD; Adjunct Instructor; SOM
 Terrence Allan, MA; Adjunct Assistant Professor; SOM
 Mahbat Bahromov, MD; Adjunct Assistant Professor; SOM
 Roger Bielefeld, PhD; Adjunct Assistant Professor; SOM
 David Bruckman, MS; Adjunct Instructor; SOM
 Karen Butler, MS; Adjunct Instructor; SOM
 Nancy Callahan, M PH; Adjunct Instructor; SOM
 Matthew Carroll, JD; Adjunct Assistant Professor; SOM
 Jordan Crows, MS; Adjunct Instructor; SOM
 Aylin Drabousky, MA; Adjunct Instructor; SOM
 Wei Guo, PhD; Adjunct Instructor; SOM
 Patricia Heilbron, MS; Adjunct Instructor; SOM
 Sandi Hurley, RN; Adjunct Instructor; SOM
 Leila Jackson, PhD; Adjunct Assistant Professor; SOM
 Gyungah Jun, PhD; Adjunct Assistant Professor; SOM
 Christopher Kippes, MS; Adjunct Instructor; SOM
 Kristina Knight, M PH; Adjunct Instructor; SOM
 Tzuyung Kou, PhD; Adjunct Assistant Professor; SOM
 Elizabeth Larkin, MS; Adjunct Instructor; SOM
 Courtney Montgomery, PhD; Adjunct Assistant Professor; SOM
 Rebecca Morgan, M PH; Adjunct Instructor; SOM
 Andrew Morris, MPH; Adjunct Instructor; SOM
 Ezekiel Mupere, PhD; Adjunct Assistant Professor; SOM
 Katherine Nagel, M PH; Adjunct Instructor; SOM
 Junghyun Namkung, PhD; Adjunct Instructor; SOM
 Ralph O'Brien, PhD; Adjunct Professor; SOM
 Heather Ochs-Balcom, PhD; Adjunct Assistant Professor; SOM
 Ashok Panneerselvam, PhD; Adjunct Instructor; SOM
 Julia Patterson, M PH; Adjunct Instructor; SOM
 Lakshmi Pulagam, PhD; Adjunct Instructor; SOM
 Huaizhen Qin, PhD; Adjunct Instructor; SOM
 Feiyou Qiu, PhD; Adjunct Instructor; SOM
 J. Sunil Rao, PhD; Adjunct Professor; SOM
 Thomas Rehman, MS MPH; Adjunct Instructor; SOM
 Jeff Roming, MD; Adjunct Instructor; SOM
 Douglas Rowland, PhD; Adjunct Assistant Professor; SOM
 Laura Santurri, M PH; Adjunct Instructor; SOM
 Shuying Sun, PhD; Adjunct Assistant Professor; SOM
Sivakumar Theru Arumugam, PhD; Adjunct Assistant Professor; SOM
Christopher Whalen, MD; Adjunct Professor; SOM
Yifan Xu, PhD; Adjunct Instructor; SOM
Psychiatry
 John Adamo, MSN; Clinical Senior Instructor; UH
 Devra Adelstein, MSW; Adjunct Instructor; UH
 Adit Adityanjee, MD; Clinical Instructor; MHMC
 Mahboob Ahmed, MBBS; Clinical Instructor; MHMC
 Syed Ahmed, MBBS; Clinical Instructor; MHMC
 Avril Albaugh, LISW; Adjunct Assistant Professor; UH
 Robert Alcorn, MD; Clinical Assistant Professor; UH
 Brenda Altose, MD; Clinical Instructor; UH
 Matthew Anderson, MD; Clinical Senior Instructor; UH
 Michael Aronoff, PhD; Clinical Instructor; UH
 Sarah Aronson, MD; Clinical Assistant Professor; UH
 Zev Ashenberg, PhD; Clinical Assistant Professor; UH
 Virginia Ayres, PhD; Clinical Assistant Professor; UH
 Elizabeth Baker, MD; Clinical Assistant Professor; UH
 Peter Barach, PhD; Clinical Senior Instructor; UH
 Leonard Barley, MD; Clinical Assistant Professor; UH
 Jera Barrett, MD; Clinical Assistant Professor; UH
 Jane Belkin, MA; Clinical Instructor; UH
 Pauline Benjamin, PhD; Clinical Assistant Professor; UH
 Kurt Bertschinger, MD; Clinical Assistant Professor; UH
 Aaron Billowitz, MD; Clinical Assistant Professor; UH
 Carol Blixen, PhD; Adjunct Associate Professor; UH
 Gregory Boehm, MD; Clinical Assistant Professor; UH
 Elise Bonder, MD; Clinical Senior Instructor; UH
 Howard Bonem, PhD; Clinical Senior Instructor; UH
 Miriam Boraz, MD; Clinical Instructor; UH
 Ivy Boyle, MD; Clinical Assistant Professor; UH
 James Bukuts, MD; Clinical Instructor; UH
 Kathryn Burns, MD; Clinical Assistant Professor; UH
 Stacy Caldwell, PhD; Clinical Assistant Professor; MHMC
 Vera Camden, PhD; Clinical Assistant Professor; UH
 Jose Camerino, MA; Adjunct Assistant Professor; UH
 Heather Carey, PharmD; Adjunct Assistant Professor; UH
 Michael Carlisle, DO; Clinical Assistant Professor; UH
 Carol Cavey, MD; Clinical Senior Instructor; UH
 Heather Chapman, PhD; Clinical Assistant Professor; VA
 Melvin Chavinson, MD; Clinical Associate Professor; UH
 Joselita Chua, MD; Clinical Instructor; UH
 Robert Chwast, PhD; Clinical Assistant Professor; UH
 Colleen Coakley, MS; Adjunct Instructor; UH
 Cristinel Cooncea, MD; Clinical Assistant Professor; UH
 Nicolette Cooncea, MD; Clinical Assistant Professor; UH
 Erin Cooper, PhD; Clinical Instructor; UH
 Homai Cupala, MBBS; Clinical Assistant Professor; VA
 Sandra Curry, PhD; Clinical Assistant Professor; UH
 Marilyn Davies, PhD; Adjunct Assistant Professor; UH
 Mary Ellen Davis, MD; Clinical Associate Professor; UH
 Kenneth De Luca, PhD; Clinical Assistant Professor; UH
 Elizabeth Del Paggio, MS; Adjunct Instructor; UH
 Christine Demeter, MA; Adjunct Instructor; UH
 Daniel Deutschman, MD; Clinical Assistant Professor; UH
 Jane Domb, MD; Clinical Senior Instructor; VA
 A. Dowling Jr., MD; Clinical Associate Professor; UH
 Nancy Duff-Boehm, PhD; Clinical Instructor; UH
 Diane Eden, MD; Clinical Assistant Professor; UH
 Larissa Elgudin, MD; Clinical Instructor; UH
 Omar Elhaj, MD; Clinical Assistant Professor; VA
 Aaron Ellington, PhD; Clinical Senior Instructor; UH
 Patrick Enders, MD; Clinical Assistant Professor; UH
 Thomas Eppright, MD; Clinical Associate Professor; UH
 Michel Farivar, MD; Clinical Senior Instructor; UH
 David Feldman, MD; Clinical Assistant Professor; UH
 William Fikter, MD; Clinical Instructor; UH
 Robert Findling, MD; Adjunct Professor; UH
 Philip Fischer, MD; Clinical Senior Instructor; UH
 Barbara Fleming, PhD; Clinical Assistant Professor; UH
 Stacey Foerstner, PhD; Clinical Senior Instructor; UH
 Leighann Forsyth, PhD; Clinical Assistant Professor; UH
David Fox, MD; Clinical Senior Instructor; UH
Mark Frankel, MD; Clinical Assistant Professor; UH
Lois Freedman, MD; Clinical Assistant Professor; UH
David Fresco, PhD; Adjunct Associate Professor; UH
Frederick Frese, PhD; Clinical Assistant Professor; UH
Matthew Fuller, PhD; Clinical Professor; VA
Javier Galvez, MD; Clinical Assistant Professor; UH
Gretchen Gardner, MD; Clinical Instructor; UH
Ingrid Geerken, PhD; Clinical Instructor; UH
Peter Geier, MD; Clinical Assistant Professor; UH
Kenneth Gerstenhaber, PhD; Clinical Instructor; UH
Amy Ginsburg, PhD JD; Clinical Assistant Professor; UH
Pamela Gleisser, LISW; Adjunct Instructor; UH
Patricia Goetz, MD; Clinical Assistant Professor; UH
Robert Goldberg, PhD; Clinical Professor; UH
Murray Goldstone, MD; Clinical Associate Professor; UH
Deborah Gould, MD; Clinical Assistant Professor; UH
Stephen Grcevich, MD; Clinical Senior Instructor; UH
Yael Greenberg, PsyD; Clinical Instructor; UH
Linda Gross, MD; Clinical Instructor; UH
Shawna Gudalis, MSN; Clinical Senior Instructor; UH
Neera Gupta, MD; Clinical Senior Instructor; UH
Colleen Hall, PharmD; Clinical Assistant Professor; VA
Samia Hasan, MD; Clinical Assistant Professor; UH
Helen Hattab, MD; Clinical Assistant Professor; VA
Franklin Hickman, PhD; Adjunct Assistant Professor; UH
Richard Hill, MD PhD; Clinical Senior Instructor; UH
Judith Hirshman, MD; Clinical Instructor; UH
Andrew Hoffman, PhD; Clinical Assistant Professor; UH
Michael Hogan, PhD; Adjunct Professor; UH
Amanda Horrigan, MBBch; Clinical Senior Instructor; UH
Debra Hrouda, MS; Adjunct Assistant Professor; UH
Ronald Immerman, MD; Clinical Senior Instructor; UH
Ray Isackila, MS; Clinical Assistant Professor; UH
James Jacobsohn, MD; Clinical Associate Professor; UH
Anna Janicki, MD; Clinical Assistant Professor; UH
Marianne Jhee, MD; Clinical Assistant Professor; VA
Pythias Jones, MD; Clinical Assistant Professor; UH
Przemyslaw Kapalczynski, MD; Clinical Senior Instructor; UH
Barbara Kaufman, MD; Clinical Assistant Professor; UH
Otto Kausch, MD; Clinical Assistant Professor; UH
Daniel Keaton, MD; Clinical Instructor; UH
Janet Kemp, MD; Clinical Instructor; UH
John Kenny, PhD; Clinical Assistant Professor; VA
Lindsey Kershaw, MSN; Clinical Instructor; UH
Jahanzeb Khan, MD; Clinical Senior Instructor; UH
Louis Klein, MD; Clinical Instructor; UH
Elizabeth Koby, MD; Clinical Assistant Professor; UH
Cortney Kohberger, MD; Clinical Senior Instructor; UH
J. Konieczny, PhD; Clinical Senior Instructor; UH
Irina Korobkova, MD; Clinical Assistant Professor; UH
Elisabeth Koss, PhD; Clinical Associate Professor; UH
Sunita Kumar, MBBS; Clinical Senior Instructor; UH
Vesna Kutlesic, PhD; Clinical Assistant Professor; UH
Zinaida Lebedeva, MD; Clinical Instructor; UH
Joan Lederer, MD; Clinical Senior Instructor; VA
Kay Levine, PhD; Clinical Assistant Professor; UH
Stephen Levine, MD; Clinical Professor; UH
Carol Lewis, MD; Clinical Instructor; UH
Richard Lightbody, MD; Clinical Professor; UH
Joseph Locala, MD; Clinical Associate Professor; UH
Lori Locke, MSN; Adjunct Assistant Professor; UH
Leslie Lothstein, PhD; Clinical Associate Professor; UH
Mark Lovinger, PhD; Clinical Instructor; UH
Monica MacDougall, MD; Clinical Assistant Professor; UH
Carol Macknin, MD; Clinical Senior Instructor; UH
Nitika Mahajan, MD; Clinical Senior Instructor; VA
Marilyn Malkin, PhD; Clinical Assistant Professor; UH
Sybille Marqua, MD; Clinical Instructor; VA
Loralee Marsh, MD; Clinical Assistant Professor; UH
Scott Martin, MD; Clinical Instructor; UH
Kay Mc Kenzie, MD; Clinical Assistant Professor; UH
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eileen McGee, MD</td>
<td>Clinical Senior Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Rene McGovern, PhD</td>
<td>Adjunct Associate Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Allan McLaughlin, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Cheryl Meister, BSN</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Herbert Meltzer, MD</td>
<td>Adjunct Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Bruce Merkin, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Claudia Metz, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Benjamin Miller, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Jacqueline Miller, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Noah Miller, MD</td>
<td>Clinical Senior Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Muhammad Momen, MD</td>
<td>Clinical Senior Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Douglas Moore, PhD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Sonal Moratschek, MD MPH</td>
<td>Clinical Senior Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Sherrod Morehead, PhD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Samareh Moussavand, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Erin Murphy, MSN</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Catherine Nageotte, MD</td>
<td>Clinical Assistant Professor</td>
<td>VA</td>
</tr>
<tr>
<td>Jonathan Nehrer, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Steven Neuhaus, PhD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Erica New, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>F. Noveske, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Emmanuel Nwajei, MBBS</td>
<td>Clinical Senior Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Gary Pagano, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Andrew Pieper, MD PhD</td>
<td>Clinical Professor</td>
<td>UH</td>
</tr>
<tr>
<td>David Pincus, PhD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Judith Pitlick, MA</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Daniel Polster, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Amelia Polzella, MS</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Amir Poreh, PhD</td>
<td>Clinical Associate Professor</td>
<td>UH</td>
</tr>
<tr>
<td>James Pretzer, PhD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Monica Proctor, MD</td>
<td>Clinical Senior Instructor</td>
<td>VA</td>
</tr>
<tr>
<td>Katherine Proehl, MSN</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Priti Purushothaman, MBBS</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Sylvia Rimm, PhD</td>
<td>Clinical Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Candace Risen, M SW</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>George Ritz, PhD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Nabila Rizk, MD</td>
<td>Clinical Senior Instructor</td>
<td>VA</td>
</tr>
<tr>
<td>David Robinson, MD</td>
<td>Adjunct Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Jennifer Roche-Desilets, MD</td>
<td>Clinical Senior Instructor</td>
<td>VA</td>
</tr>
<tr>
<td>Laura Rocker, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>James Rodio, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Barbara Rodriguez, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Ellen Rosenblatt, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>William Rowane, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Robert Rowney, DO</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Boris Royak, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Rosa Ruggiero, MSN</td>
<td>Clinical Senior Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Farid Sabet, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Roknedin Safavi, MD</td>
<td>Clinical Associate Professor</td>
<td>UH</td>
</tr>
<tr>
<td>John Sanitato, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Eden Santiago-Lee, MD</td>
<td>Clinical Instructor</td>
<td>MHMC</td>
</tr>
<tr>
<td>Dietrich Schelzig, MD MPH</td>
<td>Clinical Assistant Professor</td>
<td>VA</td>
</tr>
<tr>
<td>George Schmedlen, PhD JD</td>
<td>Clinical Senior Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Stephan Schwartz, PhD</td>
<td>Clinical Senior Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Daniel Schweid, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Robert Schweid, PhD</td>
<td>Clinical Senior Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Sam Schwendiman, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>David Scott, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Samuel Selekman, M SW</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Jes Sellers, PhD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>George Serna, PhD</td>
<td>Clinical Instructor</td>
<td>VA</td>
</tr>
<tr>
<td>Janet Sharp, MA</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Navneet Sidhu, MBBS</td>
<td>Clinical Instructor</td>
<td>MHMC</td>
</tr>
<tr>
<td>Jonathan Sirkin, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Harry Sivec, PhD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Rachel Slepecky, PhD</td>
<td>Clinical Senior Instructor</td>
<td>VA</td>
</tr>
<tr>
<td>Sylvester Smarty, MBBCh</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Douglas Smith, MD</td>
<td>Clinical Associate Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Jeffrey Smith, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Sherif Soliman, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Benjamin Spinner, MD</td>
<td>Clinical Assistant Professor</td>
<td>MHMC</td>
</tr>
<tr>
<td>James Srp, MS</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
</tbody>
</table>
Joy Stankowski, MD; Clinical Assistant Professor; UH
Libbie Stansifer, MD; Clinical Assistant Professor; UH
Sara Stein, MD; Clinical Assistant Professor; UH
Joel Steinberg, MD; Clinical Assistant Professor; UH
Laura Steinberg, MD; Clinical Instructor; UH
Elizabeth Stern, MD; Clinical Instructor; UH
Craig Stockmeier, PhD; Adjunct Associate Professor; UH
Barbara Streeter, MS; Adjunct Instructor; UH
Catherine Sullivan, M SW; Clinical Instructor; UH
M. Suresky, ND; Clinical Instructor; UH
Kathleen Svala, MD; Clinical Senior Instructor; UH
Thomas Svete, MD; Clinical Senior Instructor; UH
Maureen Sweeney, CNP; Clinical Senior Instructor; UH
Cynthia Taylor, MD; Clinical Assistant Professor; UH
Tiffany Thomas-Lakia, MD; Clinical Senior Instructor; UH
Crystal Thomas-Roza, MD; Clinical Instructor; UH
Jane Timmons-Mitchell, PhD; Clinical Associate Professor; UH
Terry Tobias, PhD; Clinical Assistant Professor; UH
Khoa Tran, MD; Clinical Senior Instructor; UH
Daksha Trivedi, MBBS; Clinical Instructor; UH
Eduardo Vazquez, MD; Clinical Senior Instructor; UH
Cynthia Vrabel, MD; Clinical Assistant Professor; UH
Leslie Walker, MD; Clinical Instructor; UH
Alexandra Wang, MD; Clinical Senior Instructor; UH
Anne Warren, MD; Clinical Assistant Professor; UH
Mark Warren, MD; Clinical Assistant Professor; UH
Daniel Weinberger, MD; Adjunct Assistant Professor; UH
Carl Weitman, PhD; Clinical Assistant Professor; UH
Brian Welsh, MD; Clinical Instructor; UH
Diane Wetzig, PhD; Clinical Assistant Professor; UH
Brooke Wolf, MD; Clinical Senior Instructor; UH
Denton Wyse, MD; Clinical Assistant Professor; UH
Cynthia Yamakoski, PhD; Clinical Senior Instructor; VA
Joshua Zarowitz, DO; Clinical Senior Instructor; UH
Margaret Zerba, PhD; Clinical Instructor; UH
Stephen Zinn, MD; Clinical Assistant Professor; UH

Radiation Oncology
Fredrick Barton, MD; Clinical Instructor; UH
Tithi Biswas, MBBS MD; Clinical Associate Professor; UH
Chee-Wai Cheng, PhD; Adjunct Professor; UH
Douglas Einstein, MD PhD; Adjunct Assistant Professor; UH
Joel Elconin, MD; Clinical Assistant Professor; UH
Mersiha Hadziahmetovic, MD; Clinical Assistant Professor; UH
Charlene Kan, MD PhD; Clinical Assistant Professor; UH
Jerald Katcher, MD; Clinical Assistant Professor; UH
Whoon Kil, MBBS; Clinical Assistant Professor; UH
Aryavarta Kumar, MD PhD; Clinical Assistant Professor; UH
Charles Kunos, MD PhD; Adjunct Assistant Professor; UH
Adir Ludin, MD; Clinical Assistant Professor; UH
Chunhui Luo, PhD; Clinical Assistant Professor; UH
David Ly, MD; Clinical Assistant Professor; UH
Roger Macklis, MD; Clinical Professor; UH
Silviu Marcu, MS; Clinical Instructor; UH
James Monroe, PhD; Adjunct Assistant Professor; UH
Roger Ove, MD PhD; Clinical Associate Professor; UH
Kunjan Pillai, MS; Adjunct Assistant Professor; UH
Suzanne Russo, MD; Clinical Associate Professor; UH
Mehran Saboori, MD; Clinical Assistant Professor; UH
Scott Welford, PhD; Adjunct Associate Professor; UH

Radiology
Julia Abbass, MD; Clinical Assistant Professor; UH
Salim Abboud, MD; Clinical Assistant Professor; UH
Indu Agarwal, MD; Clinical Assistant Professor; CCLCM
Abraham Ahmed, MD; Clinical Assistant Professor; CCLCM
George Ainge, MD; Clinical Assistant Professor; CCLCM
Elena Antonescu, DO; Clinical Assistant Professor; UH
Paresh Arora, MD; Clinical Assistant Professor; CCLCM
Joe Assaad, MD; Clinical Assistant Professor; UH
Joseph Azok, MD; Clinical Assistant Professor; CCLCM
Chaitra Badve, MD; Clinical Assistant Professor; UH
Gregory Baran, MD; Clinical Assistant Professor; CCLCM
Richard Barger, MD; Clinical Assistant Professor; UH
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kyle Basques, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Chandra Batchu, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Ryo Benson, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Mark Berman, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Ajay Bhardwaj, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Troy Blagrave, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Rodolfo Blandon, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Michael Bolen, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Carrie Bolton, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Gregory Borkowski, MD</td>
<td>Clinical Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Pamela Brethauer, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Aliye Bricker, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>David Brown, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>James Buchino, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>J. Burns, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Edward Bury, MD</td>
<td>Clinical Associate Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Carl Butcher, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Howard Cahn, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Fabian Candocia, MD</td>
<td>Clinical Associate Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Dominique Caovan, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Jean Carlson, DO</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Phillip Catanzaro, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Robert Cecil, PhD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Serena Chacko, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Vincent Chan, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Claudia Chapek, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Nikunj Chauhan, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Melanie Chellman-Jeffers, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Gary Chen, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Allan Chiunda, MD</td>
<td>Clinical Instructor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Aqeel Chowdhry, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Michael Christian, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Mark Allen Cohen, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Bradley Cole, DO</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Jomarie Cortes-Santos, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Jay Costantini, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Baz De Baz, MD</td>
<td>Clinical Associate Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Victor De Marco, MD</td>
<td>Clinical Senior Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Laura Dean, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Mark Dearing, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Andrea Desberg, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Marina Doliner, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Simon Dorton, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Natalya Eidlin, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>David Einstein, MD</td>
<td>Clinical Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Todd Emch, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Peter Eyler, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Sami Fakir, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Arezou Faraji, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Heather Finke, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Ryan Fisher, PhD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Douglas Foltz, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Melissa Frankel, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Michael Geisinger, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Abed Al-Hamid Ghandour, MD</td>
<td>Clinical Instructor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Peter Ghobrial, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Subha Ghosh, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Amanjit Gill, MBBS</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Michael Gioia, DO</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Joshua Golub, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Daniel Gorman, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Paul Grooff, MD</td>
<td>Clinical Associate Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Laurance Grossman, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Mamta Gupta, MBBS</td>
<td>Clinical Assistant Professor</td>
<td>UCLCM</td>
</tr>
<tr>
<td>Amar Gupta, MD</td>
<td>Clinical Instructor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Ram Gurajala, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Ravi GuttiKonda, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Timothy Haaga, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Ihab Haddadin, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Ahmad Haidary, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Robert Haller, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Ramin Hamidi, DO</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
</tbody>
</table>
Glen Hansen, MD; Clinical Assistant Professor; CCLCM
Gregory Harkey, MD; Clinical Assistant Professor; CCLCM
Ahmad Hatami, MS; Clinical Assistant Professor; UH
Stephen Hatem, MD; Clinical Assistant Professor; CCLCM
Anupinder Hazra, MD; Clinical Assistant Professor; UH
Thomas Herbener, MD; Clinical Assistant Professor; CCLCM
Virginia Hill, MD; Clinical Assistant Professor; CCLCM
Elizabeth Hillerson, MD; Clinical Assistant Professor; CCLCM
Sherry Hillier, MD; Clinical Assistant Professor; UH
Darlene Holden, MD; Clinical Assistant Professor; CCLCM
Gwynne Holz, MD; Clinical Assistant Professor; CCLCM
Cheryl Hubbard, MD; Clinical Assistant Professor; CCLCM
Katie Hulme, MS; Clinical Assistant Professor; CCLCM
Harold Hunt, MD; Clinical Assistant Professor; UH
Ryan Incledon, DO; Clinical Instructor; CCLCM
Jose Irizarry, MD; Clinical Assistant Professor; CCLCM
Rachana Jain, MD; Clinical Assistant Professor; UH
Paul Johnson, MS; Clinical Assistant Professor; CCLCM
Rebecca Johnson, MD; Clinical Assistant Professor; CCLCM
Thomas Jones, MD; Clinical Assistant Professor; CCLCM
Jennifer Joyce, DO; Clinical Instructor; CCLCM
Ram Kishore Jurajala, MBBS; Clinical Assistant Professor; CCLCM
Leonard Kahn, MD; Clinical Assistant Professor; CCLCM
Christopher Karakasis, MD; Clinical Assistant Professor; CCLCM
Boris Karaman, MD; Clinical Assistant Professor; UH
Ali Kassaie, MD; Clinical Assistant Professor; VA
James Kennen, MD; Clinical Instructor; MHMC
Vladimir Kepe, PhD; Adjunct Assistant Professor; CCLCM
Sharif Kershah, MD; Clinical Instructor; MHMC
Michele Keys, DO; Clinical Assistant Professor; UH
Rafik Khalil, MD; Clinical Assistant Professor; CCLCM
Matthew Kiczek, DO; Clinical Instructor; CCLCM
Jacobo Kirsch, MD; Clinical Assistant Professor; CCLCM
Paul Klatte, MD; Clinical Assistant Professor; UH
Rosemary Klecker, MD; Clinical Assistant Professor; CCLCM
Monica Koplas, MD; Clinical Assistant Professor; CCLCM
Jeffrey Kornick, MD; Clinical Assistant Professor; CCLCM
Thomas Krewson, MD; Clinical Assistant Professor; MHMC
Zachariah Kuchta, DO; Clinical Assistant Professor; UH
S. Kulasingham, MD; Clinical Assistant Professor; UH
Andrew Kurman, MD; Clinical Assistant Professor; CCLCM
Omar Lababede, MD; Clinical Assistant Professor; CCLCM
Brooke Lampl, DO; Clinical Assistant Professor; CCLCM
Eric Lee, MD; Clinical Assistant Professor; CCLCM
Jonathan Lee, MD; Clinical Assistant Professor; CCLCM
Xiang Li, PhD; Adjunct Assistant Professor; CCLCM
Ronald Lorig, MD PhD; Clinical Assistant Professor; CCLCM
Antonio Luna, MD; Clinical Assistant Professor; UH
Andrea Magen, MD; Clinical Assistant Professor; CCLCM
Borut Marincek, MD; Clinical Assistant Professor; UH
Felipe Martinez, MD; Clinical Assistant Professor; CCLCM
Michael Martinez, MD; Clinical Assistant Professor; CCLCM
Parvez Masood, MD; Clinical Assistant Professor; CCLCM
John McCormac, MD; Clinical Assistant Professor; CCLCM
Marc Mellion, DO; Clinical Assistant Professor; UH
Luis Mendoza, MD; Clinical Assistant Professor; UH
Moulay Meziane, MD; Clinical Professor; CCLCM
Maria Del Pilar Bayo Molano, MD; Clinical Assistant Professor; CCLCM
Nima Momenin, MD; Clinical Assistant Professor; UH
Jennifer Montgomery, MD PhD; Clinical Assistant Professor; CCLCM
Timothy Moore, MD; Clinical Assistant Professor; UH
Stuart Morrison, MBBch; Clinical Professor; CCLCM
Andrew Myers, MD; Clinical Assistant Professor; UH
Leyla Nasehi, MBBS; Clinical Instructor; CCLCM
Jawad Nesheiwat, MD; Clinical Assistant Professor; UH
Donald Neumann, MD PhD; Clinical Assistant Professor; CCLCM
Vinh Nguyen, MD; Clinical Assistant Professor; UH
William Noble, DO; Clinical Assistant Professor; UH
Betty Obi, MD; Clinical Assistant Professor; CCLCM
Sehong Oh, PhD; Adjunct Assistant Professor; CCLCM
Charles O'Malley, MD; Clinical Assistant Professor; CCLCM
Avi Oppenheimer, MD; Clinical Assistant Professor; CCLCM
Shivani Pahwa, MBBS; Clinical Assistant Professor; UH
Lindy Paradise, MD; Clinical Assistant Professor; CCLCM
Michael Paradise, MD; Clinical Assistant Professor; CCLCM
D. Paratore, DO; Clinical Instructor; CCLCM
Albert Parlade, MD; Clinical Assistant Professor; CCLCM
Tanay Patel, MD; Clinical Assistant Professor; UH
Bhupendra Patel, MD; Clinical Assistant Professor; CCLCM
Cheryl Petersilge, MD; Clinical Professor; CCLCM
Matthew Poturalski, MD; Clinical Instructor; CCLCM
Jon Prescott, MD; Clinical Assistant Professor; UH
Andrei Purysko, MD; Clinical Assistant Professor; CCLCM
Nikhil Ramaiya, MD; Clinical Associate Professor; UH
Jonathan Russi, MD; Clinical Instructor; CCLCM
Rahul Renapurkar, MD; Clinical Assistant Professor; CCLCM
Frank Ricautre, MD; Clinical Assistant Professor; CCLCM
Mark Richards, MD; Clinical Assistant Professor; CCLCM
Alice Rim, MD; Clinical Assistant Professor; CCLCM
Darryl Rini, MD; Clinical Assistant Professor; CCLCM
Barbara Risius, MD; Clinical Assistant Professor; CCLCM
Julie Ritner, MD; Clinical Assistant Professor; CCLCM
Ann Rivera, MD; Clinical Assistant Professor; UH
Alfonso Rivera, MD; Clinical Assistant Professor; CCLCM
Dayne Roberts, MD; Clinical Assistant Professor; CCLCM
Gamaliel Rodriguez-Herrera, MD; Clinical Assistant Professor; CCLCM
Daniel Roesel, DO; Clinical Assistant Professor; CCLCM
Tina Ruchalski, MD; Clinical Assistant Professor; CCLCM
Samuel Ruskin, MD; Clinical Assistant Professor; CCLCM
Hossam Kamel Saad, MD PhD; Clinical Assistant Professor; VA
John Saks, MD; Clinical Assistant Professor; CCLCM
Mark Sands, MD; Clinical Assistant Professor; CCLCM
Andrew Scharf, MD; Clinical Assistant Professor; CCLCM
Keith Schlechte, MD; Clinical Assistant Professor; UH
Erika Schneider, PhD; Clinical Assistant Professor; CCLCM
Joseph Schoenberger, MD; Clinical Assistant Professor; UH
Matthew Sfiligoj, MD; Clinical Assistant Professor; UH
Nidhi Sharma, MD; Clinical Assistant Professor; CCLCM
Wendy Shaw, MD; Clinical Assistant Professor; CCLCM
Shu-Jane Shen, MD; Clinical Assistant Professor; CCLCM
Laura Shepardson, MD; Clinical Assistant Professor; CCLCM
Nicholas Shkumat, MS; Clinical Assistant Professor; CCLCM
Voravan Shotelersuk, MD; Clinical Assistant Professor; VA
Anne Singer, MD; Clinical Assistant Professor; CCLCM
Alison Smith, MD; Clinical Assistant Professor; CCLCM
Jennifer Sommer, DO; Clinical Assistant Professor; UH
Charles Spirtos, MD; Clinical Assistant Professor; CCLCM
Jeffrey Spreitzer, MD; Clinical Assistant Professor; CCLCM
Guruprasad Srinath, MD; Clinical Assistant Professor; VA
Kevin Stadlander, MD; Clinical Assistant Professor; CCLCM
Volodymyr Statevych, MD; Clinical Assistant Professor; CCLCM
Sarah Stock, MD; Clinical Assistant Professor; CCLCM
Christoforos Stoupis, MD; Clinical Associate Professor; UH
Todd Stultz, MD DDS; Clinical Assistant Professor; CCLCM
Kerry Sullivan, DO; Clinical Assistant Professor; CCLCM
Jonathan Tanner, MD; Clinical Assistant Professor; CCLCM
Robert Tarr, MD; Clinical Professor; UH
Aju Thomas, MD; Clinical Assistant Professor; CCLCM
Dustin Thompson, MD; Clinical Assistant Professor; CCLCM
Kun-Lin Tsai, MD; Clinical Assistant Professor; CCLCM
Jawad Tsai, MD; Clinical Assistant Professor; CCLCM
Mark Tushan, MD; Clinical Assistant Professor; UH
Carolyn VanDyke, MD; Clinical Assistant Professor; CCLCM
Rashmi Virmani, MD; Clinical Assistant Professor; UH
Moiz Vohra, MD; Clinical Assistant Professor; CCLCM
Elliot Wasser, MD; Clinical Assistant Professor; CCLCM
Harold White, MD; Clinical Assistant Professor; CCLCM
Mitchell Whiteman, MD; Clinical Assistant Professor; CCLCM
Michael Wien, MD; Clinical Assistant Professor; UH
Lindsey Wilson, MD; Clinical Assistant Professor; UH
Michael Wilson, MD; Clinical Assistant Professor; MHMC
Carl Winalski, MD; Clinical Assistant Professor; CCLCM
Hsien Wong, MD; Clinical Assistant Professor; CCLCM
Alex Wu, MD; Clinical Instructor; CCLCM
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guiyun Wu, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Jenny Wu, MD</td>
<td>Clinical Instructor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Kevin Wunderle, PhD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>John Wylie, MD PhD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Ruchi Yadav, MBBS</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Ullyana Yankevich, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Molly Yohann, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Bouchra Younes, MBBS</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Hazel Young, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Xiaoyi Yu, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Lee Zeiszler, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Reproductive Biology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samir Ahuja, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Katherine Austinson, MSN</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Anthony Bacevice Jr, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Timothy Barrett, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Alison Bauer, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Michelle Belardo, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Sandra Bellin, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Elizabeth Brandewie, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Kelly Buchanan, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>David Burkons, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Channing Burks, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Shahid Butt, MBBS</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>J Cameron, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Sarah Caril, MD</td>
<td>Clinical Assistant Professor</td>
<td>MHMC</td>
</tr>
<tr>
<td>Graham Chapman, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Mark Chapman, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Jeffrey Christian, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Amy Coleman, CNM</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Randi Connor, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Celina del Cunanan, MSN</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Laura David, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Bradley Dennis, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Christa Dominick, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Mackenzie Douglass, CNM</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Judith Evans, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Lindsay Ferguson, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Cynthia Flynn, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Gretchen Gerace, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Deborah Gerson, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>James Goldfarb, MD</td>
<td>Clinical Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Rhoda Goldschmidt, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Scott Greenberg, DO</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Ralph Gwatkin, PhD</td>
<td>Adjunct Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Mary Haerr, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Richard Harlan, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Sylvie Hauguel-de Mouzon, PhD</td>
<td>Adjunct Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Joseph Henderson, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Tonya Heyman, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Elizabeth Hopp, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Shin Huang, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Karen Jaffe, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Thomas Janicki, MD</td>
<td>Clinical Associate Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Joel Kamda, MD PhD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Jessica Katz, DO</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Rachel Kay, MS</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Lauren Kerr, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>David Klausner, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Ann Konkoly, MS</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Irwin Kombluth, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Michael Koroly, OD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Ori Kushnir, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Daphne Landau, MD</td>
<td>Clinical Instructor</td>
<td>MHMC</td>
</tr>
<tr>
<td>Da'Na Langford, MS CNM</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Valerie Libby, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Judette Louis, MD</td>
<td>Clinical Assistant Professor</td>
<td>MHMC</td>
</tr>
<tr>
<td>Amy Lowell, MSN</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Robert Lucas, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Lauren MacGregor-Banak, MS</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Ali McGregor, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Patricia McNamara, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Name</td>
<td>Position</td>
<td>Institution</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>Sangithan Moodley, MBBS</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Lori Mullen, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Abby Myers, MSN</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Safinaz Ozcan, MD</td>
<td>Clinical Associate Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Jacob Palomaki, MD</td>
<td>Clinical Associate Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Earle Pescatore, OD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Andrey Petrikovets, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Stanley Post, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Deborah Prin-Gentile, MD PhD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Alfida Ramahi, MD</td>
<td>Clinical Assistant Professor</td>
<td>MHMC</td>
</tr>
<tr>
<td>Laura Rauser, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Amy-Elizabeth Rogers, MSN</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Brooke Rossi, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Elizabeth Ruzga, ND</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Daniel Rzepka, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Thalia Segal, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Barbara Shagawat, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Yogesh Shah, MBBS</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Douglas Sherlock, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>David Sheyn, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Sarah Smith, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Marc Nelsen, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Maurice Soremekun, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Sarah Spengler, MS</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Edward Springel, MD</td>
<td>Clinical Instructor</td>
<td>MHMC</td>
</tr>
<tr>
<td>Peggy-Jeanne St Clair, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Janette Stephenson, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Leslie Stroud, MSN</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Yolanda Thigpen, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Megan Thomas, MD</td>
<td>Clinical Instructor</td>
<td>MHMC</td>
</tr>
<tr>
<td>Sarah Tout, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Katherine Tufts, MSN</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Paula Usis, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Kristin Van Heurtem, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Sandhia Varyani, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Vivian von Gruenigen, MD</td>
<td>Adjunct Associate Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Megan Weatherborn, MD</td>
<td>Clinical Instructor</td>
<td>MHMC</td>
</tr>
<tr>
<td>Rachel Weinerman, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Margie Wenz, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Nancy Wollam-Huhn, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>C.K. Woo, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Patricia Yost, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Charles Zonfa, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Surgery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tom Abelson, MD</td>
<td>Clinical Associate Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Badih Adada, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Michelle Adessa, MS</td>
<td>Clinical Senior Instructor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Joseph Africa, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Naveed Ahmed, MD</td>
<td>Clinical Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Rami Akhrass, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Olufemi Akindipe, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Yasir Akmal, MBBS</td>
<td>Clinical Associate Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Gilberto Alemar, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Zahraa Al-Hilli, MBBch</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Nima Almassi, MD</td>
<td>Clinical Instructor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Andrew Altman, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Javier Alvarez-Tostado, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Michael E. Anderson, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Syed Andrabi, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>George Anton, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Gabriel Arevalo, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Luis Argote-Greene, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Marjan Attaran, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Tamer Attia, MBBch PhD</td>
<td>Clinical Instructor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Toms Augustin, MBBS</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Khalil Azem, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Rebecca Bagley, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>George Balis, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Steven Ball, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Timothy Barnett, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Rachel Barron, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Fadi Bashour, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
</tbody>
</table>
Ahmet Bayar, MD; Clinical Instructor; UH
James Bekeny, MD; Clinical Assistant Professor; CCLCM
Regan Berg, MD; Clinical Assistant Professor; UH
John Bergfeld, MD; Clinical Assistant Professor; CCLCM
Mark Berkowitz, MD; Clinical Assistant Professor; CCLCM
Anuradha Bhama, MD; Clinical Assistant Professor; CCLCM
Lesley Bicanovsky, DO; Clinical Assistant Professor; CCLCM
Cassann Blake, MD; Clinical Assistant Professor; CCLCM
Anne Blumental-Perry, PhD; Adjunct Assistant Professor; UH
Brent Bogard, MD; Clinical Assistant Professor; CCLCM
Ray Bologna, MD; Clinical Assistant Professor; CCLCM
Edwina Bolshinsky, MBBS; Clinical Assistant Professor; CCLCM
Johannes Bonatti, MD; Clinical Professor; CCLCM
Gwen Bonner, MD; Clinical Instructor; UH
Zdenko Boras, MD; Clinical Assistant Professor; CCLCM
Georgeanne Botek, DPM; Clinical Assistant Professor; CCLCM
Mark Botham, MD; Clinical Assistant Professor; CCLCM
Natalie Bowersox, MD; Clinical Assistant Professor; CCLCM
Jonathan Boyd, MD; Clinical Assistant Professor; CCLCM
Jeffrey Boyko, DO; Clinical Assistant Professor; UH
Kathleen Boyle, DO; Clinical Assistant Professor; CCLCM
David Brigati, MD; Clinical Instructor; CCLCM
Peter Brooks, MD; Clinical Assistant Professor; CCLCM
Michael Brown, DO; Clinical Assistant Professor; UH
Diane Brown-Young, MD; Clinical Assistant Professor; CCLCM
Brian Burkey, MD; Clinical Assistant Professor; CCLCM
John Cann, DPM; Clinical Assistant Professor; CCLCM
James Cannatti, MD; Clinical Assistant Professor; CCLCM
Avery Capone, MD; Clinical Instructor; CCLCM
William Cappaert, MD; Clinical Assistant Professor; MHMC
Mary Carneval, DO; Clinical Assistant Professor; CCLCM
Robert Cebul, MD; Clinical Assistant Professor; CCLCM
Walter Cha, MD; Clinical Assistant Professor; CCLCM
Jeff Chapa, MD; Clinical Assistant Professor; CCLCM
Altagracia Chavez, MD; Clinical Assistant Professor; CCLCM
Stella Chiunda, DPM; Clinical Assistant Professor; CCLCM
Shih-Chieh Chueh, MD PhD; Clinical Professor; CCLCM
James Church, MBChB; Clinical Assistant Professor; CCLCM
Peter Ciolek, MD; Clinical Instructor; CCLCM
Michele Colangelo, DO; Clinical Assistant Professor; CCLCM
Angela Collie, MD PhD; Clinical Instructor; CCLCM
Viviane Connor, MD; Clinical Assistant Professor; CCLCM
Constantinos Constantinou, MD; Clinical Assistant Professor; UH
J. Corso, MD; Clinical Assistant Professor; CCLCM
George Coseriu, MD; Clinical Assistant Professor; CCLCM
John Costin, MD; Clinical Assistant Professor; CCLCM
Christian Cruz, MD; Clinical Instructor; CCLCM
Giovanna da Silva, MD; Clinical Assistant Professor; CCLCM
Elias Dakwar, MD; Clinical Assistant Professor; CCLCM
Louis Damico, MD; Clinical Assistant Professor; CCLCM
Ihor Danko, MD; Clinical Instructor; MHMC
Howard Darvin, MD; Clinical Assistant Professor; UH
Anita Dash-Modi, MD; Clinical Assistant Professor; CCLCM
Guillemo Davila, MD; Clinical Assistant Professor; CCLCM
Alan Davis, MD; Clinical Assistant Professor; CCLCM
Kristen Dawson, MD; Clinical Assistant Professor; CCLCM
Carly Day, MD; Clinical Assistant Professor; CCLCM
Colleen DeBarr, DPM; Clinical Assistant Professor; CCLCM
Russell DeMicco, DO; Clinical Assistant Professor; CCLCM
Eric Devaney, MD; Clinical Professor; UH
John DiFiore, MD; Clinical Assistant Professor; CCLCM
Jeffrey Donohoe, MD; Clinical Assistant Professor; CCLCM
John Dorsky, MD; Clinical Assistant Professor; CCLCM
Basem Droubi, MD; Clinical Assistant Professor; CCLCM
Desmond D'Souza, MBBS; Clinical Instructor; CCLCM
Vladimir Dubchuk, MD; Clinical Assistant Professor; UH
David Ebenezer, MD; Clinical Instructor; CCLCM
Bijan Eghtesad, MD; Clinical Assistant Professor; CCLCM
Marina Eisenberg, MD; Clinical Assistant Professor; CCLCM
Kristen Ekman, MD; Clinical Assistant Professor; CCLCM
Richard Ellison, MD; Clinical Assistant Professor; CCLCM
Barbara Ercole, MD; Clinical Assistant Professor; CCLCM
Lourdes Falconi, MD; Clinical Assistant Professor; CCLCM
Alicia Fanning, MD; Clinical Assistant Professor; CCLCM
Amr Fergany, MD; Clinical Assistant Professor; CCLCM
Emil Fernando, MD; Clinical Instructor; CCLCM
Amanda Ferry, MD; Clinical Assistant Professor; CCLCM
Edward Fine, MD; Clinical Assistant Professor; CCLCM
Gretchen Fisher, MD; Clinical Assistant Professor; CCLCM
Molly Flannagan, MD; Clinical Assistant Professor; CCLCM
Tamilla Fork, MD; Clinical Assistant Professor; CCLCM
Richard Freeman, MD PhD; Clinical Associate Professor; CCLCM
Mary Freyvogel, DO; Clinical Assistant Professor; UH
David Friedman, MD; Clinical Assistant Professor; CCLCM
Charlotte Fries, MSN; Adjunct Instructor; CCLCM
Mark Froimson, MD; Clinical Assistant Professor; CCLCM
Jonathan Funk, MD; Clinical Assistant Professor; CCLCM
William Gans, MD; Clinical Assistant Professor; CCLCM
Thomas Garofalo, MD; Clinical Assistant Professor; CCLCM
Rick Gemma, DO; Clinical Assistant Professor; CCLCM
Jason Genin, DO; Clinical Assistant Professor; CCLCM
Joseph George, MD; Clinical Assistant Professor; CCLCM
Neil Gibson, MD; Clinical Instructor; CCLCM
Bradley Gill, MD; Clinical Instructor; CCLCM
Gregory Gilot, MD; Clinical Assistant Professor; CCLCM
Margaret Gilot, MD; Clinical Assistant Professor; CCLCM
Julie Girzhe, MD; Clinical Assistant Professor; CCLCM
Habibeh Gitiforooz, MD; Clinical Assistant Professor; CCLCM
Kathryn Goebel, MD; Clinical Assistant Professor; CCLCM
Amitabh Goel, MD; Clinical Professor; UH
Michael Gong, MD PhD; Clinical Assistant Professor; CCLCM
Jennifer Goodman, DPM; Clinical Instructor; UH
Ihya Gorgun, MD; Clinical Assistant Professor; CCLCM
Loinel Gottschalk, MD; Clinical Instructor; CCLCM
Supriya Goyal, MD; Clinical Assistant Professor; MHMC
Thomas Graham, MD; Clinical Assistant Professor; CCLCM
Daniel Greene, MD; Clinical Instructor; CCLCM
Mark Grove, MD; Clinical Assistant Professor; CCLCM
David Gurd, MD; Clinical Assistant Professor; CCLCM
Richard Guttman, MD; Clinical Assistant Professor; CCLCM
Betty Haberkamp, DDS; Clinical Assistant Professor; CCLCM
Thomas Haberkamp, MD; Clinical Assistant Professor; CCLCM
Lawrence Hakim, MD; Clinical Assistant Professor; CCLCM
Robert Hampton, DO; Clinical Assistant Professor; CCLCM
Amer Hanano, MD; Clinical Assistant Professor; CCLCM
Anastasios Hantzakos, MD; Clinical Assistant Professor; CCLCM
Mark Hardy, DPH; Clinical Instructor; UH
Waled Hassen, MD; Clinical Associate Professor; CCLCM
James Hauer, MD; Clinical Assistant Professor; MHMC
Nader Hebela, MD; Clinical Associate Professor; CCLCM
Mark Hendrickson, MD; Clinical Assistant Professor; CCLCM
Christopher Herbert, DPM; Clinical Assistant Professor; CCLCM
Robert Hermann, MD; Clinical Professor; CCLCM
Gina Hild, DPM; Clinical Assistant Professor; CCLCM
Bryan Hinck, MD; Clinical Instructor; CCLCM
Jason Ho, MD; Clinical Instructor; CCLCM
Carrie Hood, MD; Clinical Assistant Professor; CCLCM
Anne Hseu, MD; Clinical Instructor; CCLCM
Eric Hurtado, MD; Clinical Assistant Professor; CCLCM
Catherine Hwang, MD; Clinical Assistant Professor; CCLCM
John Iafelice, MD; Adjunct Instructor; CCLCM
Monica Isabella, MD; Clinical Instructor; CCLCM
Raymond Isakov, MD; Clinical Assistant Professor; CCLCM
Pascal Jarjoura, MD; Clinical Assistant Professor; CCLCM
John Jasper, MD; Clinical Assistant Professor; UH
Majida Jassani, MD; Clinical Associate Professor; CCLCM
Joan Jesse, MD; Clinical Assistant Professor; CCLCM
Stacie Jhaveri, MD; Clinical Assistant Professor; CCLCM
Douglas Johnston, MD; Clinical Instructor; CCLCM
Morgan Jones, MD MPH; Clinical Assistant Professor; CCLCM
David Joyce, MD; Clinical Instructor; CCLCM
Michael Joyce, MD; Clinical Associate Professor; CCLCM
Timothy Joyce, MD; Clinical Instructor; CCLCM
Jane Kapus, MD; Clinical Assistant Professor; CCLCM
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susan Mijlkovic-Goodrich, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Jill Minger, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Sara Miniaci-Coxhead, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Suhael Momin, MD</td>
<td>Clinical Instructor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Michael Mont, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Don Moore, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Andrea Moreira, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Thomas Morrissey, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Gareth Morris-Stiff, MBBCh</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Thomas Mroz, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Kevin Muise, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Amani Munshi, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Nicolas Muruve, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Brian Nemunaitis, DO</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Martin Newman, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Kathryn Newton, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Robert Nickodem, Jr., MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Nicole Nicolosi, DPM</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Juan Nogueras, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Edward Nowicki, MD</td>
<td>Clinical Associate Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Yaw Nyame, MD</td>
<td>Clinical Instructor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>William O'Brien, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Timothy O'Donnell, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Patrick O'Hara, MD</td>
<td>Clinical Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Thomas Olbrych, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Ame Oritz-Alvarado, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>R. Orr, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Kyra Osborne, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>George Ozbandakci, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Tammy Parker, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Jeffrey Parks, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>Mita Patel, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Preetesh Patel, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Betsy Patterson, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Thomas Patterson, PhD</td>
<td>Adjunct Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Sotero Peralta, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Yaron Perry, MD</td>
<td>Clinical Associate Professor</td>
<td>UH</td>
</tr>
<tr>
<td>James Persky, MD</td>
<td>Clinical Assistant Professor</td>
<td>UH</td>
</tr>
<tr>
<td>Barry Peskin, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Julian Peskin, MBBS</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Erica Peters, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Thuan Pham, DPM</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Roland Philip, MD</td>
<td>Clinical Assistant Professor</td>
<td>MHMC</td>
</tr>
<tr>
<td>Thomas Picklow, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Bradley Pierce, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>J. Vicente Poblete, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Christine Poblete-Lopez, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Arthur Porter, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Fabio Potenti, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Debra Pratt, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Brandon Prendes, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Brian Putka, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Laura Rabinowitz, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Prasanta Raj, MBBS</td>
<td>Clinical Associate Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Rachel Randall, MD</td>
<td>Clinical Instructor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Sudhakar Rao, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Colleen Raymond, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Daniel Raymond, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Vicki Reed, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Jean Reinhold, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Peter Revenaugh, MD</td>
<td>Clinical Instructor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Stephanie Ricci, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Jeffrey Robbins, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Lisa Rock, MD</td>
<td>Clinical Instructor</td>
<td>UH</td>
</tr>
<tr>
<td>John Rodriguez, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>L. Leonardo Rodriguez, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Warren Rose, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Eric Roselli, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Lester Rosen, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Raul Rosenthal, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Florian Roser, MD PhD</td>
<td>Clinical Professor</td>
<td>CCLCM</td>
</tr>
<tr>
<td>Richard Roski, MD</td>
<td>Clinical Assistant Professor</td>
<td>CCLCM</td>
</tr>
</tbody>
</table>
Allen Roth, MD; Clinical Assistant Professor; CCLCM
Jonathon Russell, MD; Clinical Instructor; CCLCM
Rebecca Russell, MD; Clinical Assistant Professor; CCLCM
Andrew Russman, DO; Clinical Assistant Professor; CCLCM
Barbara Saar, DPM; Clinical Instructor; UH
William Saar, DPM; Clinical Assistant Professor; UH
Vani Sabesan, MD; Clinical Assistant Professor; CCLCM
Frank Sabo, MD; Clinical Assistant Professor; CCLCM
Sherilyn Sage, MD; Clinical Assistant Professor; CCLCM
John Salamone, DPM; Clinical Instructor; UH
Abdelaziz Saleh, MBBCH; Clinical Professor; CCLCM
Michael Samotowka, MD; Clinical Assistant Professor; CCLCM
Dana Sands, MD; Clinical Assistant Professor; CCLCM
Bashir Sankari, MD; Clinical Assistant Professor; CCLCM
Thomas Santoscoy, MD; Clinical Assistant Professor; CCLCM
Edward Savage, MD; Clinical Professor; CCLCM
Jason Savage, MD; Clinical Associate Professor; CCLCM
Abraham Sayon, MD; Clinical Instructor; UH
Joseph Scarcella, MD; Clinical Assistant Professor; CCLCM
Michael Scarcella, MD; Clinical Instructor; CCLCM
Paula Schaffer-Polakof, MD; Clinical Instructor; CCLCM
Maria Schleicher, MD; Clinical Assistant Professor; CCLCM
Frederick Schmieder, DPM; Clinical Instructor; UH
Scott Seidel, DO; Clinical Instructor; MHMC
Francesco Serino, MD; Clinical Professor; CCLCM
Alfred Serna, MD; Clinical Assistant Professor; CCLCM
Sebouh Setrakian, MD; Clinical Assistant Professor; CCLCM
Kaushal Shah, MD; Clinical Assistant Professor; UH
Anup Shah, MD; Clinical Instructor; CCLCM
Mihir Shah, MD; Clinical Instructor; CCLCM
Samir Shah, MD; Clinical Instructor; CCLCM
David Shapiro, MD; Clinical Assistant Professor; CCLCM
Sarah Share, MD; Clinical Assistant Professor; CCLCM
Sherief Shawki, MBBS; Clinical Assistant Professor; CCLCM
Mahdi Shkoukani, MD; Clinical Associate Professor; CCLCM
Alok Shrivastava, MBBS; Clinical Assistant Professor; CCLCM
Shafik Sidani, MD; Clinical Assistant Professor; CCLCM
Anne Sierk, MD; Clinical Assistant Professor; CCLCM
Neil Sika, OD; Clinical Senior Instructor; MHMC
Conrad Simpfendorfer, MD; Clinical Assistant Professor; CCLCM
Ashley Simpson, DO; Clinical Assistant Professor; CCLCM
Lynn Simpson, MD; Clinical Assistant Professor; CCLCM
Raj Sindwani, MD; Clinical Assistant Professor; CCLCM
Scott Slavis, MD; Clinical Assistant Professor; CCLCM
Andrew Smith, MD; Clinical Assistant Professor; CCLCM
Keisha Smith, MD; Clinical Assistant Professor; CCLCM
Edward Soltesz, MD; Clinical Assistant Professor; CCLCM
Mohammed Souilamas, MD; Clinical Professor; CCLCM
Michael Sprague, MD; Clinical Assistant Professor; CCLCM
Arjun Srinath, MD; Clinical Assistant Professor; CCLCM
Rebecca Starck, MD; Clinical Assistant Professor; CCLCM
Sean Steenberge, MD; Clinical Instructor; CCLCM
Robert Steffen, MD; Clinical Instructor; CCLCM
Donald Stephens, MD; Clinical Assistant Professor; MHMC
Amy Stephens, MD; Clinical Assistant Professor; CCLCM
Robert Stewart, MD; Clinical Assistant Professor; CCLCM
Dina Stock, DPM; Clinical Assistant Professor; CCLCM
Womack Stokes, MD; Clinical Assistant Professor; CCLCM
Andrew Strong, MD; Clinical Instructor; CCLCM
Andrew Sun, MD; Clinical Instructor; CCLCM
Luay Susan, MBBCh; Clinical Assistant Professor; CCLCM
Sharom Sutherland, MD; Clinical Assistant Professor; CCLCM
Monica Svets, MD; Clinical Assistant Professor; CCLCM
Patrick Sziraky, MD; Clinical Assistant Professor; CCLCM
Samuel Szomstein, MD; Clinical Assistant Professor; CCLCM
Lameese Tabaja, MD; Clinical Assistant Professor; CCLCM
Hideo Takahashi, MD; Clinical Instructor; CCLCM
Dennis Tang, MD; Clinical Instructor; CCLCM
Julierut Tantibhedhyangkul, MD; Clinical Assistant Professor; CCLCM
Aaron Taylor, MD; Clinical Instructor; CCLCM
Mary Taylor, MD; Clinical Assistant Professor; CCLCM
Anthony Tizzano, MD; Clinical Assistant Professor; CCLCM
Mindy Toabe, OD; Clinical Senior Instructor; MHMC
Katherine Trunzo, MD; Clinical Assistant Professor; CCLCM
Andreas Tzakis, MD, PhD; Clinical Assistant Professor; CCLCM
Yuji Umeda, MD, PhD; Clinical Assistant Professor; CCLCM
Shinya Unai, MD; Clinical Assistant Professor; CCLCM
Sneha Vaish, MD; Clinical Assistant Professor; CCLCM
Nakul Vakil, MD; Clinical Instructor; CCLCM
Patrick Vargo, MD; Clinical Instructor, CCLCM
Donna Vecchione, MD; Clinical Senior Instructor; UH
Mark Verdun, DO, PhD; Clinical Assistant Professor; CCLCM
Eloy Villasuso, MD; Clinical Assistant Professor; CCLCM
David Vogt, MD; Clinical Associate Professor; CCLCM
Steven Wanek, MD; Clinical Assistant Professor; CCLCM
Robert Weaver, DPM; Clinical Instructor; UH
Alvin Wee, MD; Clinical Assistant Professor; CCLCM
Eric Weiss, MD; Clinical Assistant Professor; CCLCM
David Westerdahl, MD; Clinical Assistant Professor; CCLCM
Steven Wexner, MD; Clinical Assistant Professor; CCLCM
Catherine Wilkins, MD; Clinical Assistant Professor; CCLCM
Erika Woodson, MD; Clinical Assistant Professor; CCLCM
James Wu, MD PhD; Clinical Assistant Professor; CCLCM
Nitin Yerram, MD; Clinical Instructor; CCLCM
Randall Yetman, MD; Clinical Assistant Professor; CCLCM
Liming Yu, MD; Clinical Assistant Professor; UH
Jeh Yung, MD; Clinical Instructor; CCLCM
Salena Zanotti, MD; Clinical Assistant Professor; CCLCM
Andrea Zelisko, MD; Clinical Instructor; CCLCM
Aiwen Zhang, PhD; Clinical Assistant Professor; CCLCM
Yuriy Zhukov, MD; Clinical Assistant Professor; UH
Stephen Zimberg, MD; Clinical Associate Professor; CCLCM
Ronald Zipper, DO; Clinical Assistant Professor; CCLCM
Urology
Kevin Banks, MD; Clinical Assistant Professor; UH
Michael Barkoukis, MD; Clinical Assistant Professor; UH
Michael Berte, MD; Clinical Assistant Professor; UH
Nabil Chehade, MD; Clinical Assistant Professor; UH
Marc Cymes, MS; Clinical Instructor; VA
Kim Fitzgerald, MD; Clinical Assistant Professor; UH
Lawrence Gervasi, MD; Clinical Assistant Professor; UH
Ehud Gnnessin, MD; Clinical Assistant Professor; UH
Julian Gordon, MD; Clinical Assistant Professor; UH
Irina Jaeger, MD; Clinical Senior Instructor; UH
Kiranpreet Khurana, MD; Clinical Assistant Professor; UH
Gregory Kondray, MD; Clinical Assistant Professor; UH
William Larchian, MD; Clinical Associate Professor; UH
Frederic Levine, MD; Clinical Assistant Professor; UH
Allan Love, MD; Clinical Assistant Professor; UH
S. Mahoney III, MD; Clinical Assistant Professor; UH
Mani Menon, MD; Clinical Professor; UH
Maria Mir Maresma, MD; Clinical Instructor; UH
Tim Sidor, MD; Clinical Assistant Professor; UH
David Turk, MD; Clinical Assistant Professor; UH
Lawrence Wolkoff, MD; Clinical Assistant Professor; UH
Craig Zippe, MD; Clinical Professor; UH
INDEX

A
Anatomy ... 41
Anesthesia .. 45

B
Biochemistry ... 48
Bioethics ... 57

C
Certificate Programs .. 76
Clinical Research ... 74

D
Doctor of Medicine (MD) .. 14

E
Environmental Health Sciences 71

F
Faculty .. 170

G
General Medical Sciences .. 71
Genetics & Genome Sciences 96
Graduate Programs ... 37

M
MD Dual Degree Programs .. 26
Molecular Biology and Microbiology 102
Molecular Medicine ... 106

N
Neurosciences .. 109
Nutrition .. 113

P
Pathology ... 128
Pharmacology .. 138
Physician Assistant Program 31
Physiology and Biophysics .. 145
Population and Quantitative Health Sciences 154

S
School of Medicine ... 2
Systems Biology/Bioinformatics 80