Credit

3

AEROSPACE ENGINEERING, MS

More Information: https://engineering.case.edu/mechanical-aerospace-engineering/academics/aerospace-engineering/master-science

Degree: Master of Science (MS) **Field of Study**: Aerospace Engineering

Program Overview

The Department of Mechanical and Aerospace Engineering offers a Master of Science degree in Aerospace Engineering. A Combined Bachelor's/Master's Program is also offered for our undergraduate students.

Graduate Policies

For graduate policies and procedures, please review the School of Graduate Studies section of the General Bulletin.

Program Requirements

MS Track Options

Thesis-Focused Track

For a thesis-focused Aerospace Engineering MS, students must complete a minimum of 30 credit hours of graduate-level courses, including:

- a. a minimum of 18 to 21 credit hours of approved graduate-level courses, and
- b. 9 to 12 credit hours of MS thesis research, EMAE 651

Project-Focused Track

For a project-focused Aerospace Engineering MS, students must complete a minimum of 30 credit hours of graduate-level courses, including:

- a. a minimum of 21 to 27 credit hours of approved graduate-level courses, and
- b. 3 to 9 credit hours of MS project research, EMAE 695

Course-Focused Track

For a course-focused Aerospace Engineering MS, students must complete a minimum of 30 credit hours of graduate-level courses, including:

- a. a minimum of 30 credit hours of approved graduate-level courses, and
- satisfactory completion of the culminating course-focused experience, i.e. passing the course ENGR 600. To pass ENGR 600, students must earn at least a 3.00 grade in each of the three courses required for their concentration area.

Concentration Requirements

Depending on the area of interest, students should select courses from the list below with the approval of their advisor. Other technical, math and science courses within and outside of EMAE may be also acceptable with approval of their advisor.

Aeronautics

Title	Credit Hours
::	
Advanced Fluid Dynamics I	3
Propulsion	3
Flight Mechanics	3
urses:	
Advanced Fluid Dynamics II	3
Combustion	3
Computational Fluid Dynamics	3
	Advanced Fluid Dynamics I Propulsion Flight Mechanics urses: Advanced Fluid Dynamics II Combustion

Biomechanics

Code

EMAE 480

	н	lours	
Required Courses:			
EMAE 407	Fundamentals of Biomechanics	3	
EMAE 415	Introduction to Musculo-skeletal Biomechanics	3	
EMAE 456	Micro-Electro-Mechanical Systems in Biology and Medicine (BioMEMS)	3	
Recommended Courses:			
EBME 427	Movement Biomechanics and Rehabilitation	3	
EBME 474	Biotransport Processes	3	

Dynamics, Control and Manufacturing

Fatigue of Materials

Title

Code	litie	Hours
Required Courses	s:	
EMAE 481	Advanced Dynamics I	3
EMAE 489	Robotics I	3
EMAE 487	Vibration Problems in Engineering	3
or EMAE 560	Sustainable Manufacturing	
Recommended Co	urses:	
EMAE 479	Mechanics and Control of Compliant Robotics	3
EMAE 540	Advanced Dynamics II	3
CSDS 473	Modern Robot Programming	3
CSDS 491	Artificial Intelligence: Probabilistic Graphical Models	3

Fluids and Thermal Sciences

Code	Title	Credit Hours
Required Course	es:	
EMAE 453	Advanced Fluid Dynamics I	3
EMAE 455	Advanced Thermodynamics	3
EMAE 459	Advanced Heat Transfer	3
Recommended C	Courses:	
EMAE 454	Advanced Fluid Dynamics II	3
EMAE 457	Combustion	3
EMAE 460	Theory and Design of Fluid Power Machinery	3
EMAE 461	Chemistry of Fire Safe Polymers and Composite	s 3
EMAE 463	Fire Dynamics	3
EMAE 471	Computational Fluid Dynamics	3

Aerospace Engineering, MS

EMAE 494	Energy Systems	3
EMAE 554	Turbulent Fluid Motion	3
EMAE 557	Convective Two-Phase Flow and Heat Transfer	3
EMAE 559	Hypersonics and Gas Dynamics	3

Solid Mechanics

2

Code	Title	Credit Hours	
Required Courses:			
EMAE 401	Mechanics of Continuous Media	3	
ECIV 435	Elasticity and Data-driven Mechanics	3	
EMAE 475	Finite Element Analysis	3	
Recommended Courses:			
EMSE 421	Fracture of Materials	3	
EMAE 450	Advanced Mechanical Engineering Analysis	3	
EMAE 480	Fatigue of Materials	3	

Interdisciplinary

Take any three of the above required courses with the consent of your advisor and satisfy the other degree requirements.