Molecular Biology and Microbiology

Room W200, School of Medicine
https://case.edu/medicine/microbio/
Phone: 216.368.3420
Jonathan Karn, PhD, Reinberger Professor, Chair
jonathan.karn@case.edu

Alan Levine (alan.levine@case.edu), Graduate Program Director
Brinn Omabegho (brinn.omabegho@case.edu), Manager

The Department of Molecular Biology and Microbiology provides a focus within the School of Medicine for the study of the growth and development of microorganisms at the molecular level and the host’s response to infection. The Department is home to three PhD programs: Cell Biology, Molecular Biology and Microbiology, and Molecular Virology.

Faculty have nationally-funded research programs. Many faculty serve on study sections of national agencies, publish in the most prestigious journals, serve as editors of journals, and take leadership positions throughout the Case Western Reserve University School of Medicine. The department also enjoys numerous collaborations with faculty in the Departments of Biochemistry, Neuroscience, Pathology, Nutrition, Population and Quantitative Health Sciences, Pharmacology, Genetics and Genome Sciences, the Case Comprehensive Cancer Center, the Visual Sciences Research Center, the Center for AIDS Research, and the Center for RNA Science and Therapeutics at Case Western Reserve University, and the Department of Cell Biology at the Lerner Research Center at CCF, because of shared research interests. All these activities create a vibrant scientific environment.

Research areas include the study of normal cell functions, microbial systems, viruses, immunology, and infectious diseases. It is only by developing a thorough understanding of the fundamental biology of cells and pathogenic microbes, their host organisms, and how the two interact during infection that improved strategies for prevention and treatment of infectious diseases can be achieved.

Doctoral Programs

The Department of Molecular Biology and Microbiology offers the following degree programs:

- Cell Biology PhD
- Molecular Biology and Microbiology PhD
- Molecular Virology PhD

Admissions for all three of these programs occurs through the common PhD admissions program, the Biomedical Sciences Training Program (http://bulletin.case.edu/schoolofmedicine/graduateprograms/biomedicalscentrainingprogramtext). In addition, students in the Medical Scientist Training Program (http://bulletin.case.edu/schoolofmedicine/dualalldgeeprophomes/medicalscentrainingprogramtext) (MSTP) can also pursue these three PhD programs.

PhD Requirements

Students entering through BSTP begin the first of three research rotations during the summer and participate in the Core Curriculum in Cell and Molecular Biology (C3MB), two integrated courses which provide formal instruction in modern cell and molecular biology. Some exceptional students with strong backgrounds, such as a previous Master’s Degree, may be eligible to be exempted from part of the Core Curriculum, and instead, enroll in one or more advanced courses during the fall semester. Some students may be eligible to apply for the transfer of credit from their previous institution (please visit here (http://gradstudies.case.edu/) for more information). Transfer credit must be requested prior to beginning coursework at CWRU.

A student who chooses a thesis mentor from Cell Biology, Molecular Biology and Microbiology, or Molecular Virology can become a member of one of these three PhD programs.

Cell Biology PhD

To earn a PhD in Cell Biology, a student must complete 400-level graduate Core and Elective coursework including Responsible Conduct of Research and Research Rigor and Reproducibility as described in the course of study.

Students in the Cell Biology PhD program are expected to attend the joint student seminars. (CLBY 435 Seminar in Molecular Biology/ Microbiology) for at least 3 semesters (total of 3 credit hours). Continued participation in the seminars after completion of this requirement is encouraged. Up to 4 credit hours can be allocated to the seminar course (one credit per semester).

Cell Biology students should take CLBY 450 Cells and Pathogens and must take both of the following fundamental courses: CLBY 526 Cell Biology and Human Disease and CLBY 488 Yeast Genetics and Cell Biology.

Any combination of graduate courses from within or outside the department can be used to fulfill the requirement as long as the planned program of study has the approval of the Graduate Program Director, the student's mentor, and their thesis committee.

Students must successfully complete a qualifying examination for advancement to candidacy in the form of a short grant proposal with oral defense. The qualifying exam is generally completed in the summer after year two. During the dissertation period, students are expected to meet twice a year with the thesis committee, present seminars in the department, and fulfill journal publication requirements. Throughout the doctoral training, students are expected to be enthusiastic participants in seminars, journal clubs, and research meetings in the lab and program.

Plan of Study: Cell Biology PhD

Please also see Graduate Studies Academic Requirements for Doctoral Degrees (http://bulletin.case.edu/schoolofgraduatestudies/academicrequirements/).

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology I (IBMS 453)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Biology I (IBMS 455)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamental Biostatistics to Enhance Research Rigor & Reproducibility (IBMS 450)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Since You Were Born: Nobel Prize Biomedical Research in the Last 21 Years- Section A (IBMS 456A)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Students must successfully complete a qualifying examination for advancement to candidacy in the form of a short grant proposal with oral defense. The qualifying exam is generally completed in the summer after year two. During the dissertation period, students are expected to meet twice a year with the thesis committee, present seminars in the department, and fulfill journal publication requirements. Throughout the doctoral training, students are expected to be enthusiastic participants in seminars, journal clubs, and research meetings in the lab and program.

Plan of Study: Molecular Biology and Microbiology PhD

Please also see Graduate Studies Academic Requirements for Doctoral Degrees (http://bulletin.case.edu/schoolofgraduatemasterstudies/academicrequirements/).

First Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology I (IBMS 453)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Molecular Biology I (IBMS 455)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fundamental Biostatistics to Enhance Research Rigor & Reproducibility (IBMS 450)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Since You Were Born: Nobel Prize Biomedical Research in the Last 21 Years - Section A (IBMS 456A)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Research Rotation in Biomedical Sciences Training Program (BSTP 400) or Research Rotation in Medical Scientist Training Program (MSTP 400)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Seminar in Molecular Biology/Microbiology (MBIO 435)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Research in Molecular Biology and Microbiology (MBIO 601)</td>
<td>1 - 18</td>
<td></td>
</tr>
<tr>
<td>Elective graduate coursework</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>9</td>
<td>6-24</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective graduate coursework</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Seminar in Molecular Biology/Microbiology (CLBY 435)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Special Problems (CLBY 601)</td>
<td>1 - 18</td>
<td></td>
</tr>
<tr>
<td>Elective graduate coursework</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Seminar in Molecular Biology/Microbiology (CLBY 601)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Special Problems (CLBY 601)</td>
<td>1 - 18</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>5-23</td>
<td>5-23</td>
</tr>
</tbody>
</table>

Total Units in Sequence: 25-79

Total Units Required: 36

By the end of Year 2: Complete elective coursework so that total graded courses = 24 credits; Research credits switch from 601 to 701 once passed into candidacy

Third Year+: Full-time thesis research (701) - 18 total credit hours total

Molecular Biology and Microbiology PhD

To earn a PhD in Molecular Biology and Microbiology, a student must complete 400-level graduate Core and Elective coursework including Responsible Conduct of Research and Research Rigor and Reproducibility as described in the course of study.

Students in the Molecular Biology and Microbiology PhD program are expected to attend the joint student seminars (MBIO 435 Seminar in Molecular Biology/Microbiology) for at least 3 semester (total of 3 credit hours). Continued participation in the seminars after completion of this requirement is encouraged. Up to 4 credit hours can be allocated to the seminar course (one credit per semester).

Students should take MBIO 435 Seminar in Molecular Biology/Microbiology and beyond that, any combination of graduate courses from within or outside the department can be used to fulfill the requirement as long as the planned program of study has the approval of the Graduate Program Director, the student’s mentor, and their thesis committee.
IBMS 501 Responsible Conduct of Research for Advanced Trainees is offered every spring semester (beginning 2020). The SOM requires that PhD students who are 4 years beyond their initial RCR training in IBMS 500 On Being a Professional Scientist: The Responsible Conduct of Research, register for IBMS 501.

Molecular Virology PhD

To earn a PhD in Molecular Virology, a student must complete 400-level graduate Core and Elective coursework including Responsible Conduct of Research and Research Rigor and Reproducibility as described in the course of study.

Students in the Molecular Virology PhD program are expected to attend the joint student seminars (MVIR 435 Seminar in Molecular Biology/Microbiology) for at least 3 semester (total of 3 credit hours). Continued participation in the seminars after completion of this requirement is encouraged. Up to 4 credit hours can be allocated to the seminar course (one credit per semester).

Molecular Virology PhD students should take MVIR 450 Cells and Pathogens and must take both of the following fundamental courses: MVIR 445 Molecular Biology and Pathogenesis of RNA and DNA Viruses and MVIR 450 Cells and Pathogens. MVIR 445 and MVIR 450 are offered on alternating spring semesters.

Any combination of graduate courses from within or outside the department can be used to fulfill the requirement as long as the planned program of study has the approval of the Graduate Program Director, the student’s mentor, and their thesis committee.

Students must successfully complete a qualifying examination for advancement to candidacy in the form of a short grant proposal with oral defense. The qualifying exam is generally completed in the summer after year two. During the dissertation period, students are expected to meet twice a year with the thesis committee, present seminars in the department, and fulfill journal publication requirements. Throughout the doctoral training, students are expected to be enthusiastic participants in seminars, journal clubs, and research meetings in the lab and program.

Plan of Study: Molecular Virology PhD

Please also see Graduate Studies Academic Requirements for Doctoral Degrees (http://bulletin.case.edu/schoolofgraduatesudies/academirequirements/).

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology I (IBMS 453)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Molecular Biology I (IBMS 455)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fundamental Biostatistics to Enhance Research Rigor & Reproducibility (IBMS 450)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Since You Were Born: Nobel Prize Biomedical Research in the Last 21 Years- Section A (IBMS 456A)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Research Rotation in Biomedical Sciences Training Program (BSTP 400) or Research Rotation in Medical Scientist Training Program (MSTP 400)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Seminar in Molecular Biology/Microbiology (MVIR 435)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Elective graduate coursework</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Research (MVIR 601)</td>
<td>1-9</td>
<td></td>
</tr>
</tbody>
</table>

On Being a Professional Scientist: The Responsible Conduct of Research (IBMS 500)

Year Total: 9 6-15

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Molecular Biology/Microbiology (MVIR 435)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Elective graduate coursework</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Research (MVIR 601)</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Seminar in Molecular Biology/Microbiology (MVIR 435)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Elective graduate coursework</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Research (MVIR 601)</td>
<td>1-9</td>
<td></td>
</tr>
</tbody>
</table>

Year Total: 5-14 5-14

Total Units in Sequence: 25-52

By the end of Year 2: Complete elective coursework so that total graded courses = 24 credits; Research credits switch from 601 to 701 once passed into candidacy

Third Year+: Full-time thesis research (701) - 18 total credit hours total

IBMS 501 Responsible Conduct of Research for Advanced Trainees is offered every spring semester (beginning 2020). The SOM requires that PhD students who are 4 years beyond their initial RCR training in IBMS 500 On Being a Professional Scientist: The Responsible Conduct of Research, register for IBMS 501.

CLBY Courses

CLBY 416. Fundamental Immunology. 4 Units.

Introductory immunology providing an overview of the immune system, including activation, effector mechanisms, and regulation. Topics include antigen-antibody reactions, immunologically important cell surface receptors, cell-cell interactions, cell-mediated immunity, innate versus adaptive immunity, cytokines, and basic molecular biology and signal transduction in B and T lymphocytes, and immunopathology. Three weekly lectures emphasize experimental findings leading to the concepts of modern immunology. An additional recitation hour is required to integrate the core material with experimental data and known immune mediated diseases. Five mandatory 90 minute group problem sets per semester will be administered outside of lecture and recitation meeting times. Graduate students will be graded separately from undergraduates, and 22 percent of the grade will be based on a critical analysis of a recently published, landmark scientific article. Offered as BIOL 316, BIOL 416, CLBY 416, PATH 316 and PATH 416. Prereq: Graduate standing.

CLBY 435. Seminar in Molecular Biology/Microbiology. 1 Unit.

Graduate students will attend the departmental seminar given by all graduate students in the Department of Molecular Biology and Microbiology, in the Molecular Virology Program, and in the Cell Biology Program, as well as give a seminar on their own thesis research. Students will be evaluated by the faculty member in charge of that student’s seminar with input from the students’ own thesis committee. After each seminar, the student presenter will meet with other graduate students for peer-review of the content, delivery, and style of the seminar. Peer reviewers will also be evaluated for the quality of their input. Offered as CLBY 435 and MBIO 435 and MVIR 435.
CLBY 450. Cells and Pathogens. 3 Units.
Modern molecular cell biology owes a great debt to viral and bacterial pathogens as model systems. In some instances pathogens operate by faithful mimicry of host proteins, and other cases represent the result of extensive molecular tinkering and convergent evolution. This course will also explore numerous mechanisms utilized by pathogens to subvert the host and enhance their own survival. Topics covered include nuclear regulatory mechanisms, protein synthesis and stability, membrane-bound organelles, endocytosis and phagocytosis, and factors that influence cell behavior such as cytoskeleton rearrangements, cell-cell interactions, and cell migration. Additional topics include cell signaling and co-evolution of pathogens and host cell functions. Students are expected to come to class prepared to discuss pre-assigned readings consisting of brief reviews and seminal papers from the literature. Student assessment will be based on effective class participation (approximately 80%) and successful presentation of an independent research topic (approximately 20%). Offered as CLBY 450, MBIO 450, and MVIR 450. Prereq: CBIO 453 and CBIO 455 or permission of instructor.

CLBY 466. Cell Signaling. 3 Units.
This is an advanced lecture/journal/discussion format course that covers cell signaling mechanisms. Included are discussions of neurotransmitter-gated ion channels, growth factor receptor kinases, cytokine receptors, G protein-coupled receptors, steroid receptors, heterotrimeric G proteins, ras family GTPases, second messenger cascades, protein kinase cascades, second messenger regulation of transcription factors, microtubule-based motility, actin/myosin-based motility, signals for regulation of cell cycle, signals for regulation of apoptosis. Offered as CLBY 466, PHOL 466 and PHRM 466.

CLBY 488. Yeast Genetics and Cell Biology. 3 Units.
This seminar course provides an introduction to the genetics and molecular biology of the yeasts S. cerevisiae and S. pombe by a discussion of current literature focusing primarily on topics in yeast cell biology. Students are first introduced to the tools of molecular genetics and special features of yeasts that make them important model eukaryotic organisms. Some selected topics include cell polarity, cell cycle, secretory pathways, vesicular and nuclear/cytoplasmic transport, mitochondrial import and biogenesis, chromosome segregation, cytoskeleton, mating response and signal transduction. Offered as CLBY 488, GENE 488, MBIO 488, and PATH 488.

CLBY 525. Neurodegenerative Diseases of the Brain and the Eye: Molecular Basis of the Brain-Eye Connection. 3 Units.
This is a graduate-level seminar course that familiarizes students with common neurodegenerative conditions of the brain and the eye. The molecular basis of each disorder and associated ophthalmic pathology will be emphasized. Contribution of heavy metals in brain and ocular pathology will be discussed where appropriate. Specific examples include Alzheimer’s Disease, Parkinson’s Disease, prion disorders, Huntington’s Disease, age-related macular degeneration, glaucoma, and others based on popular demand. The students will be expected to discuss relevant research publications in class in an interactive format. Grading will be based on class participation and completion of an R21 grant proposal. Concurrent enrollment in PATH 526 on grant writing skills is strongly recommended but not required. Offered as PATH 525 and CLBY 525.

CLBY 526. Cell Biology and Human Disease. 3 Units.
This course is designed to provide broad base of knowledge regarding cell structure and function. The basic structure of the cell will be discussed, as will the various functional systems that are superimposed upon and interact with this structure. The course will discuss organelle biogenesis, materials movement inside cells, cell interaction with the external environment, cell cycle and cell death regulation, cytoskeleton dynamics, quality control mechanisms, and basic signal transduction concepts. The course will also discuss how abnormal cell function may lead to human disease, and how basic cell function may be harnessed by intracellular pathogens to provide favorable intracellular environments for replication. The major goals of this course are to provide students with a working knowledge of the cell to facilitate understanding of the scientific literature, and to familiarize students with modern experimental approaches in cell biology. The course will rely heavily on student participation. Students will be provided with study guides with the expectation they will come to class prepared to lead interactive group discussions with minimal input from instructors. Offered as CLBY 526, MBIO 526 and MVIR 526.

CLBY 599. RNA Structure and Function. 3 Units.
This course will cover fundamental aspects of modern RNA biology with emphasis on the interplay of three dimensional structure of nucleic acids and their function. The main focus of the course is on the recent discoveries that indicate a prominent role of RNA as a major regulator of cellular function. Topics discussed will include an introduction to RNA structure, folding and dynamics, RNA/RNA and RNA-protein interactions, and role of RNA in catalysis of biological reactions in ribosome and the role of other catalytic RNAs in tRNA biogenesis, pre-mRNA splicing, and viral replication. The course also covers the recently discovered RNA regulatory switches, large noncoding regulatory RNAs, and the role of RNA in human diseases and novel, RNA-based therapeutics. Offered as BIOC 599, CLBY 599, and MBIO 599.

CLBY 601. Special Problems. 1 - 18 Units.
This is the listing for independent research. Students should enroll in this course once they have selected their laboratory for Ph.D. research. The number of credit hours depends on how many didactic courses they are following at the same time. Once they have passed their qualifying examination they should register for CLBY 701.

CLBY 701. Dissertation Ph.D.. 1 - 9 Units.
This is the listing for independent research toward the Ph.D. The number of credit hours depends on how many didactic courses students are following at the same time. Students may register for this course only once they have passed their qualifying examination. Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.

MBIO Courses

MBIO 399. Undergraduate Research. 1 - 3 Units.
Permits qualified undergraduates to work in a faculty member’s laboratory.
MBIO 420. Current Topics in Cancer. 3 Units.
The concept of cancer hallmarks has provided a useful guiding principle in our understanding of the complexity of cancer. The hallmarks include sustaining proliferative signaling, evading growth suppressors, enabling replicative immortality, activating invasion and metastasis, inducing angiogenesis, resisting cell death, deregulating cellular energetics, avoiding immune destruction, tumor-promoting inflammation, and genome instability and mutation. The objectives of this course are to (1) examine the principles of some of these hallmarks, and (2) explore potential therapies developed based on these hallmarks of cancer. This is a student-driven and discussion-based graduate course. Students should have had some background on the related subjects and have read scientific papers in their prior coursework. Students will be called on to present and discuss experimental design, data and conclusions from assigned publications. There will be no exams or comprehensive papers but students will submit a one-page critique (strengths and weaknesses) of one of the assigned papers prior to each class meeting. The course will end with a full-day student-run symposium on topics to be decided jointly by students and the course director. Grades will be based on class participation, written critiques, and symposium presentations. Offered as BIOC 420, MBIO 420, PATH 422, and PHRM 420. Prereq: IBMS 453 and IBMS 455.

MBIO 435. Seminar in Molecular Biology/Microbiology. 1 Unit.
Graduate students will attend the departmental seminar given by all graduate students in the Department of Molecular Biology and Microbiology, in the Molecular Virology Program, and in the Cell Biology Program, as well as give a seminar on their own thesis research. Students will be evaluated by the faculty member in charge of that student's seminar with input from the students' own thesis committee. After each seminar, the student presenter will meet with other graduate students for peer-review of the content, delivery, and style of the seminar. Peer reviewers will also be evaluated for the quality of their input. Offered as CLBY 435 and MBIO 435 and MVIR 435. Prereq: CBIO 453 and CBIO 455.

MBIO 445. Molecular Biology and Pathogenesis of RNA and DNA Viruses. 3 Units.
Through a combination of lectures by Case faculty and guest lecturers, along with student discussion of current literature, this course emphasizes mechanisms of viral gene expression and pathogenesis. RNA viruses to be discussed include positive, negative, and retroviruses. DNA viruses include SV40, adenovirus, herpes, papilloma, and others. Important aspects of host defense mechanisms, antiviral agents, and viral vectors will also be covered. Students will be evaluated based on their quality of presentation of course papers assigned to them and their overall participation in class discussions. Offered as MBIO 445 and MVIR 445.

MBIO 450. Cells and Pathogens. 3 Units.
Modern molecular cell biology owes a great debt to viral and bacterial pathogens as model systems. In some instances pathogens operate by faithful mimicry of host proteins, and other cases represent the result of extensive molecular tinkering and convergent evolution. This course will also explore numerous mechanisms utilized by pathogens to subvert the host and enhance their own survival. Topics covered include nuclear regulatory mechanisms, protein synthesis and stability, membrane-bound organelles, endocytosis and phagocytosis, and factors that influence cell behavior such as cytoskeleton rearrangements, cell-cell interactions, and cell migration. Additional topics include cell signaling and co-evolution of pathogens and host cell functions. Students are expected to come to class prepared to discuss pre-assigned readings consisting of brief reviews and seminal papers from the literature. Student assessment will be based on effective class participation (approximately 80%) and successful presentation of an independent research topic (approximately 20%). Offered as CLBY 450, MBIO 450, and MVIR 450. Prereq: CBIO 453 and CBIO 455 or permission of instructor.

MBIO 488. Yeast Genetics and Cell Biology. 3 Units.
This seminar course provides an introduction to the genetics and molecular biology of the yeasts S. cerevisiae and S. pombe by a discussion of current literature focusing primarily on topics in yeast cell biology. Students are first introduced to the tools of molecular genetics and special features of yeasts that make them important model eukaryotic organisms. Some selected topics include cell polarity, cell cycle, secretory pathways, vesicular and nuclear/cytoplasmic transport, mitochondrial import and biogenesis, chromosome segregation, cytoskeleton, mating response and signal transduction. Offered as CLBY 488, GENE 488, MBIO 488, and PATH 488.

MBIO 513. Bacterial Virulence and Host Interactions. 3 Units.
The goal of this seminar course is to familiarize students with bacterial virulence mechanisms and how they interact with the host. The focus will be on current literature pertaining to this field. While the molecular basis of bacterial virulence mechanisms will be the main focus, some time will be spent on the host immune response. Topics covered will include adhesins/pili, secretion mechanisms, AB toxins, bacterial invasion and intracellular survival, regulation of virulence gene expression. Prereq: CBIO 453 and CBIO 455 or equivalent courses.

MBIO 526. Cell Biology and Human Disease. 3 Units.
This course is designed to provide broad base of knowledge regarding cell structure and function. The basic structure of the cell will be discussed, as will the various functional systems that are superimposed upon and interact with this structure. The course will discuss organelle biogenesis, materials movement inside cells, cell interaction with the external environment, cell cycle and cell death regulation, cytoskeleton dynamics, quality control mechanisms, and basic signal transduction concepts. The course will also discuss how abnormal cell function may lead to human disease, and how basic cell function may be harnessed by intracellular pathogens to provide favorable intracellular environments for replication. The major goals of this course are to provide students with a working knowledge of the cell to facilitate understanding of the scientific literature, and to familiarize students with modern experimental approaches in cell biology. The course will rely heavily on student participation. Students will be provided with study guides with the expectation they will come to class prepared to lead interactive group discussions with minimal input from instructors. Offered as CLBY 526, MBIO 526 and MVIR 526.
MBIO 599. RNA Structure and Function. 3 Units.
This course will cover fundamental aspects of modern RNA biology with emphasis on the interplay of three dimensional structure of nucleic acids and their function. The main focus of the course is on the recent discoveries that indicate a prominent role of RNA as a major regulator of cellular function. Topics discussed will include an introduction to RNA structure, folding and dynamics, RNA/RNA and RNA-protein interactions, and role of RNA in catalysis of biological reactions in ribosome and the role of other catalytic RNAs in tRNA biogenesis, pre-mRNA splicing, and viral replication. The course also covers the recently discovered RNA regulatory switches, large noncoding regulatory RNAs, and the role of RNA in human diseases and novel, RNA-based therapeutics. Offered as BIOC 599, CLBY 599, and MBIO 599.

MBIO 601. Research in Molecular Biology and Microbiology. 1 - 18 Units.

MBIO 701. Dissertation Ph.D.. 1 - 9 Units.
(Credit as arranged.) Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.

MVIR Courses

MVIR 435. Seminar in Molecular Biology/Microbiology. 1 Unit.
Graduate students will attend the departmental seminar given by all graduate students in the Department of Molecular Biology and Microbiology, in the Molecular Virology Program, and in the Cell Biology Program, as well as give a seminar on their own thesis research. Students will be evaluated by the faculty member in charge of that student’s seminar with input from the students’ own thesis committee. After each seminar, the student presenter will meet with other graduate students for peer-review of the content, delivery, and style of the seminar. Peer reviewers will also be evaluated for the quality of their input. Offered as CLBY 435 and MBIO 435 and MVIR 435.

MVIR 445. Molecular Biology and Pathogenesis of RNA and DNA Viruses. 3 Units.
Through a combination of lectures by Case faculty and guest lecturers, along with student discussion of current literature, this course emphasizes mechanisms of viral gene expression and pathogenesis. RNA viruses to be discussed include positive, negative, and retroviruses. DNA viruses include SV40, adenovirus, herpes, papilloma, and others. Important aspects of host defense mechanisms, antiviral agents, and viral vectors will also be covered. Students will be evaluated based on their quality of presentation of course papers assigned to them and their overall participation in class discussions. Offered as MBIO 445 and MVIR 445. Prereq: CBIO 453 and CBIO 455.

MVIR 450. Cells and Pathogens. 3 Units.
Modern molecular cell biology owes a great debt to viral and bacterial pathogens as model systems. In some instances pathogens operate by faithful mimicry of host proteins, and other cases represent the result of extensive molecular tinkering and convergent evolution. This course will also explore numerous mechanisms utilized by pathogens to subvert the host and enhance their own survival. Topics covered include nuclear regulatory mechanisms, protein synthesis and stability, membrane-bound organelles, endocytosis and phagocytosis, and factors that influence cell behavior such as cytoskeleton rearrangements, cell-cell interactions, and cell migration. Additional topics include cell signaling and co-evolution of pathogens and host cell functions. Students are expected to come to class prepared to discuss pre-assigned readings consisting of brief reviews and seminal papers from the literature. Student assessment will be based on effective class participation (approximately 80%) and successful presentation of an independent research topic (approximately 20%). Offered as CLBY 450, MBIO 450, and MVIR 450. Prereq: CBIO 453 and CBIO 455 or permission of instructor.

MVIR 526. Cell Biology and Human Disease. 3 Units.
This course is designed to provide broad base of knowledge regarding cell structure and function. The basic structure of the cell will be discussed, as will the various functional systems that are superimposed upon and interact with this structure. The course will discuss organelle biogenesis, materials movement inside cells, cell interaction with the external environment, cell cycle and cell death regulation, cytoskeleton dynamics, quality control mechanisms, and basic signal transduction concepts. The course will also discuss how abnormal cell function may lead to human disease, and how basic cell function may be harnessed by intracellular pathogens to provide favorable intracellular environments for replication. The major goals of this course are to provide students with a working knowledge of the cell to facilitate understanding of the scientific literature, and to familiarize students with modern experimental approaches in cell biology. The course will rely heavily on student participation. Students will be provided with study guides with the expectation they will come to class prepared to lead interactive group discussions with minimal input from instructors. Offered as CLBY 526, MBIO 526 and MVIR 526.

MVIR 601. Research. 1 - 18 Units.
Grade of S/U only.

MVIR 701. Dissertation Ph.D.. 1 - 9 Units.
Grade of S/U only. Prereq: Predoctoral research consent or advanced to Ph.D. candidacy milestone.