CIVIL ENGINEERING, BSE

More Information: https://engineering.case.edu/civil-and-environmentalengineering

Degree: Bachelor of Science in Engineering (BSE) **Major:** Civil Engineering

Program Overview

The faculty of the Civil and Environmental Engineering Department believes very strongly that undergraduate education should prepare students to be productive professional engineers. For this reason, particular emphasis in undergraduate teaching is placed on the application of engineering, science, and mathematical principles to the solution of complex engineering problems with consideration of global, environmental, and economic factors. After completing a set of core courses in general engineering and civil engineering, undergraduate students choose a sequence in one of the areas of civil engineering of particular interest: Structural, Geotechnical, Construction Management, Pre-architecture, or Environmental.

In order to provide undergraduates with experience in the practice of civil and environmental engineering, the Department creates opportunities for students to network with professional engineers by hosting department career fairs and professional lunch seminars. These interactions often lead to summer internships or co-op employment for students. By working for organizations in areas of design and construction, students gain invaluable knowledge about how the profession functions. This experience helps students gain more from their education and helps them be more competitive when seeking future employment.

A cooperative education program is also available. This allows the student to spend time an extended period of time working full-time in an engineering capacity with a contractor, consulting engineer, architect, or materials supplier during the course of his or her education. This learning experience is designed to integrate classroom theory with practical experience and professional development.

The civil and environmental engineering curriculum has been designed so that students take a set of core civil engineering courses, a set of required courses in their chosen sequence, and a minimum of six approved elective courses. The sequence gives students the opportunity to pursue a particular area of practice in more depth. In addition, all civil engineering students participate in a team senior capstone design course which provides them experience with solving multidisciplinary problems.

Most classes in the Civil and Environmental Engineering Department have an enrollment of fewer than 25 students to encourage the development of close professional relationships with the faculty. Students also have opportunities to gain practical experience as well as earn a supplemental income by assisting faculty members in consulting work or a funded research project.

The application of modern engineering tools is an integral part of the curriculum. Students apply skills in computer programming and numerical analysis to solutions of complex Civil Engineering problems. Popular software used in the professional engineering community is integrated into course curriculum for planning, analysis, design, and managerial tools. All sequences are constructed to provide a balance of marketable skills and theoretical bases for further growth. With departmental approval, other sequences can be developed to meet students' needs.

The Bachelor of Science in Engineering degree program with a major in Civil Engineering is accredited by the Engineering Accreditation Commission of ABET, under the commission's General Criteria and Program Criteria for Civil and Similarly Named Engineering Programs.

Program Educational Objectives

- a. Graduates of the program will enter the profession of Civil Engineering and advance to positions of greater responsibility and leadership, in line with ASCE Engineering Grade Descriptions, while upholding the ethical standards of the field.
- B. Graduates of the program will seek to contribute to the Civil Engineering's body of knowledge and stay informed of emerging technologies and practices.
- c. Graduates of the program will advance the field through active engagement in professional organizations, as well as mentoring and volunteering opportunities within their communities.
- Graduates of the program will complete professional licensure, pursue advanced degree programs, and/or engage in other continuing education opportunities.

Learning Outcomes

As preparation for achieving the above educational objectives, the Bachelor of Science in Engineering degree program with a major in Civil Engineering is designed so that students attain:

- an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
- an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
- · an ability to communicate effectively with a range of audiences
- an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
- an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
- an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
- an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Co-op and Internship Programs

Opportunities are available for students to alternate studies with work in industry or government as a co-op student, which involves paid fulltime employment over seven months (one semester and one summer). Students may work in one or two co-ops, beginning in the third year of study. Co-ops provide students the opportunity to gain valuable handson experience in their field by completing a significant engineering project while receiving professional mentoring. During a co-op placement, students do not pay tuition but maintain their full-time student status while earning a salary. Alternatively or additionally, students may obtain employment as summer interns.

Undergraduate Policies

For undergraduate policies and procedures, please review the Undergraduate Academics section of the General Bulletin.

Accelerated Master's Programs

Undergraduate students may participate in accelerated programs toward graduate or professional degrees. For more information and details of the policies and procedures related to accelerated studies, please visit the Undergraduate Academics section of the General Bulletin.

Program Requirements

Students seeking to complete this major and degree program must meet the general requirements for bachelor's degrees and the Unified General Education Requirements. Students completing this program as a secondary major while completing another undergraduate degree program do not need to satisfy the school-specific requirements associated with this major.

After completing a set of core courses in general engineering and civil engineering, undergraduate students choose a concentration in one of the areas of civil engineering of particular interest: Structural, Geotechnical, Construction Management, Pre-architecture, or Environmental.

Code	Title	Credit Hours			
Required Mathematics, Science and Engineering Courses:					
MATH 121	Calculus for Science and Engineering I	4			
MATH 122	Calculus for Science and Engineering II	4			
or MATH 124	Calculus II				
MATH 223	Calculus for Science and Engineering III	3			
or MATH 227	Calculus III				
MATH 224	Elementary Differential Equations	3			
or MATH 228	Differential Equations				
PHYS 121	General Physics I - Mechanics	4			
or PHYS 123	Physics and Frontiers I - Mechanics				
PHYS 122	General Physics II - Electricity and Magnetism	4			
or PHYS 124	Physics and Frontiers II - Electricity and Magnet	ism			
CHEM 111	Principles of Chemistry for Engineers	4			
ENGR 130	Foundations of Engineering and Programming	3			
ENGR 145	Chemistry of Materials	4			
ENGR 200	Statics and Strength of Materials	3			
ENGR 399	Impact of Engineering on Society	3			
Code	Title	Credit Hours			
Required Courses		25			
ECIV 260	Surveying and Computer Graphics				
ECIV 310	Strength of Materials				
ECIV 315	Introduction to Structural Engineering and Analysis				
ECIV 330	Soil Mechanics				

Construction Management

ECIV 340

ECIV 360	Civil Engineering Systems
ECIV 368	Environmental Engineering
ECIV 398	Civil Engineering Senior Project

Concentration Requirements Structural

Code	Title	Credit Hours
Required Courses		13
ECIV 311	Civil Engineering Materials	
ECIV 373	Reinforced Concrete Design	
or ECIV 374	Structural Steel Design	
ENGR 210	Introduction to Circuits and Instrumentation	
EMAE 181	Dynamics	
Open Electives		9
Technical Elective	s: ^a	18
ARTS 302	Architecture and City Design I	
ECIV 300	Undergraduate Research	
ECIV 316/416	Matrix Analysis of Structures	
ECIV 342	BIM and Computer Graphics	
ECIV 351	Engineering Hydraulics and Hydrology ^b	
ECIV 372/472	Timber and Masonry Design ^b	
ECIV 373	Reinforced Concrete Design ^b	
ECIV 374	Structural Steel Design ^b	
ECIV 413	Theory of Elasticity and Plasticity	
ECIV 415	Fracture Mechanics and Size Effect ^b	
ECIV 417	Structural Dynamics	
ECIV 418	Bridge Engineering ^b	
ECIV 419	Damage and Deterioration of Structures	
ECIV 420	Finite Element Analysis	
ECIV 426	Probabilistic Analysis	
ECIV 430	Foundation Engineering ^b	
ECIV 435	Elasticity and Data-driven Mechanics	
ECIV 455	Data Analysis for Civil and Environmental Engineering	
ECIV 456	Intelligent Infrastructure Systems	
ECIV 473	Advanced Topics in Reinforced Concrete Design	b
ECIV 474	Advanced Structural Steel Design ^b	
ECIV 476	Structural Fire Engineering ^b	
ECSE 342	Introduction to Global Issues	
ECSE 350	Operations and Systems Design	
ECSE 352	Engineering Economics and Decision Analysis	
EMAE 401	Mechanics of Continuous Media	
EMAE 250	Computers in Mechanical Engineering	
EMSE 276	Materials Properties: Composition and Structure	
EMSE 372	Structural Materials by Design	

 a Three of the technical electives must be from the Civil and Environmental Engineering Department. Two of the technical electives must be designated as design courses.
b Design course.

Geotechnical				
Code	Title	Credit		
		Hours		
Required Courses	:	13		
ECIV 311	Civil Engineering Materials			
ECIV 373	Reinforced Concrete Design			
or ECIV 374	Structural Steel Design			
ENGR 210	Introduction to Circuits and Instrumentation			
EMAE 181	Dynamics			
Open Electives		9		
Technical Elective	es: ^a	18		
DSCI 432	Spatial Statistics for Near Surface, Surface, and Subsurface Modeling			
ECIV 300	Undergraduate Research			
ECIV 316	Matrix Analysis of Structures			
or ECIV 416	Matrix Analysis of Structures			
ECIV 342	BIM and Computer Graphics			
ECIV 343	BIM Data Management & Remote Sensing			
ECIV 351	Engineering Hydraulics and Hydrology ^b			
ECIV 372	Timber and Masonry Design ^b			
or ECIV 472	Timber and Masonry Design			
ECIV 373	Reinforced Concrete Design ^b			
ECIV 374	Structural Steel Design ^b			
ECIV 413	Theory of Elasticity and Plasticity			
ECIV 415	Fracture Mechanics and Size Effect ^b			
ECIV 420	Finite Element Analysis			
ECIV 430	Foundation Engineering ^b			
ECIV 435	Elasticity and Data-driven Mechanics			
ECIV 437	Pavement Analysis and Design ^b			
ECIV 455	Data Analysis for Civil and Environmental Engineering			
ECIV 456	Intelligent Infrastructure Systems			
EEPS 220	Environmental Geology			
EEPS 305	Geomorphology and Remote Sensing			
EEPS 315	Structural Geology and Geodynamics			
EEPS 321	Hydrogeology			
EMAE 250	Computers in Mechanical Engineering			

a Three of the technical electives must be from the Civil and Environmental Engineering Department. Two of the technical electives must be designated as design courses.

b Design course.

Construction Management

Code	Title	Credit Hours	
Required Courses:			
ECIV 311	Civil Engineering Materials		
ECIV 373	Reinforced Concrete Design		
or ECIV 37	74 Structural Steel Design		
ENGR 210	Introduction to Circuits and Instrumentation		
Open Electives		12	
Technical Electi	ves: ^a	18	

ACCT 100	Foundations of Accounting I
BAFI 355	Corporate Finance
ECIV 300	Undergraduate Research
ECIV 341	Construction Scheduling and Estimating
ECIV 342	BIM and Computer Graphics
ECIV 343	BIM Data Management & Remote Sensing
ECIV 372/472	Timber and Masonry Design ^b
ECIV 373	Reinforced Concrete Design ^b
ECIV 374	Structural Steel Design ^b
ECIV 413	Theory of Elasticity and Plasticity
ECIV 418	Bridge Engineering ^b
ECIV 415	Fracture Mechanics and Size Effect ^b
ECIV 419	Damage and Deterioration of Structures
ECIV 430	Foundation Engineering ^b
ECIV 435	Elasticity and Data-driven Mechanics
ECIV 437	Pavement Analysis and Design ^b
ECIV 456	Intelligent Infrastructure Systems
ECIV 473	Advanced Topics in Reinforced Concrete Design ^b
ECIV 474	Advanced Structural Steel Design ^b
ECON 312	Entrepreneurial Finance
ECON 329	Game Theory: The Economics of Thinking Strategically
ECON 333	The Economics of Organizations and Employment Relationships
ECON 342	Public Finance
ECON 368	Environmental Economics
ECON 369	Economics of Technological Innovation and Entrepreneurship
ECSE 342	Introduction to Global Issues
EMAE 181	Dynamics
EMAE 250	Computers in Mechanical Engineering
ORBH 250	Leading People: The Practice, Theory, and Reality of Leadership (LEAD I)
ORBH 251	Leading Organizations (LEAD II)
ORBH 303	Developing Interpersonal Skills for Leading
ORBH 330	Quantum Leadership: Creating Value for You, Business, and the World
ORBH 380	Managing Negotiations
ORBH 391	Leadership in Diversity and Inclusion: Towards a Globally Inclusive Workplace

 a Three of the technical electives must be from the Civil and Environmental Engineering Department. Two of the technical electives must be designated as design courses.
b Design course.

Pre-Architecture

Code	Title	Credit Hours
Required Courses	:	10
ECIV 311	Civil Engineering Materials	
ECIV 373	Reinforced Concrete Design	
or ECIV 374	Structural Steel Design	
ENGR 210	Introduction to Circuits and Instrumentation	

BIOL 215

BIOL 300

BIOL 343

CHEM 223

CHEM 224

CHEM 301

CHEM 302

CHEM 323

CHEM 324

CHEM 335

CHEM 336

Cells and Proteins

Microbiology

Introduction to Biology

Organic Chemistry I

Organic Chemistry II

Physical Chemistry I

Physical Chemistry II

Introductory Organic Chemistry I

Introductory Organic Chemistry II

Introductory Physical Chemistry I

Introductory Physical Chemistry II

Dynamics of Biological Systems: A Quantitative

Open Electives 12			12	CSDS 132	Programming in Java	
Technical Electives: ^a		18	CSDS 133	Introduction to Data Science and Engineering for		
ARTS 106 Creative Drawing I				Majors		
	ARTS 206	Creative Drawing II		CSDS 233	Introduction to Data Structures	
	ARTS 302	Architecture and City Design I		CSDS 313	Introduction to Data Analysis	
	ARTS 303	Architecture and City Design II		CSDS 391	Introduction to Artificial Intelligence	
	ARTS 304	Architecture and City Design III		CSDS 440	Machine Learning	
	ECIV 300	Undergraduate Research		DSCI 351	Exploratory Data Science	
	ECIV 316/416	Matrix Analysis of Structures		DSCI 353	Data Science: Statistical Learning, Modeling and	
	ECIV 342	BIM and Computer Graphics			Prediction	
	ECIV 343	BIM Data Management & Remote Sensing		DSCI 354	Data Visualization and Analytics	
	ECIV 372/472	Timber and Masonry Design ^b		EEPS 110	Physical Geology	
	ECIV 373	Reinforced Concrete Design ^b		EEPS 117	Weather and Climate	
	ECIV 374	Structural Steel Design ^b		EEPS 202	Global Environmental Problems	
	ECIV 419	Damage and Deterioration of Structures		EEPS 220	Environmental Geology	
	ECIV 420	Finite Element Analysis		EEPS 260	Introduction to Climate Change: Physics,	
	ECIV 426	Probabilistic Analysis			Forecasts, and Strategies	
	ECIV 430	Foundation Engineering ^b		EEPS 352	Biogeochemistry	
	ECIV 437	Pavement Analysis and Design		ESTD 202	Global Environmental Problems	
	ECIV 473	Advanced Topics in Reinforced Concrete Design ^b		MATH 380	Introduction to Probability	
	ECIV 474	Advanced Structural Steel Design ^b		PQHS 426	An Introduction to GIS for Health and Social	
	ECIV 476	Structural Fire Engineering ^b			Statistical Methods	
	EMAE 181	Dynamics		PQH3 431	Pasia Statistica for Engineering and Science	
	EMAE 250	Computers in Mechanical Engineering		Technical Elective		10
					Principles of Feelegy	10
а	Three of th	e technical electives must be from the Civil and		BIOL 331	Introduction to Chemical Systems ^b	
	Environme	ntal Engineering Department. Two of the technical			Transport Dhonomono for Chemical Systems	
h	Design cou	inse designated as design courses.			Concerning Deconcerning b	
0	Design cot			ECHE 301	Separation Processes	
c	nvironmonto	1		ECHE 302	Chemical Engineering Laboratory	
				ECHE 364	Chemical Reaction Processes	
С	ode	Title Cr	edit	ECHE 367	Process Control	
Ho Descrived Courses		urs	ECHE 398	Process Analysis, Design and Safety		
ECIV 251 Engineering Hydroulice and Hydrolegy		'	ECIV 300	Undergraduate Research		
ECUE 225 Thermal and Eluid Sciences			ECIV 311	Civil Engineering Materials		
EUHE 225				ECIV 361	Water Resources Engineering ~	
or EMAE 2511 hermodynamics		-	ECIV 362/462	Solid and Hazardous Waste Management		
Upen Electives 6		6	ECIV 363	Environmental Engineering Green Stormwater		
Basic Science/Math Electives:		Э	ECIV 426	Drahabiliatia Analysia		
	BIOL 114	Principles of Biology			Fruitabilistic Alidiysis	
	BIOL 214	Genes, Evolution and Ecology		EUIV 427	Environmental Organic Chemistry	

2011 120	1 Tobusinetto / maryoto
ECIV 427	Environmental Organic Chemistry
ECIV 450	Environmental Engineering Chemistry
ECIV 455	Data Analysis for Civil and Environmental Engineering
ECIV 461	Environmental Engineering Biotechnology ^b
ECIV 463	Environmental Engineering Green Stormwater Infrastructure
ECSE 342	Introduction to Global Issues
ENGR 210	Introduction to Circuits and Instrumentation
EMAE 252	Fluid Mechanics

a Three of the technical electives must be from the Civil and Environmental Engineering Department. Two of the technical electives must be designated as design courses. b Design course.

Sample Plans of Study

The following are suggested plans of study. Current students should always consult their advisors and their individual graduation requirement plans.

Sample Plan of Study: Structural or Geotechnical Concentrations

First Year

Fall		Credit Hours	
CHEM 111	Principles of Chemistry for Engineers	4	
ENGR 130 Foundations of Engineering and Programming			
MATH 121	Calculus for Science and Engineering I	4	
Academic Inquiry	Seminar, Breadth, or Elective course ^a	3	
Open Elective		3	
	Credit Hours	17	
Spring			
ENGR 145	Chemistry of Materials	4	
MATH 122	Calculus for Science and Engineering II	4	
PHYS 121	General Physics I - Mechanics	4	
Academic Inquiry	Seminar, Breadth, or Elective course ^a	3	
	Credit Hours	15	
Second Year			
Fall			
ECIV 260	Surveying and Computer Graphics	3	
ENGR 200	Statics and Strength of Materials	3	
MATH 223	Calculus for Science and Engineering III	3	
PHYS 122	General Physics II - Electricity and Magnetism	4	
Breadth. or Elective	e course ^a	3	
	Credit Hours	16	
Spring			
ECIV 310	Strength of Materials	3	
ENGR 399	Impact of Engineering on Society	3	
MATH 224	Elementary Differential Equations	3	
Breadth, or Elective	e course ^a	3	
Natural Science El	ective ^b	3	
Open Elective		3	
	Credit Hours	18	
Third Year			
Fall			
ECIV 315	Introduction to Structural Engineering and Analysis	3	
ECIV 340	Construction Management	3	
ENGR 210 Introduction to Circuits and Instrumentation		4	
ECIV 311	Civil Engineering Materials	3	
EMAE 181	Dynamics	3	
	Credit Hours	16	

Spring

b

	Total Credit Hours	128
	Credit Hours	15
Technical Elective		3
Technical Elective		3
Breadth, or Elective	course ^a	3
ECIV 398	Civil Engineering Senior Project ^d	3
ECIV 360	Civil Engineering Systems	3
Spring		
	Credit Hours	15
Open Elective		3
Breadth, or Elective	course ^a	3
Breadth, or Elective	3	
Technical Elective		3
Technical Elective		3
Fall		
Fourth Year		
	Credit Hours	16
Technical Elective		3
Technical Elective		3
ECIV 373	Reinforced Concrete Design ^c	3
ECIV 368	Environmental Engineering	3
ECIV 330	Soil Mechanics	4

a Unified General Education Requirement.

A basic science elective other than Chemistry or Physics (such as Biology, Astronomy or Geology). Must be approved by academic advisor.

c ECIV 374, a fall course, may be taken in lieu of ECIV 373.

d ECIV 398 may be taken in the Fall or Spring semester of Year 4.

Sample Plan of Study: Construction Management or Pre-Architecture Concentrations

First Year		
Fall		Credit Hours
CHEM 111	Principles of Chemistry for Engineers	4
ENGR 130	Foundations of Engineering and Programming	3
MATH 121	Calculus for Science and Engineering I	4
Academic Inquiry Se	eminar, Breadth, or Elective course ^a	3
Open Elective		3
	Credit Hours	17
Spring		
ENGR 145	Chemistry of Materials	4
MATH 122	Calculus for Science and Engineering II	4
PHYS 121	General Physics I - Mechanics	4
Academic Inquiry Seminar, Breadth, or Elective course ^a		
	Credit Hours	15
Second Year Fall		
ECIV 260	Surveying and Computer Graphics	3
ENGR 200	Statics and Strength of Materials	3

	Total Credit Hours	128
	Credit Hours	15
Technical Elective		3
Technical Elective		3
Technical Flective		3
Breadth or Elective	course ^a	3
Spring	Civil Engineering Systems	2
	Credit Hours	15
Technical Elective		3
Technical Elective		3
Technical Elective		3
Breadth, or Elective	e course ^a	3
Fall ECIV 398	Civil Engineering Senior Project ^d	3
Fourth Year		
	Credit Hours	16
Open Elective		3
Breadth. or Elective	e course ^a	3
ECIV 373	Beinforced Concrete Design ^c	3
ECIV 368	Environmental Engineering	3
Spring ECIV 330	Soil Mechanics	4
	Credit Hours	3
Open Flootivo	Give Engineering waterias	3
	Instrumentation	
ENGR 210	Introduction to Circuits and	4
ECIV 340	and Analysis Construction Management	3
Third Year Fall ECIV 315	Introduction to Structural Engineering	3
	Credit Hours	18
Open Elective		3
Natural Science Ele	ective ^b	3
Breadth, or Elective	e course ^a	3
MATH 224	Elementary Differential Equations	3
ENGR 399	Impact of Engineering on Society	3
Spring ECIV 310	Strength of Materials	3
	Credit Hours	16
Breadth, or Elective	e course ^a	3
	Magnetism	4
PHYS 122	General Physics II - Electricity and	3
	Calculus for Science and Engineering III	3

a Unified General Education Requirement.

b A basic science elective other than Chemistry or Physics (such as Biology, Astronomy or Geology). Must be approved by academic advisor.

c ECIV 374, a fall course, may be taken in lieu of ECIV 373.

ECIV 398 may be taken in the Fall or Spring semester of Year 4.

Sample Plan of Study: Environmental Concentration

d

First Year		
Fall		Credit
		Hours
CHEM 111	Principles of Chemistry for Engineers	4
ENGR 130	Foundations of Engineering and Programming	3
MATH 121	Calculus for Science and Engineering I	4
Academic Inquiry Se	eminar, Breadth, or Elective course ^a	3
Open Elective		3
	Credit Hours	17
Spring		
ENGR 145	Chemistry of Materials	4
MATH 122	Calculus for Science and Engineering II	4
PHYS 121	General Physics I - Mechanics	4
Academic Inquiry Se	eminar, Breadth, or Elective course ^a	3
	Credit Hours	15
Second Year		
Fall		
ECIV 260	Surveying and Computer Graphics	3
ENGR 200	Statics and Strength of Materials	3
MATH 223	Calculus for Science and Engineering III	3
PHYS 122	General Physics II - Electricity and Magnetism	4
Breadth, or Elective	course ^a	3
	Credit Hours	16
Spring		
ECIV 310	Strength of Materials	3
ENGR 399	Impact of Engineering on Society	3
MATH 224	Elementary Differential Equations	3
Breadth, or Elective	course ^a	3
Natural Science Elec	ctive ^b	3
Open Elective		3
	Credit Hours	18
Third Year		
	Introduction to Structural Engineering	2
ECIV 315	and Analysis	3
ECIV 340	Construction Management	3
ECHE 225 or EMAE 251	Thermal and Fluid Sciences or Thermodynamics	4
Basic Science/Math	Elective	3
Basic Science/Math	Elective	3
	Credit Hours	16
Spring		
ECIV 330	Soil Mechanics	4
ECIV 368	Environmental Engineering	3
ECIV 351	Engineering Hydraulics and Hydrology	3
Technical Elective		3
Basic Science/Math Elective		

Fourth Year

Fall		
ECIV 398	Civil Engineering Senior Project ^d	3
Breadth, or Electi	3	
Technical Elective	e	3
Technical Elective	e	3
Technical Elective	e	3
	Credit Hours	15
Spring		
ECIV 360	Civil Engineering Systems	3
Breadth, or Electi	3	
Breadth, or Elective course ^a		3
Technical Elective	e	3
Technical Elective	e	3
	Credit Hours	15
	Total Credit Hours	128

a Unified General Education Requirement.

b A basic science elective other than Chemistry or Physics (such as Biology, Astronomy or Geology). Must be approved by academic advisor.

c ECIV 374, a fall course, may be taken in lieu of ECIV 373.

d ECIV 398 may be taken in the Fall or Spring semester of Year 4.