MATERIALS SCIENCE AND ENGINEERING, BSE

Degree: Bachelor of Science in Engineering (BSE) **Major:** Materials Science and Engineering

Program Overview

The curriculum leading to the Bachelor of Science in Engineering degree with a major in Materials Science and Engineering includes the "Engineering Core" – basic courses in mathematics, physics, chemistry, and engineering along with breadth electives – and the CWRU General Education requirements. To these are added courses in engineering materials, which also allow students to choose one of several areas of concentration within the major. A total of 128 credit hours is required.

Throughout the undergraduate curriculum in Materials Science and Engineering, scientific fundamentals are integrated with coverage of current manufacturing, design, and applications of engineering materials.

The goal of the Department of Materials Science and Engineering is to prepare students for rewarding careers that provide creative, effective solutions to societal needs, through coursework and associated activities that emphasize:

- The interrelationships among the processing, structure, properties, and performance of engineering materials
- The mutual reinforcement of education and professional development throughout one's career

The undergraduate experience in Materials Science and Engineering at Case Western Reserve is marked by a high degree of hands-on experience and many opportunities for professional development before graduation. Lab courses, senior projects, and plant tours ensure that every student sees the field first-hand in current research and industrial settings.

The Bachelor of Science in Engineering degree program with a major in Materials Science and Engineering is accredited by the Engineering Accreditation Commission of ABET.

Program Educational Objectives

- a. Graduates will take an active part in professional organizations.
- b. Graduates will assume leadership positions in materials science related industries.
- c. Graduates will be effectively involved in solving technical problems.
- d. Graduates may successfully enter and complete graduate and professional degree programs.

Learning Outcomes

As preparation for achieving the above educational objectives, the Bachelor of Science in Engineering degree program with a major in Materials Science and Engineering is designed so that students attain:

- an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
- an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety,

and welfare, as well as global, cultural, social, environmental, and economic factors

- · an ability to communicate effectively with a range of audiences
- an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
- an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
- an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
- an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Co-op and Internship Programs

Opportunities are available for students to alternate studies with work in industry or government as a co-op student, which involves paid fulltime employment over seven months (one semester and one summer). Students may work in one or two co-ops, beginning in the third year of study. Co-ops provide students the opportunity to gain valuable handson experience in their field by completing a significant engineering project while receiving professional mentoring. During a co-op placement, students do not pay tuition but maintain their full-time student status while earning a salary. Alternatively or additionally, students may obtain employment as summer interns.

Undergraduate Policies

For undergraduate policies and procedures, please review the Undergraduate Academics section of the General Bulletin.

Accelerated Master's Programs

Undergraduate students may participate in accelerated programs toward graduate or professional degrees. For more information and details of the policies and procedures related to accelerated studies, please visit the Undergraduate Academics section of the General Bulletin.

Program Requirements

Students seeking to complete this major and degree program must meet the general requirements for bachelor's degrees and the Unified General Education Requirements. Students completing this program as a secondary major while completing another undergraduate degree program do not need to satisfy the school-specific requirements associated with this major.

Students majoring in Materials Science and Engineering have six concentrations available to them, or the option to double major with Biomedical Engineering or Mechanical Engineering.

- · Materials Science and Engineering with Concentrations
 - Biomaterials Concentration
 - Electronic Materials Concentration
 - Materials Data Science Concentration
 - · Polymers Concentration

- · Structural Materials and Mechanical Behavior Concentration
- Advanced Materials Science and Engineering Concentration
- Materials Science and Engineering with double major in Biomedical
 Engineering
- Materials Science and Engineering with double major in Mechanical Engineering

Each option has a different set of required courses, which are presented in the tables below. The major provides the student with both a foundational background in materials science and engineering and allows flexibility to concentrate studies in a well-defined area. To meet specific educational objectives, students may choose alternatives from among the suggested electives or design unique specialties. These options are flexible and subject to departmental guidelines and faculty approval. The choices for double majors are limited because the curriculum is specified so that students can successfully complete the degree requirements for a single B.S.E. degree with a double major in Materials Science and Engineering and Biomedical or Mechanical Engineering degrees within a four-year period.

Required Courses

Code	Title	Hours
Required Mathem	natics, Science and Engineering Courses	
MATH 121	Calculus for Science and Engineering I	4
MATH 122	Calculus for Science and Engineering II	4
or MATH 124	Calculus II	
MATH 223	Calculus for Science and Engineering III	3
or MATH 227	Calculus III	
MATH 224	Elementary Differential Equations	3
or MATH 228	Differential Equations	
PHYS 121	General Physics I - Mechanics	4
or PHYS 123	Physics and Frontiers I - Mechanics	
PHYS 122	General Physics II - Electricity and Magnetism	4
or PHYS 124	Physics and Frontiers II - Electricity and Magnetis	sm
CHEM 111	Principles of Chemistry for Engineers	4
ENGR 130	Foundations of Engineering and Programming	3
ENGR 145	Chemistry of Materials	4
ENGR 200	Statics and Strength of Materials	3
ENGR 210	Introduction to Circuits and Instrumentation	4
ENGR 225	Thermodynamics, Fluid Dynamics, Heat and Mas Transfer	s 4
Code	Title	Hours
Foundational Mat	erials Engineering:	
EMSE 327	Thermodynamic Stability and Rate Processes	3
EMSE 276	Materials Properties: Composition and Structure	3
EMSE 319	Processing and Manufacturing of Materials	3
EMSE 328	Mesoscale Structural Control of Functional Materials	3
EMSE 379	Design for Lifetime Performance	3
Mathematical Me	thods Requirement ^a	
EMSE 228	Mathematical and Computational Methods for	3
	Materials Science and Engineering	
or EMAE 250	Computers in Mechanical Engineering	

or EBME 309	Modeling of Biomedical Systems	
Applied Materials	s Science to Applications	
EMSE 343	Processing of Electronic Materials	3
EMSE 345	Engineered Materials for Biomedical Applications	3
EMSE 349	Role of Materials in Energy and Sustainability	3
EMSE 372	Structural Materials by Design	4
Applied Engineer	ing Concepts ^a	
EMSE 110	Transitioning Ideas to Reality I - Materials in Service of Industry and Society ^b	1
EMSE 120	Transitioning Ideas to Reality II - Manufacturing Laboratory ^b	2
EMSE 220	Materials Laboratory I ^b	2
EMSE 320	Materials Laboratory II ^b	1
EMSE 330	Materials Laboratory III ^b	2
Senior Writing Ca	apstone ^a	
EMSE 398	Senior Project in Materials I ^b	1
EMSE 399	Senior Project in Materials II	2
or EMAE 398	Senior Project	
or EBME 380	Biomedical Engineering Design Experience	
Concentration Se	equence	18
Total Hours		60

a Courses in these sections vary based on concentration or double major.

b

Course waived for students completing either the Biomedical Engineering double major or the Mechanical Engineering double major.

Double Major in Materials Science and Engineering and Biomedical Engineering

This double major is jointly administered by the Department of Biomedical Engineering and the Department of Materials Science and Engineering. The double major educates and prepares undergraduate students for leadership roles in the application of Materials Engineering to solve challenges in Biomedical Engineering. Achievements that combine these engineering disciplines underpin the revolutionary advances in technology and medicine that define the modern standard of healthy living. See the Plan of Study tab for a sample curriculum plan, and the Biomedical Engineering, BSE page for the Biomedical Engineering major requirements.

Double Major in Materials Science and Engineering and Mechanical Engineering

This double major is jointly administered by the Department of Mechanical and Aerospace Engineering and the Department of Materials Science and Engineering. The double major educates and prepares undergraduate students for leadership roles in the application of Materials Engineering to solve challenges in Mechanical Engineering. Achievements that combine these engineering disciplines underpin the revolutionary advances in technology that define the industrialized economy. See the Plan of Study tab for a sample curriculum plan, and the Mechanical Engineering, BSE page for the Mechanical Engineering major requirements.

Concentration Requirements

The undergraduate program has six concentration sequences that expose students to greater depth in areas related to materials science and engineering and are based on an application or subfield of engineering materials.

Each concentration is a coherent set of courses that, in conjunction with one or more of the courses already required for all EMSE majors plus a specified mathematics/natural science/statistics course, will provide significant depth in an area of materials specialization. The Advanced Materials Science and Engineering sequence is designed in consultation with their advisors and subject to approval by the department's Undergraduate Studies Committee.

The concentrations are below. All concentrations have 6 credit hours of EMAC courses and 12 credit hours of technical elective choices.

Biomaterials Concentration

Code	Title	Hours
Required Courses	5:	
EMAC 270	Introduction to Polymer Science and Engineering	g 3
EMAC 276	Polymer Properties and Design	3
EBME 201	Physiology-Biophysics I	3
EBME 202	Physiology-Biophysics II	3
Choose two of the	e following:	6
EBME/EMAC 303	Structure of Biological Materials	
EBME 305	Materials for Prosthetics and Orthotics	
EBME 306	Introduction to Biomedical Materials	
EBME 316	Biomaterials for Drug Delivery	
EBME 325	Introduction to Tissue Engineering	
EBME 406/ EMAC 471	Polymers in Medicine	
EBME/ECSE 480B	The Human Body	
Total Hours		18

Electronic Materials Concentration

Code	Title	Hours
Required Courses	s:	
EMAC 270	Introduction to Polymer Science and Engineering	g 3
EMAC 276	Polymer Properties and Design	3
PHYS 221	Introduction to Modern Physics **	3
Choose three of t	he following: ^a	9-10
Emphasis on S	olid-State Physics Courses	
PHYS 315	Introduction to Solid State Physics	
PHYS 326	Physical Optics	
PHYS 327	Laser Physics	
PHYS 331	Introduction to Quantum Mechanics I	
Emphasis on E	lectronic Device Technology Courses	
CHEM 340	Solar Energy Conversion	
ECHE 383	Chemical Engineering Applied to Microfabricatio and Devices	n
ECSE 309	Electromagnetic Fields I	
ECSE 321	Semiconductor Electronic Devices	

18

a Courses can be any combination from the two listed categories.

Materials Data Science Concentration

Code	Title Ho	ours
Required Courses	s:	
DSCI 351M	Exploratory Data Science	3
EMAC 270	Introduction to Polymer Science and Engineering	3
EMAC 276	Polymer Properties and Design	3
STAT 312R	Basic Statistics for Engineering and Science Using R Programming	3
Choose one of th	e following:	3
DSCI 352M	Applied Data Science Research	
DSCI 353M	Data Science: Statistical Learning, Modeling and Prediction	
Choose one of th	e following:	3
ECSE 321	Semiconductor Electronic Devices	
ECSE 322	Integrated Circuits and Electronic Devices	
MATH 307	Linear Algebra	
MATH 304	Discrete Mathematics	
Total Hours		18

Polymers Concentration^{*}

Code	Title	Hours
Required Courses	s:	
EMAC 270	Introduction to Polymer Science and Engineering	ј 3
EMAC 276	Polymer Properties and Design	3
CHEM 223	Introductory Organic Chemistry I	3
or CHEM 323	Organic Chemistry I	
Choose three of t	he following:	9
EMAC 351	Physical Chemistry for Engineering	
EMAC 355	Polymer Analysis Laboratory	
EMAC 372	Polymer Processing and Testing Laboratory	
EMAC 375	Fundamentals of Non-Newtonian Fluid Mechanic and Polymer Rheology	cs
EMAC 376	Polymer Engineering	
EMAC 377	Polymer Processing	
Total Hours		18

a Completion of the Polymers Concentration satisfies the requirements for a minor in Polymer Science and Engineering.

Structural Materials and Mechanical Behavior Concentration

Code	Title	Hours
Required Courses	s:	
EMAC 270	Introduction to Polymer Science and Engineering	3
EMAC 276	Polymer Properties and Design	3
STAT 312	Basic Statistics for Engineering and Science	3
Choose three of t	he following:	9

Total Ho	ours		18
EMSE	E 427	Defects in Solids	
EMSE	E 422	Failure Analysis	
EMSE	E 421	Fracture of Materials	
EMSE	E 417	Properties of Materials in Extreme Environments	
EMA	E 480	Fatigue of Materials	
EMA	E 370	Design of Mechanical Elements	
ECIV	310	Strength of Materials	
ECHE	481	Corrosion Fundamentals	

Total Hours

Advanced Materials Science and Engineering Concentration

Students may satisfy the concentration requirement by taking 15 credit hours of courses from engineering, math, statistics, or natural sciences departments (beyond those specifically required in the curriculum) at the 300 level or above, plus a course to satisfy the Mathematics/Natural Sciences/Statistics requirement in the Engineering Core. The courses are to be selected in consultation with the student's advisor and will be subject to approval by the department's Undergraduate Studies Committee. This option is appropriate for students who desire a further study in topics relevant to materials science and engineering that are not represented in the specializations listed above.

Sample Plan of Study

The following is a suggested program of study. Current students should always consult their advisers and their individual graduation requirement plans as tracked in SIS.

Materials Science and Engineering Plan of Study Firet Voor

First Year		
Fall		Hours
EMSE 110	Transitioning Ideas to Reality I - Materials in Service of Industry and Society	1
MATH 121	Calculus for Science and Engineering I	4
CHEM 111	Principles of Chemistry for Engineers	4
ENGR 130	Foundations of Engineering and Programming	3
Academic Inquiry S	Seminar, Breadth, or Elective course ^a	3
	Hours	15
Spring		
MATH 122	Calculus for Science and Engineering II	4
ENGR 145	Chemistry of Materials	4
PHYS 121 or PHYS 123	General Physics I - Mechanics or Physics and Frontiers I - Mechanics	4
EMSE 120	Transitioning Ideas to Reality II - Manufacturing Laboratory	2
Academic Inquiry S	Seminar, Breadth, or Elective course ^a	3
	Hours	17
Second Year Fall		
MATH 223 or MATH 227	Calculus for Science and Engineering III or Calculus III	3

PHYS 122 or PHYS 124	General Physics II - Electricity and Magnetism or Physics and Frontiers II - Electricity and Magnetism	4
EMSE 276	Materials Properties: Composition and Structure	3
EMAC 270	Introduction to Polymer Science and Engineering	3
Breadth, or Electiv	e course ^a	3
	Hours	16
Spring		
ENGR 399	Impact of Engineering on Society	3
MATH 224 or MATH 228	Elementary Differential Equations or Differential Equations	3
ENGR 200	Statics and Strength of Materials	3
EMSE 220	Materials Laboratory I	2
EMSE 228	Mathematical and Computational Methods for Materials Science and Engineering	3
Breadth, or Electiv	e course ^a	3
	Hours	17
Third Year Fall		
ENGR 225	Thermodynamics, Fluid Dynamics, Heat and Mass Transfer	4
EMSE 320	Materials Laboratory II	1
EMSE 328	Mesoscale Structural Control of Functional Materials	3
EMSE 372	Structural Materials by Design	4
Concentration cou	irse	3
	Hours	15
Spring		
ENGR 210	Introduction to Circuits and Instrumentation	4
EMAC 276	Polymer Properties and Design	3
EMSE 327	Thermodynamic Stability and Rate Processes	3
EMSE 330	Materials Laboratory III	2
Breadth, or Elective	e course ^a	3
Concentration cou	rse	3
	Hours	18
Fourth Year		
Fall		
EMSE 398	Senior Project in Materials I	1
EMSE 343	Processing of Electronic Materials	3
EMSE 345	Engineered Materials for Biomedical Applications	3
EMSE 349	Role of Materials in Energy and Sustainability	3
Breadth, or Elective	e course ^a	3
Concentration cou	irse	3
Spring	Hours	16
EMSE 399	Senior Project in Materials II	2

EMSE 319	Processing and Manufacturing of Materials	3
EMSE 379	Design for Lifetime Performance	3
Breadth, or Elective course ^a		3
Concentration co	urse	3
Hours		14
	Total Hours	128

a Unified General Education Requirement.

Double Major in Materials Science and Engineering and Biomedical Engineering Plan of Study

First Year		
Fall		Hours
MATH 121	Calculus for Science and Engineering I	4
CHEM 111	Principles of Chemistry for Engineers	4
ENGR 130	Foundations of Engineering and Programming	3
Academic Inquiry S	eminar, Breadth, or Elective course ^a	3
Breadth, or Elective	course ^a	3
	Hours	17
Spring		
MATH 122	Calculus for Science and Engineering II	4
PHYS 121	General Physics I - Mechanics	4
ENGR 145	Chemistry of Materials	4
Academic Inquiry S	eminar, Breadth, or Elective course ^a	3
Breadth, or Elective	course ^a	3
	Hours	18
Second Year		
Fall		
MATH 223	Calculus for Science and Engineering III	3
PHYS 122	General Physics II - Electricity and Magnetism	4
CHEM 223	Introductory Organic Chemistry I	3
EMSE 276	Materials Properties: Composition and Structure	3
EBME 201	Physiology-Biophysics I	3
Breadth, or Elective	course ^a	3
	Hours	19
Spring		
MATH 224	Elementary Differential Equations	3
ENGR 200	Statics and Strength of Materials	3
ENGR 210	Introduction to Circuits and Instrumentation	4
EBME 202	Physiology-Biophysics II	3
STAT 312	Basic Statistics for Engineering and Science	3
	Hours	16

EMAC 270		
	Introduction to Polymer Science and Engineering	3
EMAC 351	Physical Chemistry for Engineering	3
EMSE 328	Mesoscale Structural Control of Functional Materials	3
EBME 306 & EBME 356	Introduction to Biomedical Materials and Introduction to Biomaterials Engineering - Laboratory	4
EBME 308 & EBME 358	Biomedical Signals and Systems and Biomedical Signals and Systems Laboratory	4
	Hours	17
Spring		
EBME 310 & EBME 360	Principles of Biomedical Instrumentation and Biomedical Instrumentation Laboratory	4
EBME 309 & EBME 359	Modeling of Biomedical Systems and Biomedical Computer Simulation Laboratory	4
EMSE 327	Thermodynamic Stability and Rate Processes	3
EMAC 352	Polymer Physics and Engineering	3
ENGR 399	Impact of Engineering on Society	3
Fourth Year Fall	Hours	17
EBME 370	Principles of Biomedical Engineering Design	3
EMSE 343	Processing of Electronic Materials	3
	Structural Materiala by Design	
EMSE 372	Structural Materials by Design	4
EMSE 372 EMSE 345	Engineered Materials for Biomedical Applications	
	Engineered Materials for Biomedical Applications	4 3 3
EMSE 345 Breadth, or Electiv	Engineered Materials for Biomedical Applications	3
EMSE 345 Breadth, or Electiv Spring	Engineered Materials for Biomedical Applications ve course ^a Hours	3
EMSE 345 Breadth, or Electiv	Engineered Materials for Biomedical Applications ve course ^a	3 3 16
EMSE 345 Breadth, or Electiv Spring	Engineered Materials for Biomedical Applications ve course ^a Hours Biomedical Engineering Design Experience Materials for Prosthetics and Orthotics	3 3 16 3 3
EMSE 345 Breadth, or Electiv Spring EBME 380	Engineered Materials for Biomedical Applications ve course ^a Hours Biomedical Engineering Design Experience Materials for Prosthetics and Orthotics Design for Lifetime Performance	3 3 16 3 3
EMSE 345 Breadth, or Electiv Spring EBME 380 EBME 305 EMSE 379 EMSE 319	Engineered Materials for Biomedical Applications ve course ^a Hours Biomedical Engineering Design Experience Materials for Prosthetics and Orthotics Design for Lifetime Performance Processing and Manufacturing of Materials	3 3 16 3 3 3
EMSE 345 Breadth, or Electiv Spring EBME 380 EBME 305 EMSE 379	Engineered Materials for Biomedical Applications ve course ^a Hours Biomedical Engineering Design Experience Materials for Prosthetics and Orthotics Design for Lifetime Performance Processing and Manufacturing of Materials	3 3 16 3 3 3 3 3 3
EMSE 345 Breadth, or Electiv Spring EBME 380 EBME 305 EMSE 379 EMSE 319	Engineered Materials for Biomedical Applications ve course ^a Hours Biomedical Engineering Design Experience Materials for Prosthetics and Orthotics Design for Lifetime Performance Processing and Manufacturing of Materials ve course ^a	3
EMSE 345 Breadth, or Electiv Spring EBME 380 EBME 305 EMSE 379 EMSE 319 Breadth, or Electiv	Engineered Materials for Biomedical Applications ve course ^a Hours Biomedical Engineering Design Experience Materials for Prosthetics and Orthotics Design for Lifetime Performance Processing and Manufacturing of Materials ve course ^a	3 3 16 3 3 3 3 3 3 3 3

Unified General Education Requirement.

а

Double Major in Materials Science and Engineering and Mechanical Engineering Plan of Study

First Year	,	
Fall		Hours
CHEM 111	Principles of Chemistry for Engineers	4
MATH 121	Calculus for Science and Engineering I	4
PHYS 121	General Physics I - Mechanics	4
	Seminar, Breadth, or Elective course ^a	3
Breadth, or Elective	e course ^a	3
	Hours	18
Spring		
MATH 122	Calculus for Science and Engineering II	4
PHYS 122	General Physics II - Electricity and Magnetism	4
ENGR 130	Foundations of Engineering and Programming	3
ENGR 145	Chemistry of Materials	4
Academic Inquiry S	Seminar, Breadth, or Elective course ^a	3
	Hours	18
Second Year		
Fall		
MATH 223 or MATH 227	Calculus for Science and Engineering III or Calculus III	3
EMSE 276	Materials Properties: Composition and Structure	3
EMAE 160	Mechanical Manufacturing	3
ENGR 200	Statics and Strength of Materials	3
Breadth, or Elective	e course ^a	3
Breadth, or Elective	e course ^a	3
	Hours	18
Spring		
ENGR 210	Introduction to Circuits and Instrumentation	4
MATH 224	Elementary Differential Equations	3
EMAE 181	Dynamics	3
EMAE 251	Thermodynamics	3
EMAE 250	Computers in Mechanical Engineering	3
STAT 312	Basic Statistics for Engineering and Science	3
	Hours	19
Third Year		
Fall		
EMAE 252	Fluid Mechanics	3
ECIV 310	Strength of Materials	3
EMSE 372	Structural Materials by Design	4
EMSE 328	Mesoscale Structural Control of Functional Materials	3
EMAE 350	Mechanical Engineering Analysis	3
	Hours	16

Spring		
EMSE 327	Thermodynamic Stability and Rate Processes	3
EMAE 260	Design and Manufacturing I	3
EMAE 353	Heat Transfer	3
EMAE 285	Mechanical Engineering Measurements Laboratory	4
EMAE 370	Design of Mechanical Elements	3
	Hours	16
Fourth Year		
Fall		
EMAE 355	Design of Fluid and Thermal Elements	3
EMAE 360	Design and Manufacturing II	3
EMAE 351	Control of Mechanical Systems	3
EMSE 343 or EMSE 345	Processing of Electronic Materials or Engineered Materials for Biomedical Applications	3
EMSE 349	Role of Materials in Energy and Sustainability	3
Breadth, or Elective course ^a		
	Hours	18
Spring		
EMSE 319	Processing and Manufacturing of Materials	3
EMAE 398	Senior Project	3
EMSE 379	Design for Lifetime Performance	3
ENGR 399	Impact of Engineering on Society	3
Breadth, or Elective	course ^a	3
	Hours	15
	Total Hours	138

Unified General Education Requirement.

а