MECHANICAL ENGINEERING, BSE

Degree: Bachelor of Science in Engineering (BSE)
Major: Mechanical Engineering

Program Overview
The Bachelor of Science in Engineering degree program with a major in Mechanical Engineering is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

The Department of Aerospace and Mechanical Engineering also offers a double major in Mechanical and Aerospace Engineering. Students completing this plan of study meet the requirements for both the Aerospace Engineering program and the Mechanical Engineering program. Details of the double major can be found on the Plan of Study tab.

Program Educational Objectives
a. Graduates will enter and successfully engage in careers in Mechanical Engineering and other professions appropriate to their background, interests, and skills.
b. Graduates will engage in continued learning through post-baccalaureate education and/or professional development in engineering or other professional fields.
c. Graduates will develop as leaders in their chosen professions.

Learning Outcomes
As preparation for achieving the above educational objectives, the Bachelor of Science in Engineering degree program with a major in Mechanical Engineering is designed so that students attain:

• an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
• an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
• an ability to communicate effectively with a range of audiences
• an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
• an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
• an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
• an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Co-op and Internship Programs
Opportunities are available for students to alternate studies with work in industry or government as a co-op student, which involves paid full-time employment over seven months (one semester and one summer). Students may work in one or two co-ops, beginning in the third year of study. Co-ops provide students the opportunity to gain valuable hands-on experience in their field by completing a significant engineering project while receiving professional mentoring. During a co-op placement, students do not pay tuition but maintain their full-time student status while earning a salary. Learn more at engineering.case.edu/coop. Alternatively or additionally, students may obtain employment as summer interns.

Undergraduate Policies
For undergraduate policies and procedures, please review the Office of Undergraduate Studies section of the General Bulletin.

Accelerated Master’s Programs
Undergraduate students may participate in accelerated programs toward graduate or professional degrees. For more information and details of the policies and procedures related to accelerated studies, please visit the Office of Undergraduate Studies section of the General Bulletin.

BS/MS Program
The combined bachelors/masters program allows a student to double count 9 credit hours of graduate course work towards the Bachelor of Science in Engineering degree in any one of the department's two degree programs. By completing the remaining graduate credit hours and a thesis, a student may earn a Master of Science degree in mechanical or aerospace engineering. This typically takes 5 years or slightly longer. Application to this program is initiated in the spring of the junior year with the department's graduate student programs office. A minimum grade point of 3.2 is required for consideration for this accelerated program.

BS/MS Academic Program Details
The current regulations for the MS degree by the School of Graduate Studies require a minimum of 18 credit hours of coursework at the 400-level (or higher). Please note that any 400-level course taken prior to admission to the BS/MS Program cannot typically be counted as part of the MS degree. However, EMAE 398 Senior Project may be included in the double counted credit hours toward the MS Thesis, if appropriate.

Follow the link below to learn more about the components of the BS/MS Program.

• BS/MS Application Process
If you have additional questions, please contact either:

• Professor Chirag Kharangate crk91@case.edu
• Student Affairs Coordinator Nathaniel Vishner cxw75@case.edu

Program Requirements
Students seeking to complete this major and degree program must meet the general requirements for bachelor’s degrees and the general requirements of the Case School of Engineering. Students completing this program as a secondary major while completing another undergraduate degree program do not need to satisfy the latter set of requirements.
Sample Plan of Study

The following is a suggested program of study. Current students should always consult their advisers and their individual graduation requirement plans as tracked in SIS.

First Year

Fall

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 111</td>
<td>Principles of Chemistry for Engineers ,</td>
<td>4</td>
</tr>
<tr>
<td>MATH 121</td>
<td>Calculus for Science and Engineering I ,</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 121</td>
<td>General Physics I - Mechanics ,</td>
<td>4</td>
</tr>
<tr>
<td>FSCC 100</td>
<td>First Seminar *</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Hours 61

* Technical Electives by Program
 - All 200-, 300-, and 400-level courses from the following areas: EMAE all, EMAE cross-listed, EBME all, EBME cross-listed, ECIV all, ECIV cross-listed, ESCE all, ESCE cross-listed, EMAC all, EMAC cross-listed, EMSE all, EMSE cross-listed, CSDS all, CSDS cross-listed
 - All 300- and 400-level courses in ECHE
 - All 300-level MATH and STAT courses with the concurrence of the advisor

** Science Electives for Mechanical Engineering Majors
 - The Student Information System is currently set up to accept PHYS 221 Introduction to Modern Physics or STAT 312 Basic Statistics for Engineering and Science as a science elective. Other courses for individual students can be selected with the approval of the student's advisor and the chair using an Academic Advisement Requirement Form.

Second Year

Fall

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMAE 160</td>
<td>Mechanical Manufacturing</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 200</td>
<td>Statics and Strength of Materials ,</td>
<td>3</td>
</tr>
<tr>
<td>MATH 223</td>
<td>Calculus for Science and Engineering II ,</td>
<td>3</td>
</tr>
<tr>
<td>EMAE 250</td>
<td>Computers in Mechanical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ECIV 310</td>
<td>Strength of Materials</td>
<td>3</td>
</tr>
<tr>
<td>EMAE 350</td>
<td>Mechanical Engineering Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EMAE 351</td>
<td>Control of Mechanical Systems</td>
<td>3</td>
</tr>
<tr>
<td>EMAE 352</td>
<td>Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>EMAE 355</td>
<td>Design of Fluid and Thermal Elements</td>
<td>3</td>
</tr>
<tr>
<td>EMAE 360</td>
<td>Design and Manufacturing II</td>
<td>3</td>
</tr>
<tr>
<td>EMAE 370</td>
<td>Design of Mechanical Elements</td>
<td>3</td>
</tr>
<tr>
<td>EMAE 398</td>
<td>Senior Project</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 15

Third Year

Fall

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breadth elective ,</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>EMAE 285</td>
<td>Mechanical Engineering Measurements Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>EMAE 252</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ECIV 310</td>
<td>Strength of Materials</td>
<td>3</td>
</tr>
<tr>
<td>EMAE 350</td>
<td>Mechanical Engineering Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 16

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breadth elective ,</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>EMAE 355</td>
<td>Design of Fluid and Thermal Elements</td>
<td>3</td>
</tr>
<tr>
<td>EMAE 360</td>
<td>Design and Manufacturing II</td>
<td>3</td>
</tr>
<tr>
<td>Open Elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Sample Plan of Study: Double Major in Mechanical and Aerospace Engineering

First Year

Fall
- CHEM 111 Principles of Chemistry for Engineers **,d** 4
- MATH 121 Calculus for Science and Engineering I **,d** 4
- PHYS 121 General Physics I - Mechanics **,d** 4
- FSCC 100 First Seminar * 4
- PHED (two half semester classes) * 0

Hours 16

Spring
- MATH 122 Calculus for Science and Engineering II **,d** 4
- PHYS 122 General Physics II - Electricity and Magnetism **,d** 4
- ENGR 130 Foundations of Engineering and Programming **,d** 3
- ENGR 145 Chemistry of Materials **,d** 4
- SAGES University Seminar *,**d** 3
- PHED (two half semester classes) * 0

Hours 16

Second Year

Fall
- EMAE 160 Mechanical Manufacturing d 3
- ENGR 200 Statics and Strength of Materials **,d** 3
- MATH 223 Calculus for Science and Engineering III **,d** 3
- EMAE 250 Computers in Mechanical Engineering d 3
- SAGES University Seminar *,**d** 3

Hours 15

Spring
- ENGR 210 Introduction to Circuits and Instrumentation **,d** 4
- PHYS 221 Introduction to Modern Physics **,d** 3
- MATH 224 Elementary Differential Equations **,d** 3
- EMAE 181 Dynamics **,d** 3
- EMAE 251 Thermodynamics d 3

Hours 16

Third Year

Fall
- Breadth elective **,d** 3
- EMAE 285 Mechanical Engineering Measurements Laboratory d 4
- EMAE 252 Fluid Mechanics d 3
- ECIV 310 Strength of Materials d 3
- EMAE 350 Mechanical Engineering Analysis d 3

Hours 16

Spring
- EMAE 260 Design and Manufacturing I d 3
- EMAE 351 Control of Mechanical Systems 3
- EMAE 353 Heat Transfer d 3
- EMAE 359 Aero/Gas Dynamics 3
- EMAE 370 Design of Mechanical Elements d 3
- EMAE 376 Aerostructures 3

Hours 18

Fourth Year

Fall
- Breadth elective **,d** 3
- EMAE 383 Flight Mechanics 3
- EMAE 384 Orbital Dynamics 3
- EMAE 355 Design of Fluid and Thermal Elements d 3
- EMAE 360 Design and Manufacturing II 3

Hours 15

Spring
- EMAE 356 Aerospace Design 3
- EMAE 382 Propulsion 3
- EMAE 398 Senior Project **,d** 3
- ENGR 398 Professional Communication for Engineers and Professional Communication for Engineers 3
- Breadth elective **,d** 3
- Breadth elective *,**d** 3

Hours 18

Total Hours 132

* University general education requirement.
** Engineering general education requirement.
d May be taken fall or spring semester.