ECSE

Courses

ECSE 132. Introduction to Programming in Java. 3 Units.
An introduction to modern programming language features, computer programming and algorithmic problem solving with an emphasis on the Java language. Computers and code compilation; conditional statements, subprograms, loops, methods; object-oriented design, inheritance and polymorphism, abstract classes and interfaces; types, type systems, generic types, abstract data types, strings, arrays, linked lists; software development, modular code design, unit testing; strings, text and file I/O; GUI components, GUI event handling; threads; comparison of Java to C, C++, and C#. Offered as CSDS 132 and ECSE 132. Counts for CAS Quantitative Reasoning Requirement.

ECSE 216. Fundamental System Concepts. 3 Units.
Develops framework for addressing problems in science and engineering that require an integrated, interdisciplinary approach, including the effective management of complexity and uncertainty. Introduces fundamental system concepts in an integrated framework. Properties and behavior of phenomena regardless of the physical implementation through a focus on the structure and logic of information flow. Systematic problem solving methodology using systems concepts. Recommended preparation: MATH 224.

ECSE 233. Introduction to Data Structures. 4 Units.
Different representations of data: lists, stacks and queues, trees, graphs, and files. Manipulation of data: searching and sorting, hashing, recursion and higher order functions. Abstract data types, templating, and the separation of interface and implementation. Introduction to asymptotic analysis. The Java language is used to illustrate the concepts and as an implementation vehicle throughout the course. Offered as CSDS 233 and ECSE 233. Prereq: CSDS 132 or ECSE 132 or EECS 132.

ECSE 245. Electronic Circuits. 4 Units.

ECSE 246. Signals and Systems. 4 Units.

ECSE 275. Fundamentals of Robotics. 4 Units.
The Fundamentals of Robotics course will expose students to fundamental principles of robotics. Students will explore high level conceptual foundations of robotics beginning with Braitenberg vehicles and apply this knowledge to simulated and physical robot hardware in laboratory experiences and in a final project. Laboratory experiences will guide students through applying theory to practice increasingly complex tasks in a project oriented, group work environment. The course culminates in a robotics challenge project at the end of the semester. Topics covered are: sensors, actuators, kinematics, control, planning and programming. Programming languages and concepts (e.g., C++, object oriented programming) used in robotics will be introduced and used with modern robotics programming toolboxes and frameworks. Prior experience with these languages will not be necessary. Previous experience with robotics is not required for this course. Offered as CSDS 275 and ECSE 275. Prereq: (ENGR 131 or EECS 132) and PHYS 121 and MATH 121.

ECSE 281. Logic Design and Computer Organization. 4 Units.
Fundamentals of digital systems in terms of both computer organization and logic level design. Organization of digital computers; information representation; boolean algebra; analysis and synthesis of combinational and sequential circuits; datapaths and register transfers; instruction sets and assembly language; input/output and communication; memory. Offered as CSDS 281 and ECSE 281. Prereq: ENGR 131 or EECS 132.

ECSE 290. Introduction to Computer Game Design and Implementation. 3 Units.
This class begins with an examination of the history of video games and of game design. Games will be examined in a systems context to understand gaming and game design fundamentals. Various topics relating directly to the implementation of computer games will be introduced including graphics, animation, artificial intelligence, user interfaces, the simulation of motion, sound generation, and networking. Extensive study of past and current computer games will be used to illustrate course concepts. Individual and group projects will be used throughout the semester to motivate, illustrate and demonstrate the course concepts and ideas. Group game development and implementation projects will culminate in classroom presentation and evaluation. Offered as CSDS 290 and ECSE 290. Prereq: EECS 132 or ENGR 131.

ECSE 296. Independent Projects. 1 - 3 Units.
Independent projects in Electrical Engineering, Computer Engineering and Systems Engineering. Recommended preparation: ENGR 131 or EECS/ CSDS/ECSE 132. Prereq: Limited to freshmen and sophomore students.

ECSE 297. Special Topics. 1 - 3 Units.
Special topics in Electrical Engineering, Computer Engineering and Systems and Control Engineering. Prereq: Limited to freshmen and sophomores.

ECSE 301. Digital Logic Laboratory. 2 Units.
This course is an introductory experimental laboratory for digital networks. The course introduces students to the process of design, analysis, synthesis and implementation of digital networks. The course covers the design of combinational circuits, sequential networks, registers, counters, synchronous/asynchronous Finite State Machines, register based design, and arithmetic computational blocks. Prereq: EECS 281.
ECSE 302. Discrete Mathematics. 3 Units.
A general introduction to basic mathematical terminology and
the techniques of abstract mathematics in the context of discrete
mathematics. Topics introduced are mathematical reasoning, Boolean
connectives, deduction, mathematical induction, sets, functions and
relations, algorithms, graphs, combinatorial reasoning. Offered as
CSDS 302, ECSE 302 and MATH 304. Prereq: MATH 122 or MATH 124 or
MATH 126.

ECSE 303. Embedded Systems Design and Laboratory. 3 Units.
The purpose of this Course and Laboratory is to expose and train
the students in modern embedded systems software and hardware design
techniques and practices including networking and mobile connectivity.
The rationale for the Course and Lab is based on the explosive growth
of embedded systems in the industry, specifically industrial automation,
aviation, surveillance, medical devices, but also consumer products.
The course topics cover a wide range of material as follows.
Microcontroller systems based on the ARM processor. Essential
components, memories, busses interfaces. Devices, peripherals, GPIOs,
device drivers. Sensors and Actuators, A/D, D/A, DSP. Embedded Linux,
kernels, kernel modules, compilers and assemblers. Libraries, and
debugging facilities. The Lab will be based on common platforms such as
Raspberry pi, Arduino, ARM embed, supported by a network of Linux
workstations.

ECSE 304. Control Engineering I with Laboratory. 3 Units.
Analysis and design techniques for control applications. Linearization
of nonlinear systems. Design specifications. Classical design methods:
root locus, bode, nuquist. PID, lead, lag, lead-lag controller design. State
space modeling, solution, controllability, observability and stability.
Modeling and control demonstrations and experiments single-input/
single-output and multivariable systems. Control system analysis/
design/implementation software. The course will incorporate the use of
Grand Challenges in the areas of Energy Systems, Control Systems, and
Data Analytics in order to provide a framework for problems to study in
the development and application of the concepts and tools studied in
the course. Various aspects of important engineering skills relating to
leadership, teaming, emotional intelligence, and effective communication
are integrated into the course. Prereq: EECS 246 or EMAE 350.

ECSE 305. Control Engineering I Laboratory. 1 Unit.
A laboratory course based on the material in ECSE 304. Modeling,
simulation, and analysis using MATLAB. Physical experiments involving
control of mechanical systems, process control systems, and design of
PID controllers. Coreq: EECS 304.

ECSE 309. Electromagnetic Fields I. 3 Units.
Maxwell's integral and differential equations, boundary conditions,
constitutive relations, energy conservation and Pointing vector, wave
equation, plane waves, propagating waves and transmission lines,
characteristic impedance, reflection coefficient and standing wave
ratio, in-depth analysis of coaxial and strip lines, electro- and magneto-
quasistatics, simple boundary value problems, correspondence between
fields and circuit concepts, energy and forces. Prereq: PHYS 124 or
PHYS 124. Prereq or Coreq: MATH 224.

ECSE 313. Signal Processing. 3 Units.
Fourier series and transforms. Analog and digital filters. Fast-Fourier
transforms, sampling, and modulation for discrete time signals and
systems. Consideration of stochastic signals and linear processing of
stochastic signals using correlation functions and spectral analysis.
The course will incorporate the use of Grand Challenges in the areas of
Energy Systems, Control Systems, and Data Analytics in order to provide
a framework for problems to study in the development and application of
the concepts and tools studied in the course. Various aspects of
important engineering skills relating to leadership, teaming, emotional
intelligence, and effective communication are integrated into the course.
Prereq: EECS 246.

ECSE 314. Computer Architecture. 3 Units.
This course provides students the opportunity to study and evaluate
a modern computer architecture design. The course covers topics in
fundamentals of computer design, performance, cost, instruction
set design, processor implementation, control unit, pipelining,
communication and network, memory hierarchy, computer arithmetic,
input-output, and an introduction to RISC and super-scalar processors.
Offered as CSDS 314 and ECSE 314. Prereq: EECS 246.

ECSE 315. Digital Systems Design. 4 Units.
This course gives students the ability to design modern digital circuits.
The course covers topics in logic level analysis and synthesis, digital
electronics: transistors, CMOS logic gates, CMOS lay-out, design metrics
space, power, delay. Programmable logic (partitioning, routing), state
machine analysis and synthesis, register transfer level block design,
datapath, controllers, ASM charts, microsequencers, emulation and rapid
prototyping, and switch/logic-level simulation. Prereq: EECS 281.

ECSE 316. Wireless Communications. 3 Units.
This course introduces the fundamentals of wireless communications
including backgrounds, important concepts, and cutting-edge
technologies. In particular, the course focuses on interesting and
important topics in wireless communications, such as (but not limited to):
Overview of wireless communication networks and protocols, the
cellular concept, system design fundamentals, brief introduction to
wireless physical layer fundamentals, multiple access control protocols
for wireless systems, wireless networking (routing/rerouting, wireless
TCP/IP), mobility management, call admission control and resource
allocation, revolution/evolution towards future generation wireless
networks, overview of wireless mesh networks, mobile ad hoc networks
and wireless sensor networks, and wireless security (optional). Offered
as ECSE 316 and ECSE 414. Prereq: (ECSE 351 or ECSE 351) with a C or
better, or a Graduate student.

ECSE 317. Computer Design - FPGAs. 3 Units.
The aim is to expose the student to methodologies for systematic
design of digital systems with emphasis on programmable logic
implementations and prototyping. The course requires a number of
hands-on experiments and an overall lab project. The lab involves a
number of class lectures to familiarize the students with the modern
design techniques based on VHDL/Verilog Hardware Design Languages,
CAD tools, and FPGAs. Offered as ECSE 317 and ECSE 417. Prereq: EECS
281.
ECSE 318. VLSI/CAD. 4 Units.
With Very Large Scale Integration (VLSI) technology there is an increased need for Computer-Aided Design (CAD) techniques and tools to help in the design of large digital systems that deliver both performance and functionality. Such high performance tools are of great importance in the VLSI design process, both to perform functional, logical, and behavioral modeling and verification to aid the testing process. This course discusses the fundamentals in behavioral languages, both VHDL and Verilog, with hands-on experience. Prereq: EECS 281 and EECS 315.

ECSE 319. Applied Probability and Stochastic Processes for Biology. 3 Units.
Applications of probability and stochastic processes to biological systems. Mathematical topics will include: introduction to discrete and continuous probability spaces (including numerical generation of pseudo random samples from specified probability distributions), Markov processes in discrete and continuous time with discrete and continuous sample spaces, point processes including homogeneous and inhomogeneous Poisson processes and Markov chains on graphs, and diffusion processes including Brownian motion and the Ornstein-Uhlenbeck process. Biological topics will be determined by the interests of the students and the instructor. Likely topics include: stochastic ion channels, molecular motors and stochastic ratchets, actin and tubulin polymerization, random walk models for neural spike trains, bacterial chemotaxis, signaling and genetic regulatory networks, and stochastic predator-prey dynamics. The emphasis will be on practical simulation and analysis of stochastic phenomena in biological systems. Numerical methods will be developed using a combination of MATLAB, the R statistical package, MCell, and/or URDME, at the discretion of the instructor. Student projects will comprise a major part of the course. Offered as BIOL 319, ECSE 319, MATH 319, SYBB 319, BIOL 419, EBME 419, MATH 419, PHOL 419, and SYBB 419. Prereq: MATH 224 or MATH 223 and BIOL 300 or BIOL 306 and MATH 201 or MATH 307 or consent of instructor.

ECSE 320. Semiconductor Electronic Devices. 4 Units.
Energy bands and charge carriers in semiconductors and their experimental verifications. Excess carriers in semiconductors. Principles of operation of semiconductor devices that rely on the electrical properties of semiconductor surfaces and junctions. Development of equivalent circuit models and performance limitations of these devices. Devices covered include: junctions, bipolar transistors, Schottky junctions, MOS capacitors, junction gate and MOS field effect transistors, optical devices such as photodetectors, light-emitting diodes, solar cells, and lasers. Prereq: PHYS 122. Prereq or Coreq: MATH 224.

ECSE 321. Integrated Circuits and Electronic Devices. 3 Units.
Technology of monolithic integrated circuits and devices, including crystal growth and doping, photolithography, vacuum technology, metallization, wet etching, thin film bases, oxidation, diffusion, ion implantation, epitaxy, chemical vapor deposition, plasma processing, and micromachining. Basics of semiconductor devices including junction diodes, bipolar junction transistors, and field effect transistors. Prereq: PHYS 122. Prereq or Coreq: MATH 224.

ECSE 322. Modeling and Simulation of Continuous Dynamical Systems. 3 Units.
This course examines the computer-based modeling and simulation of continuous dynamical system behavior in a variety of systems including electric power systems, industrial control systems, and signal processing that are represented by a set of differential equations need to be solved numerically in order to compute and represent their behavior for study. In addition to these applications, there are many other important applications of these tools in computer games, virtual worlds, weather forecasting, and population models, to name a few examples. Numerical integration techniques are developed to perform these computations. Multiple computational engines such as Matlab, Simulink, Unity, and physics engines etc. are also examined as examples of commonly used software to solve for and visualize continuous-time system behavior. The course will incorporate the use of Grand Challenges in the areas of Energy Systems, Control Systems, and Data Analytics in order to provide motivation and a framework for problems to study in the development and application of the concepts and tools studied in the course. Various aspects of important engineering skills relating to leadership, teaming, emotional intelligence, and effective communication are integrated into the course. Prereq: MATH 224.

ECSE 326. Instrumentation Electronics. 3 Units.
A second course in instrumentation with emphasis on sensor interface electronics. General concepts in measurement systems, including accuracy, precision, sensitivity, linearity, and resolution. The physics and modeling of resistive, reactive, self-generating, and direct-digital sensors. Signal conditioning for same, including bridge circuits, coherent detectors, and a variety of amplifier topologies: differential, instrumentation, charge, and transimpedance. Noise and drift in amplifiers and resistors. Practical issues of interference, including grounding, shielding, supply/return, and isolation amplifiers. Prereq: ENGR 210 and (EECS 246, EBME 308 or EMAE 350).

ECSE 329. Introduction to Nanomaterials: Material Synthesis, Properties and Device Applications. 3 Units.
The behavior of nanoscale materials is close, to atomic behavior rather than that of bulk materials. The growth of nanomaterials, such as quantum dots, has the tendency to be viewed as an art rather than science. These nanostructures have changed our view of Nature. This course is designed to provide an introduction to nanomaterials and devices to both senior undergraduate and graduate students in engineering. Topics covered include an introduction to growth issues, quantum mechanics, quantization of electronic energy levels in periodic potentials, tunneling, distribution functions and density of states, optical and electronic properties, and devices. Offered as ECSE 329 and ECSE 429. Coreq: EECS 309.

ECSE 332. Compiler Design. 4 Units.
Design and implementation of compilers and other language processors. Scanners and lexical analysis; regular expressions and finite automata; scanner generators; parsers and syntax analysis; context free grammars; parser generators; semantic analysis; intermediate code generation; runtime environments; code generation; machine independent optimizations; data flow and dependence analysis. There will be a significant programming project involving the use of compiler tools and software development tools and techniques. Offered as CSDS 337 and ECSE 337. Prereq: (CSDS 233 or ECSE 233 or EES 233) and (CSDS 281 or ECSE 281 or EECS 281)
ECSE 338. Intro to Operating Systems and Concurrent Programming. 4 Units.
Intro to OS: OS Structures, processes, threads, CPU scheduling, deadlocks, memory management, file system implementations, virtual machines, cloud computing. Concurrent programming: fork, join, concurrent statement, critical section problem, safety and liveness properties of concurrent programs, process synchronization algorithms, semaphores, monitors. UNIX systems programming: system calls, UNIX System V IPCs, threads, RPCs, shell programming. Offered as CSDS 338, ECSE, 338, CSDS 338N and ECSE 338N. Prereq: Computer Science Major or Minor and (CSDS 233 or ECSE 233 or EECS 233) with a C or higher.

ECSE 338N. Intro to Operating Systems and Concurrent Programming. 4 Units.
Intro to OS: OS Structures, processes, threads, CPU scheduling, deadlocks, memory management, file system implementations, virtual machines, cloud computing. Concurrent programming: fork, join, concurrent statement, critical section problem, safety and liveness properties of concurrent programs, process synchronization algorithms, semaphores, monitors. UNIX systems programming: system calls, UNIX System V IPCs, threads, RPCs, shell programming. Offered as CSDS 338, ECSE, 338, CSDS 338N and ECSE 338N. Prereq: (CSDS 233 or ECSE 233 or EECS 233) with a C or higher.

ECSE 334. Intro to Operating Systems and Concurrent Programming. 3 Units.
The design of real-world circuits. Topics include: junction diodes, non-ideal op-amp models, characteristics and models for large and small signal operation of bipolar junction transistors (BJTs) and field effect transistors (FETs), selection of operating point and biasing for BJT and FET amplifiers. Hybrid-pi model and other advanced circuit models, cascaded amplifiers, negative feedback, differential amplifiers, oscillators, tuned circuits, and phase-locked loops. Computers will be extensively used to model circuits. Selected experiments and/or laboratory projects. Prereq: ECES 245.

ECSE 336. Engineering Optimization. 3 Units.
Optimization techniques including linear programming and extensions; transportation and assignment problems; network flow optimization; quadratic, integer, and separable programming; geometric programming; and dynamic programming. Nonlinear optimization topics: optimality criteria, gradient and other practical unconstrained and constrained methods. Computer applications using engineering and business case studies. The course will incorporate the use of Grand Challenges in the areas of Energy Systems, Control Systems, and Data Analytics in order to provide a framework for problems to study in the development and application of the concepts and tools studied in the course. Various aspects of important engineering skills relating to leadership, teaming, emotional intelligence, and effective communication are integrated into the course. Recommended preparation: MATH 201.
ECSE 350. Operations and Systems Design. 3 Units.
Introduction to design, modeling, and optimization of operations and scheduling systems with applications to computer science and engineering problems. Topics include, forecasting and time series, strategic, tactical, and operational planning, life cycle analysis, learning curves, resources allocation, materials requirement and capacity planning, sequencing, scheduling, inventory control, project management and planning. Tools for analysis include: multi-objective optimization, queuing models, simulation, and artificial intelligence.

ECSE 351. Communications and Signal Analysis. 3 Units.
Fourier transform analysis and sampling of signals. AM, FM and SSB modulation and other modulation methods such as pulse code, delta, pulse position, PSK and FSK. Detection, multiplexing, performance evaluation in terms of signal-to-noise ratio and bandwidth requirements. Prereq: EECS 246 or requisites not met permission.

ECSE 352. Engineering Economics and Decision Analysis. 3 Units.
Economic analysis of engineering projects, focusing on financial decisions concerning capital investments. Present worth, annual worth, internal rate of return, benefit/cost ratio. Replacement and abandonment policies, effects of taxes, and inflation. Decision making under risk and uncertainty. Decision trees. Value of information. The course will incorporate the use of Grand Challenges in the areas of Energy Systems, Control Systems, and Data Analytics in order to provide a framework for problems to study in the development and application of the concepts and tools studied in the course. Various aspects of important engineering skills relating to leadership, teaming, emotional intelligence, and effective communication are integrated into the course.

ECSE 354. Digital Communications. 3 Units.

ECSE 360. Manufacturing and Automated Systems. 3 Units.
Formulation, modeling, planning, and control of manufacturing and automated systems with applications to computer science and engineering problems. Topics include, design of products and processes, location/spatial problems, transportation and assignment, product and process layout, group technology and clustering, cellular and network flow layouts, computer control systems, reliability and maintenance, and statistical quality control. Tools and analysis include: multi-objective optimization, artificial intelligence, and heuristics for combinatorial problems. Offered as ECSE 360 and ECSE 460.

ECSE 365. Complex Systems Biology. 3 Units.
Complex Systems Biology is an interdisciplinary course based on systems science, engineering, biology, and medicine. The objective is to provide students with an understanding of the current state of systems biology and major challenges ahead. The biological phenomena across the level of complexity will be considered from molecular to organisms and ecology to provide universality of the systems concepts for understanding the functions and behavior of biological systems. Case studies are used and a course project is required to be completed. Prereq: Junior Standing.

ECSE 366. Computer Graphics. 3 Units.
Theory and practice of computer graphics: object and environment representation including coordinate transformations image extraction including perspective, hidden surface, and shading algorithms; and interaction. Covers a wide range of graphic display devices and systems with emphasis in interactive shaded graphics. Offered as CSDS 366, ECSE 366, CSDS 466 and ECSE 466. Prereq: EECS 233.

ECSE 368. Power System Analysis I. 3 Units.
This course introduces the steady-state modeling and analysis of electric power systems. The course discusses the modeling of essential power system network components such as transformers and transmission lines. The course also discusses important steady-state analysis of three-phase power system network, such as the power flow and economic operation studies. Through the use of PowerWorld Simulator education software, further understanding and knowledge can be gained on the operational characteristics of AC power systems. Special topics concerning new grid technologies will be discussed towards the semester end. The prerequisite requirements of the course include the concepts and computational techniques of Alternative Current (AC) circuit and electromagnetic field. Offered as ECSE 368 and ECSE 468. Prereq: EECS 245.

ECSE 369. Power System Analysis II. 3 Units.
This course extends upon the steady state analysis of power systems to cover study topics that are essential for power system planning and operation. Special system operating conditions are considered, such as unbalanced network operation and component faults. Among the most important analytical methods developed, are symmetrical components and sequence networks. Other study topics discussed include the electric machine modeling and power system transient stability. The latter half of the course presents computational methods and control algorithms that are essential for power system operation, such as generation control and state estimation. Offered as ECSE 369 and ECSE 469. Prereq: ECSE 368.

ECSE 370. Smart Grid. 3 Units.
This course starts with an introduction to the US electric power system infrastructure and national electricity policy. Then power system operations and reliability practices are described. In the context of currently existing infrastructure and operation strategies, the course discusses the new Smart Grid technologies such as renewable resources, distributed generation, demand response, energy storage and electric vehicles. Additional important topics of discussion include Advanced Meter Infrastructure, microgrids, the IEEE 1547 Interconnection Standard, and other interoperability standards. The course captures the evolving progress made in Smart Grid technologies and the impacts on power system economics and reliability. Offered as ECSE 370 and ECSE 470. Prereq: EECS 368.
ECSE 371. Applied Circuit Design. 4 Units.
This course will consist of lectures and lab projects designed to provide students with an opportunity to consolidate their theoretical knowledge of electronics and to acquaint them with the art and practice of circuit and product design. The lectures will cover electrical and electronic circuits and many electronic and electrical devices and applications. Examples include mixed-signal circuits, power electronics, magnetic and piezo components, gas discharge devices, sensors, motors and generators, and power systems. In addition, there will be discussion of professional topics such as regulatory agencies, manufacturing, testing, reliability, and product cost. Weekly labs will be true "design" opportunities representing real-world applications. A specification or functional description will be provided, and the students will design the circuit, select all components, construct a breadboard, and test. The objective will be functional, pragmatic, cost-effective designs. Prereq: EECS 245.

ECSE 372. Introduction to Distribution Systems. 3 Units.
Introduction to Distribution Systems provides students with a fundamental understanding of distribution power system configurations, equipment and loads. It also provides a detailed review of distributed energy resources and their impacts on utility distribution systems. Since today's distribution utilities are facing the challenge of managing a distribution network made up of assets from proven and mature technologies while integrating new technologies this course will also discuss a concept of smart grid and its application to distribution systems. The first part of the course reviews the fundamental methods used in the steady state analysis of AC circuits as applied to power distribution systems following by the steady-state modeling of electric power distribution systems. The second part of the course introduces fundamental analysis of electric power distribution systems such as power flow, state estimation, and fault calculation and discusses concerns such as reliability, power quality and voltage regulation. Offered as EECS 372 and EECS 472. Prereq: PHYS 122 and MATH 224.

ECSE 373. Modern Robot Programming. 3 Units.
The goal of this course is to learn modern methods for building up robot capabilities using the Robot Operating System (ROS). Through a sequence of assignments, students learn how to write software to control both simulated and physical robots. Material includes: interfacing software to robot I/O; path and trajectory planning for robot arms; object identification and localization from 3-D sensing; manipulation planning; and development of graphical interfaces for supervisory robot control. Laboratory assignments are scheduled in small groups to explore implementations on specific robots. Graduate students will also perform an independent project. Offered as CSDS 373, ECSE 373, CSDS 473 and ECSE 473. Prereq: ENGR 131 or EECS 132. Coreq: EECS 373L.

ECSE 374. Advanced Control and Energy Systems. 3 Units.
This course introduces applied quantitative robust and nonlinear control engineering techniques to regulate automatically renewable energy systems in general and wind turbines in particular. The course also studies the fundamentals for dynamic multidisciplinary modeling and analysis of large multi-megawatt wind turbines (mechanics, aerodynamics, electrical systems, control concepts, etc.). The course combines lecture sessions and lab hours. The 400-level includes an experimental lab competition, where the object is to design, implement, and experimentally validate a control strategy to regulate a real system in the laboratory (helicopter control competition or similar); it will also include additional project design reports. Offered as ECSE 374 and ECSE 474. Prereq: EECS 304.

ECSE 375. Applied Control. 3 Units.
This course provides a practical treatment of the study of control engineering systems. It emphasizes best practices in industry so that students learn what aspects of plant and control system design are critical. The course develops theory and practice for digital computer control systems; PID controller design (modes, forms and tuning methods); Control structure design (feed-forward, cascade control, predictive control, disturbance observers, multi-loop configurations, multivariable control); Actuators, sensors and common loops; Dynamic performance evaluation; and some advanced control techniques (quantitative robust control, gain-scheduling and adaptive control) to achieve a good performance over a range of operating conditions. Recommended preparation: EECS/ECSE 374 or EECS/ECSE 474. Offered as ECSE 375 and ECSE 475. Prereq: EECS 304 or Requisites Not Met permission.

ECSE 376. Mobile Robotics. 4 Units.
Design of software systems for mobile robot control, including: motion control; sensory processing; localization and mapping; mobile-robot planning and navigation; and implementation of goal-directed behaviors. The course has a heavy lab component involving a sequence of design challenges and competitions performed in teams. Offered as CSDS 376 and ECSE 376. Prereq: EECS 373 or EECS 473.

ECSE 377. Introduction to Connected Devices. 3 Units.
Introduction to Connected Devices (e.g., Internet of Things). Undergraduates work in pairs to build a complete connected-device system, an embedded device with wireless networking, cloud and web, and mobile, and then develop hands-on experience with systems-level aspects of the connected-device system, including analytics, remote firmware update, load testing, and essential security. Students learn about current architectures, languages, and technologies, such as Pub/Sub (MQTT), Python, Objective-C, Python Django, JavaScript, HTML/CSS, and Bluetooth Low Energy. Offered as CSDS 377 and ECSE 377.

ECSE 379. Introduction to Relay Protection. 3 Units.
Protection does not mean prevention, but rather, minimizing the duration of the trouble and limiting the damage, outage time, and related problems that may result otherwise. Introduction to Relay Protection introduces the power system protection, including basic fundamental understanding of relaying, common protection methods and relay applications. The first part of the course reviews the technical tools of the relay engineering (phasors, polarity and symmetrical components), fault analyzes, protection fundamentals and basic design principles. The second part of the course focuses on the line, transformer, bus, generation and motor protection. The course will be accompanied by relay protection laboratory where students will have hands on experience with main types of protective relays. Offered as ECSE 379 and ECS 379. Prereq: MATH 224 and PHYS 122.
ECSE 390. Advanced Game Development Project. 3 Units.
This game development project course will bring together an interprofessional group of students in the fields of engineering, computer science, and art to focus on the design and development of a complete, fully functioning computer game as an interdisciplinary team. The student teams are given complete liberty to design their own fully functional games from their original concept to a playable game published in an online marketplace. Student teams will experience the entire game development cycle as they execute their projects. Responsibilities include creating a game idea, writing a story, developing the artwork, designing characters, implementing music and sound effects, programming and testing the game, and publishing the final project. Students enrolled in 487 will develop a healthcare or education virtual environment or video game in collaboration with a mentor who has expertise in the chosen area. Offered as CSDS 390, ECSE 390, and ECSE 487. Prereq: EECS 233 and EECS 290.

ECSE 394. Introduction to Information Theory. 3 Units.
This course is intended as an introduction to information and coding theory with emphasis on the mathematical aspects. It is suitable for advanced undergraduate and graduate students in mathematics, applied mathematics, statistics, physics, computer science and electrical engineering. Course content: Information measures-entropy, relative entropy, mutual information, and their properties. Typical sets and sequences, asymptotic equipartition property, data compression. Channel coding and capacity: channel coding theorem. Differential entropy, Gaussian channel, Shannon-Nyquist theorem. Information theory inequalities (400 level). Additional topics, which may include compressed sensing and elements of quantum information theory. Recommended preparation: MATH 201 or MATH 307. Offered as MATH 394, CSDS 394, ECSE 394, MATH 494, CSDS 494 and ECSE 494. Prereq: MATH 223 and MATH 380 or requisites not met permission.

ECSE 396. Independent Projects. 1 - 6 Units.

ECSE 397. Special Topics. 1 - 6 Units.
Special topics in Computer Engineering, Electrical Engineering, and Systems and Control Engineering. Prereq: Limited to juniors and seniors.

ECSE 398. Engineering Projects I. 4 Units.
Capstone course for electrical, computer, and systems and control engineering seniors. Material from previous and concurrent courses used to solve engineering design problems. Professional engineering topics such as project management, engineering design, communications, multidisciplinary teaming, and professional ethics. Requirements include periodic reporting of progress, plus a final oral presentation and written report. Scheduled formal project presentations during last week of classes. Counts as SAGES Senior Capstone. Prereq: Senior Standing. Prereq or Coreq: ENGR 398 and ENGL 398.

ECSE 399. Engineering Projects II. 3 Units.
Continuation of ECSE 398. Material from previous and concurrent courses applied to engineering design and research. Requirements include periodic reporting of progress, plus a final oral presentation and written report. Prereq: Senior Standing.

ECSE 400T. Graduate Teaching I. 0 Unit.
This course will provide the Ph.D. candidate with experience in teaching undergraduate or graduate students. The experience is expected to involve direct student contact but will be based upon the specific departmental needs and teaching obligations. This teaching experience will be conducted under the supervision of the faculty member who is responsible for the course, but the academic advisor will assess the educational plan to ensure that it provides an educational experience for the student. Students in this course may be expected to perform one or more of the following teaching related activities: grading homeworks, quizzes, and exams, having office hours for students, tutoring students. Recommended preparation: Ph.D. student in ECSE department.

ECSE 401. Digital Signal Processing. 3 Units.

ECSE 404. Digital Control Systems. 3 Units.
Analysis and design techniques for computer based control systems. Sampling, hybrid continuous-time/discrete-time system modeling; sampled data and state space representations, controllability, observability and stability, transformation of analog controllers, design of deadbeat and state feedback controllers; pole placement controllers based on input/output models, introduction to model identification, optimal control and adaptive control. Recommended preparation: EECS/ECSE 304 or equivalent.

In this course, money and profit as measures of "goodness" in engineering design are studied. Methods for economic analysis of capital investments are developed and the financial evaluation of machinery, manufacturing processes, buildings, R&D personnel development, and other long-lived investments is emphasized. Optimization methods and decision analysis techniques are examined to identify economically attractive alternatives. Basic concepts of cost accounting are also covered. Topics include: economics criteria for comparing projects: present worth, annual worth analysis; depreciation and taxation; retirement and replacement; effect of inflation and escalation on economic evaluations; case studies; use of optimization methods to evaluate many alternatives; decision analysis; accounting fundamentals: income and balance sheets; cost accounting. Offered as ECSE 407 and EPOM 407.

ECSE 408. Introduction to Linear Systems. 3 Units.
ECSE 410. Mobile Health (mHealth) Technology. 3 Units.
Advances in communications, computer, and medical technology have facilitated the practice of personalized health, which utilizes sensory computational communication systems to support improved and more personalized healthcare and healthy lifestyle choices. The current proliferation of broadband wireless services, along with more powerful and convenient handheld devices, is helping to introduce real-time monitoring and guidance for a wide array of patients. Indeed, a large research community and a nascent industry is beginning to connect medical care with technology developers, vendors of wireless and sensing hardware systems, network service providers, and enterprise data management communities. Students in the course and labs will explore cutting-edge technologies in 1) information technologies and 2) healthcare/medical applications, through lectures, lab assignments, exams, presentations, and final projects. The overall course objectives are to introduce electrical engineering, computer engineering, and computer science students the fundamentals of wearable sensors, mobile health informatics, big data analysis, telehealthcare security & privacy, and human computer interaction considerations. Prereq: MS and PhD student only.

ECSE 411. Applied Engineering Statistics. 3 Units.
In this course a combination of lectures, demonstrations, case studies, and individual and group computer problems provides an intensive introduction to fundamental concepts, applications and the practice of contemporary engineering statistics. Each topic is introduced through realistic sample problems to be solved first by using standard spreadsheet programs and then using more sophisticated software packages. Primary attention is given to teaching the fundamental concepts underlying standard analysis methods. Offered as EPOM 405 and ECSE 411.

ECSE 413. Nonlinear Systems I. 3 Units.
This course will provide an introduction to techniques used for the analysis of nonlinear dynamic systems. Topics will include existence and uniqueness of solutions, phase plane analysis of two dimensional systems including Poincare-Bendixon, describing functions for single-input single-output systems, averaging methods, bifurcation theory, stability, and an introduction to the study of complicated dynamics and chaos. Recommended preparation: Concurrent enrollment in ECSE 408.

ECSE 414. Wireless Communications. 3 Units.
This course introduces the fundamentals of wireless communications including backgrounds, important concepts, and cutting-edge technologies. In particular, the course focuses on interesting and important topics in wireless communications, such as (but not limited to): Overview of wireless communication networks and protocols, the cellular concept, system design fundamentals, brief introduction to wireless physical layer fundamentals, multiple access control protocols for wireless systems, wireless networking (routing/re-routing, wireless TCP/IP), mobility management, call admission control and resource allocation, revolution/evolution towards future generation wireless networks, overview of wireless mesh networks, mobile ad hoc networks and wireless sensor networks, and wireless security (optional). Offered as ECSE 316 and ECSE 414. Prereq: Graduate student or (EECS 351 or ECSE 351) with a C or better.

ECSE 415. Integrated Circuit Technology I. 3 Units.

ECSE 416. Convex Optimization for Engineering. 3 Units.
This course will focus on the development of a working knowledge and skills to recognize, formulate, and solve convex optimization problems that are so prevalent in engineering. Applications in control systems; parameter and state estimation; signal processing; communications and networks; circuit design; data modeling and analysis; data mining including clustering and classification; and combinatorial and global optimization will be highlighted. New reliable and efficient methods, particular those based on interior-point methods and other special methods to solve convex optimization problems will be emphasized. Implementation issues will also be underscored. Recommended preparation: MATH 201 or equivalent.

ECSE 417. Computer Design - FPGAs. 3 Units.
The aim is to expose the student to methodologies for systematic design of digital systems with emphasis on programmable logic implementations and prototyping. The course requires a number of hands-on experiments and an overall lab project. The lab involves a number of class lectures to familiarize the students with the modern design techniques based on VHDL/Verilog Hardware Design Languages, CAD tools, and FPGAs. Offered as ECSE 317 and ECSE 417.

ECSE 418. System Identification and Adaptive Control. 3 Units.

ECSE 419. Computer System Architecture. 3 Units.
Interaction between computer systems hardware and software. Pipeline techniques - instruction pipelines - arithmetic pipelines. Instruction level parallelism. Cache mechanism. I/O structures. Examples taken from existing computer systems.

ECSE 421. Optimization of Dynamic Systems. 3 Units.

ECSE 422. Solid State Electronics II. 3 Units.

ECSE 424. Introduction to Nanotechnology. 3 Units.
An exploration of emerging nanotechnology research. Lectures and class discussion on 1) nanostructures: superlattices, nanowires, nanotubes, quantum dots, nanoparticles, nanocomposites, proteins, bacteria, DNA; 2) nanoscale physical phenomena: mechanical, electrical, chemical, thermal, biological, optical, magnetic; 3) nanofabrication: bottom up and top down methods; 4) characterization: microscopy, property measurement techniques; 5) devices/applications: electronics, sensors, actuators, biomedical, energy conversion. Topics will cover interdisciplinary aspects of the field. Offered as ECSE 424 and EMAE 424.
ECSE 426. MOS Integrated Circuit Design. 3 Units.

ECSE 427. Optoelectronic and Photonic Devices. 3 Units.
In this course, we will study the optical transitions, absorptions, and gains in semiconductors. We will discuss the optical processes in semiconductor bulk as well as low dimensional structures such as quantum well and quantum dot. The fundamentals, technologies and applications of important optoelectronic devices (e.g., light-emitting diodes, semiconductor lasers, solar cells and photo-detectors) will be introduced. We will learn the current state-of-the-art of these devices. Recommended preparation: EECS 438 and EECS 321.

ECSE 429. Introduction to Nanomaterials: Material Synthesis, Properties and Device Applications. 3 Units.
The behavior of nanoscale materials is close, to atomic behavior rather than that of bulk materials. The growth of nanomaterials, such as quantum dots, has the tendency to be viewed as an art rather than science. These nanostructures have changed our view of Nature. This course is designed to provide an introduction to nanomaterials and devices to both senior undergraduate and graduate students in engineering. Topics covered include an introduction to growth issues, quantum mechanics, quantization of electronic energy levels in periodic potentials, tunneling, distribution functions and density of states, optical and electronic properties, and devices. Offered as ECSE 329 and ECSE 429.

ECSE 434. Microsystems Technology. 3 Units.
This course provides an overarching coverage of microsystems technology, which is rooted in micro-electromechanical systems (MEMS). It covers the convergence of sensors and actuators, with wireless communications, computing and (social) networks. Microsystems incorporate sensors and actuators to interface computing with its physical environment-enabling perception and control. Microsystems are key enablers of smartphones, wearables, drones, robots, cars, aircrafts, weapons, etc. Recommended preparation: EECS/ECSE 322.

ECSE 438. High Performance Computing. 3 Units.
High performance computing (HPC) leverages parallel processing in order to maximize speed and throughput. This hands-on course will cover theoretical and practical aspects of HPC. Theoretical concepts covered include computer architecture, parallel programming, and performance optimization. Practical applications will be discussed from various information and scientific fields. Practical considerations will include HPC job management and Unix scripting. Weekly assessments and a course project will be required. Offered as CSDS 438 and ECSE 438. Prereq: EECS 233 or graduate standing.

ECSE 443. Flexible Electronics. 3 Units.
Learning about flexible and stretchable electronics from materials to applications. Covering organic and inorganic semiconductors, vacuum and solution-based metal-oxide semiconductors, nanomembranes and nanocrystals, conductors and insulators, flexible and ultra-high-resolution displays, light-emitting transistors, organic and inorganic photovoltaics, large-area imagers and sensors, non-volatile memories and radio-frequency identification tags. Discussing applications of flexible, stretchable and large-area electronics as part of the foregoing topics. Recommended preparation: EECS/ECSE 322.

ECSE 450. Operations and Systems Design. 3 Units.
Introduction to design, modeling, and optimization of operations and scheduling systems with applications to computer science and engineering problems. Topics include, forecasting and times series, strategic, tactical, and operational planning, life cycle analysis, learning curves, resources allocation, materials requirement and capacity planning, sequencing, scheduling, inventory control, project management and planning. Tools for analysis include: multi-objective optimization, queuing models, simulation, and artificial intelligence.

ECSE 452. Random Signals. 3 Units.

ECSE 460. Manufacturing and Automated Systems. 3 Units.
Formulation, modeling, planning, and control of manufacturing and automated systems with applications to computer science and engineering problems. Topics include, design of products and processes, location/spatial problems, transportation and assignment, product and process layout, group technology and clustering, cellular and network flow layouts, computer control systems, reliability and maintenance, and statistical quality control. Tools and analysis include: multi-objective optimization, artificial intelligence, and heuristics for combinatorial problems. Offered as ECSE 360 and ECSE 460.

ECSE 466. Computer Graphics. 3 Units.
Theory and practice of computer graphics: object and environment representation including coordinate transformations image extraction including perspective, hidden surface, and shading algorithms; and interaction. Covers a wide range of graphic display devices and systems with emphasis in interactive shaded graphics. Offered as CSDS 366, ECSE 366, CSDS 466 and ECSE 466. Prereq: Graduate standing or Requisites Not Met permission.
ECSE 469. Power System Analysis II. 3 Units.
This course extends upon the steady state analysis of power systems to cover study topics that are essential for power system planning and operation. Special system operating conditions are considered, such as unbalanced network operation and component faults. Other study topics discussed include the electric machine modeling and power system transient stability. The latter half of the course presents computational methods and control algorithms that are essential for power system operation, such as generation control and state estimation. Offered as ECSE 369 and ECSE 469. Prereq: EECS 368.

ECSE 470. Smart Grid. 3 Units.
This course starts with an introduction to the US electric power system infrastructure and national electricity policy. Then power system operations and reliability practices are described. In the context of currently existing infrastructure and operation strategies, the course discusses the new Smart Grid technologies such as renewable resources, distributed generation, demand response, energy storage and electric vehicles. Additional important topics of discussion include Advanced Meter Infrastructure, microgrids, the IEEE 1547 Interconnection Standard, and other interoperability standards. The course captures the evolving progress made in Smart Grid technologies and the impacts on power system economics and reliability. Offered as ECSE 370 and ECSE 470. Prereq: ECSE 368.

ECSE 472. Introduction to Distribution Systems. 3 Units.
Introduction to Distribution Systems provides students with a fundamental understanding of distribution power system configurations, equipment and loads. It also provides a detailed review of distributed energy resources and their impacts on utility distribution systems. Since today's distribution utilities are facing the challenge of managing a distribution network made up of assets from proven and mature technologies while integrating new technologies this course will also discuss a concept of smart grid and its application to distribution systems. The first part of the course reviews the fundamental methods used in the steady state analysis of AC circuits as applied to power distribution systems following by the steady-state modeling of electric power distribution systems. The second part of the course introduces fundamental analysis of electric power distribution systems such as power flow, state estimation, and fault calculation and discusses concerns such as reliability, power quality and voltage regulation. Offered as ECSE 372 and ECSE 472. Prereq: Graduate student standing.

ECSE 473. Modern Robot Programming. 3 Units.
The goal of this course is to learn modern methods for building up robot capabilities using the Robot Operating System (ROS). Through a sequence of assignments, students learn how to write software to control both simulated and physical robots. Material includes: interfacing software to robot I/O; path and trajectory planning for robot arms; object identification and localization from 3-D sensing; manipulation planning; and development of graphical interfaces for supervisory robot control. Laboratory assignments are scheduled in small groups to explore implementations on specific robots. Graduate students will also perform an independent project. Offered as CSDS 373, ECSE 373, CSDS 473 and ECSE 473. Prereq: ENGR 131 or ENGS 132.

ECSE 474. Advanced Control and Energy Systems. 3 Units.
This course introduces applied quantitative robust and nonlinear control engineering techniques to regulate automatically renewable energy systems in general and wind turbines in particular. The course also studies the fundamentals for dynamic multidisciplinary modeling and analysis of large multi-megawatt wind turbines (mechanics, aerodynamics, electrical systems, control concepts, etc.). The course combines lecture sessions and lab hours. The 400-level includes an experimental lab competition, where the object is to design, implement, and experimentally validate a control strategy to regulate a real system in the laboratory (helicopter control competition or similar); it will also include additional project design reports. Offered as ECSE 374 and ECSE 474. Prereq: EECS 304.
ECSE 475. Applied Control. 3 Units.
This course provides a practical treatment of the study of control engineering systems. It emphasizes best practices in industry so that students learn what aspects of plant and control system design are critical. The course develops theory and practice for digital computer control systems; PID controller design (modes, forms and tuning methods); Control structure design (feed-forward, cascade control, predictive control, disturbance observers, multi-loop configurations, multivariable control); Actuators, sensors and common loops; Dynamic performance evaluation; and some advanced control techniques (quantitative robust control, gain-scheduling and adaptive control) to achieve a good performance over a range of operating conditions. Recommended preparation: EECS/ECSE 374 or EECS/ECSE 474. Offered as ECSE 375 and ECSE 475. Prereq: EECS 304 or Requisites Not Met permission.

ECSE 476. Mobile Robotics. 3 Units.
Design of software systems for mobile robot control, including: motion control; sensory processing; localization and mapping; mobile-robot planning and navigation; and implementation of goal-directed behaviors. The course has a heavy lab component involving a sequence of design challenges and competitions performed in teams. Offered as CSDS 476 and ECSE 476. Prereq: EECS 373 or ECES 473.

ECSE 478. Computational Neuroscience. 3 Units.
Computer simulations and mathematical analysis of neurons and neural circuits, and the computational properties of nervous systems. Students are taught a range of models for neurons and neural circuits, and are asked to implement and explore the computational and dynamic properties of these models. The course introduces students to dynamical systems theory for the analysis of neurons and neural learning, models of brain systems, and their relationship to artificial and neural networks. Term project required. Students enrolled in MATH 478 will make arrangements with the instructor to attend additional lectures and complete additional assignments addressing mathematical topics related to the course. Recommended preparation: MATH 223 and MATH 224 or BIOL 300 and BIOL 306. Offered as BIOL 378, COGS 378, MATH 378, BIOL 478, CSDS 478, EBME 478, ECSE 478, MATH 478 and NEUR 478.

ECSE 479. Introduction to Relay Protection. 3 Units.
Protection does not mean prevention, but rather, minimizing the duration of the trouble and limiting the damage, outage time, and related problems that may result otherwise. Introduction to Relay Protection introduces the power system protection, including basic fundamental understanding of relaying, common protection methods and relay applications. The first part of the course reviews the technical tools of the relay engineering (phasors, polarity and symmetrical components), fault analyzes, protection fundamentals and basic design principles. The second part of the course focuses on the line, transformer, bus, generation and motor protection. The course will be accompanied by relay protection laboratory where students will have hands on experience with main types of protective relays. Offered as ECSE 379 and ECS 479. Prereq: Graduate student standing.

ECSE 480A. Introduction to Wireless Health. 3 Units.
Study of convergence of wireless communications, microsystems, information technology, persuasive psychology, and health care. Discussion of health care delivery system, medical decision-making, persuasive psychology, and wireless health value chain and business models. Understanding of health information technology, processing of monitoring data, wireless communication, biomedical sensing techniques, and health monitoring technical approaches and solutions. Offered as ECSE 480A and EBME 480A.

ECSE 480B. The Human Body. 3 Units.
Study of structural organization of the body. Introduction to anatomy, physiology, and pathology, covering the various systems of the body. Comparison of elegant and efficient operation of the body and the related consequences of when things go wrong, presented in the context of each system of the body. Introduction to medical diagnosis and terminology in the course of covering the foregoing. Offered as ECSE 480B and EBME 480B.

ECSE 480C. Biomedical Sensing Instrumentation. 3 Units.
Study of principles, applications, and design of biomedical instruments with special emphasis on transducers. Understanding of basic sensors, amplifiers, and signal processing. Discussion of the origin of biopotential, and biopotential electrodes and amplifiers (including biotelemetry). Understanding of chemical sensors and clinical laboratory instrumentation, including microfluidics. Offered as ECSE 480C and EBME 480C. Prereq: EECS/EBME 480A, EECS/EBME 480B

ECSE 480D. The Health Care Delivery Ecosystem. 3 Units.
Health care delivery across the continuum of care in the United States, including health policy and reform, financing of care, comparative health systems, population health, public health, access to care, care models, cost and value, comparative effectiveness, governance, management, accountability, workforce, and the future. Discussions of opportunities and challenges for wireless health, integrated into the foregoing topics. Perspective on health care delivery in other countries. Offered as ECSE 480D and EBME 480D.

ECSE 480E. Wireless Communications and Networking. 3 Units.
Essentials of wireless communications and networking, including teletraffic engineering, radio propagation, digital and cellular communications, wireless wide-area network architecture, speech and channel coding, modulation schemes, antennas, security, networking and transport layers, and 4G systems. Hands-on learning of the anatomy of a cell phone, and a paired wireless health device and its gateway. Offered as ECSE 480E and EBME 480E.

ECSE 480F. Physicians, Hospitals and Clinics. 3 Units.
Rotation through one or more health care provider facilities for a first-hand understanding of care delivery practice, coordination, and management issues. First-hand exposure to clinical personnel, patients, medical devices and instruments, and organizational workflow. Familiarity with provider protocols, physician referral practices, electronic records, clinical decision support systems, acute and chronic care, and inpatient and ambulatory care. Offered as ECSE 480F and EBME 480F.

ECSE 480G. Applied Cryptography. 3 Units.
This course begins with a discussion of how mobility-driven computing and communication systems use cryptography to protect data and protocols. The foundation for critical cryptographic concepts, techniques, and algorithms are covered. The fundamental cryptographic concepts are studied, including: symmetric encryption, public key encryption, digital signatures, cryptographic hash function, and message authentication codes; cryptographic protocols, such as key exchange, remote user authentication, and interactive proofs; cryptanalysis of cryptographic primitives and protocols, such as by side-channel attacks, differential cryptanalysis, or replay attacks; and cryptanalytic techniques on deployed systems, such as memory remanance, timing attacks, fault attacks, and differential power analysis. Techniques used for code making (cryptographic) and break codes (cryptanalytic) are covered, as well as how these techniques are used within larger security systems.
EBME 480P. Advanced Biomedical Instrumentation. 3 Units.
Analysis and design of biosensors in the context of biomedical measurements. Base sensors using electrochemical, optical, piezoelectric, and other principles. Binding equilibria, enzyme kinetics, and mass transport modalities. Adding the "bio" element to base sensors and mathematical aspects of data evaluation. Applications to clinical problems and biomedical research. Offered as ECSE 480P and EBME 480P.

ECSE 480Q. Regulatory Policy and Regulations. 3 Units.
Introduction of wireless health technologies: spectrum, licensed versus unlicensed; personal area networks; body area networks; ultra-wideband low energy level short-range radios; wireless local area networks; wide area networks. The Federal system: separation of powers; the executive branch and its departments; the House of Representatives and its committees; the Senate and its committees; the FCC; policy versus regulatory versus legislative. What is a medical device: FDA; classification system; radiation-emitting products; software; RF in medical devices; converged medical devices; international aspects. Regulation of health information technology and wireless health: American Recovery and Reinvestment Act; Patient Protection and Affordable Care Act; FCC/FDA MoU; CMS and Reimbursement; privacy and security. Offered as ECSE 480Q and EBME 480Q.

ECSE 480R. User Experience Engineering. 3 Units.
Social, cognitive, behavioral, and contextual elements in the design of healthcare technology and systems. User-centered design paradigm from a broad perspective, exploring dimensions of product user experience and learning to assess and modify the design of healthcare technology. Practical utilization of user centered design method and assessment techniques for approaching a design problem. Offered as ECSE 480R and EBME 480R.

ECSE 480S. Wireless Health Product Development. 3 Units.
Integrating application requirements, market data, concept formulation, design innovation, and manufacturing resources for creating differentiated wireless health products that delight the user. Learning user-centric product development best practices, safety, security and privacy considerations, and risk management planning. Understanding the regulatory process. Identifying and managing product development tradeoffs. Offered as ECSE 480S and EBME 480S. Prereq: ECSE 480R.

ECSE 480T. Wearable Computing Design. 3 Units.
Learning about wearable devices using flexible/conformal electronics designed for convenience and uninterrupted wear-ability. Examining related design challenges from the technology, human and business points of view. Understanding wearable product design for general and special-purpose tasks in information processing, media operations, and information extraction from sensed data. Learning about the technological challenges for design, including miniaturization, power delivery and management, data storage, and wireless networking. Learning about hardware choices (processor, field programmable gate array or custom ASIC based design) for wearable computers and software architectures for smart data processing. Learning about wearable designs centered on the human experience, including sensing and interfacing with the human body, as well as user interaction, convenience, and support for non-intrusive social appearance. Case studies tying the business requirements with the technology and design issues.

ECSE 480H. Software Security. 3 Units.
This course begins with discussions of good software engineering practices to ensure security in modern software systems and additional challenges to security due to code mobility in software for mobility-driven computing. The basics of software security and threat models, methods to protect software (operating systems, databases, distributed software) - including risk analysis, authentication and authorization, access control, and software architecture for security - are studied. Principles of secure coding, validation and verification of secure software, software and data watermarking, code obfuscation, tamper resistant software are studied, as well as the benefits of open source and closed source software. Use of software as an attack mechanism and emerging attack models (including joint hardware-software attacks) are studied.

ECSE 480K. Hardware Security. 3 Units.
This course begins with the keys to enabling secure, trustworthy operation of computer hardware - understanding security issues and how appropriate security measures are included during design, verification, test, and deployment. Increasingly the security primitives such as the Trusted Computing Module are being introduced at the hardware level to prevent the compromise of security in systems being deployed today. A comprehensive coverage of security issues in computer hardware is provided. Topics of embedded systems security, hardware Trojans, security in implantable medical devices, security in RFID/NFC, protection from side channel attacks, tamper resistance and crypto processor design, trusted FPGA design/JTAG, hardware-based cryptanalysis, and hardware IP protection against piracy and reverse-engineering are covered. A course project (Can you Hack It?) that challenges students to hack a hardware is included.

ECSE 480M. Introduction to Medical Informatics. 3 Units.
Current state and emerging trends in Medical Informatics (MI) and associated health information systems. Principles, data, data management, system interoperability, patient privacy, information security, electronic records, telehealth, regulatory issues, clinical decision support, mobile documentation, devices and wireless communications in healthcare. Impact of wireless technology on emerging health information systems and processes. Offered as ECSE 480M and EBME 480M.

ECSE 480Q. Regulatory Policy and Regulations. 3 Units.
Introduction of wireless health technologies: spectrum, licensed versus unlicensed; personal area networks; body area networks; ultra-wideband low energy level short-range radios; wireless local area networks; wide area networks. The Federal system: separation of powers; the executive branch and its departments; the House of Representatives and its committees; the Senate and its committees; the FCC; policy versus regulatory versus legislative. What is a medical device: FDA; classification system; radiation-emitting products; software; RF in medical devices; converged medical devices; international aspects. Regulation of health information technology and wireless health: American Recovery and Reinvestment Act; Patient Protection and Affordable Care Act; FCC/FDA MoU; CMS and Reimbursement; privacy and security. Offered as ECSE 480Q and EBME 480Q.

ECSE 480R. User Experience Engineering. 3 Units.
Social, cognitive, behavioral, and contextual elements in the design of healthcare technology and systems. User-centered design paradigm from a broad perspective, exploring dimensions of product user experience and learning to assess and modify the design of healthcare technology. Practical utilization of user centered design method and assessment techniques for approaching a design problem. Offered as ECSE 480R and EBME 480R.

ECSE 480S. Wireless Health Product Development. 3 Units.
Integrating application requirements, market data, concept formulation, design innovation, and manufacturing resources for creating differentiated wireless health products that delight the user. Learning user-centric product development best practices, safety, security and privacy considerations, and risk management planning. Understanding the regulatory process. Identifying and managing product development tradeoffs. Offered as ECSE 480S and EBME 480S. Prereq: ECSE 480R.

ECSE 480T. Wearable Computing Design. 3 Units.
Learning about wearable devices using flexible/conformal electronics designed for convenience and uninterrupted wear-ability. Examining related design challenges from the technology, human and business points of view. Understanding wearable product design for general and special-purpose tasks in information processing, media operations, and information extraction from sensed data. Learning about the technological challenges for design, including miniaturization, power delivery and management, data storage, and wireless networking. Learning about hardware choices (processor, field programmable gate array or custom ASIC based design) for wearable computers and software architectures for smart data processing. Learning about wearable designs centered on the human experience, including sensing and interfacing with the human body, as well as user interaction, convenience, and support for non-intrusive social appearance. Case studies tying the business requirements with the technology and design issues.
ECSE 480U. Wearable Computing Technology. 3 Units.
Learning about a broad range of cutting-edge technologies suitable for wearable computing. Understanding printed and flexible electronics technologies required for creating wearable computing, in particular organics for active components due to their flexibility or conformity. Examine the tradeoffs between flexible/conformal versus rigid electronics in the context of wearable computing. Reviewing the history of printed electronics used as conductors for membrane keypads, car windscreen heaters and RFID tag antennas to name a few application examples. Reviewing the latest technology advances in functional components such as displays, lighting, transistors (p-type & n-type), memory, batteries, photovoltaics (PV), sensors, and conductors as well as integration/packaging steps. Understanding the market potential of these technologies by reviewing emerging products.

ECSE 480W. Wearable Computing Manufacturing. 3 Units.
Learning about the supply chain and manufacturing processes for flexible electronics, sensors, and other technologies contributing to the development of wearable products. Understanding supply chain issues in low mobility materials, multilevel substrates, nanocomposites, materials for low power sensors, and inks suitable for direct printing. Identifying the tradeoffs involved in various manufacturing methods such as roll-to-roll manufacturing a mature coating technology yet to be proven for full device integration. Studying other manufacturing technologies such as plate-to-plate, direct printing, 3D printing, and screening techniques for their applicability to the manufacturing and integration of flexible electronics. Understanding the use of lithography and vapor deposition techniques in the context of flexible electronics. Examining the issues of systems integration and packaging of the manufactured products.

ECSE 480X. Mobility-Driven Computing. 3 Units.
Fundamental concepts in computing and architecture for mobile devices, mobile operating systems, mobility and mobile data management. Application of technologies for location awareness, context awareness, integrated sensors, mobile Internet, displays, pattern recognition and natural language processing, and touch/gesture based user interaction. Understanding of the tradeoffs in design (smartphones, tablets) due to resource constraints such as wireless connectivity, application processing, power management, and graphics. Integration of near- and wide-area wireless communication technologies (Bluetooth, Wireless WAN). Exploration of emerging technologies and services for the mobile platform. Integration of the foregoing concepts in a specific mobile context application (home/office, pedestrian, vehicular).

ECSE 480Y. Mobility-Driven Embedded Systems. 3 Units.
Foundations of reliable, energy-efficient and secure design of embedded systems. Fundamentals of mobility in embedded systems including wireless technology, location awareness, sensors, and actuators. Design consideration for processors, DSP, memory, and interfaces under mobility constraints (connectivity, power, and data management). Systems software for embedded computing, device management, and real-time I/O. Software design under constraints of size, performance, availability, and reliability. Software development techniques and practices (compilers, OS, and runtime systems). Case studies of mobility driven real-time embedded systems and software. Applications of mobility driven embedded systems, for example in in biomedical implant systems.

ECSE 480Z. Mobile Applications Development. 3 Units.
Understanding of the mobile application architecture, operating systems, and platforms. Challenges and opportunities in mobile application development. Evaluation of the leading mobile platform frameworks with respect to their features, functions, libraries, support, and ease of development. Software design for mobile applications in gaming, multimedia, entertainment, and enterprise applications. Development of enhanced user experience in a multi-touch, multi-sensor (accelerometer, gyroscopes, camera, geo-location) environment. Understanding of software development environments and testing tools, and use of wireless connectivity and data in mobile applications. Development of or extension of a modest application based on a major mobile platforms (iOS, Windows Phone 7, or Android).

ECSE 484. Computational Intelligence I: Basic Principles. 3 Units.
This course is concerned with learning the fundamentals of a number of computational methodologies which are used in adaptive parallel distributed information processing. Such methodologies include neural net computing, evolutionary programming, genetic algorithms, fuzzy set theory, and "artificial life." These computational paradigms complement and supplement the traditional practices of pattern recognition and artificial intelligence. Functionalities covered include self-organization, learning a model or supervised learning, optimization, and memorization.

ECSE 485. VLSI Systems. 3 Units.
Basic MOSFET models, inverters, steering logic, the silicon gate, nMOS process, design rules, basic design structures (e.g., NAND and NOR gates, PLA, ROM, RAM), design methodology and tools (spice, N.mpc, Caesar, mkpla), VLSI technology and system architecture. Requires project and student presentation, laboratory.

ECSE 487. Advanced Game Development Project. 3 Units.
This game development project course will bring together an interdisciplinary group of students in the fields of engineering, computer science, and art to focus on the design and development of a complete, fully functioning computer game as an interdisciplinary team. The student teams are given complete liberty to design their own fully functional games from their original concept to a playable game published in an online marketplace. Student teams will experience the entire game development cycle as they execute their projects. Responsibilities include creating a game idea, writing a story, developing the artwork, designing characters, implementing music and sound effects, programming and testing the game, and publishing the final project. Students enrolled in 487 will develop a healthcare or education virtual environment or video game in collaboration with a mentor who has expertise in the chosen area. Offered as CSDS 390, ECSE 390, and ECSE 487. Prereq: Graduate student standing.

ECSE 488. Embedded Systems Design. 3 Units.
Objective: to introduce and expose the student to methodologies for systematic design of embedded system. The topics include, but are not limited to, system specification, architecture modeling, component partitioning, estimation metrics, hardware software codesign, diagnostics.

ECSE 489. Robotics I. 3 Units.
ECSE 490. Digital Image Processing. 3 Units.
Digital images are introduced as two-dimensional sampled arrays of data. The course begins with one-to-one operations such as image addition and subtraction and image descriptors such as the histogram. Basic filters such as the gradient and Laplacian in the spatial domain are used to enhance images. The 2-D Fourier transform is introduced and frequency domain operations such as high and low-pass filtering are developed. It is shown how filtering techniques can be used to remove noise and other image degradation. The different methods of representing color images are described and fundamental concepts of color image transformations and color image processing are developed. One or more advanced topics such as wavelets, image compression, and pattern recognition will be covered as time permits. Programming assignments using software such as MATLAB will illustrate the application and implementation of digital image processing. Offered as CSDS 490 and ECSE 490.

ECSE 494. Introduction to Information Theory. 3 Units.
This course is intended as an introduction to information and coding theory with emphasis on the mathematical aspects. It is suitable for advanced undergraduate and graduate students in mathematics, applied mathematics, statistics, physics, computer science and electrical engineering. Course content: Information measures-entropy, relative entropy, mutual information, and their properties. Typical sets and sequences, asymptotic equipartition property, data compression. Channel coding and capacity: channel coding theorem. Differential entropy, Gaussian channel, Shannon-Nyquist theorem. Information theory inequalities (400 level). Additional topics, which may include compressed sensing and elements of quantum information theory. Recommended preparation: MATH 201 or MATH 307. Offered as MATH 394, CSDS 394, ECSE 394, MATH 494, CSDS 494 and ECSE 494.

ECSE 499. Algorithmic Robotics. 3 Units.
This course introduces basic algorithmic techniques in robotic perception and planning. Course is divided into two parts. The first part introduces probabilistic modeling of robotic motion and sensing. Gaussian and nonparametric filters, and algorithms for mobile robot localization. The second part introduces fundamental deterministic and randomized algorithms for motion planning. Offered as CSDS 499 and ECSE 499. Prereq: Graduate Standing or Requisites Not Met permission.

ECSE 500. ECSE Colloquium. 0 Unit.
Seminars on current topics in Electrical, Computer and Systems Engineering.

ECSE 500T. Graduate Teaching II. 0 Unit.
This course will provide the Ph.D. candidate with experience in teaching undergraduate or graduate students. The experience is expected to involve direct student contact but will be based upon the specific departmental needs and teaching obligations. This teaching experience will be conducted under the supervision of the faculty member who is responsible for the course, but the academic advisor will assess the educational plan to ensure that it provides an educational experience for the student. Students in this course may be expected to perform one or more of the following teaching related activities: grading homeworks, quizzes, and exams, having office hours for students, running recitation sessions, providing laboratory assistance. Recommended preparation: Ph.D. student in ECSE department.

ECSE 516. Large Scale Optimization. 3 Units.
Concepts and techniques for dealing with large optimization problems encountered in designing large engineering structure, control of interconnected systems, pattern recognition, and planning and operations of complex systems; partitioning, relaxation, restriction, decomposition, approximation, and other problem simplification devices; specific algorithms; potential use of parallel and symbolic computation; student seminars and projects. Recommended preparation: EECS/ECSE 416.

ECSE 526. Integrated Mixed-Signal Systems. 3 Units.
Mixed-signal (analog/digital) integrated circuit design. D-to-A and A-to-D conversion, applications in mixed-signal VLSI, low-noise and low-power techniques, and communication sub-circuits. System simulation at the transistor and behavioral levels using SPICE. Class will design a mixed-signal CMOS IC for fabrication by MOSIS. Recommended preparation: EECS/ECSE 426.

ECSE 527. Advanced Sensors: Theory and Techniques. 3 Units.
Sensor technology with a primary focus on semiconductor-based devices. Physical principles of energy conversion devices (sensors) with a review of relevant fundamentals: elasticity theory, fluid mechanics, silicon fabrication and micromachining technology, semiconductor device physics. Classification and terminology of sensors, defining and measuring sensor characteristics and performance, effect of the environment on sensors, predicting and controlling sensor error. Mechanical, acoustic, magnetic, thermal, radiation, chemical and biological sensors will be examined. Sensor packaging and sensor interface circuitry.

ECSE 531. Computer Vision. 3 Units.
The goal of computer vision is to create visual systems that recognize objects and recover structures in complex 3D scenes. This course emphasizes both the science behind our understanding of the fundamental problems in vision and the engineering that develops mathematical models and inference algorithms to solve these problems. Specific topics include feature detection, matching, and classification; visual representations and dimensionality reduction; motion detection and optical flow; image segmentation; depth perception, multi-view geometry, and 3D reconstruction; shape and surface perception; visual scene analysis and object recognition. Offered as CSDS 531 and ECSE 531.

ECSE 589. Robotics II. 3 Units.
Survey of research issues in robotics. Force control, visual servoing, robot autonomy, on-line planning, high-speed control, man/machine interfaces, robot learning, sensory processing for real-time control. Primarily a project-based lab course in which students design real-time software executing on multi-processors to control an industrial robot. Recommended preparation: EECS/CSDS/ECSE 489. Offered as CSDS 589 and ECSE 589.
ECSE 600. Special Topics. 1 - 18 Units.

ECSE 600T. Graduate Teaching III. 0 Unit.
This course will provide Ph.D. candidate with experience in teaching undergraduate or graduate students. The experience is expected to involve direct student contact but will be based upon the specific departmental needs and teaching obligations. This teaching experience will be conducted under the supervision of the faculty member who is responsible for the course, but the academic advisor will assess the educational plan to ensure that it provides an educational experience for the student. Students in this course may be expected to perform one or more of the following teaching related activities running recitation sessions, providing laboratory assistance, developing teaching or lecture materials presenting lectures. Recommended preparation: Ph.D. student in ECSE department.

ECSE 601. Independent Study. 1 - 18 Units.

ECSE 620. Special Topics. 1 - 18 Units.

ECSE 621. Special Projects. 1 - 18 Units.

ECSE 651. Thesis M.S.. 1 - 18 Units.
Credit as arranged.

ECSE 695. Project M.S.. 1 - 9 Units.
Research course taken by Plan B M.S. students. Prereq: Enrolled in the EECS Plan B MS Program.

ECSE 701. Dissertation Ph.D.. 1 - 9 Units.
Credit as arranged.