2013-14 General Bulletin

This is an archived copy of the 2013-14 bulletin. To access the most recent version of the bulletin, please visit http://bulletin.case.edu.

frame image
frame image
Room E-653, School of Medicine, Robbins Building
Phone: 216.368.6252; Fax: 216.368.4650
Lynn Landmesser, PhD, Chair

Katie Wervey , Department Assistant

Understanding how the nervous system develops and functions to process information and mediate behavior and how it is altered by disease, injury and the environment is one of the most exciting frontiers remaining in biological science. Neuroscience is inherently multidisciplinary and integrative and solving the major outstanding problems will require knowledge of molecular, cellular, systems, and behavioral levels of organization. It also requires a multidisciplinary approach combining the tools of electrophysiology, anatomy, biochemistry and molecular biology in studies of animals, brain slices, and tissue culture models.

The department offers a PhD program that provides interdisciplinary training in modern neurosciences through a combination of course work, seminars and research experience. Medical students are encouraged to pursue research projects with neurosciences faculty. Neuroscientists at CWRU are using state-of-the art techniques and instrumentation to study diverse aspects of nervous system function, including neural circuitry and plasticity, development and regeneration, and cellular and molecular neurobiology. Techniques used include electrical recording and imaging to study the behavior of neurons from ion channels to how they function in awake, behaving animals; molecular genetic approaches to discover the roles of specific genes in circuit formation, synaptic function, and in neurological disorders; and anatomical, biochemical, computational, and behavioral methods to understand the normal nervous system and how it is affected by disease and injury.

PhD in Neurosciences

The Neurosciences graduate program has a strong emphasis on cellular and molecular mechanisms that mediate the function and development of the nervous system. Admissions to the Neurosciences PhD program may be obtained through the integrated Biomedical Sciences Training Program, by direct admission to the department or via the Medical Scientist Training Program.  To earn a PhD in Neurosciences, a student must complete rotations in at least three laboratories, followed by selection of a research advisor, and complete Core and Elective coursework including responsible conduct of research as described in the plan of study, below. In general, students must be registered for a total of 9 credit hours each fall and spring semester until they advance to candidacy, at the end of their 2nd year.  Students who previously completed relevant coursework, for example, with a MS, may petition to complete alternative courses. Each graduate program follows the overall regulations established and described in CWRU Graduate Studies and documented to the Regents of the State of Ohio. 

In addition, each student must successfully complete a preliminary exam after year one, and a qualifier examination for advancement to candidacy in the form of a short grant proposal with oral defense. The qualifier is generally completed in the summer after year two. During the dissertation period, students are expected to meet twice a year with the thesis committee, present seminars in the department, and fulfill journal publication requirements. Throughout the doctoral training, students are expected to be enthusiastic participants in seminars, journal clubs, and research meetings in the lab and program. Completion of the PhD degree will require 36 hours of coursework (24 hours of which are graded) and 18 hours of NEUR 701 Dissertation Ph.D.

 Plan of Study


  Please also see Graduate Studies Academic Requirements for Doctoral Degrees

First YearUnits
Cell Biology I (CBIO 453)4    
Molecular Biology I (CBIO 455)4    
Research in Neuroscience (NEUR 601)
or Research Rotation in Biomedical Sciences Training Program (BSTP 400)
or Research Rotation in Medical Scientist Training Program (MSTP 400)
Elective graduate course  3-4  
Neuroscience Seminars (NEUR 415)  1  
Research in Neuroscience (NEUR 601)  1-9  
Principles of Neural Science (NEUR 402)  3  
Complete preliminary exam by July 31
Begin thesis research
On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500)    1
Year Total: 9-17 8-17 1
Second YearUnits
Elective courses6-9    
Research in Neuroscience (NEUR 601)1-9    
Elective courses  6-9  
Research in Neuroscience (NEUR 601)  1-9  
Complete Qualifier Exam by July 31
Form thesis committee
Prepare individual fellowship application
Year Total: 7-18 7-18  
Third YearUnits
Dissertation Ph.D. (NEUR 701)1-9    
Thesis Committee Meetings every 6 months
Dissertation Ph.D. (NEUR 701)  1-9  
Advanced Topics in Neuroscience Ethics (NEUR 540)  0  
Thesis Committe Meetings every 6 months
Year Total: 1-9 1-9  
Fourth YearUnits
Dissertation Ph.D. (NEUR 701)1-9    
Thesis committee meetings every 6 months
Year Total: 1-9    
Total Units in Sequence:   35-98



NEUR 540 Advanced Topics in Neuroscience Ethics is offered every other spring semester (beginning 2008), so can be taken in 3rd or 4th year.


NEUR 402. Principles of Neural Science. 3 Units.

Lecture/discussion course covering concepts in cell and molecular neuroscience, principles of systems neuroscience as demonstrated in the somatosensory system, and fundamentals of the development of the nervous system. This course will prepare students for upper level Neuroscience courses and is also suitable for students in other programs who desire an understanding of neurosciences. Recommended preparation: CBIO 453. Offered as BIOL 402 and NEUR 402.

NEUR 405. Cellular and Molecular Neurobiology. 3 Units.

Cell biology of nerve cells, including aspects of synaptic structure physiology and chemistry. The application of molecular biological tools to questions of synaptic function will be addressed. Recommended preparation: BIOL 473. Prereq: NEUR 402.

NEUR 411. Neurobiology of Disease. 3 Units.

Designed to show how basic research in neuroscience has contributed to the management of clinical problems in human neurology and to discuss some of the further challenges posed by human disease for research in neurobiology. The general format will include clinical descriptions of patient presentation, discussion of the disease mechanisms and an analysis of contributions of cellular and systems neuroscience to understanding of the human disorder. Specific topics to be discussed include Ischemia and Stroke, Neurodegenerative Diseases such as Alzheimer's Parkinson's Brain Tumors, Mood Disorders, and Demyelinating diseases such as Multiple Sclerosis. Recommended preparation: NEUR 402 or NEUR 405.

NEUR 415. Neuroscience Seminars. 1 Unit.

Current topics of interest in neurosciences. Students attend weekly seminars. From this series, students prepare critiques. No credit is given for less than 75% attendance.

NEUR 419. Critical Thinking in Neuroscience. 2 Units.

The goal of this course is to develop the student's critical reasoning skills through reading and discussing primary research papers. Each year, the course will focus on 3-4 different topics selected by participating Neuroscience faculty members. Students will receive a letter grade based on their contributions to discussions, and at the discretion of the faculty, performance on exams and/or term paper. Prereq: NEUR 402.

NEUR 424. Sensory Neuroscience. 3 Units.

How do our brains and those of other animals allow for the acquisition and processing of unique sensory percepts? In what manners might sensory systems interact to enhance perception? Further, what happens to sensory system function in cases of neurological disorders? This course is a topic introduction to sensory neuroscience, a major area of modern neuroscience with connections to neurology, psychology, ethology, and related topics. Topics include visual, auditory, somatosensory, gustatory, and olfactory neuroscience. We will also examine the mechanisms and uses of magnetoreception, electroreception, echolocation, and other 'special' senses. All of the above topics will be covered under the theme of how animals actively sample their sensory environments for information. Prereq: BIOL 402 or BIOL 473 or NEUR 402 or PSCL 403 or Consent of Instructor.

NEUR 425. Stem Cell Biology and Therapeutics. 3 Units.

This course is intended to teach current understanding of stem cells as it relates to their characterization, function, and physiologic and pathological states. The course will expose students to the current understanding of various types of stem cells, including embryonic and adult stem cells of various tissues, techniques for their isolation and study. Experimental models and potential biomedical therapeutic applications will be discussed. The course will be taught by the faculty of the "Center for Stem Cell and Regenerative Medicine" who are affiliated with multiple departments of Case Western Reserve University, Cleveland Clinic Foundation and the partnering biomedical companies. Offered as NEUR 425 and PATH 425.

NEUR 427. Neural Development. 3 Units.

Topics include cell commitment, regulation of proliferation and differentiation, cell death and trophic factors, pathfinding by the outgrowing nerve fiber, synapse formation, relationships between center and periphery in development and the role of activity. Offered as BIOL 427 and NEUR 427.

NEUR 432. Current Topics in Vision Research. 3 Units.

Vision research is an exciting and multidisciplinary area that draws on the disciplines of biochemistry, genetics, molecular biology, structural biology, neuroscience, and pathology. This graduate level course will provide the student with broad exposure to the most recent and relevant research currently being conducted in the field. Topics will cover a variety of diseases and fundamental biological processes occurring in the eye. Regions of the eye that will be discussed include the cornea, lens, and retina. Vision disorders discussed include age-related macular degeneration, retinal ciliopathies, and diabetic retinopathy. Instructors in the course are experts in their field and are members of the multidisciplinary visual sciences research community here at Case Western Reserve University. Students will be exposed to the experimental approaches and instrumentation currently being used in the laboratory and in clinical settings. Topics will be covered by traditional lectures, demonstrations in the laboratory and the clinic, and journal club presentations. Students will be graded on their performance in journal club presentations (40%), research proposal (40%), and class participation (20%). Offered as NEUR 432, PATH 432, PHRM 432 and BIOC 432.

NEUR 435. Vision: Molecules to Perception. 3 Units.

The organization, physiology, and function of the vertebrate visual system are considered in detail. The visual pathway from retina to LGN and visual cortex is described with an emphasis on circuits that produce successively more complex receptive field properties. Classic papers and current literature form the basic course material. Assessment is based on student presentations, class participation, and a term paper. Recommended preparation: NEUR 402 or consent of department.

NEUR 466. Cell Signaling. 3 Units.

This is an advanced lecture/journal/discussion format course that covers cell signaling mechanisms. Included are discussions of neurotransmitter-gated ion channels, growth factor receptor kinases, cytokine receptors, G protein-coupled receptors, steroid receptors, heterotrimeric G proteins, ras family GTPases, second messenger cascades, protein kinase cascades, second messenger regulation of transcription factors, microtubule-based motility, actin/myosin-based motility, signals for regulation of cell cycle, signals for regulation of apoptosis. Offered as CLBY 466 and PHOL 466 and PHRM 466.

NEUR 473. Introduction to Neurobiology. 3 Units.

How nervous systems control behavior. Biophysical, biochemical, and molecular biological properties of nerve cells, their organization into circuitry, and their function within networks. Emphasis on quantitative methods for modeling neurons and networks, and on critical analysis of the contemporary technical literature in the neurosciences. Term paper required for graduate students. Offered as BIOL 373, BIOL 473, and NEUR 473.

NEUR 474. Neurobiology of Behavior. 3 Units.

In this course, students will examine how neurobiologists interested in animal behavior study the linkage between neural circuitry and complex behavior. Various vertebrate and invertebrate systems will be considered. Several exercises will be used in this endeavor. Although some lectures will provide background and context on specific neural systems, the emphasis of the course will be on classroom discussion of specific journal articles. In addition, students will each complete a project in which they will observe some animal behavior and generate both behavioral and neurobiological hypotheses related to it. In lieu of examinations, students will complete three written assignments, including a theoretical grant proposal, a one-page Specific Aims paper related to the project, and a final project paper. These assignments are designed to give each student experience in writing biologically-relevant documents. Classroom discussions will help students understand the content and format of each type document. They will also present their projects orally to the entire class. Offered as BIOL 374, BIOL 474, and NEUR 474. Counts as SAGES Departmental Seminar.

NEUR 475. Protein Biophysics. 3 Units.

This course focuses on in-depth understanding of the molecular biophysics of proteins. Structural, thermodynamic and kinetic aspects of protein function and structure-function relationships will be considered at the advanced conceptual level. The application of these theoretical frameworks will be illustrated with examples from the literature and integration of biophysical knowledge with description at the cellular and systems level. The format consists of lectures, problem sets, and student presentations. A special emphasis will be placed on discussion of original publications. Offered as BIOC 475, CHEM 475, PHOL 475, PHRM 475, and NEUR 475.

NEUR 476. Neurobiology Laboratory. 3 Units.

Introduction to the basic laboratory techniques of neurobiology. Intracellular and extracellular recording techniques, forms of synaptic plasticity, patch clamping, immunohistochemistry and confocal microscopy. During the latter weeks of the course students will be given the opportunity to conduct an independent project. One laboratory and one discussion session per week. Recommended preparation for BIOL 476 and NEUR 476: BIOL 216. Offered as BIOL 376, BIOL 476 and NEUR 476.

NEUR 477. Cellular Biophysics. 4 Units.

This course focuses on a quantitative understanding of cellular processes. It is designed for students who feel comfortable with and are interested in analytical and quantitative approaches to cell biology and cell physiology. Selected topics in cellular biophysics will be covered in depth. Topics include theory of electrical and optical signal processing used in cell physiology, thermodynamics and kinetics of enzyme and transport reactions, single ion channel kinetics and excitability, mechanotransduction, and transport across polarized cell layers. The format consists of lectures, problem sets, computer simulations, and discussion of original publications. The relevant biological background of topics will be provided appropriate for non-biology science majors. Offered as BIOC 476, NEUR 477, PHOL 476, PHRM 476.

NEUR 478. Computational Neuroscience. 3 Units.

Computer simulations and mathematical analysis of neurons and neural circuits, and the computational properties of nervous systems. Students are taught a range of models for neurons and neural circuits, and are asked to implement and explore the computational and dynamic properties of these models. The course introduces students to dynamical systems theory for the analysis of neurons and neural learning, models of brain systems, and their relationship to artificial and neural networks. Term project required. Students enrolled in MATH 478 will make arrangements with the instructor to attend additional lectures and complete additional assignments addressing mathematical topics related to the course. Recommended preparation: MATH 223 and MATH 224 or BIOL 300 and BIOL 306. Offered as BIOL 378, COGS 378, MATH 378, BIOL 478, EBME 478, EECS 478, MATH 478 and NEUR 478.

NEUR 482. Drugs, Brain, and Behavior. 3 Units.

This course is concerned with the mechanisms underlying neurochemical signaling and the impact of drugs on those mechanisms. The first half of the course emphasizes the fundamental mechanisms underlying intra- and extracellular communication of neurons and the basic principles of how drugs interact with the nervous system. The second half of the course emphasizes understanding the neural substrates of disorders of the nervous system, and the mechanisms underlying the therapeutic effects of drugs at the cellular and behavioral levels. This course will consist of lectures designed to give the student necessary background for understanding these basic principles and class discussion. The class discussion will include viewing video examples of behavioral effects of disorders of the nervous system, and analysis of research papers. The goal of the class discussions is to enhance the critical thinking skills of the student and expose the student to contemporary research techniques. Offered as BIOL 382, BIOL 482, and NEUR 482.

NEUR 540. Advanced Topics in Neuroscience Ethics. 0 Units.

This course offers continuing education in responsible conduct of research for advanced graduate students. The course will cover the nine defined areas of research ethics through a combination of lectures, on-line course material and small group discussions. Six 2-hr meetings per semester. Maximum enrollment of 15 students with preference given to graduate students in the Neurosciences program. All neurosciences graduate students must complete this course during their 3rd or 4th year.

NEUR 601. Research in Neuroscience. 1 - 18 Unit.

NEUR 651. Master's Thesis (M.S.). 1 - 6 Unit.

(Credit as arranged.) Recommended preparation: M.S. candidates only.

NEUR 701. Dissertation Ph.D.. 1 - 18 Unit.

Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.